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Abstract: The traditional linear regression model that assumes normal residuals is applied exten-
sively in engineering and science. However, the normality assumption of the model residuals is
often ineffective. This drawback can be overcome by using a generalized normal regression model
that assumes a non-normal response. In this paper, we propose regression models based on gen-
eralizations of the normal distribution. The proposed regression models can be used effectively in
modeling data with a highly skewed response. Furthermore, we study in some details the structural
properties of the proposed generalizations of the normal distribution. The maximum likelihood
method is used for estimating the parameters of the proposed method. The performance of the
maximum likelihood estimators in estimating the distributional parameters is assessed through a
small simulation study. Applications to two real datasets are given to illustrate the flexibility and the
usefulness of the proposed distributions and their regression models.

Keywords: T-X family; logistic distribution; normal distribution; moments; estimation; regression

1. Introduction

Existing distributions do not always provide an adequate fit. Hence, generalizing
distributions and studying their flexibility are of interest for researchers over recent decades.
One of the earliest works on generating distributions was done by [1] who proposed a
method of differential equation as a fundamental approach to generate statistical distribu-
tions. Ref. [2] also made a contribution in this category and developed another method
based on differential equation. After that, other methods were developed such as the
method of transformation [3] and the method of quantile function [4,5]. More recent
techniques in generalizing statistical distributions emerged after the 1980s and can be
summarized into five major categories [6]; the method of generating skew distributions,
the method of adding parameters, the beta generated method, the transformed-transformer
method, and the composite method.

The beta-generated (BG) family introduced by [7] has a cumulative distribution func-
tion (CDF) given by

G(x) =
∫ F(x)

0
b(t)dt, (1)

where b(t) is the probability density function (PDF) of the beta random variable and F(x)
is the CDF of any random variable. The PDF corresponding to (1) is given by

g(x) =
1

B(α, β)
f (x)Fα−1(x)[1− F(x)]β−1, α > 0, β > 0; x ∈ Supp(F), (2)

where Supp(F) is the support of F and B(α, β) =
Γ(α)Γ(β)
Γ(α+β)

.
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Since the proposal of BG family in 2002, several members of the BG family of dis-
tributions were investigated. For example, beta-normal [7–9], beta-Gumbel [10], beta-
Frechet [11], beta-Weibull [8,12–14], beta-Pareto [15], beta generalized logistic of type
IV [16] and beta-Burr XII [17]. Some extensions of the BG family are also appeared in
literature such as Kw-G distribution [18,19], beta type I generalization [20], and generalized
gamma-generated family [21].

The beta-generated family of distributions is formed by using the beta distribution in
(1) with support between 0 and 1 as a generator. Ref. [22], in turn, were interested whether
other distributions with different support can be used as a generator. They extended the
family of BG distributions and defined the so called T-X family. In the T-X family, the
generator b(t) was replaced by a generator rT(t), where T is any random variable with
support (a, b). The CDF of the T-X family is given by

G(x) =
∫ W[F(x)]

0
r(t)dt, (3)

where W[0, 1]→ is a link function that satisfies W(0)→ a and W(1)→ b. Ref. [23] studied
a special case of the T-X family where the link function, W(.), is a quantile function of a
random variable Y. The proposed CDF is defined as

FX(x) =
∫ QY [FR(x)]

0
fT(t)dt = P[T ≤ QY[FR(x)]] = FT(QY[FR(x)]), (4)

where T, R, and Y are random variables with CDF FT(x) = P(T ≤ x), FR(x) = P(R ≤ x),
and FY(x) = P(Y ≤ x). The corresponding quantile functions are QT(p), QR(p), and
QY(p), where the quantile function is defined as QZ(p) = inf{z : FZ(z) ≥ p}, 0 < p < 1. If
densities exist, we denote them by fT(x), fR(x), and fY(x). Now, if the random variables
T ∈ (a, b) and Y ∈ (c, d), for −∞ ≤ a < b ≤ ∞, and −∞ ≤ c < d ≤ ∞, then the
corresponding PDF of (4) is given by

fX(x) = fR(x)× fT(QY[FR(x)])
fY(QY[FR(x)])

. (5)

If R follows the normal distribution N(µ, σ2), then (5) reduces to the T-normal family
of distributions [24] with PDF given by

fX(x) =
1
σ

φ

(
x− µ

σ

)
×

fT

(
QY

[
Φ
(

x−µ
σ

)])
fY

(
QY

[
Φ
(

x−µ
σ

)]) , (6)

where φ(.) and Φ(.) are the PDF and CDF of the standard normal distribution, respectively.
The T-normal family is a general base for generating many different generalizations of
the normal distribution. The distributions generated from the T-normal family can be
symmetric, skewed to right, skewed to the left, or bimodal. Some of the existing general-
izations of normal distribution can be obtained using this framework. In particular, some
generalizations of the normal distribution are beta-normal [7], Kumaraswamy normal [19]
and gamma-normal distribution [25].

Other generalizations of the normal distribution is the skew-normal, first considered
by [26], and it is defined as

fX(x) = 2φ(x)Φ(λx), x ∈ R, λ ∈ R.

Another generalization of the normal distribution is the power-normal distribution [27]
with CDF given by

F(x) = (Φ(x))α, x ∈ R, α ∈ R+
.

Several properties of the power-normal distribution are studied by [27]. Recently, Ref. [28]
proposed a new extension of the normal distribution.
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The rest of the paper is organized as follows. In Section 2, we introduce a class of skew-
symmetric model by using the logistic kernel and the normal distribution as the baseline
distribution. In Section 3, we discuss some structural properties of the logistic-normal
(henceforth, LN in short) distribution including moments, tail behavior, and modes. In
Section 4, the maximum likelihood estimation method is considered to estimate the model
parameters, and a small simulation study is implemented to evaluate the performance
of the method. In Section 5, a generalized normal regression model based on skew-LN
distribution is developed. In Section 6, applications to two real datasets are given to
demonstrate the flexibility and the usefulness of the new distribution and its regression
model. We conclude this paper by providing some concluding remarks in Section 7.

2. The Symmetric Logistic-G Family of Distributions

If T follows the logistic distribution with PDF fT(x) = λe−λx(1 + e−λx)−2, λ > 0
and Y follows the standard logistic distribution (λ = 1), then Equation (4) reduces to the
Logistic-G family of distributions with CDF given by

FG(x) =
Gλ(x)

Gλ(x) + (1− G(x))λ
, λ > 0; x ∈ Supp(G), (7)

where G(.) is the CDF of any baseline probability density function. A special case of (7)
was studied in some details in [29]. The corresponding PDF of (7) is given by

fG(x) = λg(x)Gλ−1(x)
(1− G(x))λ−1

[Gλ(x) + (1− G(x))λ]2
, (8)

where g(.) is the PDF of G(.).

Remark 1. The Logistic-G family possesses the following properties

i. If g(x) in (8) is a symmetric PDF about µ, then the resulting fG(x) is a symmetric PDF about
µ. i.e., the Logistic-G family in (7) preserves the symmetry property.

ii. If a random variable T follows the logistic distribution with scale parameter λ, then the random

variable X = G−1
(

eT

1+eT

)
follows the Logistic-G family in (7).

iii. The quantile function of the Logistic-G family can be written as

QG(p) = G−1
[(

1 +
(

p−1 − 1
)1/λ

)−1]
, 0 < p < 1. (9)

Now setting G(x) to be the normal CDF with parameters µ and σ2, say G(x) = Φ
(

x−µ
σ

)
,

then the Logistic-G family reduces to the Logistic-normal distribution with CDF given by

FN(x) =
Φλ
(

x−µ
σ

)
Φλ
(

x−µ
σ

)
+
(

1−Φ
(

x−µ
σ

))λ
, x ∈ R, (10)

where λ > 0, σ > 0, and −∞ < µ < ∞. The associated PDF of (10) is

fN(x) =
λφ
(

x−µ
σ

)
Φλ−1

(
x−µ

σ

)(
Φ
(

x−µ
σ

))λ−1

σ

[
Φλ
(

x−µ
σ

)
+
(

1−Φ
(

x−µ
σ

))λ
]2 , x ∈ R. (11)

when λ = 1, the logistic-normal (LN(µ, σ, λ), henceforth in short) in (10) reduces to the
normal distribution. Thus LN distribution is a generalization of the normal distribution.
Furthermore, the LN distribution is a member of the T-normal family proposed by [24]. In
Figure 1, graphs of standard LN distribution (where µ = 0, σ = 1) for various values of
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λ are provided. Figure 1 shows that the logistic-normal PDF has several advantages, the
parameter λ introduces the flexibility on kurtosis (see also Figure 2) and controls whether
the distribution is unimodal or bimodal. Moreover, it appears that the bi-modality occurs
when λ is approximately less than 0.5.

Figure 1. The logistic-normal (LN) density for µ = 0, σ = 1, and various values of λ.

3. Some Properties of LN Distribution

We begin our discussion by providing some useful remarks as listed below.

Remark 2. Using (10), (11) and Remark 1, the following useful properties can be obtained

(i) It is easy to show from (11) that fN(x + µ) = fN(µ− x) which implies that the LN(λ, µ, σ)
is symmetric about the location parameter µ.

(ii) The mean and median of the LN distribution are µ which is the location parameter of the
normal distribution.

(iii) The quantile function of the LN distribution can be written as

Q(p) = µ + σΦ−1
[(

1 +
(

p−1 − 1
)1/λ

)−1]
, 0 < p < 1.

(iv) In order to generate random sample from the LN distribution, first simulate random sample,

ti, i = 1, 2, · · · , n, from logistic(λ) distribution and then compute xi = µ + σΦ−1
(

eti

1+eti

)
.

Remark 3. Using the fact that φ′(x) = −xφ(x) and setting the derivative of log fN(x) in (11)
to 0, one can show that Mode(s) of the LN distribution is/are at the point(s) x∗ = µ + σz∗, where
z∗ satisfies the equation

z =
φ(z)

1−Φ(z)

[
(λ− 1)[1− 2Φ(z)]

Φ(z)
− 2λΦλ−1(z)

Φλ(z) + (1−Φ(z))λ
+ 2λ

]
, z ∈ R. (12)

From Remark 3, it is easy to see that 0 satisfies Equation (12). Therefore fN(x) has a critical
point at x = µ. We were able to observe numerically that for λ > 0.5 the distribution is
always unimodal and hence, x = µ is the unique mode in this case. In addition, because of
the fact that LN distribution is symmetric about µ for all values of λ, then for the bimodal
case, if x = a < µ is a mode then the second mode will be at x = 2µ− a.

The tail behaviour of the standard LN distribution (µ = 0 and σ = 1) as x → ±∞ are
discussed in the following Lemma.
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Lemma 1. Let Z ∈ LN(0, 1, λ), then as z→ ±∞,

fN(z) ∼
exp

(
−λz2/2

)
|z|λ−1 , λ > 0.

Proof. As z → ∞, φ(z) ∼ exp
(
−z2/2

)
, and 1− Φ(z) ∼ φ(z)

z
(see [17]). Consequently,

as x → ∞, fN(z) = λφ(z)Φλ−1(z)[1−Φ(z)]λ−1(
Φλ(z)+(1−Φ(z))λ

)2 ∼ φ(z)
(

φ(z)
z

)λ−1
∼ exp(−λx2/2)

zλ−1 . Similarly, as

z→ −∞, fN(z) ∼
e−λz2/2

|z|λ−1 .

Lemma 1 implies that as Z → ±∞, the tails of the standard LN distribution behave in

similar way as the right tail of the function
exp(−λx2/2)

xλ−1 . Note that when 0 < λ < 1, the
tails of fN(x) approaches 0 slowly, while for λ > 1, the tails of fN(x) approaches 0 faster,
meaning that the tail weight increases for higher values of λ. A graphical representation of
the association between the tail weight of LN and λ can be shown using the measure of
Kurtosis defined by [30]. The Moore’s kurtosis is defined as

γM =
Q(7/8)−Q(5/8) + Q(3/8) + Q(1/8)

Q(6/8)−Q(2/8)
. (13)

The values of Moore’s kurtosis of LN(0, 1, λ) for various value of λ is depicted in Figure 2.
It shows that as λ increases the Moore’s kurtosis increases. For 0 < λ < 1, there is a sharp
change in the kurtosis, while for λ > 1 the change is gradual. Figure 1 indicates that for
λ < 1, the tails of LN distribution are lighter than that of the normal distribution, while for
λ > 1 the tails of LN distribution are heavier than that of the normal distribution.

0.0 0.5 1.0 1.5 2.0

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6
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Figure 2. Plot of Moore’s kurtosis of LN distribution for various value of λ. The dashed line
represents the Moore’s kurtosis of the standard normal distribution.
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Moments of LN Distribution

Using Remark 2 (ii), the rth moment of the LN distribution can be written as

E(Xr) = E
(

σΦ−1
(

eT

1+eT

)
+ µ

)r

, where the random variable T follows the logistic dis-

tribution with scale parameter λ. Therefore,

E(Xr) = λ
∫ ∞

−∞

(
σΦ−1

(
et

1 + et

)
+ µ

)r

eλt
(

1 + eλt
)−2

dt.

Now, Φ−1(x) =
√

2 erf−1(2x− 1), where erf(x) = 2√
π

∫ x
0 e( − t2)dt. This implies that

E(Xr) = E
[

σ
√

2 erf−1
(

1− 2
(

1 + eT
)−1

)
+ µ

]r

=
r

∑
j=0

(
r
j

)
2j/2σjµr−jξ j,

where ξ j = λ
∫ ∞
−∞

[
erf−1

(
1− 2

(
1 + et)−1

)]
eλt(1 + eλt)−2dt.

ξ j can be evaluated using numerical integration from any available software such as R
or SAS.

Remark 4. Let X ∼ LN(µ, σ, λ), then

i. From Remark 2 (i), the rth central moment E(X− µ)r = 0 for any odd integer r.
ii. X ∼ LN(µ, σ, λ) implies that X = σZ + µ where Z ∼ LN(0, 1, λ). Therefore,

E(Xr) =
r

∑
k=0

(
r
k

)
σkµr−kE(Zk) =

r

∑
even k

(
r
j

)
σkµr−kE(Zk).

4. Estimation and Simulation

In this section, the maximum likelihood method (MLE) is used to estimate the param-
eters of LN distribution. Moreover, a small simulation study is performed to assess the
performance of the MLE method.

4.1. Parameter Estimation of LN Distribution

Let x1, x2, · · · , xn be a random sample of size n taken from LN distribution. Then the
log-likelihood function is given by

`(λ, µ, σ) = n log
(

λ

σ

)
+

n

∑
i=1

log φ

(
xi − µ

σ

)
+ (λ− 1)

n

∑
i=1

log Φ
(

xi − µ

σ

)
+(λ− 1)

n

∑
i=1

log
(

1−Φ
(

xi − µ

σ

))

−2
n

∑
i=1

log

[
Φλ

(
x− µ

σ

)
+

(
1−Φ

(
x− µ

σ

))λ
]

. (14)

The MLE of λ̂, µ̂, and σ̂ of the parameters λ, µ, and σ can be obtained by maximizing
numerically the log-likelihood function in (14). The initial value of µ is taken to be the
moment estimator x̄. The initial value of σ is taken to be the sample standard deviation, s.
To obtain the initial value of the parameter λ, we use Remark 2 (iv) as follows; assume the

random sample ti = log

[
Φ
(

xi−x̄
s

)
1−Φ

(
xi−x̄

s

)
]

, i = 1, 2, ..., n is taken from the logistic distribution
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with parameter λ. By equating the population variance π2

3λ2 of logistic distribution with the

sample variance, s2
T of the random sample ti and solving it for λ, we obtain λ0 =

√
1
3 π

sT
.

The trust-region optimization routine in SAS (PROC IML and CALL NLPTR) is used
in order to maximize the likelihood function in (14). The trust-region optimization routine
is a powerful technique that can optimize complicated functions. It outputs the iteration
details including parameter estimates, their standard errors, and the value of the gradient
function at which iteration stops.

4.2. Simulation

In order to evaluate the performance of the ML method, a small simulation study is
conducted with sample sizes n = 30, 50, 70 and with three different parameter combinations.
The study involved computing and analyzing the relative bias [(Estimate-Actual)/Actual]
and the standard deviation of the estimates. The results of the study are reported in Table 1.

Table 1. Relative bias and standard deviation of the maximum likelihood method (MLE) for
LN distribution.

Sample Size Actual Value Relative Bias Standard Deviation

n λ µ σ λ̂ µ̂ σ̂ λ̂ µ̂ σ̂

30 1.2698 0.0276 0.8064 1.5928 0.2797 1.8965
50 0.5 2 1 0.6606 0.0256 0.4205 0.4651 0.2749 0.5992
70 0.3290 0.0140 0.1422 0.4005 0.2013 0.4485

30 −0.1422 0.0101 −0.1210 0.7309 0.1224 0.4959
50 1.5 2 1 −0.0692 0.0339 −0.1074 0.5927 0.1005 0.3494
70 −0.0671 0.0087 −0.0898 0.3460 0.0773 0.2153

30 −0.3089 0.0113 −0.3005 0.8190 0.0978 0.3418
50 2 3 1 −0.3247 0.0083 −0.2915 0.8095 0.0827 0.2212
70 −0.3162 0.0076 −0.2990 0.8007 0.0575 0.1379

From Table 1, it is observed that the ML estimate of the parameter µ is overestimated.
Moreover, when λ < 1, the ML estimates of λ and σ are overestimated. On the other
hand, when λ > 1, ML estimates of λ and σ are underestimated. Moreover, for small
sample size(s) and when λ < 1, MLE method does not perform well. In fact, standard
deviations are higher than the corresponding estimated values. However, the results for
higher sample sizes and when λ > 1, it can be seen that the MLE method performs quite
well in estimating the model parameters.

5. Skew-LN and Its Generalized Normal Regression Model

In this section, we first propose a skewed type of LN distribution that can be used to
fit skewed dataset. In Section 5.2, we propose a location-scale regression model based on
the skew-LN distribution.

5.1. Skew Logistic-Normal Distribution

For skewed data, one can generate a skew-LN distribution in various ways. Once way
is by exponentiating the CDF of the LN distribution as

F(x) =

 Φλ
(

x−µ
σ

)
Φλ
(

x−µ
σ

)
+
(

1−Φ
(

x−µ
σ

))λ


α

, α > 0, λ > 0, x ∈ R. (15)

Note that when α = 1, the skew-LN distribution in (15) reduces to LN distribution. More-
over, when λ = 1, the skew-LN reduces to the eponentiated-normal distribution proposed
by [27]. Finally, when α = λ = 1, the skew-LN distribution reduces to normal distribution.
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In order to analyze the skewness and kurtosis regions of the skew-LN distribution,
the Refs. [30,31] measures were plotted against the parameter α and λ. Figure 3 shows
that the distribution is right skewed for α, λ < 1 and left skewed for α > 1, λ < 1 and
α < 1, λ > 1. The plot of kurtosis in Figure 3 demonstrates the flexibility of the proposed
distribution. For λ < 1, the tails of the skewed LN can be heavier or lighter than that tail of
the normal distribution.

Figure 3. Three-dimensional plots of Galton’s skewness and Moore’s kurtosis for various values of α

and λ.

The skew-LN distribution has several advantages; the parameter α introduces the
flexibility on the skewness and the parameter λ introduces the flexibility on the kurtosis.
Furthermore, the main advantage of the skew-LN when compared with Azzalini skew-
normal is the flexibility of fitting data with wider range of skewness and kurtosis. Based
on numerical calculations, for the Azzalini skew-normal, the Galton’s skewness ranges
between −0.1443 and 0.1443 and the Moor’s kurtosis ranges between 1.1746 and 1.2460.
However, for the skew-LN, the Galton’s skewness ranges between −0.3000 and 0.3000 and
the Moor’s kurtosis ranges between 0.8000 and 1.6000. It is also worth mentioning that the
skew-LN can be unimodal or bimodal and has closed form CDF which is not the case of
Azzalini skew-normal distribution.

5.2. Generalized Normal Regression Model Based on Skew-LN Distribution

The traditional linear regression model that assumes normal residuals is applied
extensively in engineering and science. However, the normality assumption of the model
residuals is often ineffective. This drawback can be overcome by using a generalized normal
regression model that assumes non-normal response Y. In this section, T is assumed
to follow the skew-LN distribution. The following location-scale regression model is
considered based on the skew-LN distribution

yi = xT
i β + σZi, i = 1, 2, · · · , n, (16)

where yi pertains to the response variable with a skew-LN distribution in (15),
β =

(
β0, β1, · · · , βp

)T , and σ > 0 are unknown parameters. Every yi has a covariate
vector xT

i =
(
1, xi1, · · · , xip

)
that models the linear predictor µi = xT

i β. The random error
Zi follows the skew-LN (0, 1, λ, α) distribution.

Remark 5. The skew-LN regression model in (16) has several nested regression models. These
special cases are enumerated as follows:
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1. The regression model in (16) is reduced to the traditional normal linear regression model when
α = λ = 1.

2. The exponentiated-normal (Exp-N) regression model is obtained when λ = 1. This location-
scale regression model is based on the power normal distribution introduced by [27].

3. The LN regression model based on the distribution (10) is obtained when α = 1.

A sample of (y1, x1), · · · , (yn, xn) of n independent observations is considered, and the

log-likelihood function for model (16) parameters θ =
(

λ, α, σ, βT
)T

is presented as

`(θ) = n log
(

αλ

σ

)
+

n

∑
i=1

log φ(zi) + (λα− 1)
n

∑
i=1

log Φ(zi)

+(λ− 1)
n

∑
i=1

log[1−Φ(zi)]

−(α + 1)
n

∑
i=1

log
[

Φλ(zi) + (1−Φ(zi))
λ
]

, (17)

where zi =
yi−xT

i β

σ . The maximum likelihood θ̂ of the parameter vector θ can be obtained
by maximizing the log-likelihood function in (17) numerically.

6. Applications

In this section, we apply the LN distribution and the generalized normal regression to
two real-life datasets. The first dataset possesses a bimodal shape, and the fit of the LN
distribution is compared with the mixture normal distribution. For the second application,
the skew-normal regression model is compared with some nested sub-models and some
other generalization of the normal regression models. Maximum likelihood method is used
to estimate the model parameters.

6.1. Fitting LN Distribution to Buoys Data

In this subsection the LN distribution is fitted to a bimodal datasets using ML method.
The dataset is obtained from National Data Buoy Center (NDBC). It represents the number
of buoys situated in the North East Pacific: Buoy 46,005 (46 N, 131 W) for the time period
1 January 1983 to 31 December 2003. The data is available from [1]. The Histogram in
Figure 4 shows that the distribution of the data possesses a bimodality shape, for this rea-
son, we fitted the dataset to both LN and the mixture normal distributions. The results of
the maximum likelihood estimates, the log-likelihood value, the AIC (Akaike Information
Criterion) and the Kolmogorov-Smirnov (K-S) test statistic for the fitted distributions are
reported in Table 2. Figure 4 displays both the empirical and the fitted cumulative distri-
bution as well as the probability density functions for the fitted distributions. The results
in Table 2 indicate that the LN distribution outperforms the mixture normal distribution.
In fact, the fitted CDF in Figure 4 shows that the mixture normal distribution does not
provide an adequate fit. The fact that the LN distribution has only three parameters adds
an extra advantage to the distribution over the mixture normal distribution.

6.2. Modeling Real Estate Valuation Using the Generalized Normal Regression Model

The dataset contains historical data on the real estate market from June 2012 to
May 2013. The data is obtained from Sindian District in New Taipei City, Taiwan (for
additional details, see [32]). The data consist of n = 414 transaction records of real estate
property. The data can be used to establish the relationship between housing price (per unit
area) and its predictive regressors. The following variables are used (for i = 1, 2, · · · , 414).
Response variable y is the housing price per unit area (10, 000 New Taiwan Dollar/Ping,
where 1 Ping = 3.3 m2), the covariates are as follows: xi1 is the transaction date (e.g.,
2013.250 = 2013 March and 2013.500 = 2013 June), xi2 is the house age (in years), xi3 is the
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distance to the nearest MRT station (in meters), xi4 is the number of convenience stores in
the living circle on foot (integer), and xi5 is the geographic coordinate, latitude (in degrees).
The data are analyzed on the basis of the following skew-LN regression model

yi = β0 + β1x∗i1 + β2x∗i2 + β3x∗i3 + β4x∗i4 + β5x∗i5 + σZi, i = 1, . . . , 414,

where the error terms Zi are independent random variables that assumed to follow the
skew-LN(0, 1, λ, α) distribution, and x∗ij = (xij − x̄j)/sj, j = 1, 2, ..., 5, are the standardized
covariates, which are considered because of the fact that some covariates are measured us-
ing different scales. Additionally, the fit under the skew-LN regression model is compared
with several regression models, including the regression model based on the beta-normal
(BN) distribution [7], the regression model based on the skewed-normal (SN) distribu-
tion [26], and the extended normal (EN) regression model [28]. Furthermore, the skew-LN
regression model is compared with its nested models, including LN, Exp-N, and normal
regression. In this application, the model parameters are estimated using the maximum
likelihood method and SAS programming language is used. The initial values of β0, · · · , β5
and σ are obtained from fitting the data to the normal regression model. The initial values
of the other parameters are set to 1. Table 3 shows the MLEs results of fitting skew-LN, LN,
Exp-N, SN, EN, and normal regression models to the data.

Table 2. Estimates of the parameters and goodness of fit measures for the Buoys data.

Distribution LN Mixture Normal

λ̂ = 0.5515(0.2920)
λ̂ = 0.2734(0.3304) µ̂1 = 8.6051(0.6836)

Parameter Estimates µ̂ = 10.57(0.3145) µ̂2 = 11.4634(0.6930)
σ̂ = 0.6507(0.5051) σ̂1 = 1.4994(0.7293)

σ̂2 = 1.0750(0.3770)

Log-likelihood 80.7 109.5

AIC 86.7 119.5

K-S 0.2273 0.6901

Figure 4. Plots of fitted distributions for the Buoys dataset.
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Table 3. MLEs of the parameters (SEs in parentheses) and p-values below SE for the real estate valuation data.

Model
Estimates

λ α a b σ β0 β1 β2 β3 β4 β5

Skew-LN
201.56

(11.3874)
<0.0001

2.4560
(0.5421)
<0.0001

- - 1710.11
(1.3422)
<0.0001

31.1581
(1.6737)
<0.0001

0.7992
(0.3525)
0.0239

−3.3125
(0.3765)
<0.0001

−5.0717
(0.5341)
<0.0001

3.7339
(0.4609)
<0.0001

2.6738
(0.4435)
<0.0001

LN
251.26

(10.1697)
<0.0001

- - - 1742.09
(1.4668)
<0.0001

37.3380
(0.3675)
<0.0001

1.0021
(0.3645)
0.0062

−3.3672
(0.3825)
<0.0001

−5.0580
(0.5408)
<0.0001

3.6095
(0.4784)
<0.0001

2.9054
(0.4900)
<0.0001

Exp-N
- - - 32.1513

(20.3311)
0.1146

16.9758
(1.7343)
<0.0001

2.9407
(7.8762)
0.7091

0.8789
(0.3932)
0.0259

−3.1964
(0.4112)
<0.0001

−5.0716
(0.5809)
<0.0001

3.4727
(0.4988)
<0.0001

2.8686
(0.4746)
<0.0001

EN
- - 1.3218

(1.7053)
0.4387

35.3119
(27.6631)

0.2025

19.2211
(11.1653)

0.0859

5.8752
(16.5371)

0.7226

0.8829
(0.3936)
0.0254

−3.1970
(0.4110)
<0.0001

−5.0767
(0.5812)
<0.0001

3.4745
(0.4987)
<0.0001

2.8644
(0.4751)
<0.0001

BN
- - 111.13

(237.23)
0.6397

1.5116
(0.7873)
0.0556

23.9265
(11.4859)

0.0379

−17.7314
(39.9566)

0.6574

0.8863
(0.3943)
0.0251

−3.1978
(0.4112)
<0.0001

−5.0561
(0.5789)
<0.0001

3.4673
(0.4993)
<0.0001

2.8947
(0.4774)
<0.0001

SN
2.3462

(0.2908)
<0.0001

- - - 12.4444
(0.5943)
<0.0001

29.1849
(0.5737)
<0.0001

0.9097
(0.3949)
0.0217

−3.1574
(0.4120)
<0.0001

−5.1793
(0.5934)
<0.0001

3.5278
(0.5015)
<0.0001

2.7417
(0.4729)
<0.0001

N
- - - - 8.7832

(0.3052)
<0.0001

37.9803
(0.4317)
<0.0001

1.4478
(0.4352)
0.0010

−3.0689
(0.4350)
<0.0001

−5.4944
(0.6138)
<0.0001

3.3466
(0.5486)
<0.0001

2.8156
(0.5442)
<0.0001

The fitted skew-LN an LN regression models show that the estimates β0, · · · , β5 and
σ are significant at 5% level of error. Table 4 presents the goodness of fit statistics including
AIC, consistent AIC (AICC) and Bayesian information criterion (BIC). The goodness of
fit statistics show that the skew-LN regression model outperforms the other regression
models. We also notice that the LN regression model has the second-lowest values of AIC,
AICC, and BIC. Hence, skew-LN and LN regression models can be used effectively to
analyze the real estate valuation data.

Table 4. Goodness of fit statistics for the real estate valuation data.

Model −` AIC AICC BIC

Skew-LN 1433.5327 2885.0654 2885.5109 2921.2982

LN 1444.2295 2904.4590 2904.8146 2936.6659

Exp-N 1454.7811 2925.5622 2925.9178 2957.7691

EN 1454.7551 2927.5102 2927.9557 2963.7430

BN 1454.3973 2926.7946 2927.2401 2963.0274

SN 1458.6946 2933.3892 2933.7448 2965.5961

N 1486.9953 2987.9906 2988.2665 3016.1717

The likelihood ratio (LR) statistic is utilized to compare the skew-LN regression model
with its sub-models; normal, LN, and Exp-N regression models. The LR test statistic values
and the corresponding p-values are given in Table 5. This Table shows that the skew-LN
regression model has a better fit when compared with the other sub-models. The LN
regression model also has a better fit when compared with the normal regression model.
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Table 5. LR statistics for the real estate valuation data.

Hypotheses LR Statistic p-Value

Skew-LN vs. LN H0 : α = 1 21.3936 <0.0001

Skew-LN vs. Exp-N H0 : λ = 1 42.4968 <0.0001

Skew-LN vs. Normal H0 : α = λ = 1 106.9252 <0.0001

LN vs. Normal H0 : λ = 1 85.5316 <0.0001

7. Concluding Remarks

In this paper, two generalizations of the normal distribution namely; logistic-normal
and skew logistic-normal distributions were investigated. Several mathematical and struc-
tural properties have been studied such as shape properties. The proposed generalizations
of the normal distribution exhibit a great flexibility in modeling symmetric as well as
skewed datasets. Moreover, new regression models based on both logistic-normal and
skew logistic-normal were developed. Two real datasets were used to illustrate the applica-
bility of the distributions and their regression models.

Future work could be devoted toward investigating other parameter estimation meth-
ods for the LN and the skew-LN distributions. The applicability of the skew-LN regression
model to other fields could be further explored.
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