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Abstract: Android devices are currently widely used in many fields, such as automatic control,
embedded systems, the Internet of Things and so on. At the same time, Android applications (apps)
always use multiple permissions, and permissions can be abused by malicious apps that disclose
users’ privacy or breach the secure storage of information. FlowDroid has been extensively studied
as a novel and highly precise static taint analysis for Android applications,. Aiming at the problem of
complex detection and false alarms in FlowDroid, an improved static detection method based on
feature permission and risk rating is proposed. Firstly, the Chi-square test is used to extract correlated
permissions related to malicious apps, and mutual information is used to cluster the permissions
to generate feature permission clusters. Secondly, risk calculation method based on permissions
and combinations of permissions are proposed to identify dangerous data flows. Experiments show
that this method can significantly improve detection efficiency while maintaining the accuracy of
dangerous data flow detection.

Keywords: automatic control; mutual information; static detection; Chi-square test; permission; Flow-
Droid

1. Introduction

Google Android is a mobile operating system that is widely used in many fields [1,2].
With the development of the Internet of Things, Android quickly gained a large proportion
of the market share. At the same time, the number of malicious applications (apps) has
been increasing [3] and over the last few years, the amount of malware has increased
significantly. According to a recent report from McAfee, over 1.6 million new examples of
mobile malware were discovered in the first quarter of 2019 [4]. Therefore, the detection of
Android malware with a high accuracy rate and high efficiency is an important issue.

Various approaches have been proposed in previous works with the intention of
detecting Android malware. These approaches can be categorized into static analysis,
dynamic analysis or hybrid analysis [5]. Dynamic analysis means that, in the process of
running an application, the flow of privacy information and data is tracked and captured,
and the malicious tendency of application behavior is analyzed and judged. Dynamic
analysis can monitor and track the flow of private data in real time [6] and is not affected
by code obfuscation, encryption and other factors. However, privacy leaks that are not
triggered at runtime cannot be detected, and the low code coverage causes a high missing
rate. At the same time, real-time operation results in greater resource consumption [7]. In
the case of resource shortages on mobile devices, the system efficiency will be seriously
affected. In contrast to dynamic analysis, static analysis is done without running an app.
In static analysis, features such as permissions and API calls are extracted from the app
source code by reverse engineering to analyze and infer suspicious behavior from an app
and discover problems in different stages of the entire life cycle, verifying the security
of app at the source code level. As a highly influential static analysis tool for Android
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apps, FlowDroid [8] has the advantage of wide code coverage and it can detect many
malicious behaviors that cannot be detected by dynamic analysis. However, source code
level analysis will bring a large amount of irrelevant detection while leading to high false
positives and low detection efficiency, decreasing the availability of these tools. In our
experiments, for apps over 10 MB in size, FlowDroid reports timeouts and insufficient
memory. Even for the two apps from the FlowDroid samples, the test takes nearly an hour.

Research and experiments show that app security threats are strongly correlated with
some characteristic permissions [9]. When using FlowDroid, only those flow paths that
actually cause privacy leakages need to be considered, which significantly reduces the scale
of analysis and improves efficiency. This paper proposes a redundancy resolution method
for FlowDroid, which can cluster the correlated permissions and calculate the risks of flow
paths. This paper provides the following two contributions:

(1)  We propose a permission clustering method based on the use of permissions by
malware. Compared with all the permissions of the Android system, the proposed
permission cluster contains only a few permissions. By monitoring these permissions
and the related call paths in FlowDroid, the analysis can be greatly simplified.

(2) We propose a lightweight malicious application detection method based on the
permission clusters and FlowDroid in this article. This method is suitable for pre-
installed software and user-installed software. We improved FlowDroid so that it
can only monitor the call paths that are related to the permissions in the permission
cluster and meet certain risk conditions. This greatly reduces the detection time and
memory usage.

2. Related Work

The static analysis of Android malware relies on Java bytecode, which is extracted by
disassembling an app. The manifest file is also a source of information for static analysis.
Kirin [10] is the safety inspection scheme for app installation, which operates by defining
security rules to identify dangerous permission combinations; the installation strategy
is formulated based on the use of security rules as detection criteria. However, due to
the small number of rules and the lack of representation of permission combinations, the
detection efficiency and the accuracy cannot be guaranteed. TrustDroid [11] provides
two alternative detection modes: real-time detection on the mobile device side and static
analysis on the server side, converting the data flow to a tree structure using Jasm in
middle code representation to generate a function call graph, preventing untrusted apps
from leaking user privacy information. The resource consumption of TrustDroid is also
extremely high. LeakMinder [12] analyzes the security of apps from the third-party market
and decompiles Android application package (APK) files by reverse engineering. Based on
a predefined source and sink, LeakMinder generates a call graph and data flow diagram
and finds possible privacy leak paths. However, implicit data leaks cannot be detected.
Besides, designed artificially sources and sinks are not particularly representative, which
results in contingency and inaccuracy. Cen et al. [13] proposed the use of a probabilistic dis-
criminative model based on regularized logistic regression for Android malware detection.
The probabilistic discriminative model works well with permissions and achieves the best
detection results by combining both decompiled source code and application permissions.
Kang et al. [14] proposed a method that detects and classifies Android malware using static
analysis with the combination of the attacker’s information. The effectiveness of Android
malware detection is improved by integrating the attacker’s information as a feature, and
the method categorizes illegitimate applications into homogeneous classes. Song et al. [15]
proposed an integrated static framework using a filtering technique consisting of four
layers to identify and evaluate mobile malware on Android. Sun et al. [16] presented
an approach that interfaces static logic-structures and dynamic runtime information to
detect Android malware. Behavior similarity is used for the classification of malware.
The results showed that the approach is easy to implement and has low computational
overheads. Rovelliet al. [17] presented a permission-based malware detection system that
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uses machine learning classifiers on the behavioral patterns to consequently distinguish
inconspicuous applications. DAPASA [18] is an approach used to detect Android piggy-
backed apps through sensitive subgraph analysis. DAPASA generates a sensitive subgraph
(SSG) to profile the most suspicious behavior of an app. Five features are constructed from
SSG to depict the invocation patterns. The five features are fed into the machine learning
algorithms to detect whether the app is piggy-backed or benign. Talha et al. [19] presented
a permission-based Android malware detection system consisting of three components,
namely the central server, Android client and signature database, and static analysis is used
to categorize the Android application as normal or harmful. Li et al. [20] raised the issue
of considering interaction terms across features for the discovery of malicious behavior
patterns in Android applications and proposed a classier for Android malware detection
based on a factorization machine architecture.

FlowDroid [8] was proposed by Arztet al. in 2013 and has been widely studied and
applied in the field of Android static analysis. FlowDroid is considered as a context, flow,
field and object-sensitive and lifecycle-aware static taint analysis tool for Android apps. To
increase recall, FlowDroid creates a complete model of Android’s app lifecycle. However,
a large number of normal paths are also detected while the entire life cycle is analyzed,
causing false positives and low efficiency. The main purpose of this paper is to improve
the analysis efficiency and applicability of FlowDroid.

3. Preliminaries
3.1. Android Permission

The Android system is an extension based on Linux, which provided the permission
mechanism [21]. Operations that apps can perform are specified to limit the software’s
ability to manipulate systems or other software. The Android permission mechanism
requires developers to apply for permissions they need in Android’s Manifest.xml and
gets user’s consent during installation to access system resources and functional compo-
nents by calling the related API. Android protects sensitive systems and user information
by restricting apps from accessing system resources with permissions other than those
declared. Android uses a coarse-grained permission management mechanism and no
longer reviews the running process after granting permissions; thus, malicious apps ex-
ploit users’ ignorance of permissions and the coarse-grained permission management of
Android’s permission mechanism to access or even leak sensitive information. Android 8.0
provides 135 permissions and corresponding APIs to access system resources. In fact, only
a small portion of permission usage can lead to sensitive information leakage. If malicious
application-independent permission calls are accurately excluded from detection, the data
paths that need to be detected in static analysis can be significantly reduced, thus reducing
the false alarm and improving detection efficiency.

3.2. FlowDroid

FlowDroid, based on Soot [22], works directly at the bytecode level and does not
require access to an app’s source code. It parses the APK file of an Android app, converts
the Java code into Jimple middle code, simulates the life cycle of an Android app to handle
callback functions and generates a call graph (CG) and inter-procedural control-flow graph
(ICFG) [23,24] to trace taints (Figure 1). It uses the Interpretural Finite Distributive Subset
(IFDS) to model data flow propagation and generates complete, polluted data flow paths
by the Heros framework [25]. Therefore, FlowDroid has very high requirements in terms
of computing and memory resources. For Enrichedl.apk (a sample application of which is
shown in [25]), a total of 46 nodes and 78 function call paths were generated (Figure 2 shows
a partial call graph of these). The call graph composed of the data paths to be analyzed is
very complex, and there is a large number of callbacks and callback relationships between
functions, which leads to high time and resource costs.



Entropy 2021, 23, 174 4 of 14

/

source,sink,and
entry-point detection

. . R generate
parse malnlfest file main method
parse .dex files build call graph

'

perform taint
analysis

v

parse layout xmls

Figure 1. Workflow of FlowDroid.
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Figure 2. Partial function call graph of Enriched1.apk.

Our experiments show that FlowDroid usually reports timeout or out-of-memory
errors for apps with a size larger than 10 MBytes. The reason for this is that an Android
app often involves dozens of components at runtime, and the interaction between multiple
components leads to hundreds of callback methods.

Although full-scale analysis can ensure high accuracy, it results in an unnecessary
amount of analysis. FlowDroid should be improved in two aspects as follows:

(1) There is no further analysis of taint paths, and the large number of false positive paths
results in low accuracy.

(2) There is no clear analysis content and there are no taint path identification criteria.
This leads to a large number of irrelevant detection paths, resulting in excessive
memory and time consumption.

3.3. Mathematical Background

The Chi-square test is a hypothesis testing method used to determine whether two
variables are independent. For two discrete variables, it can be concluded whether there is
a correlation between them by using the Chi-square test. The larger the Chi-square value,
the greater the deviation between the two variables, the smaller the correlation between
them and the stronger the independence. When the value of Chi-square reaches 0, that
means the factors are exactly the same. The formula of the quaternary Chi-square test is as

follows:
) N(AD — BC)?

X T ATB)(C+D)(A+C)(B+D) M)
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For an abstract random variable, to remove its uncertainty, a certain amount of infor-
mation needs to be used, and information entropy is a mathematical measure of this. The
higher the information entropy is, the larger the amount of information that needs to be
introduced and the lower the information entropy is, and the less information is needed.
The information entropy of X is defined as:

ZP )log,P(X) ()

In order to determine the influence of the information entropy between two variables,
the information entropy of X can be obtained when Y appears, as shown in Equations (3)
and (4):
H(X|Y) = ZP Y)Y P(X|Y)log,P(X]Y) (3)
n

H(X,Y) = H(X) + H(Y|X) = H(Y) + H(X|Y) )

where H(X|Y) is the conditional information entropy, P(X|Y) is the conditional proba-
bility and H (X, Y) is the joint information entropy. According to the above equations, the
mutual information values of X and Y can be obtained as I(X;Y):

I(X;Y)=H(X)-H(XY)=-) P(X,Y)log 1(3)(() &) (5)

4. The Improved Detection Method

Flowdroid analyzes all data paths, resulting in high false positives and high resource
requirements. This paper presents a redundancy resolution method based on feature
permissions and risk. The purpose is to exclude the large number of irrelevant paths
(security paths) for static analysis. The lightweight FlowDroid, named Permission-based
FlowDroid (PBFlowDroid), is proposed based on above methods. Figure 3 shows the
architecture of PBFlowDroid.

/ \
! ) } high-risk
| source,sink,and | pollution path detection
| entry-point detection }
| ] ] ! Sample » | Malicious Sensitive
| (e manifest file } Permissions v Permissions
| |
! | * o build
[ A 4 \ |  generate cluster "1 call graph
} ! main method permission
! . X
| parse .dex files }
| |
\ | calculate
} ! ! data flow risk L 4
| |
| A | * perform
‘ taint analysis
|
} ER LIRS | filter pollution paths
|
[ I

Figure 3. Workflow of PBFlowDroid.

Firstly, the Chi-square test is used to extract permissions related to malicious applica-
tions, and these permissions (malicious sensitive permissions) are classified into permission
clusters by a clustering algorithm based on mutual information. Thus, the large number
of permissions is reduced to a small number of permission clusters which are considered
in static analysis. Secondly, different permissions or combinations of permissions bring
different risks to user privacy or system security. To improve the accuracy of analysis,
a risk assignment and calculation algorithm for single permissions or combinations of
permissions is proposed. With these methods, all paths are given a risk value. Using the
risk value of each path, the security of the taint data flow propagation path generated by
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control flow [26] and data flow can be determined, notifying the user whether the taint
data flow is a safe path, ensuring the accuracy of static analysis and improving the analysis
efficiency.

4.1. Permission Cluster Extraction

In Android, each permission has the two states of “request” and “no request”, which
are independent of the number of requests. This scenario is suitable for the Chi-square test.
In this study, the quaternary Chi-square test is used; the Chi-square of permission p is as
follows:

N(APDP — BPCP)z
(Ap+By) (Cp + Dp) (Ap +Cp) (By + Dp)

where N denotes the total number of app samples, which consists of X malicious apps and
Y normal apps. For permission p, requests by malicious apps and normal apps are counted
as Ap and By. The numbers that do not apply for p by malicious apps and normal apps are
counted as C, = (X — A,) and D, = (Y — By), as Table 1 shows.

X(p) = 6)

Table 1. Chi-square test distribution of permission p.

Number of Malicious Apps (X) Number of Normal Apps (Y)

Apps with permission p Ap By
Apps without permission p Cp=(X—-A4p) Dy = (Y —By)

As for x? the Chi-square test provides a threshold checklist as a criterion of reliability.
For each permission, the probability of it relating to a malicious application is obtained by
referring to the Chi-square test threshold table [27]. The larger the probability, the more
malicious applications tend to have the corresponding permission, while a Chi-square
value less than 0.5 indicates that the permission has almost no correlation with malicious
applications. In our experiment, the top 20 permissions with a Chi-square value greater
than 0.5 are regarded as permissions with a high correlation with malicious applications,
as shown in Table 2.

Table 2. Permissions clusters, Chi-square and risk assignment.

Permission Clusters Permissions x> Risk Value

INTERNET 7.693

o ACCESS_NETWORK_STATE 6.622 7
CHANGE_WIFI_STATE 6.178
CALL_PHONE 6.334

1 READ_CONTACT 4.236 6
READ_PHONE_STATE 3.855
WRITE_EXTERNAL_STORAGE 6.012

c GET_ACCOUNT 3.821 5
WRITE_SETTING 2.706
SEND_SMS 5.844

c3 RECIEVE_SMS 4.689 4
WRITE_SMS 4.023

o ACCESS_COARSE_LOCATION 5.672 3
ACCESS_FINE_LOCATION 2.755
RECIEVE_BOOT_COMPLETED 5.522

Cs5 INSTALL_PACKAGE 3.237 2
WAKE_LOCK 2.468
DEVICE_POWER 1.355

C6 CAMERA 1.224 1

FLASHLIGHT 0.698
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The Chi-square test selects the permissions to be investigated and significantly reduces
the candidate paths for static analysis. Even with 20 permissions, the number of paths that
can be associated with some apps is still quite large. In fact, permissions are not indepen-
dent of each other. When one app applies for a certain permission, other permissions of
the same type that are related to achieve a combined function are also applied, which leads
to strong correlation between permissions. For example, “READ_SMS” and “WRITE_SMS”
are often applied and used at the same time. In static analysis, if two permissions with high
correlation are detected separately, multiple detection results will be generated. This may
decrease the accuracy of detection. To solve this problem, we use the clustering algorithm
to cluster the selected permissions so that each cluster is representative.

Permission is a discrete kind of feature information, and the similarity between
permissions can be measured by mutual information based on information entropy. We use
Py, (X) and P, (X) to represent the probability that permission X will be maliciously applied
and normally applied, respectively. Then, the information entropy H (X) of permission X is
as follows:

H(X) = — (Pu(X)log,Pu(X) + Pu(X)log,Ps(X) %

The mutual information values of permissions X and Y are calculated by formula (5).
In order to describe the similarity between permissions X and Y more intuitively, the
correlation between the two permissions can be obtained by (8):

I(X,Y) }

L{(X) H(Y) ®)

Cor(X,Y) =2x
where the value of Cor(X,Y) is located between [0, 1]. A value of 0 means that permission
X and Y are completely unrelated; the larger the value, the greater the correlation between
them.

In this paper, a clustering method based on mutual information is proposed to cluster
the selected permissions (which in our experiment, the number of permissions is 20 as
shown in Table 2) to generate feature permission clusters (FPC) with low similarity between
clusters and high similarity within clusters and further remove irrelevant detections in
static analysis.

The steps of the clustering algorithm based on mutual information are as follows:

Clustering Algorithm Based on Mutual Information:
Input: Permissions set Obtained by Chi-Square Test: S = {po, p1,- - , Pn}
Output: Cluster Sets: C = {cg,c1,- -+ ,cm}, m <n

1)  Take the first element pj in S as the first element of cy, and delete py from S.

(

(2) Foreachp;in$

(3) foreachc; # nullinCdo

@) if cOr<cj, Do, pi> > T then

(5) addp;tocj;

(6) else

(7)  create anew cin C, and add p; to c;
(8) endif

(9) end for

(10) end for

(11) foreachc;inC

(12) if Num(c;) < 3then

(13) cluster the similar Cor in (c;, and put it to a new c in C
(14) end if

(15) end for

(16) output C
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After clustering, the permissions with high correlation with malicious apps were
clustered into multiple clusters (we have seven clusters in our experiment, from co~cg, as
shown in Table 2).

FPC extraction not only eliminates irrelevant paths caused by permissions unrelated
to malicious applications but also eliminates the correlation within the permission clus-
ter, further eliminating the redundancy in static detection and improving the detection
efficiency.

4.2. Risk Calculation

App security threats are strongly correlated with some characteristic permissions [9].
Operations corresponding to different permissions pose different threats to user privacy
and system security [9]. For example, the operation of applying for network permission
often transfers privacy settings on a device to other addresses involving the interaction
between user information and the outside world, and so the threat degree is greater; the
permission of applying for the device’s local location only obtains the current user’s status
and does not interact with the outside world or affect the security of the device, so the
threat degree is general.

To visualize the risk level of different permission clusters, we use the risk value to
describe it. The risk value is the quantification of the risk of each permission cluster, and
the risk value of each permission in the same cluster is the same. The selection of these
values is not unique, and only three conditions need to be met:

(1) The risk value decreases as x? of permission cluster decreases;
(2) The risk values of ¢y to ¢ are greater than 1;
(3) The risk values of ¢ to ¢, are greater than 0;

Where m + 1 is the number of cluster sets, and k is used to classify clusters into high
risk clusters and low risk clusters. In our experiment, the m is 6 and we choose 4 as the
value of k.

These limitations are related to analytical calculation methods. When assigning risk
values to each cluster, in this paper, we select a simple assignment that satisfies the above
three conditions. It should be noted that the threshold value in 5.1 is related to the risk value;
this is an empirical value obtained through experiments. Different risk value assignments
will correspond to different threshold values. In our experiment, the risk value for each
cluster is shown in Table 2.

When an app performs an operation or acquires a resource, it sometimes applies for
more than one permission, which forms a combination of permissions. A combination of
permissions may pose a greater threat to the system than a single permission [28]. In our
experiment, we refer to [10] to calculate the risk value of an app, and the calculation rules
are as follows:

Rule 1: For a single requested permission, the risk value Rg is the sum of the risk value
for each permission:

M
Rs =) R(pi) )
i=1

where R(p;) is risk value of permission p;, and p; is the single permission requested by the
app.

Rule 2: For any requested combination of permissions PC; with where permissions
belong to clusters ¢ to cx_1, the risk value R¢ (PC;) is defined as:

N _ [ TIR(pi), pi€cjand j <k
Re(PGy) = { Y R(pi), pi €cjand j >k (10)
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and the risk of the combined permissions is defined as the sum of all risk values of each
combination of permissions; that is,

Re= Y R.(PC)) 1)
j=0

Rule 3: The risk value R of an app is defined as the logarithmic mean of the total risk

value:
R— log(Rs + Rc¢)
M
where M is the total number of requested single permissions and combinations of permis-
sions.

In general, a normal app provides multiple services to satisfy users’ functional needs,
and several permissions are used, whereas a malicious app has simpler functions but uses
permissions with a higher risk value [29]. Therefore, we use the mean risk rather than the
total risk to evaluate the risk of an app. For apps whose R is less than a threshold, it can be
preliminarily judged as a secure application. For apps with a higher R than the threshold,
the mapping between the permission and corresponding API is constructed and added to
the Source set, then the security decision of the taint data flow is entered.

(12)

4.3. Filtration of Taint Data Flow

The function call graph generated by FlowDroid is very complex. Frequent calls
between functions cause a large number of redundant detection paths, which makes the
further static analysis cost very high. In this study, data paths from native FlowDroid are
further filtered based on the risk value.

On the basis of the definition of native FlowDroid, we define the following extra
variables:

(1) Route: the taint transmission path set. The element is a pair—<source, sink>—and it
indicates that there is a taint transmission path from source to sink, where source
Source and sink € Sink.

(2)  LeakRoute: the privacy leak path set. The element is a triple—<source, sink, risk>—and
it indicates that there is a leak path from source to sink with a risk value of risk. The
filtering method is shown in Figure 4.

For the filtering method in PBFlowDroid, the criterion is whether the risk value of
the path is higher than the threshold. Based on the risk calculation for the path in the call
graph, the filtering method extracts the paths with a higher risk value to LeakRoute. In
this way, we obtain all the pollution paths and identify the data paths with a high risk
of privacy leakage. Because the filtering method reduces the data paths to be analyzed,
not only is the analysis time shortened, but also the accuracy of pollution analysis can be
improved due to the elimination of false positive paths.

From the above, PBFlowDroid introduces a high-risk pollution path detection method
and reduces the scale of pollution paths to be analyzed. Furthermore, PBFlowDroid can
solve the challenge of the high false-positive and false-negative rate of analysis in native
FlowDroid.
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Figure 4. Workflow of filtering method.

5. Experiments

This section tests the accuracy and efficiency of the proposed PBFlowDroid. The
computer used was a Z600 WorkStation with an Intel (R) Xeon (R) E5540 @ 2.53 GHz
CPU and 4.00 GB of physical memory. All tests were run on Windows 7 with Oracle’s
Java Runtime version 1.8 (64 bit). Android 6.0 with Android-23 SDK was used in all
experiments.

5.1. Accuracy Experiments

In this experiment, 500 normal apps from Google Play and 50 malicious apps from
GitHub’s Malicious Application Sample Library [5] were used as test samples. The risk
value R of each successfully tested app was calculated. An app with an R value less than
the threshold was recognized as a normal application; otherwise, it was identified as a
malicious application. The risk threshold was an unknown parameter at the beginning
of the experiment. We were inspired by machine learning [30] and used one-tenth of the
experimental data as a training set to obtain the risk threshold. The training set contained
50 randomly selected normal apps and five malicious apps. By calculating the risk value of
all apps in the training set and selecting the threshold to minimize the false positive rate,
we obtained the risk value threshold. Other data were used as the validation set. In our
experiments, we set 0.12 as the threshold value. Table 3 shows the results.

Table 3. Result of testing.

Disassembled Successful R > 0.12 R<0.12

500 normal apps 413 81 332
50 malicious apps 35 27 8
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In our experiments, 413 normal apps and 35 malicious apps were decompiled. Among
the 413 normal apps, 332 were correctly identified and the other 81 were identified as
malicious apps. The detection rate for the normal sample was 80.4%, and the false alarm
rate was 19.6%. In total, 27 of 35 malicious apps were correctly identified. The omission ratio
was 22.8% and accuracy rate was 77.2%. Compared with the test results of native FlowDroid
in Droid Bench, where 30 malicious applications were detected out of 39 apps, with an
accuracy of 76.9% [8], the proposed method guaranteed sufficient detection accuracy.

Table 4 gives the number of permissions in application as M and the taint paths and
risk value as R for some apps. We can see that the R values of FangTianxia and MeiPai were
0.134 and 0.121, respectively; they were reported as malicious apps.

Table 4. Detection results for some apps.

Result
Type Number .
App Name M  Taint Paths R
Toutiao 28 53 0.091
News 8 Funinput.Digit 29 43 0.089
Sina news 36 36 0.071
Zhihu 29 42 0.083
Social media 8 BaiduTieba 26 61 0.099
Weibo 27 48 0.096
Dianping 27 49 0.097
Services 7 FangTianxia 18 38 0.134
Ganji 24 43 0.103
TencentMobileManager 41 103 0.064
Tools 8 SougouTypewriting 24 49 0.104
UC Browser 38 58 0.068
MeituXiuXiu 26 47 0.098
Entertainment 6 Igiyi 28 54 0.092
MeiPai 20 38 0.121
Others 45

com.estrongs.android.pop. apk 7 20 0.311
Malicious com.evernote. skitch.apk 18 42 0.133
applications 35 com.gau.go.launcherex.apk 9 28 0.250
com.opera.browser.apk 16 46 0.153
com.outfit7.talkinggina.apk 19 51 0.134

5.2. Efficiency Experiments

In PBFlowDroid, only data paths with a higher risk value are analyzed, which reduces
the detection complexity. In this section, a comparative test with native FlowDroid in
terms of detection time and memory consumption was performed. When we reproduced
FlowDroid in our experimental environment, we found that FlowDroid took more than
10* s to analyze some apps, and the magnitude of the results of the completed path analysis
was generally between 10* to 10°. Because the time complexity of FlowDroid is orders of
magnitude different from the method proposed in this article, we do not compare the apps
directly in this article. Thus, 500 test samples were randomly selected from Google Play
with sizes ranging from 50 KB to 60 MB. For apps larger than 10 MB, FlowDroid reports
a timeout or out-of-memory error. Table 5 shows the time and memory consumption of
PBFlowDroid for eight apps.
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Table 5. Time and memory consumption comparison (OOM: out of memory).
) Runtime Memory Consumption
Name Size
FlowDroid PBFlowDroid FlowDroid PBFlowDroid
1 InsecureBank.apk 58.5 KB 29.33s 14.24 s 82.73 MB 52.26 MB
2 outfit7.talkinggina.apk 109 KB 41.1s 19.58 s 241.55 MB 130.45 MB
3 com.evernote.skitch.apk 139 KB 51.76 s 18.21s 272.56 MB 133.66 MB
4 BadNews.apk 1.37 MB 73.19s 29.01s 349.33 MB 166.14 MB
5 FakeCallandMessage 3.39 MB 82.01s 41.73s 428.16 MB 212.36 MB
6 BaiduNews 23.66 MB Time Out 48.86 s OOM 325.88 MB
7 SougouTypewriting 33.96 MB Time Out 101.14 s OOM 344.16 MB
8 YoudaoNote 63.23 MB Time Out 215.84 s OOM 683.25 MB

With the increase of the app size, the memory consumption increases significantly for
both tools. For FlowDroid, memory is quickly exhausted, making the detection fail. For
PBFlowDroid, memory consumption is kept within 4 GB and all tests were successful in
our experiments.

Table 6 lists the multiple classification algorithms supported by PUMA [31] and their
results. However, machine learning algorithms, including the method proposed by PUMA,
can only discriminate whether an app is a malicious app through the use of permissions and
cannot analyze how apps abuse permissions. In contrast to machine learning algorithms,
our method and FlowDroid can not only analyze whether an app is a malicious app but
also analyze its usage of permissions. Moreover, the results in Table 5 show that our app
analysis consumes less resources than FlowDroid.

Table 6. Android malware detection results for the different algorithms.

Algorithm Configuration Accuracy
NaiveBayes None 67.64%
IBK 10 K=10 78.94%
RandomForest I1=10 85.82%
FlowDroid None 76.9%
PBFlowDroid None 77 2%

6. Conclusions

FlowDroid is a static taint analysis tool widely used for Android apps. However, the
call graph generated by FlowDroid grows exponentially as the size of the app increases,
which reduces its availability. Research shows that the security threat of an app mainly
comes from its abuse of permissions, and not all permissions will lead to a leakage of
sensitive information. This paper proposes a method to identify dangerous data paths,
and secure paths are filtered in further analysis. In this way, the call graph is greatly
simplified and the resource requirements in the analysis process are significantly reduced.
On the other hand, we used the Chi-square test and mutual information values to extract
the correlated permissions and proposed risk calculation method considering permission
combinations. In this way, a more accurate risk value is taken as a criterion to reduce
misjudgment. The experimental results show that our proposed method reduces the
complexity of detection significantly, and the detection accuracy is guaranteed.

In our future work, the communication between processes needs to be taken into
account, and the assessment of communication risk is worth exploring. This will help to
deal with the collusion attack problem. Second, the risk value of the data path should be
determined based on API, application components and other features [32] rather than only
permissions to improve the accuracy of pollution path identification. Third, the distinction
between small malware and large malware should also be considered. We will import some
large malware to the test set in our next work and prove the applicability of PBFlowDroid
to large malware.
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