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Abstract: Entropy-based measures are an important tool for studying human gaze behavior under
various conditions. In particular, gaze transition entropy (GTE) is a popular method to quantify
the predictability of a visual scanpath as the entropy of transitions between fixations and has been
shown to correlate with changes in task demand or changes in observer state. Measuring scanpath
predictability is thus a promising approach to identifying viewers’ cognitive states in behavioral
experiments or gaze-based applications. However, GTE does not account for temporal dependencies
beyond two consecutive fixations and may thus underestimate the actual predictability of the
current fixation given past gaze behavior. Instead, we propose to quantify scanpath predictability
by estimating the active information storage (AIS), which can account for dependencies spanning
multiple fixations. AIS is calculated as the mutual information between a processes’ multivariate
past state and its next value. It is thus able to measure how much information a sequence of past
fixations provides about the next fixation, hence covering a longer temporal horizon. Applying
the proposed approach, we were able to distinguish between induced observer states based on
estimated AIS, providing first evidence that AIS may be used in the inference of user states to
improve human–machine interaction.

Keywords: eye tracking; information theory; active information storage; scanpath

1. Introduction

The analysis of visual scanning behavior provides a rich source of information in the
investigation of observers’ cognitive processes or states [1–5]. One aspect of visual scanning
behavior are scanpaths, which denote sequences of consecutive fixations, where a fixation is
a period of little to no eye movement that allows for gathering of visual information [6]. The
analysis of scanpaths has gained renewed interest in recent years, for example, to study cog-
nitive function [7,8], personality traits [9,10], or as marker in gaze-based applications [11].
In particular, information-theoretic measures have become a popular tool for studying
cognitive function through the analysis of human gaze behavior [5,8,12–17]. A commonly
used measure is the (gaze) transition entropy (GTE) [17], which uses a conditional Shannon
Entropy [18] to describe the regularity of transitions between fixations of pre-defined areas
of interest (AOI) [5]. GTE considers sequences of fixations, so-called scanpaths, under the
assumption that scanpaths can be modeled as Markov chains of order one, and is calculated
as the entropy of the transitions between two consecutive fixations. Low GTE—and thus
a low remaining uncertainty about the location of the next fixation given the previous
one—thereby is interpreted as a high predictability of the next fixation [5]. GTE has been
applied in various studies (see [5] for a review), which have shown that changes in GTE
are associated with higher task demand [13,19,20], increased anxiety [21–23], or sleep
deprivation [14].

Despite the popularity of information-theoretic measures, alternative approaches
have been employed in the analysis of scanpaths (e.g., [24–27]). One example is the
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work by Coutrot et al. [27], who demonstrated an alternative approach to modeling
scanpath data using Hidden Markov Models (HMM) in order to decode different task
or observer characteristics. However, similar to GTE, their approach does not test or
account for the influence of past fixations beyond the immediate last fixation. This view
has however been challenged by a number of recent studies that found evidence for
the importance of incorporating long-range temporal information when analyzing and
modeling eye movement data [7,25,28]. Here, long-range denotes any dependency of the
location of the current fixation on a fixation further in the past than the immediate last
fixation.

Hayes et al. [25], for example, introduced the Successor Representation (SR model) to
the analysis of scanpaths, which uses an algorithm from reinforcement learning to repre-
sent sequential gaze data in a temporally extended fashion. More precisely, the SR model
stems from temporal difference learning [29,30] and incorporates among others a temporal
parameter that defines the time span for which an observation (fixation) influences the
model outcome. The authors found that up to 40% of the variance in viewer intelligence,
working memory capacities, and speed of processing could be explained based on differ-
ences in scan patterns that were individually modelled with the SR model [7,25], as well as
to some extent variances in ADHD scores (up to 50%), autism quotients (up to 30%), and
dyslexia scores (up to 25%) [31]. Wiebel-Herboth et al. [28] found that an SR model had a
significantly higher predictive power when classifying single participants based on their
scanpaths in a visual comparison task compared to a simple transition matrix model that
considered only the immediate last fixation. Moreover, Hoppe et al. [32] were the first to
provide quantitative evidence that humans are capable of planning eye movements beyond
the next fixation by exploiting a priori knowledge about the task and stimulus in their
experimental paradigm. While the authors did not provide a generic method for modeling
scanpaths, their results provide a potential mechanism for the generation of long-range
correlations in gaze behavior. Taken together, these results suggest that longer temporal
dependencies in scanpaths may exist and be informative about their underlying cognitive
processes and thus should be included in the modeling process.

However, entropy-based measures commonly applied, e.g., GTE [5,16,17], typically
only take into account information contained within the immediate past fixation when
quantifying the regularity of eye movements. When GTE was first introduced, Krejtz and
colleagues [16,17] adopted the procedure by Julian and Mondal [33] for testing the Markov
chain of order one assumption underlying the GTE computation. In their experiment,
they found that in most but not all cases the assumption was valid. To our knowledge,
such a validation procedure has not yet become a standard procedure in the entropy-
based gaze analysis literature (for a review, see [5]). In cases where the order-one Markov
chain assumption is violated, longer temporal dependencies are not accounted for in
current information-theoretic approaches to scanpath analysis. As a result, if such temporal
dependencies existed in a scanpath, the GTE would presumably underestimate its overall
predictability.

Alternative modeling approaches, such as the SR model, also come with drawbacks.
Most importantly, the model parameters have to be defined ad-hoc and cannot be learned
in a data-driven fashion. This entails the risk of a circular argumentation if no external
optimization criterion can be defined. Furthermore, the model parameters are not inter-
pretable in a straightforward way, which limits the explanatory power of the approach.
Thus, there is still a need for methods of scanpath modeling that can integrate both spatial
and temporal information in the data [34].

To this end, we here propose a novel approach to the information-theoretic analysis
of scanpath data, which is able to measure predictability in a scanpath while accounting
for temporal dependencies of arbitrary order: we propose to estimate active information
storage (AIS) [35] from scanpaths, which measures the predictability of a sequence as
the mutual information between the sequences’ past and its next state. In particular, the
relevant past is modeled as the collection of all past variables that provide information
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about the next value and can be identified using novel estimation procedures that optimize
the past state in a data-driven fashion [36–38].

AIS has been successfully applied in a variety of disciplines to measure predictability
of time series [39–44]. In the context of scanpath analysis, we believe AIS can provide
several benefits at once: (1) It implicitly tests the order-one Markov chain assumption,
as it provides the optimized past state for a given data sample. As such, it can provide
direct evidence for whether fixations beyond the last fixation have a predictive value.
(2) The length of the optimized past state is directly interpretable. That is, the optimization
finds the temporal horizon over which past fixation(s) are informative about and thus has
the potential to support the generation of explanatory hypothesis. (3) AIS allows for an
individually optimized computation of predictability that may be of greater usefulness in
gaze-based applications, e.g., driver assistance [11,14,45]. In sum, we argue that AIS may
be applied to quantify the predictability of a scanpath, in particular, while information
provided by fixations beyond the immediate fixation can be detected and accounted for.

In the following, we introduce AIS together with the necessary information-theoretic
background and describe its estimation from scanpath data. As a proof of concept, we
estimate AIS from scanpath data recorded in a visual comparison task under two different
experimental conditions that induced different observer states. The contributions of our
paper are the following: we provide the first application of AIS in the analysis of scanpath
data. The AIS estimation revealed that most participants showed temporal correlations
beyond the last fixation in the data. We demonstrate that changes in predictability quanti-
fied by AIS reflect changes in experimental condition that induced different observer states.
Moreover, we show that the experimental condition can be successfully decoded from
AIS estimates, indicating that AIS is a promising feature for identifying user states. The
decoding based on AIS estimates resulted in a significantly higher accuracy than decoding
from GTE, which indicates that long-term information captured by AIS but not GTE adds
relevant information about the observer state in our experiment.

2. Materials and Methods
2.1. Information-Theoretic Preliminaries

Formally, we consider a scanpath as realizations (x1, . . . , xt, . . . , xN), xt ∈ AXt of
a stationary random process X = (X1, X2, . . . , Xt, . . . , XN), where a random process is
a collection of random variables, X, ordered by an integer t ∈ {1, . . . , N} ⊆ N. As a
shorthand, we write p(xt) for the probability, p(Xt = xt), of variable Xt taking on the value
xt ∈ AXt , and p(xt|y) for the conditional probability of Xt taking on the value xt if the
outcome y of a second variable, Y, is known.

The Shannon entropy [18] is then defined as

H(X) = − ∑
x∈AX

p(x) log p(x) (1)

and quantifies the expected uncertainty associated with the random variable X or the
amount of information to be gained when observing outcomes of X. The conditional
entropy is then the average information or uncertainty remaining in X if the outcome of Y
is known:

H(X|Y) = − ∑
x∈AX ,y∈AY

p(x, y) log p(x|y). (2)

Based on these definitions, we define the mutual information (MI) as the average
amount of information one variable, X, provides about a second variable, Y,

I(X; Y) =H(X)− H(X|Y) = H(Y)− H(Y|X)

=∑
x,y

p(x, y) log
p(x|y)
p(x)

.
(3)
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The MI quantifies the information X provides about Y and vice versa; it is zero for
independent variables (p(x, y) = p(x)p(y)) or if either H(X) or H(Y) is zero, i.e., there is
no information to share. The MI is bound from above by the entropy of both variables
involved, 0 ≤ I(X; Y) ≤ H(X), H(Y) (Figure 1A).

A

I(Xt-1;Xt)H(Xt-1|Xt) H(Xt|Xt-1)

H(Xt-1)

H(Xt)

B

time

C

time

-

- - -
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- Xt-1

-
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Figure 1. (A) Relationship between entropy and conditional entropy, H, and mutual information I
of two non-independent random variables Xt and X−t−1 (adapted from [46]). Here, the conditional
entropy corresponds to the gaze transition entropy (GTE). (B) Active information storage (AIS)
quantifies the predictability of the value of time series X at time t, Xt (red marker), from its immediate
past state, X−t−1 (blue box). (C) Non-uniform embedding representing the past state of time series, X,
as a selection of past variables (blue markers) up to a maximum lag kmax < t, which carry significant
information about the next value, Xt (red marker).

2.2. Active Information Storage (AIS)

AIS [35] quantifies how much information a processes’ past state X−t−1 contains about
its next value Xt and thus measures the average predictability of Xt from its immediate
past [35,47] (Figure 1B). AIS is calculated as the MI between X−t−1 and Xt,

AIS(Xt) = I(X−t−1; Xt) = H(Xt)− H(X|X−t−1)

= ∑
xt ,x−t−1

p(xt, x−t−1) log
p(xt|x−t−1)

p(xt)
, (4)

where the past state X−t−1 is defined as a collection of random variables up to a maximum
lag kmax (see also the next section),

X−t−1 =
{

Xt−1, . . . , Xt−tl , . . . , Xt−kmax

}
. (5)

AIS is low for processes with highly random transitions and high for processes
that visit many different states in a regular fashion [35,47]. Formally, 0 ≤ AIS(Xt) ≤
H(Xt), H(X−t−1), i.e., AIS is zero for processes with no memory such that they are com-
pletely random, and the AIS is upper bounded by the entropy of the past state and entropy
of the next value of a process.

Relationship between GTE and AIS

GTE measures the remaining uncertainty in a fixation, given knowledge of the pre-
vious fixation as a conditional entropy, H(Xt|Xt−1). Hence, for past states of length one,
AIS and GTE are complementary, i.e., H(Xt) = I(Xt; Xt−1)+ H(Xt|Xt−1) (Equation (4) and
Figure 1A). However, for processes that do not fulfill the Markov condition, p(Xt|Xt−1, . . . , Xt−l)
= p(Xt|Xt−1), i.e., processes that are not sufficiently described by a Markov chain of order
one, GTE may underestimate the actual predictability of the next state from the whole
relevant past of X (see also the next section). Furthermore, both measures differ in their
interpretation—while GTE measures the remaining uncertainty in the next fixation, AIS, as
a MI, measures how much information the past provides about the next fixation. The latter
thus provides a more direct measure of predictability [47,48].

2.3. Estimating AIS from Scanpath Data
2.3.1. Optimization of Past States

To estimate AIS in practice, we first have to define the past state X−t−1 such that it
contains all relevant information stored in the past of X about Xt [35]. Formally, we want
to define X−t−1 such that p(Xt|Xt−1, . . . , Xt−l) = p(Xt|X−t−1). In other words, the next
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value, Xt, is conditionally independent of all past variables, Xt−l , l > kmax, given X−t−1.
Non-optimal choices for X−t−1 may lead to an underestimation of AIS if not all relevant
information is covered by X−t−1, or they may lead to artificially inflated AIS values if too
many variables are included, leading to an under-sampling of the past state.

Here, we find X−t−1 through a non-uniform embedding procedure [36,49] that selects a
subset of variables from all past variables up to a maximum lag, kmax (Figure 1C),

X−t−1 = {Xt−k}, k ∈ [1, kmax]. (6)

More formally, our goal is to identify the minimal set of variables, X−t−1, that provides
maximum information about Xt, maxX−t−1

I
(
X−t−1; Xt

)
. We optimize X−t−1 using a greedy

forward-selection approach implemented in [37], which iteratively includes variables Xt−k
if they provide significant, additional information about Xt, conditional on all already
selected variables, i.e., maxXt−k I

(
Xt−k; Xt|X−t−1

)
(see [36–38,49] for more details). The im-

plementation of the forward-selection approach uses a hierarchical permutation testing
scheme to handle estimator bias, while controlling the family-wise error rate during re-
peated testing [37,38]. Using statistical testing for the inclusion of variables further provides
an automatic stopping criterion for construction of the past state. The implementation
of the AIS estimation procedure used is freely available as part of the IDTxl open-source
Python package [37], https://github.com/pwollstadt/IDTxl.

2.3.2. Estimating AIS from Discrete Scanpath Data

After optimizing X−t−1, we estimate AIS from scanpath data using plug-in
estimators [50] that are known to exhibit a bias due to finite sampling (e.g., [51,52]). Our ap-
proach to handling estimator bias is two-fold: First, we apply the bias-correction proposed
in [53,54] and implemented in [55] to final AIS- and entropy-estimates. Second, we use
non-parametric permutation testing [38,56] to test MI-estimates for statistical significance.

We here use permutation testing during the optimization as well as to test final
AIS estimates. Permutation testing considers the MI-estimate as a test statistic in a test
against the null-hypothesis of no relationship between the two variables, where the null-
distribution is found through repeated estimation from permuted data [56]. Hierarchical
permutation testing is applied during the optimization of the past state, X−t−1, by inclusion
of past variables if they provide significant information about Xt. Note that, if no past
variable provides information in a significant fashion, the inclusion terminates and no
AIS is estimated. Hence, the proposed procedure tests for the presence of dependencies
between past and current fixation and returns no estimate if no such dependency exists.

2.4. Experiment

As a proof of concept, we estimate AIS from eye tracking data recorded during a
visual comparison task, where we varied observer states by adding a time constraint in
one condition (see also [28] for details on the experimental setup).

2.4.1. Participants

We recorded data from 13 participants (one female) with a mean age of 38, ranging
from 21 to 53. Data of three participants had to be excluded from the analysis due to failures
in the recording process, resulting in a sample of 10 all-male participants. All participants
had normal or corrected to normal sight and gave their informed written consent before
participating in the experiment.

2.4.2. Task and Experimental Procedure

Participants were asked to identify as fast as possible the difference between a reference
and a target image, where both images were identical except for one detail that was
changed in the target image. Both images were presented next to each other on a mean
gray background (Figure 2A). Participants were asked to indicate the location of the

https://github.com/pwollstadt/IDTxl
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difference by clicking, using a regular computer mouse. The experiment took place in
a quiet office environment under normal lighting conditions. Before the start of the
experiment, participants were informed about the course of the experiment and received
instructions.

Trials were recorded under two experimental conditions that were designed to induce
two different user states, one relaxed state and one in which participants experienced stress
through time pressure. Time pressure was achieved by varying the time available for the
participants to complete the search task in each trial: In the first condition, participants
had as much time as they needed (time unconstrained condition, TUC). In the second
condition, time to finish the task was constraint to 9 s (time constrained condition, TC).
The time limit was chosen such that it would lead to a significant performance drop and
was determined in pre-tests. In addition, a sequence of nine accelerating tones, presented
via headphones indicated the time running up in the TC condition. If participants did
not find the difference between the images within the given time range, the next trial was
initiated independently of the participant’s response. Performance dropped from 100% in
the TUC condition to 65% correct trials on average in the TC condition with an average
search time of m = 4.84 s, sem = 0.15 s (TUC: 100%, average search time: m = 17.01 s,
sem = 1.5 s). This result indicates that the intended manipulation was indeed successful.
All participants reported after the experiment that they felt under time pressure in the TC
condition. For each condition, 22 trials were recorded. After half of the trials, participants
were asked to take a break.

2.4.3. Apparatus and Stimuli

Stimuli were presented on a Dell monitor. Participants saw 44 photographs of varying
indoor and outdoor scenes. Images were taken from a publicly available database (Shuf-
fle database, Large Change Images) [57], http://search.bwh.harvard.edu/new/Shuffle_
Images.html. The experimental routine was programmed in Python using Psychopy [58,59].
The participants’ gaze behavior was recorded using a Pupil Labs eye tracker, using 120 Hz
binocular gaze tracking and 60 fps world camera recordings [60].

The eye tracker was calibrated at the beginning of the experiment. All calibrations
were done using the 9-point calibration routine implemented by Pupil Labs. Gaze points
were mapped to the screen via the screen marker solution implemented by Pupil Labs.
For that purpose, the monitor was defined as a surface based on 10 markers attached to
the edge of the screen. To validate the calibration, participants were asked to fixate on a
fixation dot presented at the center of the screen at the beginning of each trial (Figure 2A).
The pupil labs eye tracker offers an accuracy of up to 0.6° and a precision of 0.2°. If online-
computed deviations between the recorded gaze position and the fixation dot exceeded
50 px (corresponding to a viewing angle of 1.15°), the eye-tracker was recalibrated.

Images presented during a trial categorized into easy, medium and difficult with re-
spect to the search task prior to the experiment. Ratings were done by three experimenters
independently resulting in 75% of all ratings to be 100% consistent, whereas for the re-
maining 25% (eleven images) of ratings deviated by one (e.g., easy, easy, and medium). To
resolve these inconsistent cases, the median of the ratings was chosen as a label (e.g., easy).
The image dataset was split in half, assuring an equal distribution of difficulty among
the two. Half of the images were used for the TC condition (n = 22) while the other half
was used for the TUC condition (n = 22). Within each condition, images were shown in a
randomized order, with no image shown twice to the same observer.

http://search.bwh.harvard.edu/new/Shuffle_Images.html
http://search.bwh.harvard.edu/new/Shuffle_Images.html
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Figure 2. (A) Experimental setup for individual trial consisting of a screen showing the fixation dot
and a screen displaying the image pair on a mean grey background. (B) Definition of areas of interest
(AOI, green boundaries) on schematic images with target area (red box). The white line denotes an
exemplary scanpath, where orange markers indicate ordered fixations and marker size corresponds
to fixation time.

2.4.4. Preprocessing

Data analysis was done in Python and R [61]. Fixations for scanpath representations
were computed using the basic Identification by Dispersion-Threshold (IDT) algorithm [62]
using a maximum dispersion of 50 px and a minimum duration of 100 ms. Fixations above
1500 ms and data points with a confidence value below 0.9 were excluded from the data
analysis. We analyzed data from all trials and did not differentiate between correct and
incorrect trials.

Scanpaths were defined as sequential fixations of predefined areas of interest (AOI)
and thus represent time-series data incorporating temporal as well as spatial information.
We defined AOIs as four areas of interest (Figure 2B): (1) the left half of the monitor;
(2) the right half of the monitor; (3) the target area in the left image; and (4) the respective
target area in the right image. Target areas were defined based on the bounding boxes
specifying the location of difference plus an additional frame of 50 px. Our approach aimed
at extracting differences in the search process related to a presumably first “general search
phase” and a “zooming in and validating phase” at the end of each trial.

3. Results
3.1. Optimization of Past States

We estimated AIS from scanpaths for each trial individually using the IDTxl Python
toolbox [37]. We first optimized past states, X−t−1, while setting kmax to 5 previous fixations.
This resulted in a wide variety of selected past variables over trials and participants,
where, in 74% of trials, variables with lags greater than one were selected (Figure 3A).
Hence, in the majority of trials, fixations prior to the last fixation provided significant
information about the next fixation and were relevant for quantifying the predictability
of the scanpath. Furthermore, the variability in lags provides evidence for an intra- and
inter-individual variance in viewing behavior that should be accounted for by estimation
procedures.



Entropy 2021, 23, 167 8 of 14

H
(X
t)

A
IS
(X
t)
/H
(X
t)

1.0

0.5

0.0

participant
1 2 3 4 5 6 8 10 11 12

****** ****

0

1

2

1 2 3 4 5 6 8 10 11 12

*** *** *** ************ **

0

1

2

A
IS
(X
t) *** *** *** ***** **

TCTUC100

80

60

40

20

0

no
. t

ria
ls

1 2 3 4 5
0

10

20

30

40

50

no
. t

ria
ls

 [%
]

lag l

pa
rt

ic
ip

an
t

12345 0

selected
not sel.

Xt

lag l

C

7 91 2 3 4 5 6 8 10

7 91 2 3 4 5 6 8 10

7 91 2 3 4 5 6 8 10

A

B 1
2
3
4
5
6
7
8
9

10

Figure 3. (A) Number of past variables with a given lag l selected through non-uniform embedding
over participants and trials. (B) Union past state for each participant used for statistical testing.
Selected past variables (blue) with lag l relative to the next fixation, Xt (red). (C) Mean active
information storage (AIS, top), entropy (middle), and normalized AIS (bottom), for conditions (time
constraint (TC) and time unconstrained (TUC)) and individual participants (* p < 0.05, ** p < 0.01,
*** p < 0.001, error bars indicate the standard error of the mean).

3.2. Difference in Experimental Conditions
3.2.1. Overall Effect of Condition on Predictability

To test for significant differences in predictability between the two experimental
conditions, we fitted a linear mixed effects model with fixed effect experimental condition and
random effect participant, allowing for a varying random slope for the effect of experimental
condition on AIS values per participant [63]. For fitting the model, we used the lme4
package [64], written in R [61].

We found a main effect of experimental condition (χ2(1) = 30.054, p < 0.001),
while we found no significant effect of the random slope. This indicates an overall effect of
experimental condition on predictability when controlling for inter-subject variability. To
assess how the experimental condition affected predictability for individual participants,
we performed for each participant an independent samples permutation test between AIS
in both conditions (Nperm = 5000, Figure 3C). We found significantly decreased AIS in nine
out of ten participants in the TC condition (p < 0.05, AISTC(Xt) < AISTUC(Xt)).

3.2.2. Relationship between AIS and Scanpath Entropy

In a second step, we investigated whether the decrease in AIS reflected a true decline
in the predictability of the scanpath or whether it was rather due to a lower scanpath
entropy in the TC condition. Since the absolute AIS value is bounded by the entropy
of the two variables involved, a reduction in absolute AIS may not only be caused by a
change in the predictability of a process, but also by a reduction in the processes’ entropy,
i.e., a reduction in the information to be predicted.

We performed two-tailed, independent samples permutation tests for differences in
H(Xt) between conditions for each participant (Nperm = 5000, Figure 3), where we found a
significant decline in H(Xt) for the TC condition for all participants (p < 0.05, HTC(Xt) <
HTUC(Xt)). To investigate if the decrease in H(Xt) may fully explain the decrease in
AIS(Xt), we further tested for differences in AIS normalized by H(Xt), AIS(Xt)/H(Xt).
Here, we found a significant decline in eight out of ten participants (p < 0.05, AISTC(Xt)/HTC(Xt)
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< AISTUC(Xt)/HTUC(Xt)). This result indicates that the observed decrease in absolute AIS
may be at least partially explained by a reduction in fixation entropy, but also by an actual
reduction in the regularity or predictability of the scanpath.

Note that, for all statistical comparisons, to avoid spurious effects, we aimed at holding
estimation bias constant between the groups to be compared. The estimation bias depends
on the number of samples and the size of the variables used [51,54]. Hence, we fixed
the number of samples by discarding samples at the beginning of a trial and created a
uniform past state by taking the union of selected past states over all trials and conditions
(Figure 3B). Taking the union ensures that the uniform past state contains all relevant
variables at the expense of including potentially irrelevant variables in the estimation from
some of the trials.

3.3. Decoding of Experimental Condition from Scanpath Predictability

It is commonly assumed that eye movements are partially modulated top-down
as a function of task demand (e.g., [3,5,65]). Accordingly, in eye tracking analysis, a
common objective is to determine if task or observer characteristics can be decoded from
eye movements ([27,65,66], see also the work of Yarbus et al. for a classic example [67]).
To evaluate whether AIS captures relevant information about the observer state induced
by our experimental manipulation, we classified the experimental condition (TC versus
TUC) from estimated AIS values per image, pooled over participants. Furthermore, we
estimated GTE as the conditional entropy of the current fixation given the last, H(Xt|Xt−1),
for each image and compared the classification performance using AIS as input feature to
the classification performance using GTE as feature. We hypothesized that, if the long term
information captured by AIS added significant information to the differentiation of the two
experimentally induced observer states, then classification accuracy based on AIS should
be higher compared to the classification accuracies reached by the GTE.

We followed the same classification approach as Borji and Itti [65], who successfully
decoded different experimental tasks from fixation statistics recorded during viewing of
images from two datasets (see also [66]). The authors used a random undersampling boost-
ing algorithm (RUSBoost) [68] with decision trees as base models as well as a k-nearest
neighbor classifier (KNN) with k = 1. The RUSBoost classifier handles class-imbalances in
the number of valid trials entering the analysis. The results are reported as the average
classification accuracy over ten repetitions of a five-fold stratified cross validation. We
found that the condition could be classified above chance level (0.6725) from AIS values
using both the KNN (0.7369 ± 0.0535 SD) and RUSBoost classifier (0.6924 ± 0.0693 SD),
where the highest accuracy was achieved using the KNN classifier. In comparison, classifi-
cation from GTE resulted in a lower accuracy of 0.6870 (±0.0602 SD) for the KNN classifier
and 0.6747 (±0.0647 SD) for the RUSBoost classifier. We performed a Wilcoxon signed-rank
test on the difference in KNN classification performance and found that classification
based on AIS as input feature was significantly higher than classification based on GTE
(T = 884.5, z = 2.38, p < 0.01). Our results demonstrate that AIS can be used successfully
to decode our experimental condition from scanpath predictability, outperforming the
classification based on the GTE, indicating that AIS captures more relevant aspects of the
task-induced changes in observer state as encoded in eye movement behavior.

4. Discussion

We present AIS [35] as a novel approach to quantifying the predictability of scanpaths
while accounting for long-range temporal dependencies between fixations. We demon-
strated how to estimate AIS from scanpath data recorded during a visual comparison task
and found that changes in observer states were reflected by changes in estimated AIS,
indicating a lower predictability of gaze behavior in more demanding task conditions.
Furthermore, we successfully decoded the experimental condition from AIS estimates of
individual trials, achieving a higher accuracy compared to decoding the condition from
the GTE, which was used in previous work to quantify scanpath predictability and identify
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differences in user states (e.g., [5]). We thus conclude that more relevant information
about the observer state was encoded in the AIS estimate, which accounts for long-term
dependencies in viewing behavior.

Current information-theoretic measures of predictability in scanpaths do not incor-
porate long-range temporal information, which may be important to accurately describe
human viewing behavior [7,25,28,31,32]. Alternative measures, such as the SR model [25]
or hidden Markov models [24,27], lack interpretability and their application is not always
straightforward [5,25]. For example, the learning parameter representing the temporal
horizon in the SR model has no clear interpretation, such that it is typically set through
optimization of an additional criterion. Such an external criterion may not be readily
available and may lead to circular analysis designs [69].

In contrast, AIS paired with novel estimation techniques, namely non-uniform em-
bedding using a recently proposed estimation algorithm [36–38], allows optimizing the
temporal horizon accounted for in a purely data-driven fashion. Furthermore, the opti-
mized past state allows for a clear interpretation in units of past samples, i.e., fixations,
offering additional explanatory value. Lastly, the past state is optimized individually per
participant, accounting for inter-individual variation and including cases that are best
modeled by a Markov chain of order one as a special case. In the latter case, i.e., if the
optimized past state contains only the past fixation with lag one, AIS and GTE are com-
plementary such that a change in GTE corresponds to an equivalent change in AIS and
vice versa. When applying AIS estimation to scanpath data, we found significant tem-
poral relationships in scanpaths beyond first-order transitions and high inter-individual
variability. Both findings underline the importance of accounting for long-range temporal
dependencies as well as inter-individual differences when modeling scanpath data, in
particular when quantifying the regularity or predictability of gaze behavior.

As a proof of concept, we applied the AIS estimation to eye tracking data recorded
from a visual comparison task, in which two different observer states were induced. In
the TC condition, participants experienced a higher task demand compared to the TUC
condition. Here, we found a significant decline in predictability measured by AIS for higher
task demand. This result is in line with the majority of studies utilizing GTE, which find
an increase in GTE and thus lower predictability under increased task difficulty (see [5]
for a review). Furthermore, we were able to decode observer states from AIS and that
decoding accuracy was higher for AIS than for GTE. We conclude that AIS is able to detect
changes in predictability due to changes in task demand, while avoiding methodological
ad hoc choices and being more versatile with respect to temporal correlations present
in gaze behavior. Furthermore, we argue that AIS provides a more immediate measure
of “predictability” as its calculation incorporates the maximum amount of information
that can be gained from the past of a process about its next state [47,48]. Lastly, note that
we here normalized our estimate of predictability by the entropy of the next fixation,
also termed stationary gaze entropy [5]. We emphasize that such a normalization is necessary
to exclude that changes in GTE or AIS are purely due to a change in fixation entropy
between experimental conditions.

Being able to quantify changes in user states using approaches such as the one pre-
sented here, is central, for example, in many human machine cooperation scenarios [70].
Being able to detect user states and changes therein allows adapting machine behavior,
e.g., to improve the interaction. Imagine for example a teaching assistance system, which,
to provide optimal support for a student, must be able to assess whether a change in
task demand, e.g., increasing the level of difficulty, is appropriate or overextending for
the student. Only then the system can adjust to the right level of information supply or
offer additional support for solving the task (see, e.g., [71]). For such an assessment of
the human state, gaze behavior has been suggested as a rich data source, whose analysis
can provide unobtrusive insights into a user’s cognitive or emotional state (e.g., [5,72,73]).
For the analysis of gaze behavior, in particular information-theoretic measures have been
suggested as promising markers of human states. We here extend existing work in this
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field by including previously neglected temporal correlations in the analysis of scanpath
predictability, which may improve classification of user states, as demonstrated here by
decoding the experimental condition from AIS. We therefore suggest AIS as an novel
information-theoretic approach to the analysis of gaze behavior in user state modeling.

5. Conclusions

AIS is a promising measure for analyzing the predictability of scanpath data. Future
work should extend its application to eye tracking data, for example, by exploiting the
possibility to interpret AIS in a local (sample-wise) fashion [35]. Information-theoretic
quantities such as entropy or mutual information allow for an interpretation for individual
realizations of the random variables involved, which allows quantifying the local entropy
or local predictability of a single fixation in time. Such a localized description of fixation
sequences allows for a more fine-grained quantification of gaze behavior, up to the quan-
tification of the predictability of a single fixation. Applying AIS in its localized version
thus opens the possibility of using information-theoretic measures in real-time applications
such as online monitoring or assistance (e.g., [11]). Furthermore, the application should
be extended to other tasks, in particular free viewing, to gain further insights on how
predictability changes as a function of the task at hand and given more natural viewing
conditions. In addition, further comparison to existing scanpath analysis approaches in ded-
icated experiments are needed and are subject to future work. This will be a next important
step to evaluate its potential for real-world gaze-based applications. In addition, note that
our study is limited by its relatively small sample size and an all-male sample. Future
research should therefore extend the application of AIS to larger and more diverse groups.
Lastly, AIS estimation may be applied to non-discretized, raw (x, y)-fixation coordinates by
foregoing the definition of AOIs and applying estimators for continuous data [74,75]. Fur-
ther studies may explore these possibilities to further evaluate and extend the application
of AIS to scanpath data.
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