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Abstract: This paper presents and briefly discusses recent observations of dynamics associated with
isolated generalized bipolar transistor cells. A mathematical model of this simple system is consid-
ered on the highest level of abstraction such that it comprises many different network topologies.
The key property of the analyzed structure is its bias point since the transistor is modeled via two-
port admittance parameters. A necessary but not sufficient condition for the evolution of autono-
mous complex behavior is the nonlinear bilateral nature of the transistor with arbitrary reason that
causes this effect. It is proved both by numerical analysis and experimental measurement that cha-

otic motion is miscellaneous, robust, and it is neither numerical artifact nor long transient motion.

Keywords: admittance parameters; bipolar transistor; entropy; chaos; Lypunov exponent; non-uni-
lateral two-port; strange attractors

1. Introduction

Chaos can be considered as long-time unpredictable behavior of a dynamical system
that is both nonlinear and, in the autonomous case, has at least three degrees of freedom.
Chaotic systems are very sensitive to the changes of initial conditions; this sensitivity is
caused by exponential divergency of neighborhood orbits but, at the same time, the gen-
erated strange attractor is bounded into finite state space volume. The boundedness of
the strange attractor is due to the suitable nonlinearity of the vector field. Despite mature
observations, recent studies reveal that fixed points are not crucial for the evolution of
chaos. There are several mathematical models with equilibrium degenerated into higher-
dimensional geometric structures or chaotic systems without equilibrium. Additionally,
a wide variety of chaotic dynamical systems that exhibit the so-called hidden attractors
are available via internet search.

After its analytical, numerical, and experimental confirmation within a very simple
fully analog circuit, famous Chua’s oscillator [1], chaos started to receive considerable
attention, especially among circuit design engineers. Many interesting theories and prac-
tical findings coupled with nonlinear dynamics in lumped circuits were discovered and
published; several examples can be found in papers [2-8]. By following subsequent dis-
coveries in chaos theory and by increasing the knowledge of the strange attractor’s evo-
lution, this kind of complex motion was detected in many electronic systems. Let us men-
tion a few cases of naturally non-chaotic building blocks of more complex systems dedi-
cated for analog signal processing. Robust chaos was reported in switched capacitor cir-
cuits [9], switched regulators [10], power converters [11], different topologies of dc-dc
converters [12], and in power electronics in general. From the viewpoint of subsystems
of radio-frequency path, structurally stable chaotic oscillations were discovered in phase-
locked loops [13], multi-state memory cells [14,15], and standard structures of harmonic
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oscillators such as Colpitts [16], Hartley [17], Wien-bridge [18] or other topology having
resistor-capacitor feedback [19] topology.

Recent papers [20,21] have revealed the existence of strange attractors in a funda-
mental stage of class C amplifier with a single bipolar transistor. However, the bipolar
transistor in this paper is assumed to have linear forward trans-conductance y21(v1), while
work [20] assumes a cubic polynomial for both functions yi2(v2), y21(v1). Therefore, all
seven distinct chaotic cases revealed in this manuscript are algebraically simpler than the
single example proposed in paper [20]. In contrast, paper [21] deals with smooth nonlinear
function y21(v1) and presents strange attractors discovered for only two shapes of forward
trans-conductance. On the other hand, in the upcoming analysis, smooth polynomial non-
linearity up to the fifth order that describes backward trans-conductance could be found
within the set of the ordinary differential equations. Of course, the different mathematical
model considered here leads to completely different numerical results as well as much
simpler circuitry implementation. From the practical perspective, the third-order deter-
ministic chaotic systems provided in this paper generate waveforms with different fea-
tures. Readers can pick and use our dynamical system that fits a specific application. In
general, the upcoming sections represent more comprehensive analysis of the class C am-
plifier than case study [20]. Simple circuits with one or two transistors are analyzed in
paper [22], again from the viewpoint of the evolution of chaotic behavior. In these net-
works, the parasitic properties of transistors are not considered for the numerical investi-
gations.

Driven lumped electronic systems are subjects of chaotic dynamics as well. Moreo-
ver, degrees of freedom can be lowered to two. The chaotic operational regime of a KHN
(Kerwin-Huelsman-Newcomb) filter (or state variable filters in general) is analyzed in
paper [23]. It is demonstrated that chaos occurs and disappears according to the frequency
and amplitude of input useful harmonic signal. Based on the observations presented in
this paper, a two-terminal electronic device marked as “chaotic admittance” can be devel-
oped. While applied input voltage acts as a driving force, the chaotic waveform measured
at any independent internal node controls input current. The practical application of such
two-terminal can be discovered in noise generators, the testing of frequency responses,
analog and digital modulations, the masking of useful analog signals using chaotic wave-
form [24], etc.

2. Single Transistor Stage

Assume the lumped electronic equivalent of a single transistor that is characterized
by arbitrary bias point and connected as indicated in Figure 1a. For a useful signal, a sim-
plified small-signal calculation model provided in Figure 1b can be derived. Describing a
set of ordinary differential equations can be expressed in matrix form as:

_Yu Y1z
vl C1 C1 vl
d d Y. h% 1
ZxX=AX6 —(V|=| -2 -2 =], , (1)
dt dt . Cy (] Co .
Ly 0 1 0 lp
£

where yjx are admittance parameters of a bipolar transistor considered as two-port in a
common emitter configuration and the state vector is X = (vy,v5,i,)T. Symbol c1 repre-
sents a parasitic base-emitter capacitance and c2 is a sum of parasitic collector-emitter ca-
pacitance and working capacitance of the parallel resonant tank. Resistor Rz given in the
schematic could contain both the output admittance of transistor y22 and inductance resis-
tive losses. In practice, entries of 2 x 2 transistor’s admittance matrix could be complex
numbers, especially if high-frequency applications are addressed. It is necessary to realize
that the word “high” is relative —it could be tens of MHz depending on the type of bipolar
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det(y-E—A)=y3+m.y2+

transistor. Coefficients of the transistor’s admittance matrix could also be nonlinear func-
tions, specifically in the case of power amplifiers or if signals with high amplitudes are
processed.

Of course, numerical values of admittance parameters depend significantly on bias-
ing circuitry. These are not specified in the analyzed schematic. However, to maintain the
maximum universality of final remarks, the input and output admittance of a bipolar tran-
sistor is supposed to be linear, i.e., constant real number independent of the amplitude of
a processed signal. The fundamental amplification capability of a bipolar transistor char-
acterized by trans-admittance y21 will be scalar constant as well, which is a linear function
of input voltage v1 without offset. Therefore, a characteristic polynomial associated with
the isolated system (1) and evaluated at the fixed point x, = (v{,v?,i))7T is:

o

1 9y12

v,

c1°Cy cicpt

<C1+€'3’11'3’22_€'3’21'

where E is the unity matrix. A partial derivative of backward trans-conductance of a bi-
polar transistor is evaluated at equilibrium structure dx/dt =0, where 0 is a vector of zeroes.
Note that, at this moment, accumulation elements are normalized with respect to time and
impedance. This fact is emphasized by utilization of the small letters c,, c;, £ throughout
this manuscript.

yiz2:vz ¥21'V1

O
V2
1 1 \L
— ===C1 ==C2| |=— L
Y11 Y22 i

b)

Figure 1. General circuit concepts analyzed in this paper: (a) fundamental cell of class C amplifier,
(b) equivalent schematic of class C amplifier for useful small-amplitude AC (Alternating Current)
signals.

2.1. Local Polynomial Backward Trans-Conductance

Let us rewrite the matrix system of differential Equation (1) into the more general
form that considers the possible fractional-order nature of the individual accumulation
elements and a polynomial backward trans-conductance of a bipolar transistor. New or-
dinary differential equations will be:

da% V. 1
mvl=—ful—a(a-v2+b-v22+c-v23+d-v§+e-v25),
©)
b Y, Y, 1. oAV 1
atB 2 s 1 Ca 2 s € gy e 1

where orders a, §, and y are real numbers between zero and one. In this case, system (1)
has one fixed point located at the origin. Firstly, let us consider cases where coefficient a =
0. Eigenvalues, i.e., solutions of cubic polynomial (2) associated with x, = (0,0,0)T, imply
that the origin is a non-repelling fixed point, at least for reasonable values of transistor
cell components, i.e., nonzero positive ci, c2, £ and positive system dissipation, i.e., y11> 0
and y2> 0.
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Therefore, all nontrivial solutions including sought strange attractors belong to the so-
called hidden attractors [25]. The local vector field near to the origin is spanned by the
eigenvector & and the eigenplane defined by &, ; written in the following symbolic form:

_c-teryiryartatyh 0
— 721 — 4"3’22¢\/m
— — 22
& = _tyu yE3=| N . (5)
c1 2:cy
1 1

As it will be clarified later, case a = 0 covers four out of six discovered sets of parameters
that lead to robust chaotic behavior. Now assume an arbitrary value of coefficient a. By
following Cardan’s rule, one can obtain the following symbolic eigenvalues:

y = 1 [ 1 QY21 Yu 'YZz_l(YM YZZ)Z] 1()’11 V22

"3 Bleyt e, ey 3_+_ +'B_§_+_)' ©)

G G G G
where the first auxiliary parameter:

’ 1 _ayn  yiu e Loy, ve)?]
19 192 [CZ ) g Cl " Cz + C]_ " CZ 3 ( Cl + Cz ) (7)
ﬁ = . i — + ’
2 4 27
and the second auxiliary parameter can be calculated as:
Y11 1 Y11, Y22 3 oY1 Y22\ (1 _ aYya1 |, Yi1Y22
- £c1:cy + 27 [2 ( c1 + [ ) 9 ( [o% + () ) (c2-€ Cc1°Cy + c1°C2 )] ' (8)

For conservative dynamics, i.e., if y11=y22=0, formulas for the eigenvalues (6), (7), and (8)
significantly simplify into the following relation:

{-ayy1—c
Yiz =% ’ﬁ 3 =0. 9)

A closer insight into these eigenvalues is not necessary since the optimization routine (see
below) operates with numerical values of network elements and, consequently, with nu-
merical eigenvalues.

Although case a # 0 was considered during the searching-for-chaos procedure, its
linearized analysis is not provided in this paper. Corresponding symbolic formulas are
too complicated to be displayed using a reasonable format.

2.2. Local Piecewise-Linear Backward Trans-Conductance

The idea behind this sub-section is to assume the successful (in the sense of compa-
rable values of positive largest Lyapunov exponent) approximation of backward trans-
conductance y12(v2) by two- or three-segment piecewise linear (PWL) curves. A set of three
ordinary differential equations that describe the class C amplifier is:

a% Y Y21 Y22 1 av .

1 af ) 1
—v, = v —— Vy), 5V, = ===V, — =V, ——ip , —l;, ==V 10
qca V1 LS T Y12(v2), 2B V2 P T A e (10)

where a, , and y are real numbers between zero and one. The approximated vector field
is symmetrical with respect to origin. Therefore, for odd-symmetrical PWL function, back-
ward trans-conductance with four breakpoints {—¢2, —¢1, g1, 2} can be expressed as:

Po—P1

Y12(v2) = Pz x +EEE (I + @] = Ix — 1) + P22 (Ix + 0ol = lx = o), (11)

2

where  is slope of segment around zero, p1 is slope of segment between breakpoint ¢
and ¢z (g1 < ¢»2), and g2 is slope of segment in the outer regions of the vector field, i.e., x >
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. For even-symmetry of the vector field, PWL function could possess three breakpoints
{-® 0, ¢} and be characterized by the following simple relation:

Y12(2) = po - |x] +%' (x+ol+1x—=@D) =@ (p1 —po). (12)
Obviously, such PWL function has slope po for 0 < x < ¢, slope —pv for —¢ < x< 0, slope —p1
for x < —¢, and finally slope o for x > . Both PWL functions generate a single equilibrium
point located at the origin and the entire vector field is separated into five and four affine
segments for odd (11) and (12) even-symmetrical PWL function, respectively. Note that
the existence of other fixed points is not conditioned by the shape of PWL functions. In
other words, for scalar PWL functions, there is one equilibrium point located at
(=y12(0)/¥11,0,¥21 * y12(0) /y11)7. Assume constant term pwnst in PWL function (11) or
(12). Then, peonst can be used to move the equilibrium point to a new position in the state
space along a line.

2.3. Alternative Mathematical Models of Class C Amplifier

So far, a bipolar transistor substituted by two-port described by admittance matrix
was considered to be a dynamical system dedicated for analysis. Firstly, note that a tran-
sistor cannot be directly substituted by the very popular Giacoletto’s model or a similar
interconnection where backward trans-conductance is neglected. Secondly, an arbitrarily
biased bipolar transistor can be modeled using other types of two-port equivalent param-
eters, such as impedance or hybrid matrix. However, this change does not bring benefits
over the initial admittance matrix Y; neither from the viewpoint of linear analysis nor cir-
cuitry realization. For a bipolar transistor modeled by impedance matrix Z = Y-! we can
obtain the following algebraic relations:

V22 V12

le = . . = 0 ’ le == . . = 1 4
Vi1 V22 — V12" Y21 Vi1 Y22 — V12" V21 (13)
Z = ——y21 = L YA = —yll el _yi
21 Y11 ¥Y22=Y12'YV21 Y12 122 Y11 ¥Y22=Y12' Y21 Y12 ’

where significant simplifications provided above are valid for a zero output admittance
y2=0and a normalized forward trans-conductance y21=0. Analogically, for a bipolar tran-
sistor described by the hybrid matrix, we can obtain:

1 Y 1 Y11'Y22—YV12"Y. Y
h11=_;h12=_£;h21=_;h22=—11 22 12 21=_£z (14)
Y11 Y11 Y11 Y11 Y11

where the combination of y2=0 and y21=1 provides simplification again. Obviously, a
chaotic system based on a class C amplifier can be constructed using (13), (14), or by in-
troducing a linear transformation of coordinates applied on system (3) or (10).

A single-transistor class C amplifier can be also modeled by a two-port equivalent
circuit of a bipolar transistor where three two-terminal devices (initially admittances) are
arranged into IT topology appended by one voltage controlled current source. This con-
trolled source can be located at the input port, output port or between these ports. How-
ever, no such transformation reduces the complexity of the final circuit since much more
complex polynomial nonlinearities need to be implemented as lumped electronic subcir-
cuits. From the viewpoint of global dynamics, the IT-type configuration of an equivalent
circuit can still generate robust chaotic waveforms.

2.4. Searching for Chaotic Case

For the process of chaos localization using the largest Lyapunov exponent as the ob-
jective function [26], transfer characteristics of backward trans-conductance were approx-
imated by a polynomial up to the sixth order. Finally, it turns out that the values of both
capacitors and inductors can be kept constant (unity) during optimization without losing
the chance to find a chaotic solution. Additionally, a bipolar transistor is supposed to work
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close to ideal current source with y22—0 and forward trans-conductance y21=1S. Normal-
ized eigenvalues associated with the origin will be y1= —y11, v23= 4j, i.e., neighborhood
trajectories are attracted to an eigenplane where limit cycle is evolved. This is a quite un-
usual situation in chaos theory. Therefore, the sixth-dimensional hyperspace of the inter-
nal parameters of a dynamical system (1) with the edges We{y1, a, b, ¢, d, ¢} undergoes
deep investigation. The last five parameters shape nonlinear feedback function (3).

Since individual points in this hyperspace can be calculated independently (an arbi-
trary number of the fitness functions can be calculated simultaneously), Matlab and
CUDA-based parallel processes represent a good choice for high precision and fast calcu-
lation. Objective function is a combination of three phenomena: a bounded state attractor
(verified during numerical integration), a positive value of LLE (taken as a final value after
integration), and predefined local geometry near the fixed point. Since there is no closed-
form analytic solution associated with chaotic dynamics, stochastic nature-inspired opti-
mization (a combination of genetic algorithm and swarm intelligence) was utilized. So far,
several configurations ¥ with a reasonable (from the viewpoint of potential practical ap-
plications involving experimental construction of the chaotic circuit) seven-sided volume
have been found. More details can be found in Table 1 for polynomial vector field and
Table 2 for PWL case. The provided cases represent differently shaped (in the geometric
sense) strange attractors and this list is by no means complete.

Dynamical system (1) can be rewritten in the form of a jerk function, that is, as the
third order differential equation, namely:

Y11 }ﬁ) d? ( 1 +}’11'3’22_}’12'}’21>_ii Y11
dt "

o —i + — i, =0, 15
Cl C2 dtz L Cz'L CIICZ Cl-CZ CIICZ-L L ( )

or a simplified form by considering all assumptions provided above:
d3

, a2 . d . ,
el tn 'F1L+(1_}’12'}’21)'51L +y11°0,=0. (16)

In both (15) and (16), y12 is a nonlinear scalar function of variable v2. A single higher-
order differential equation has a simple circuit representation: cascade connection of inte-
grators with two-port feedback branches and an input summation/differentiation stage.

Third-order differential Equation (15) or (16) can be instantaneously compared with
the so-called jerk functions discovered during the excessive search performed by several
scientists in the most recent three decades. Prof. Sprott was especially active in this re-
search field and discovered many algebraically simple dynamical systems with a chaotic
solution [27-29]. From this perspective, mathematical model (1) with parameters ¥1 up to
Y7 represents a new chaotic system that cannot be transformed into some known third-
order system via a linear change of coordinates.

Table 1. Numerical values of internal parameters of system (3) with mathematical orders a =3 =y
=1 that result in robust chaotic motion.

Case yn a b c e
Y1 0.56 0 2.1 0 -1.1
¥ 0.50 0 0 3 0 -1.5
¥ 0.30 5 0 -2 0
R 0.40 0 2.7 0 -2 0
s 0.30 0 0 3 0 -2
s 0.50 2 0 0 0 -0.5
P 0.40 0 0 2 0 -1

Table 2. Numerical values of internal parameters of system (10) with mathematical orders a =3 =
Y =1 and either (11) or (12) that result in structurally stable chaotic motion (NA means Not Availa-
ble).
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Case yu (4 [ [ o P Jod
s 0.56 1.1 NA NA 1 4.3 NA
o 0.5 NA 0.3 1.1 0.3 2 -7
Wi 0.3 NA 0.6 1.18 4.6 0.6 -9.9
i 0.3 NA 0.4 1 0.2 15 -9.5

3. Numerical Results

The core engine for all routines used for numerical analysis presented in this paper
is a fourth order Runge-Kutta method with fixed step size. The numerical integration of
both mathematical descriptions of the discovered chaotic system, i.e., matrix expression
(1) and its normal form, calculated in Mathcad is provided by means of Figure 2. For this
fundamental analysis, final time was set to 10,000 s, time step was 0.01 s, initial conditions
were chosen xo= (-1, 0, 0)T for parameter set ¥12356 and xo= (2, 0, 0)T for parameter set ¥s.
Individual cases of parameters Wisare associated with Table 1.

Figure 3 shows that the chaotic system is extremely sensitive to the small variations
of initial states, as required for the chaotic dynamics. This kind of analysis was performed
for the W1 case of the chaotified class C amplifier (see Table 1), but similar results can be
obtained for the rest of the system cases, both polynomial and PWL. In these graphs, red
dots represent 104 initial conditions with normal distribution, standard deviation 0.01 and
nominal value xo= (1, 0, 0)T. Other colors have the following meanings: final state is stored
after 1 s (green points), ending state after 10 s (blue dots) and final state after 100 s (black
dots). Note that neighborhood trajectories diverge slowly, and after 10 s fiducial points
are still closely spaced. There is one exception: system case W2 possesses the higher degree
of long-time unpredictability.

Figures 4-10 demonstrate the distribution of dynamic energy through the state space
for individual cases Wi-7 (see Table 1). Here, red color denotes high kinetic energy, green
marks average local energy and magenta indicates a very low local energy. Numerical
values associated with these rainbow scaled plots normalized to unity time intervals are
also provided. Initial conditions and time step were kept the same as for the analysis given
in Figure 2; both with integration input parameters and a set of the initial conditions.
Firstly, note that strange attractors occupy different sized volumes in the state space.
Therefore, each plotted high-resolution plane has different axis ranges but uniform step
size 0.01; concrete boundaries can be found within descriptors of the individual figures.
For system cases W1 and W4, it is obvious that average dynamic energy rises with the ab-
solute value of state variable z. Using visualized plots, geometrical similarity between sys-
tem cases W1 and Ws can be observed. Finally, strange attractors primarily do not evolve
within areas with very high or low normalized energy. Along with kinetic energy distri-
butions, Poincaré return maps for the horizontal slices of the state space (z = const) are
visualized. Obviously, geometrical shapes of generated strange attractors are distinct and
attractors are dense in the state space, outside regions of a high local differential growth.
If indicated in the plot, vector field symmetry causes the strange attractor to be mirrored
with respect to the zero plane (z = 0) and Poincaré sections could only be provided for
upper or lower half state space (system cases ¥23).
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Figure 2. Plane projection v1 vs. 2 (black) and rainbow colored three-dimensional perspective views on the typical strange
attractors generated by: (a) parameter set W1 substituted into the expression (1), (b) parameter set W1 substituted into
system (6), (c) parameter set W2 substituted into differential Equation (1), (d) parameter set ¥2 substituted into jerk dynam-
ics (6), (e) parameter set ¥s numerically integrated using Equation (1), (f) integration of system (1) with parameter set ¥4,
(g) parameter set Ws substituted into Equation (1), and (h) parameter set Ws substituted into system (1) and integrated.

Table 3 provides calculated values that can quantify the complexity of typical strange
attractors generated by the subclasses of a class C amplifier cell with a single transistor ¥1
up to 7. The first flow quantifier is the largest Lyapunov exponent (LLE) calculated using
the mathematical model, see [30,31] for an overall description and algorithm explanation.
Based on the spectrum of one-dimensional Lyapunov exponents (real numbers calculated
with transient behavior omitted), the so-called Kaplan-Yorke dimension (KYD) of a gen-
erated strange attractor is established [32,33]. Capacity dimension (CD) of the state space
attractor established by using the box counting method [34] is also provided. Mentioned
flow quantifiers adapted for third-order dynamical systems can be calculated as follows:

[6Z(t)| LE, + LE, InN(e)

LLE = lim i JKYD = 24 A2 oy ,
(2% (620150 102, g, B Ini/e

(17)

where LLE is calculated using flow linearization and change in cube volume after small
integration step 0Z(t), LE1> LE2> LEs are one-dimensional Lyapunov exponents arranged
in a decreasing order, and N(¢) is the number of cubes with edge ¢ required to fully cover
the inspected state attractor.
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Figure 3. Sensitivity to tiny changes of initial condition demonstrated for first case of chaotic system: starting situation
(red points), short time evolution (green points), average time evolution (blue dots) and long time separation (black dots).
Nominal starting position is chosen as follows: (a) xo= (1, 0, 0)T, (b) xo= (-1, 0, 0)T, (c) xo= (0, -1, 0)T and (d) xo= (0, 1, 0)".
Magnified areas showing states are demonstrated.

axis ranges
x€(-1.5,0)
ye(-1.6, 1.6)

Figure 4. Horizontal state space slices given by z = const. showing kinetic energy distribution of typical chaotic attractors
of case W1 system, associated Poincaré sections (black dots). Figures sorted from left to right and up to down: z=-0.9, z =
—0.7,z=-05,2=-0.2,2z=0,2=03,z=1,z2=15,2=2,2=2.4,and z=2.47.
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axis ranges
x€(-3.7,3.7)
Ye ('29 2)

attractor
symmetry

Figure 5. Horizontal state space slices defined by the plane z = const. and providing dynamical energy distribution of
typical chaotic attractors of case W2 system (white curve), associated Poincaré sections (black dots). Figures sorted from
left to right and up to down: z=-3.3,z=-3,z=-25,z=-2,z=-15,2=-1,z2=-0.8,2=-0.6, z=-04,z=-0.2,and z=0.

750 axis ranges
oy xe(-11,11)

515 -
25 ye(-25,25)

attractor
symmetry

Figure 6. Horizontal state space slices given by plane z = const. providing rainbow scaled dynamical energy distribution
of the typical chaotic attractors of case W3 system, associated Poincaré sections (black dots). Individual figures are sorted
from left to right and up to down with respect to the planes: z=-9.4,z=-9,z2=-85,z2=-8,2=-7,2=-6.5,z2=-6,z=—4, z
=-2,z=-1,and z=0.

axis ranges
x€(-1.7,-0.2)
ve(-1.4,1.4)

Figure 7. Horizontal state space slices given by plane z = const. providing rainbow scaled dynamical energy distribution
of the typical chaotic attractors of case W1 system (white trajectory), and associated Poincaré sections (black dots). Figures
sorted from left to right and up to down: z=-0.4,z=-0.2,2=0,z=0.2,2=0.3,2=05,2z=0.8,z=12,z=16,z=2,and z =
2.5.
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axis ranges
x€(-2.8,0.2)
ve(-1.6, 1.6)

Figure 8. Horizontal state space slices given by plane z = const. providing rainbow scaled dynamical energy distribution
of the typical chaotic attractors of case ¥s system (white trajectory), and associated Poincaré sections (black dots). Individ-
ual figures are sorted from left to right and up to down: z=-1,z=-0.8,2=-0.6,z=-0.2,2=04,z=0.6,z=1,z=15,z=2,
z=25,and z=2.9.

160  axis ranges
133 x€(-35,3.5)
2 ye(2,2)

attractor
symmetry

Figure 9. Horizontal state space slices defined by plane z = const. providing rainbow scaled dynamical energy distribution
of typical chaotic attractors of case Ws system (white state trajectory), associated Poincaré sections (black dots). Figures
sorted from left to right and up to down are given by: z=-3.3,z=-2.7,z=-2,z=-12,2=-0.7,2=0,z=04,2z=1,z=17, z
=23,and z=3.3.

140 axis ranges
3 X€(-25,0.5)

98 4
55 ve(-1.8,1.6)

Figure 10. Horizontal state space slices given by plane z = const. providing rainbow scaled dynamical energy distribution
of the typical chaotic attractors of case W7 system (white trajectory), and associated Poincaré sections (black dots). Individ-
ual figures sorted from left to right and up to down are given by: z=-1.4,z=-1,z=-05,z=-02,2z=0,z=02,2z=05,z=
1,z=15,2=18,z=22,and z=2.7.

The self-similarity of patterns of time sequences with different lengths produced by
the inspected chaotic systems is measured using the so-called approximate entropy
(ApEn). The approach for how to deal with this problem including its algorithmizing in a
Matlab environment is provided in several research papers, for example, [35,36]. The
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ApEn routine has several input parameters, and the number provided in Table 3 is the
biggest calculated value of ApEn for the particular case ¥. Here, a data sequence with a
length of 1000 samples, embedding dimension 3 and time delay 1, was adopted. Table 3
can be roughly evaluated as follows: second case ¥2 can be considered as the most unpre-
dictable system with the most complex geometric structure of the strange attractor, while
cases W1, ¥sand ¥ produce chaotic waveforms with the most significant entropic prop-
erties. These are probably a good choice for applications in secure communications, chaos-
based modulation/masking techniques, etc.

Table 3. Geometric and time-domain features of generated typical strange attractors.

Case LLE KYD CD ApEn
P1 0.071 2.113 2.15 0.539
P2 0.156 2.239 224 0.558
¥ 0.045 2.132 2.14 0.440
Y, 0.020 2.050 2.10 0.503
¥s 0.069 2.186 2.20 0.564
s 0.047 2.081 2.15 0.518
Y7 0.050 2.160 2.13 0.620

Figures 11-15 prove that the regions of chaos for individual cases ¥ are wide enough
such that the geometry of desired strange attractors will be structurally stable and exper-
imentally observable —consult paper [37] for details. This is important since real values of
the circuit components fluctuate with time, ambient temperature and heating, and they
are inaccurate due to the fabrication tolerances, etc. Moreover, these effects neither com-
pensate each other nor have mutual correlations. Color scale (legends with values of LLE
are provided directly within individual plots) corresponds to the solution of a dynamical
system (1) as follows: red denotes unbounded solution, yellow and green represent strong
and weak chaos, respectively, blue color marks areas where the -limit set is periodic
solution, and magenta highlights areas where trajectory is slowly attracted to the fixed
point. In this case, final time was extended to 5000 s and the data sequence for calculation
was stored after 500 s to remove short as well as long transients. To obtain sufficient ac-
curacy (high resolution) of all plots, the parameter step was decreased to 0.01 such that
each plot contained 101 x 101 = 10,201 points. Vertical axis is provided using a linear scale
starting with zero. Note that system case ¥s has a very narrow parameter subspace that
leads to the geometrically stable predefined chaotic attractor. On the other hand, nominal
values of internal parameters of system case W1 can be adjusted such that the prescribed
strange attractor is very robust and cannot be violated by various imperfections during
circuit construction.

Figure 16 graphically demonstrates that randomness of generated chaotic motion dis-
appears for both decreased and increased dissipation of the analyzed mathematical
model, represented by the input admittance of bipolar transistor y11. However, corre-
sponding patterns are different for the particular cases ¥i-s. To demonstrate this property,
dynamical flow was quantified and divided into the following classes: unbounded solu-
tion (white), strong chaos (red), weak chaos (yellow), limit cycle (green) and fixed point
solution (blue). The parameter step for all plots is chosen uniformly as 0.05, axis scale for
case W1 is be(2, 3), de(-2, -1), for second system Y2 it is ce(2, 3), ee(-2, —1), third case ¥3
has axis ranges a€(4, 5), ce(-2, -1), fourth case Wi is characterized in ranges be(2, 3), de(-3,
-2), results for fifth case ¥s are given in ranges ce(2, 3), e(-3, -2), and for the case Ws it is
ae(1,2), es(-1.5,-0.5). For this kind of analysis, low resolution plots with 21x21=441 points
have been calculated.

Figure 17 illustrates geometric structures in the state space associated with individual
attractors for case W1 transistor cell. Plots are calculated for ranges xoe(-1, 1), yoe(-1, 1)
and each plot contains 201 x 201 = 40,401 sets of initial conditions. Note that neighborhood
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of equilibrium is not a part of the basin of attraction for the chaotic attractor. Basins of
attraction are colored as follows: unbounded solution (red), strange attractor (green), limit
cycle (light blue) and fixed point solution (dark blue).

Figure 11. Rainbow scaled surface-contour plot of the largest Lyapunov exponent as two-dimensional function of nonlin-
ear feedback, calculated for W1 case of chaotic circuit and total range of parameters is a€(0, 3) and be(-3, 0).
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Figure 12. Rainbow scaled surface-contour plot of the largest Lyapunov exponent as two-dimensional function of nonlin-
ear feedback, area covering both ¥z, ¥s, and W7 with dissipation coefficient y11=0.4, total range of parameters is ce(2, 5)
and ee(=3, 0).

0.075
0.06
0.045
0.03
0.015
0.00

Figure 13. Rainbow scaled surface-contour plot of the largest Lyapunov exponent as two-dimensional function of nonlin-
ear feedback, area covering case W3 and total range of parameters is a€(3, 6) along with be(-3, 0).
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Figure 14. Rainbow scaled surface-contour plot of the largest Lyapunov exponent as two-dimensional function of nonlin-
ear feedback, area covering case W1 and total range of parameters is be (0, 3) along with de(-3, 0).

Figure 15. Rainbow scaled surface-contour plot of the largest Lyapunov exponent as two-dimensional function of nonlin-
ear feedback, area covering case Ws and total range of parameters is a€(1, 4) along with ee(=3, 0).
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Figure 16. Rainbow scaled plot showing flow quantification for the individual cases ¥i-s (rows 1 to 6) of chaotic class C
amplifier and increased value of system dissipation y1=0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 (columns from left to right),
see text for better clarification.
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Figure 17. Colored basins of attraction, individual slices are the horizontal planes: (a) z0 = -3, (b) z0 =-2.5, (c) z0 = -2, (d)
z0=-1.5, (e) z0 =-1.25, (f) z0 = -1, (g) z0 =-0.75, (h) z0 =-0.5, (i) z0 =-0.3, (j) z0=-0.1, (k) z0=0.0, (1) z0=0.1, (m) z0=0.2,
(n) z0=0.3, (0) z0 =04, (p) z0=0.5, (q) z0 = 0.75, (r) z0 =1.0, (s) z0 = 1.5, and (t) z0 = 2.



Entropy 2021, 23, 175

17 of 24

[Flie= -1 aaN =107

SIS o L 0A
0 - [] "1V
a) [ SImA—— . . - - v . .
14V 12V 1OV -08V 0.6V -04V 02V OV
100mV
U- “0
U- -...0

4. Design of Flow-Equivalent Chaotic Oscillator

Verification through practical experiment belongs to the common standard for the
presentation of a new chaotic dynamical system. It is widely adopted that the observabil-
ity of strange attractors represents satisfactory proof of the robustness of desired dynam-
ics.

Lumped circuit synthesis based on a prescribed mathematical model is a problem
that can be easily solved using several different approaches. One of the most popular
methods is based on an integrator block schematic, where basic mathematical operations
are performed by three types of the two-port building blocks: inverting summing integra-
tors, differential amplifiers and blocks having piecewise-linear or polynomial transfer
curve. Each mentioned operation requires at least a single active element, usually a volt-
age feedback operational amplifier. The main drawback of this concept is evident: the ne-
cessity of using many active elements and a rather high power consumption. An integra-
tor based kind of circuit realization is possible in three operational regimes: the most pre-
ferred is voltage-mode concept [38], current-mode is usually dedicated for the higher fre-
quency bands [39] and mixed-mode circuits.

It is worth nothing that the Orcad Pspice circuit simulator was used for the pre-vali-
dation of designed chaotic oscillators. Figure 18 shows maximally idealized case ¥1 and
W5 systems with impedance norm 10° and frequency norm 10¢. Of course, having ideal
voltage-controlled current-sources (G) and ideal voltage multiplication blocks (MULT),
both norms can be arbitrary; only simulation profile setup needs to be adjusted accord-
ingly. In our case, final time was set to 10 ms (to visualize the robust strange attractor),
maximum allowed time step was reduced to 1 ps (to demonstrate the density of the
strange attractor) and pseudo-components IC = -1V (IC1) served to set nonzero initial
conditions into the circuit. In real circuitry, the injection of certain initial conditions is a
much more complicated task.

0 _-l“V‘ | E— . - 1 | () | |
b) ¢ OHz 400kHz 800kHz 1.2MHz 1.6MHz 2MHz

Figure 18. Idealized circuit realization of a chaotic system with the emulated bipolar transistor stage: (a) case W1 system
with parameters taken from Table 1, (b) case W3 system with parameter set taken from Table 1, (c) Monge projections vy
vs. vx1 (blue) and i1 vs. vx (red), (d) frequency spectrum of generated signal vx1 (blue) and vy (red). Red areas represent
polynomial feedback transfer functions.

Voltage-mode realizations ready for simulation/construction are provided in Figure
19 and these circuits undergo deep experimental verification. Supply voltage is symmet-
rical £15 V. The designed oscillator consumes two cheap voltage feedback operational
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amplifiers TL082 (in a single package), one current-feedback operational amplifier with
compensation node (denoted by letter C) AD844 and two four-quadrant analog multipli-
ers AD633. Schematic and associated realization using a breadboard are provided by
means of Figure 20. The first designed chaotic oscillator (Figure 19a) is described by fol-
lowing ordinary differential equations:

da v v: v3 d v v: d v
1 2 2 Y2 Rl —_ __1__3 ) 2 (18)

— 1, = = —_ = =
de 1 RiC  RzC ,C 'dt 2 RC RC’dt 3 RcC’

where state vector transforms into x = (v1, v2, v3)T and K = 0.1 is the internally trimmed
transfer constant of AD633. Note that this chaotic system models the behavior of function
(3) with nonzero values a and ¢, whereby other terms are zero.

Similarly, the second dynamical system is able to model differential equations with
the polynomial function (3) with nonzero values of coefficients b and d. The set of differ-
ential equations is:

S (k) (g T ) L, L, (19)

R3C Ri+Rz/ R4C Ri+Ry) RsC’dt 2~ RC RcC'’dt 3 RC’

where argument in brackets can be chosen advantageously such that equality K + Ro/(R1+
R2) =1 holds. The fundamental time constant of this circuit is 7 = R-C = 10+10-= 100 us,
but the main frequency components can be shifted toward the GHz band easily by appro-
priate frequency rescaling. Considering the normalized numerical values provided in Ta-
ble 1, impedance rescaling 10* and frequency norm 108 circuit components for (18) with
parameter set ¥s are: C=10nF, R=10kQ, R1=33 kQ, R2=50 Q, and Rs=2 kQ). Analogically,
circuit components for (19) with parameter set ¥2 (¥4) are the following: C =10 nF, R =10
kQ, Ri=1kQ, R2=9 kQ, Rs=18 kQ (25 kQ), Rs+= 4.8 kQ (3.7 kQ), and Rs= 91 Q (50 Q).
Figure 20a shows the PCB (Printed Circuit Board) of two uncoupled two-ports modeled
by the adjustable admittance parameters. While input and output admittance is linear and
represented by a variable resistor, trans-admittance y12 and y21 are polynomials up to the
fourth order. The unoccupied socket is dedicated for integrated circuit TL084 (four oper-
ational amplifiers in a single package), or its empty pins can be used to connect PCB with
the breadboard. PCB is designed such that a user can use switches to change signs of all
coefficients of the polynomial trans-conductance y12(v2) and/or y21(v1). Figure 20b demon-
strates the simplicity of the designed chaotic system.

5. Experimental Verification

Selected strange attractors observed during experimental verification are provided
in Figure 21, Figure 22, and Figure 23. In the first two cases, individual plane projections
captured by an oscilloscope are compared with numerically integrated results and Equa-
tions (1) and (3) for parameter set ¥s and W1, respectively —values are given in Table 1. A
uniform 100 mV grid is used for numerical integration results. For the latter case, numer-
ical mirrors of the visualized strange attractors are not provided. During measurement,
strong sensitivity of type of the steady state to the initial conditions imposed into the cha-
otic oscillator has been confirmed. Nevertheless, goodish correspondence between theory
and practical experiment was achieved. The route-to-chaos scenario can be traced via the
shaping of nonlinear y12(v2) function, namely by variable resistors R« and Rs in Figure 19b.
To obtain classes of the chaotic system characterized by sets W2, ¥s, ¥s, and ¥7, additional
AD633 is necessary. However, a major part of the proposed oscillator remains unchanged.
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a)

Figure 19. Chaotic system with emulated bipolar transistor stage: a) circuit realization of differential Equations (1) and (3)
and parameter set s taken from Table 1, b) circuit implementation of Equations (1) and (3) and parameter set ¥1 or W4
taken from Table 1.

b)

Different realization of the chaotic oscillator offers the principal schematic given in
Figure 24b. This system is described by following a set of ordinary differential equations:
v, K K?

C1EV1=_R___V22+_U§}' Cza’»&:_h_}’u'vu L—

. R, TR, ar'tt = Ve (20)

where the forward transconductance y21 is realized by a single-input single-output opera-
tional trans-conductance amplifier. Nonlinear transfer function is implemented by couple
(third-order polynomial for ¥s, fourth-order polynomial for ¥1 and W) or three (fifth-
order polynomial to reach sets of parameters ¥2, ¥s and Ws) AD633.

Figure 20. Photos captured during experimental investigation: a) PCB showing two two-ports
where transconductances y12 and y21 are polynomials up to the fourth-order, b) two views onto
breadboard with designed chaotic oscillator based on generalized class C amplifier.
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Figure 21. Dynamical system (1) with (3) and values W3 from Table 1, Comparison between numerical integration process
(blue) and laboratory experiment (green): a) b) v1 vs. vs plane, c) d) v2 vs. vs plane, e) f) v1 vs. v2 plane.

Pedil R3O
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Figure 22. Dynamical system (1) with (3) and values ¥1 from Table 1, comparison between numerical integration process
(blue) and laboratory experiment (green): a) b) v1 vs. vs plane, c) d) v1 vs. v2 plane, e) f) v2 vs. vs plane.
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Figure 23. Different Monge projections of strange attractors not mutually connected with numerical analysis of general-
ized chaotic class C amplifier.
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Figure 24. Two alternative lumped circuitry implementations of class C potentially chaotic amplifier: a) principal sche-
matic of dynamical system with passive approximated fractional-order inductor, b) realization based directly on the state
model (20).
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Speaking in terms of commercially available active devices, trans-conductance am-
plifiers are available as LM13700, LT1228, MAX435, or diamond transistors OPA660, etc.
Note that a nonlinear two-port needs to work in trans-admittance regime, i.e., with input
voltage and output current. If both impedance and frequency scaling factors could be ar-
bitrary real numbers, we experience two degrees of freedom for the calculation of induct-
ance and capacitance. Therefore, the parallel inductor-capacitor resonant tank could be
arbitrary as well, i.e., associated with an audio amplifier, an active part of a sensor ele-
ment, a model of piezo-element, a matching subcircuit, etc.

Fractional-Order Chaotified Class C Amplifier

Now assume that the transistor is loaded by the non-integer order LC tank. Fraction-
ality will be represented by the presence of a fractional-order (FO) inductor. This FO in-
ductor will be approximated in the frequency domain by a more complicated network
[40] with a phase frequency response of impedance rippled around ideal value 90°y. Men-
tioned approximation should be valid at least in a finite frequency range that corresponds
to the desired chaotic signal generated by the FO chaotic class C amplifier. In our case,
frequency range turns to be from 1 Hz up to 2 MHz (see also Figure 18) and the minimal
complexity of the FO inductor is 7 (number of required resistor-inductor sections). Note
that the impedance of the RL approximation circuit tends to R. for very low frequencies
and reaches to infinity for high frequencies. A set of ordinary differential equations that
describes circuitry given in Figure 24b with an FO inductor Lr with seven sections is as

follows:
d v K - K* . d v, Va1 1
dt™ T TR G Ry G TR AT TR G G TG e

1)
e = 2= e = Saa Relin, — i) v gring = 1% (i = i)
where k=1, ..., 7.

Speaking in terms of FO network analysis, this is the place where conventional cir-
cuit-oriented simulation software such as Orcad Pspice can be utilized. A gallery of pas-
sive ladder FO capacitors calculated for important decimal orders between zero and one
can be found in paper [41]. Structures proposed in this paper have been optimized from
the viewpoint of low phase error (less than 1.5°) and wide frequency range (from 3 Hz up
to 3 MHz). By following the duality principle, these findings can be extended and FO
inductors for orders 9/10 (Table 4), 8/9 (Table 5), 4/5 (Table 6), and 3/4 (Table 7) are pre-
sented. Numerical values provided in these tables lead to FO inductors having unity
pseudo-inductance, i.e., the module of impedance measured at the specific frequency
fo=1/(2m) Hz is 1 s'+/F, where a represents math order.

Author encouragement for interested readers: please do not hesitate to contact me
(via email) if a specific mathematical order, frequency range, approximation network
complexity or different phase accuracy of the FO capacitor and/or inductor is required.

Table 4. Numerical values of fully passive series-parallel circuit realization of fractional-order
(FO) inductor with mathematical order 9/10, i.e., phase shift between voltage and current 81°.

Ra R1 R: Rs Ra Rs Rs R~
0.6 Q 330 227Q 153Q 1031 Q 6944 Q 46.7kQ 313kQ

La La L Ls La Ls Le L7
144 mH 120mH 98mH 79mH 64mH 52mH 42mH 37 mH

Table 5. Numerical values of fully passive series-parallel circuit realization of FO inductor with
mathematical order 8/9, i.e., phase shift between voltage and current 80°.

R. Ra R> R; Ra Rs Rs R~
10 6.3Q 44.4 QO 319 Q) 2286 Q)  16.4kQ 118 kQ 833 kQ
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La L1 Lo Ls L4 Ls Ls L7
203 mH 230mH 194mH 152mH 120mH 93 mH 73 mH 62 mH

Table 6. Numerical values of fully passive series-parallel circuit realization of FO inductor with
mathematical order 4/5, i.e., phase shift between voltage and current 72°.

Ra R1 R2 Rs Ra Rs Re R~
1.1Q 4.7 Q) 25.8 Q) 141 QO 769 Q) 4184 Q 22.7kQ  133kQ
La L1 L2 Ls L4 Ls L L7

35 mH 237mH 155mH 101mH 66 mH 433mH 28mH 22mH

Table 7. Numerical values of fully passive series-parallel circuit realization of FO inductor with
mathematical order 3/4, i.e., phase shift between voltage and current 67.5°.

Ra R R2 Rs Ra Rs R¢ R~
1.2 0 45Q 22 Q) 108 Q 526 Q) 2591 Q 12.7kQ 55.6 kQ
La L1 Lo Ls L4 Ls Ls L7

13 mH 210 mH 132 mH 78mH 46 mH 27 mH l6mH 10 mH

6. Discussion

This paper brings an example of an electronic circuit for which, under very specific
circumstances, the circuit can switch from regular into chaotic behavior. Conditions lead-
ing to chaotic motion can be summarized as follows:

1.  General mathematical models analyzed in this paper (3) and (10) contain normalized
values of all accumulation elements. After optimization, to observe strange attractors,
resulting parasitic capacitance as well as capacitance and inductance located within
the LC resonant tank are of comparable orders. Therefore, parasitic accumulation el-
ements turn into functional. This fact increases the intrinsic number of degrees of
freedom and forces a naturally non-chaotic analogue building block to behave cha-
otically. Because of the internal structure of bipolar transistors commonly used in
class C amplifiers, this kind of motion is possible only for assumed high-frequency
operation. In practice, generated chaotic waveform can be easily misinterpreted as
noise.

2. The second condition for chaos evolution is the presence of a specific local nonlinear
feedback. In the mathematical model of the analyzed dynamical system, either poly-
nomial or PWL scalar function is the only nonlinearity.

3. The third specific property of a bipolar transistor is linear backward trans-conduct-
ance. Its value is non-zero and relatively large.

7. Conclusions

This manuscript admits the parasitic properties of a bipolar transistor to be the work-
ing accumulation elements; base-emitter capacitance is mandatory, while collector-emit-
ter capacitance may not be present. There is one consequence resulting from this research:
chaos belongs to the natural behavior of sub circuits that contain at least one bipolar tran-
sistor, although the expected working regime may seem rather hypothetical for a practi-
cally oriented design engineer. This statement agrees with the conclusion reached in paper
[42], where the JFET element is the single locally active element while the coil is the pas-
sive one. In our case, fingerprints of a bipolar transistor can be found in both folding and
stretching mechanisms of a vector field. Additionally, a set of ordinary differential equa-
tions together with the six different sets of internal parameters proposed in this paper can
be considered as a new chaotic dynamical system. This system is a member of autono-
mous deterministic systems with a single center-type stable equilibrium point. Strange
attractors observed in the frame of numerical investigations are in good accordance with
those captured as oscilloscope screenshots using a flow-equivalent circuit.
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This paper leaves significant space for further research, for example, to find system
parameters close to the common operation of a single transistor stage where:

1. Parasitic capacitors are working ones,

2. Nonlinearity is typical for a large signal model of a bipolar transistor,

3. An additional degree of freedom is presented because driving force (processed sig-
nal) changes the operational point of an analyzed circuit.

The results presented in this work are strictly associated with a single-stage class C
amplifier with a single bipolar transistor. It is well known that the probability of chaos
rises with the total order of a circuit. Therefore, the existence of various strange attractors
can be expected for electronic systems with several transistors, such as Darlington circuits,
cascode connections, current mirrors, multi-stage amplifiers, etc. Much more complex be-
havior including higher-dimensional chaos and hyper-chaos can be expected if several
transistors coexist and interact.
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