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Abstract: Traditional image denoising algorithms obtain prior information from noisy images that
are directly based on low rank matrix restoration, which pays little attention to the nonlocal self-
similarity errors between clear images and noisy images. This paper proposes a new image denoising
algorithm based on low rank matrix restoration in order to solve this problem. The proposed
algorithm introduces the non-local self-similarity error between the clear image and noisy image
into the weighted Schatten p-norm minimization model using the non-local self-similarity of the
image. In addition, the low rank error is constrained by using Schatten p-norm to obtain a better
low rank matrix in order to improve the performance of the image denoising algorithm. The results
demonstrate that, on the classic data set, when comparing with block matching 3D filtering (BM3D),
weighted nuclear norm minimization (WNNM), weighted Schatten p-norm minimization (WSNM),
and FFDNet, the proposed algorithm achieves a higher peak signal-to-noise ratio, better denoising
effect, and visual effects with improved robustness and generalization.

Keywords: image denoising; low rank representation; weighted schatten p-norm; low rank error
constraint

1. Introduction

Image contains a lot of information. However, owing to the noise, important informa-
tion may lost in the process of image acquisition, compression, transmission, and storage,
which brings inconvenience to the subsequent image processing. Therefore, image de-
noising is necessary in image preprocessing [1]. The degradation model for the denoising
problem can be expressed as: Y = X + N, where N is usually assumed to be additive
white Gaussian noise with a standard deviation of σn. The purpose of image denoising is
to restore a clean image X from the noise observation Y as accurately as possible while
maintaining important detailed features (such as edges and textures). Image denoising is a
typical ill-posed problem in mathematics, which can be solved using prior knowledge of
an image [2]. In the past few decades, many effective image prior knowledge models have
been developed, such as regularization methods that are based on total variation [3–5],
sparse representation [6,7], low rank representation [8,9], nonlocal self-similarity [10,11],
and deep learning [12], et al.

Recently, the image prior method based on nonlocal self-similarity [13,14] and low
rank matrix approximating [15–18] can better preserve image edge details while denoising,
which has achieved some success in image denoising [19,20]. Low rank matrix approxi-
mation aims to recover the underlying low rank matrix from degraded observations. It is
widely used in computer vision and machine learning. Low rank matrix approximation
can be divided into two categories: low rank matrix decomposition and rank minimization.
This study focuses on the rank minimization method; its main idea is to reconstruct the data
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matrix by imposing additional rank constraints on the estimated matrix [21]. Cai et al. pro-
posed the nuclear norm minimization (NNM) model and applied it to image denoising [16],
while NNM tends to excessively reduce the singular values and treat different singular
values equally. In practical problems, the larger singular value of the data matrix quantifies
the information of its basic principal direction. In the image data matrix, the larger singular
value provides the main edge and texture information. Therefore, the shrinking of the
larger singular value should be reduced, and the smaller singular value should be shrunk
more, in order to restore the image from the damaged image. Obviously, the traditional
NNM model is not flexible enough to deal with such problems and it cannot accurately esti-
mate the rank of the matrix. To solve this problem, Nie et al. proposed the Schatten p-norm
model, which obtains better estimation results for matrix rank than NNM [22]. However,
similar to the standard nuclear norm, most of the models that are based on Schatten p-norm
treat all singular values equally, and cannot estimate the rank of matrix commendably in
many practical problems (such as image inverse problem). Gu et al. proposed a weighted
nuclear norm minimization (WNNM) model to further improve the flexibility of the NNM
model [23]. When compared with NNM, WNNM assigns different weights to different
singular values, which makes the value of soft threshold more reasonable. Then, Xie et al.
proposed a more flexible model, the weighted Schatten p-norm minimization (WSNM)
model, which assigns weights to different singular values and better approximates the
original low rank matrix approximation problem. Among them, WNNM is a special case
of WSNM [24]. However, WSNM has a high time complexity. Zhang et al. proposed a
modified Schatten p-norm minimization (MSpNM) model to reduce the total number of
iterations, thereby reducing the time complexity of calculation, in order to reduce the time
complexity [25]. However, the model is difficult to learn accurate prior knowledge when
the image is seriously damaged by noise. Zha et al. proposed a rank residual constraint
(RRC) model that could progressively approximate the underlying low rank matrix via
minimizing the rank residual and achieve a better estimate of the desired image [19].

In order to solve the above problems, this paper studies the weighted Schatten p-
norm minimization model, and attempts to integrate the nonlocal self- similarity errors
of clear and noisy images into the weighted Schatten p-norm minimization denoising
algorithm. The image denoising problem is converted to the problem of minimizing
Schatten p-norm and low rank error constraints, and then finds the optimal low rank
matrix. Secondly, the generalized soft threshold algorithm [26] is applied to solve the
optimal solution of the low rank matrix in the weighted Schatten p-norm minimization
and the optimal solution in the low rank error constraint, and further obtain a more robust
low rank matrix optimal solution that is based on the mean of the two optimal solutions.
Finally, an image denoising algorithm that is based on the weighted Schatten p-norm low
rank error constraint (WSNLEC) is proposed, and the standard image Data set Set12 is
used for simulation experiments to verify the effectiveness of the proposed algorithm.

2. Related Work

The proposed algorithm is based on the minimization of the weighted Schatten p-
norm and the nonlocal self-similarity of the image. The weighted Schatten p-norm perform
low rank regularization effectively, and image nonlocal similarity can preserve the edge
details commendably in image denoising process.

2.1. Weighted Schatten p-Norm Minimization

When the number of columns or rows of a matrix is much greater than the rank of the
matrix, it is said that the matrix has low rank. The low rank property of a matrix can also be
described as the existence of a small number of non-zero eigenvalues after singular value
decomposition. The rank minimization method reconstructs the data matrix by adding
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additional rank constraints to the estimated matrix. The main idea is to give a matrix Y
and obtain a low rank matrix X, then rank minimization is defined as:

X̂ = arg min
X
‖Y− X‖2

F + λR(X), (1)

where ‖Y− X‖2
F is the data fidelity term, ‖‖F represents the F-norm, λR(X) denotes the

low rank regularization term, and λ is a parameter that is used to balance the loss function
and the low rank regularization term.

Because the direct rank minimization is NP-difficult and ill-posed, this problem is
generally solved by alternatively minimizing the nuclear norm of the estimated matrix.
However, nuclear norm minimization tends to excessively reduce the rank component and
treat different rank components equally, which limits its ability and flexibility. In order
to effectively carry out low rank regularization, paper [24] proposed a weighted Schatten
p-norm minimization model, where the weighted Schatten p-norm of the matrix X ∈ <b×m

is expressed as:

‖X‖p
w,Sp

=
min{b,m}

∑
i=1

wiσi
p = tr(W∆p), (2)

where 0 < p ≤ 1, σi denotes the i-th singular value of matrix X, w = [w1, . . . , wmin{b,m}],
wi ≥ 0 represents the non-negative weight assigned to σi, wi, and σi are the diagonal
elements of the diagonal matrix W and ∆, respectively.

Given a matrix Y, the nonconvex weighted Schatten p-norm minimization model aims
to find a matrix X, which is as close to Y as possible under the conditions of F-norm data
fidelity and weighted Schatten p-norm regularization:

X̂ = arg min
X
‖Y− X‖2

F + ‖X‖
p
w,Sp

. (3)

2.2. NonLocal Self-Similarity

The main idea of image prior method that is based on low rank representation is
that the data matrix formed by nonlocal similar patches in natural images has low rank
property. Among them, nonlocal self-similarity characterizes the repeatability of texture
and structure reflected by natural image in nonlocal area, which is, for an image patch xi,
a large number of image patches that are similar to the image patch can be found in the
image, and these similar image patches are called similar patches [13].

This study is based on the nonlocal self-similarity of images. The clear image X
with size N is divided into n overlapping image patches, i = 1, 2, ..., n. For each image
patch xi, use the block matching algorithm that was proposed in [27] to search for the m
image patches that are most similar to the image patch xi to form a matrix Xi, namely
Xi = {xi,1, xi,2, . . . , xi,m}. Because all of the image patches have similar structure in each
data matrix, the constructed data matrix Xi has low rank property.

The corresponding low rank matrix XCi is obtained from each similar group Xi,
and the optimal solution of XCi is obtained by the Schatten p-norm, which can be expressed
as:

X̂Ci = arg min
XCi
‖Xi − XCi‖2

F + ‖XCi‖
p
w,Sp

. (4)

The similarity group Yi in the noise image is similar to the clear image, namely
Yi = {yi,1, yi,2, . . . , yi,m}, where yi,m represents the m-th similar patch of the i-th similar
group Yi. The problem of image denoising can be transformed into recovering potential
clear image X from noisy image Y using low rank representation and solving the optimal
solution X of low rank matrix in noisy image, which can be expressed as:

X̂i = arg min
Xi
‖Yi − Xi‖2

F + ‖Xi‖
p
w,Sp

. (5)
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The nonlocal self-similarity method can preserve the edge details in the image denois-
ing process.

3. Principle and Method of WSNLEC

The WSNLEC algorithm that is proposed in this paper merges the low rank error
constraints into the weighted Schatten p-norm minimization denoising algorithm, and the
image denoising problem is transformed into minimizing the Schatten p-norm and low
rank error constraints, and then the optimal low rank matrix problem is obtained.

3.1. Low Rank Error

It is difficult to estimate an accurate low rank matrix from the image Y, due to the
influence of noise. Specifically, there is an error between the low rank matrix XC of the
original clear image X obtained from the Equation (4) and the estimated low rank matrix
X obtained from the Equation (5). The error R can be expressed as:

R = X− XC. (6)

It is necessary to enhance the accuracy of the low rank matrix, which is to make the
error sufficiently small, in order to improve the performance of image denoising. Therefore,
this paper introduces the low rank error into the weighted Schatten p-norm minimization
denoising model, and Equation (5) can be improved as:

X̂i = arg min
Xi
‖Yi − Xi‖2

F + ‖Xi − XCi‖
p
w,Sp

. (7)

We use the Schatten p-norm to regularize the low rank error, and then obtain the
optimal low-rank matrix by minimizing the low-rank error. The accuracy of low rank
matrix increases with the decrease of low rank error.

3.2. Core Idea of WSNLEC

The clear image X is unknown in the process of image denoising. Therefore, it is
difficult to obtain the real low rank matrix, but it can be approximately expressed by
the accurate estimation of the low rank matrix. For the algorithm shown in this paper,
the FFDNet method first proposed in [28] is used to preprocess the noise image Y to obtain
the image YD, and then initialization YD in order to obtain more accurate estimation value
of the low rank matrix XD.

This paper fuses the low rank error constraints into the weighted Schatten p-norm
minimization denoising algorithm, and the image denoising problem is converted to
minimizing the Schatten p-norm and low rank error constraints, and then obtain the
optimal low rank matrix problem, in order to improve the performance of the image
denoising algorithm. The minimization that is based on the weighted Schatten p-norm
error constraint can be expressed as:

X̂i = arg min
Xi
‖Yi − Xi‖2

F + ‖Xi‖
p
w,Sp

+ ‖Xi − XCi‖
p
w,Sp

. (8)

Under the assumption of low rank, we could use the low rank matrix approxima-
tion method to obtain estimation matrix Xi that can be obtained from Yi, according to
the degeneration model of additive white Gaussian noise. Subsequently, we apply the
proposed weighted Schatten p-norm error constraint model to the estimation of Xi, and the
corresponding optimization problem can be defined as:

X̂i = arg min
Xi

1
σ2

n
‖Yi − Xi‖2

F + ‖Xi‖
p
w,Sp

+ ‖Xi − XCi‖
p
w,Sp

, (9)
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where σ2
n is the noise variance, ‖Yi − Xi‖2

F denotes the F-norm fidelity term, ‖Xi‖
p
w,Sp

repre-

sents the low rank regularization, and ‖Xi − XCi‖
p
w,Sp

is the low rank error constraint term.
Equation (9) is divided into two sub-problems, one is to solve the low rank matrix in

the weighted Schatten p-norm minimization problem and the other is to solve the low rank
matrix in the low rank error constraint problem. Finally, we use the mean solving method
to obtain the final low rank matrix, and Equation (9) can be rewritten as:

X̂i = arg min
Xi

1
σ2

n
‖Yi − Xi‖2

F +
1
2
(‖Xi‖

p
w,Sp

+ ‖Xi − XCi‖
p
w,Sp

). (10)

3.3. Solution Method

In this paper, we use the generalized soft-thresholding algorithm (GST) to solve the
proposed algorithm [26]. Given p and wi, there is a specific threshold:

τGST
p (wi) = (2wi(1− p))

1
2−p + wi p(2wi(1− p))

p−1
2−p , (11)

where, if σi < τGST
p (wi), then δi = 0 is the global minimum; otherwise, the best value will

be obtained at a non-zero point. For any σi ∈ (τGST
p (wi),+∞), fi(δ) has a unique minimum

value SGST
p (σi; wi), which can be obtained by solving the following equation:

SGST
p (σi; wi)− σi + wi p(SGST

p (σi; wi))
p−1 = 0. (12)

Generally, the larger j-th singular value of X is of greater importance than the smaller
singular value σj(Xi). Because the larger singular value of the matrix provides the infor-
mation of its basic principal direction, and the larger singular value in the image matrix
provides the main edge and texture information. Therefore, the shrinking of the larger
singular value should be reduced, and the smaller singular value should be shrunk more,
in order to recover the clear image from the damaged image. Similarly, the j-th singular
value of the optimal solution of Equation (9) has the same attribute, and then the larger the
value of δj(X̂i), the smaller the value that should be reduced. Therefore, an intuitive way
to set the weight is that the weight should be inversely proportional to δj(X̂i) [20]:

wj = c
√

n
/
(δ

1/p
j (X̂i) + ε), (13)

where n is the number of similar patches in Yi, ε sets to 10−16 to avoid division by zero,
and c = 2

√
2σ2

n . Because δj(X̂i) is not available before estimating X̂, it can be initialized as:

δj(X̂i)=
√

max{σ2
j (Yi)− nσ2

n , 0}. (14)

We use the iterative regularization scheme that was adopted in [12], this scheme adds
the filtered residual back to the denoised image, as shown below:

Y(k) = X̂(k−1) + α(Y− X̂(k−1)), (15)

where k represents the number of iterations and α is a relaxation parameter.
Finally, all of the denoised image patches are merged to form the denoised image X̂k.

3.4. WSNLEC in Image Denoising

In this paper, we use the weighted Schatten p-norm as the regularization term to
ensure the low rank of the key information in the image. There is a certain error between
the low rank matrix solved from the noisy image and the real low rank matrix due to
the impact of the noise in the image. Therefore, WSNLEC introduces a low rank error
constraint, and it proposes a gray image denoising algorithm that is based on the weighted
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Schatten p-norm low rank error constraint. The low rank error constraint reduces the
error between the obtained low rank matrix and the real low rank matrix. Hence, a more
accurate low rank matrix optimal solution is obtained and the denoising performance of
the algorithm is improved.

Algorithm 1 summarizes the image denoising algorithm that is based on the weighted
Schatten p-norm low rank error constraint.

Algorithm 1: Weighted Schatten p-norm low rank error constraint (WSNLEC)
for Image Denoising.

Input: Noisy image Y
(1) Initialize X̂0 = Y, YD;
(2) For k = 1 : K do
(3) Iterative regularization Y(k) = X̂(k−1) + α(Y− X̂(k−1));
(4) Construct similar groups Yi

k and YDi
k by block matching method [27];

(5) For each local image patch yi do

(6) Estimate the k-th weight vector Wj
k by wj = c

√
n
/
(δ

1/p
j (X̂i) + ε).;

(7) Update Xk
i by GST algorithm;

(8) Update Xk
Ri by GST algorithm;

(9) Update X̂k
i by Equation (10);

(10) End For
(11) Aggregate X̂k

i to form the denoised image X̂k;
(10) End For
Output: Denoised image X̂k

4. Experimental Results and Analysis

In order to test the performance of the proposed WSNLEC in image denoising, we
compare it with four representative algorithms: block matching three-dimensional (3D)
filtering (BM3D) [27], weighted nuclear norm minimization (WNNM) [23], weighted
Schatten p-norm minimization method (WSNM) [24], and FFDNet [28]. Subsequently,
analyze the experimental results.

4.1. Experimental Setup

WSNLEC needs to set several parameters. The parameter settings are the same as
WSNM in order to ensure the validity and reliability of the experiment. The power p value
ranges from 0.05 to 1, and the step size is 0.05. Finally, p = {1.0, 0.85, 0.75, 0.7, 0.1, 0.05}
and the corresponding noise level is set as σn= {20, 30, 50, 60, 75, 100}. In order to test the
effectiveness of the algorithm, the public dataset Set12 is used in the experiment (as shown
in Figure 1). All of the experiments in this dataset are implemented using MATLAB R2016a
on Windows 10 with an Intel Core i5-3470 CPU at 3.20 GHz and 8.0 GB memory.

Figure 1. Set12 test image set.

In order to obtain the noise image, add Gaussian white noise to the test image, and the
noise standard deviations σ are 20, 30, 50, 60, 75, and 100, respectively. The size of
overlapped image patches is different at various noise level. When the noise standard
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deviation σ ≤ 20, the size of overlap patch is 6× 6; when the noise standard deviation
20 ≤ σ ≤ 40, the size of overlap patch is 7 × 7; when the noise standard deviation
40 ≤ σ ≤ 60, the size of overlap patch is 8× 8; when the noise standard deviation σ > 60,
the size of overlap patch is 9× 9.

4.2. Experimental Results of Noise Reduction Algorithms with Different Standard Deviations

We use the peak signal-to-noise ratio (PSNR) as the evaluation criterion. The higher
the PSNR value, the better the image denoising effect. Tables 1–6 show the PNSR values
under different standard deviations between the proposed algorithm and other comparison
algorithms.

Table 1. Denoising PNSR (dB) results of different denoising algorithms under standard deviations
(σ = 20).

σ = 20

Image BM3D WNNM WSNM FFDNet WSNLEC

C.Man 30.28 29.31 30.72 31.03 31.15
House 33.75 31.81 33.99 34.06 34.42

Peppers 31.32 29.42 31.55 31.72 32.02
Starfish 29.52 28.38 30.28 30.43 30.63

Monarch 30.32 29.07 31.25 31.42 31.59
Airplane 29.47 28.70 29.93 30.10 30.21

Parrot 29.80 28.95 30.10 30.42 30.51
Lena 33.04 31.30 33.13 33.47 33.75

Barbara 31.58 29.88 32.11 31.09 31.62
Boat 30.85 29.49 30.98 31.17 31.41
Man 30.57 29.34 30.72 31.05 31.22

Couple 30.74 29.22 30.74 31.15 31.37
Average 30.94 29.57 31.29 31.43 31.66

Table 2. Denoising PNSR (dB) results of different denoising algorithms under standard deviations
(σ = 30).

σ = 30

Image BM3D WNNM WSNM FFDNet WSNLEC

C.Man 28.58 27.65 28.78 29.28 29.38
House 31.91 30.43 32.58 32.57 32.97

Peppers 29.15 27.85 29.59 29.87 30.13
Starfish 27.45 26.67 28.01 28.34 28.25

Monarch 28.39 27.39 29.02 29.39 29.57
Airplane 27.61 26.68 27.92 28.13 28.21

Parrot 27.97 26.92 28.33 28.65 28.76
Lena 31.28 29.93 31.50 31.82 32.13

Barbara 29.60 28.55 30.31 29.07 29.69
Boat 28.97 28.14 29.20 29.45 29.67
Man 28.89 28.03 28.95 29.31 29.46

Couple 28.82 27.84 28.96 29.33 29.54
Average 29.05 28.01 29.43 29.60 29.81
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Table 3. Denoising PNSR (dB) results of different denoising algorithms under standard deviations
(σ = 50).

σ = 50

Image BM3D WNNM WSNM FFDNet WSNLEC

C.Man 25.96 25.74 26.39 27.24 27.32
House 29.61 28.46 30.56 30.36 30.85

Peppers 26.67 26.01 27.10 27.41 27.63
Starfish 24.81 24.57 25.25 25.68 25.86

Monarch 25.76 25.34 26.22 26.92 27.10
Airplane 25.24 24.61 25.42 25.79 25.88

Parrot 25.89 25.54 26.12 26.57 26.67
Lena 28.99 28.14 29.22 29.63 29.94

Barbara 27.04 26.75 27.83 26.41 26.97
Boat 26.78 26.23 26.82 27.30 27.51
Man 26.75 26.28 26.93 27.26 27.41

Couple 26.45 26.01 26.64 27.04 27.24
Average 26.66 26.14 27.04 27.30 27.53

Table 4. Denoising PNSR (dB) results of different denoising algorithms under standard deviations
(σ = 60).

σ = 60

Image BM3D WNNM WSNM FFDNet WSNLEC

C.Man 25.50 25.03 25.63 26.52 26.61
House 28.57 27.98 29.49 29.50 30.09

Peppers 25.86 24.79 26.09 26.53 26.81
Starfish 23.98 23.67 24.41 24.74 24.93

Monarch 24.84 24.53 25.40 26.02 26.24
Airplane 24.54 23.83 24.57 25.03 25.14

Parrot 25.07 24.37 25.32 25.83 25.95
Lena 28.13 27.31 28.37 28.83 29.18

Barbara 26.21 25.88 27.02 25.46 26.04
Boat 26.03 25.52 26.13 26.54 26.77
Man 26.11 25.57 26.18 26.56 26.74

Couple 25.63 25.21 25.81 26.24 26.46
Average 25.87 25.31 26.20 26.48 26.75

Table 5. Denoising PNSR (dB) results of different denoising algorithms under standard deviations
(σ = 75).

σ = 75

Image BM3D WNNM WSNM FFDNet WSNLEC

C.Man 24.27 23.83 24.63 25.62 25.64
House 27.39 26.23 28.57 28.14 28.98

Peppers 24.75 23.78 25.17 25.45 25.67
Starfish 23.14 22.19 23.14 23.62 23.75

Monarch 23.72 22.92 24.19 24.90 25.07
Airplane 23.37 23.12 23.72 24.12 24.16

Parrot 24.07 23.17 24.26 24.91 25.00
Lena 26.94 26.28 27.54 27.86 28.17

Barbara 25.02 24.61 25.90 24.29 24.96
Boat 25.10 24.38 25.09 25.63 25.74
Man 25.28 24.57 25.32 25.73 25.82

Couple 24.67 23.98 24.80 25.29 25.42
Average 24.81 24.09 25.19 25.48 25.70
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Table 6. Denoising PNSR (dB) results of different denoising algorithms under standard deviations
(σ = 100).

σ = 100

Image BM3D WNNM WSNM FFDNet WSNLEC

C.Man 22.29 22.55 23.45 24.30 24.25
House 25.50 25.03 27.02 26.98 27.65

Peppers 22.87 22.60 23.43 24.03 24.23
Starfish 21.49 21.05 22.11 22.25 22.39

Monarch 21.45 21.31 22.99 23.40 23.61
Airplane 21.85 21.72 22.39 22.90 22.95

Parrot 21.96 21.95 22.90 23.72 23.80
Lena 25.32 25.03 26.31 26.61 26.93

Barbara 22.80 23.53 24.42 22.89 23.56
Boat 23.56 23.21 23.91 24.44 24.53
Man 23.98 23.67 24.34 24.66 24.77

Couple 23.37 23.02 23.54 24.08 24.14
Average 23.04 22.89 23.90 24.19 24.40

Table 1 shows the standard deviation σ = 20 of Gaussian noise. Table 2 shows the
standard deviation σ = 30 of Gaussian noise. Table 3 shows the standard deviation σ = 50
of Gaussian noise. Table 4 shows the standard deviation σ = 60 of Gaussian noise. Table 5
shows the standard deviation σ = 75 of Gaussian noise. Table 6 shows the standard
deviation σ = 100 of Gaussian noise. The highest values of PNSR shown in Tables 1–6 are
expressed in bold. The PSNR value of each denoising algorithm decreases with the increase
of noise standard deviation, as shown from Tables 1–6. The PSNR values of WSNLEC are
higher than other comparison algorithms at almost all noise levels, and the average PSNR
value is higher than other comparison algorithms.

Among them, the results of the experiment are compared with the results of the
FFDNet algorithm used in preprocessing in order to prove the validity of the experi-
ment. The results prove that the PNSR value of the algorithm that is proposed in this
paper is higher than the FFDNet algorithm under different standard deviations. That is,
the performance of the WSNLEC algorithm is better than the FFDNet algorithm.

In the case that the noise standard deviation σ = 20, the PSNR value of WSNLEC
is 0.72 dB, 2.09 dB, 0.37 dB, and 0.23 dB, which are higher than BM3D, WNNM, WSNM,
and FFDNet, respectively. When the noise standard deviation σ = 30, the PSNR value of
WSNLEC is 0.76 dB, 1.80 dB, 0.37 dB, and 0.21 dB higher than BM3D, WNNM, WSNM,
and FFDNet, respectively. When the noise standard deviation σ = 50, the PSNR value of
WSNLEC is 0.87 dB, 1.39 dB, 0.49 dB, and 0.23 dB higher than BM3D, WNNM, WSNM,
and FFDNet, respectively. When the noise standard deviation σ = 60, the PSNR value of
WSNLEC is 0.88 dB, 1.44 dB, 0.55 dB, and 0.27 dB higher than BM3D, WNNM, WSNM,
and FFDNet, respectively. When the noise standard deviation σ = 75, the PSNR value of
WSNLEC is 0.89 dB, 1.61 dB, 0.51 dB, and 0.22 dB higher than BM3D, WNNM, WSNM,
and FFDNet, respectively. When the noise standard deviation σ = 100, the PSNR value of
WSNLEC is 1.36 dB, 1.51 dB, 0.5 dB, and 0.21 dB higher than BM3D, WNNM, WSNM, and
FFDNet, respectively.

While using the nonlocal self-similarity of the image, the proposed algorithm adds a
low rank error constraint that is based on the weighted Schatten p-norm and reduces the
error between the estimated low rank matrix and real low rank matrix. The experimental
results show that the proposed algorithm has better denoising performance, effectiveness
and feasibility.

4.3. Experimental Results of Denoising Algorithms for Different Test Images

For each image in the Set12 image dataset, under different standard deviations,
the PNSR values of the proposed algorithm and all of the comparison algorithms are
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represented by line graph in order to demonstrate the advantages of the proposed algo-
rithm clearly, as shown in Figure 2.
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Figure 2. PNSR values of all algorithms under different noise standard deviations (σ) for each image
in the Set12 image data set. (a) C.Man. (b) House. (c) Peppers. (d) Starfish. (e) Monarch. (f) Airplane.
(g) Parrot. (h) Lena. (i) Barbara. (j) Boat. (k) Man. (l) Couple.

Figure 2 shows the PNSR values of all the algorithms under different noise standard
deviations (σ = 20, 30, 50, 60, 75, 100) for each image. The test images are C. Man, House,
Peppers, Starfish, Monarch, Airplane, Parrot, Lena, Barbara, Boat, Man, and Couple.
The red line represents the algorithm proposed in this paper. The blue line represents
BM3D. The green line represents WNNM. The purple line represents WSNM, and the gray
line represents FFDNet. It is clear that, except for Barbara image, whose PNSR value of
WSNM is the highest, in all other test images, the PNSR value of WSNLEC is significantly
higher than that of other comparison algorithms.The results show that, in most test images,
the performance of the proposed algorithm is better than other comparison algorithms.

Among them, the results of the experiment are compared with the results of the
FFDNet algorithm used in preprocessing in order to prove the validity of the experiment.
The results prove that the PNSR value of the algorithm that is proposed in this paper is
higher than the FFDNet algorithm under different standard deviations. It can be seen
that the performance of the algorithm that is proposed in this paper is better than the
pre-processed FFDNet algorithm.

4.4. Visual Effects of Different Denoising Algorithms

We use the House test image with noise standard deviation σ = 50 for simulation
experiment in order to show the visual effect of the denoising algorithm better. Figure 3
shows the test result of House. It is obvious that the wsnlec algorithm performs well in the
denoising effect, the edge and detail information are better protected, especially the line
contour, the background is smoother, and better visual experience is obtained. However,
we have no great contribution in texture. Although our algorithm does not express all
details clearly, it shows the best visual effect in the comparison algorithm effect.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 3. Denoising results on image “House” with noise level σ = 50. (a) is the clear image; (b) is the
noisy image (σ = 50); (c) is the denoised image of BM3D (PNSR = 28.57); (d) is the denoised image
of WNNM (PNSR = 28.46); (e) is the denoised image of WSNM (PNSR = 30.56); (f) is the denoised
image of FFDNet (PNSR = 29.50); and, (g) is the denoised image of WSNLEC (PNSR = 30.85).

Furthermore, we use the Lena test image with noise standard deviation σ = 30 for
simulation experiment. Figure 4 shows the test result of Lena. It can be clearly seen that
WSNLEC has a better denoising effect than other comparison algorithms. The facial texture
is smoother, and the edge details of the facial features are clearer. Although there is no
clear display of texture details, it shows the best visual effect in the contrast algorithm.



Entropy 2021, 23, 158 13 of 15

(a) (b) (c)

(d) (e) (f)

(g)

Figure 4. Denoising results on image “Lena” with noise level σ = 30. (a) is the clear image; (b) is the
noisy image (σ = 30); (c) is the denoised image of BM3D (PNSR = 31.28); (d) is the denoised image
of WNNM (PNSR = 29.93); (e) is the denoised image of WSNM (PNSR = 31.50); (f) is the denoised
image of FFDNet (PNSR = 31.82); (g) is the denoising image of WSNLEC (PNSR = 32.13).

The proposed algorithm adds a low rank error constraint on the basis of the weighted
Schatten p-norm, reduces the error between the estimated low rank matrix and real low
rank matrix, and retains the image detail features well while removing the noise. From the
above experimental results and analysis, it is obvious that WSNLEC not only has strong
denoising performance and obtains a higher peak signal-to-noise ratio, but it also can
produce visual effects better.

5. Conclusions

The Schatten p-norm optimization method is normally employed to obtain prior infor-
mation from noisy images directly, and little effort is paid on the nonlocal self-similarity
errors between clear images and noisy images. Aiming at these problems, a weighted
Schatten p-norm low rank error constraint algorithm for image denoising is proposed,
which introduces the nonlocal self-similarity error between the clear image and noise image
to the weighted Schatten p-norm minimization model. The low rank error is constrained to
obtain a better low rank matrix and improve the denoising performance of the algorithm.
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Firstly, the algorithm divides the problem of solving the optimal low rank matrix into two
sub-problems. Subsequently, the generalized soft threshold algorithm is used to solve the
low rank matrix in Schatten p-norm and low rank error constraint, respectively. Finally,
the mean value of them is taken as the final low rank matrix. The proposed algorithm is
compared with four classical and effective image denoising algorithms (BM3D, WNNM,
WSNM, and FFDNet), and the experimental results show that the algorithm can robustly
solve the low rank matrix, with higher PSNR, better denoising effect, and greater practica-
bility and effectiveness. In the future, we will continue to optimize the algorithm, reduce
the time complexity of the algorithm, and apply it to color images.
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Symbols Explanation

Y Noisy image
X Clear image
N Noise
λ Regularization parameter
X̂k Denoised image
Xi Similarity group of clear image
XCi Low rank matrix from clear image
Yi Similarity group of noisy image
R Low rank matrix error
YD Apply FFDNet method to preprocess the noise image Y and obtain the image YD
σ2

n Noise variance
p Power
wi Weight
σi,δi The i-th singular value of matrix
τGST

p (wi) Threshold
ε Constant term
k The number of iterations
α Relaxation parameter

References
1. Jin, C.; Luan, N. An image denoising iterative approach based on total variation and weighting function. Multimed. Tools Appl.

2020, 79, 20947–20971.
2. Huang, S.; Zhou, P.; Shi, H.; Sun, Y.; Wan, S.R. Image speckle noise denoising by a multi-layer fusion enhancement method based

on block matching and 3D filtering. Imaging Sci. J. 2020, 67, 224–235.
3. Sun, L.; Jeon, B.; Zheng, Y.; Wu, Z.B. A novel weighted cross total variation method for hyperspectral image mixed denoising.

IEEE Access 2017, 5, 27172–27188.
4. Shen, J.; Chan, T. Mathematical models for local nontexture inpaintings. SIAM J. Appl. Math. 2002, 62, 1019–1043.
5. Wang, W.; Yao, M.J.; Ng, M.K. Color image multiplicative noise and blur removal by saturation-value total variation. Appl. Math.

Model. 2021, 90, 240–264.
6. He, W.; Zhang, H.; Shen, H.; Zhang, L. Hyperspectral image denoising using local low-rank matrix recovery and global

spatial-spectral total variation. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2018, 11, 713–729.
7. Xie, Z.;Liu, L.; Yang, C. An entropy-based algorithm with nonlocal residual learning for image compressive sensing recovery.

Entropy 2019, 21, 900.
8. Dong, W.; Shi, G.; Li, X. Nonlocal image restoration with bilateral variance estimation: A low-rank approach. IEEE Trans. Image

Process. 2013, 22, 700–711.



Entropy 2021, 23, 158 15 of 15

9. Maboud, F.K.; Rodrigo, C. Subspace-orbit randomized decomposition for low-rank matrix approximations. IEEE Trans. Signal
Process. 2018, 66, 4409–4424.

10. Xu, J.C.; Wang, N.; Xu, Z.W.; Xu, K.Q. Weighted lp norm sparse error constraint based ADMM for image denoising. Math. Probl.
Eng. 2019, 2019, 1–15.

11. Zuo, C.; Jovanov, L.; Goossens, B. Image denoising using quadtreebased nonlocal means with locally adaptive principal
component analysis. IEEE Signal Process. Lett. 2016, 23, 434–438.

12. Zhang, K.; Zuo, W.M.; Chen, Y. Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising. IEEE Trans.
Image Process. 2017, 26, 3142–3155.

13. Fu, Y.L.; Xu, J.W.; Xiang, Y.J.; Chen, Z.; Zhu, T.; Cai, L.; He, W.H. Multi-scale patches based image denoising using weighted
nuclear norm minimisation. IET Image Process. 2020, 14, 3161–3168.

14. Cao, C.H.; Yu, J.; Zhou, C.Y.; Hu, K.; Xiao, F.; Gao, X.P. Hyperspectral image denoising via subspace-based nonlocal low-rank and
sparse factorization. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2019, 12, 973–988.

15. Ren, F.J.;Wen, R.P. A new method based on the manifold-alternative approximating for low-rank matrix completion. Entropy
2018, doi:10.1186/s13660-018-1931-4.

16. Cai, J.F.; Candès, E.J.; Shen, Z.W. A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 2010, 20,
1956–1982.

17. Liu, X.; Zhao, G.Y.; Yao, J.W.; Qi, C. Background subtraction based on low-rank and structured sparse decomposition. IEEE Trans.
Image Process. 2015, 24, 2302–2314.

18. Shang, F.; Cheng, J.; Liu, Y.; Luo, Z.; Lin, Z. Bilinear factor matrix norm minimization for robust PCA: Algorithms and applications.
IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 2066–2080.

19. Zha, Z.Y.; Yuan, X.; Wen, B.H.; Zhou, J.T.; Zhang, J.C.; Zhu,C. From rank estimation to rank approximation: Rank residual
constraint for image restoration. IEEE Trans. Image Process. 2020, 29, 3254–3269.

20. Zeng, H.Z.; Xie, X.Z.; Kong, W.F.; Cui, S.; Ning, J.F. Hyperspectral image denoising via combined non-local self-similarity and
local low-rank regularization. IEEE Access 2020, 8, 50190–50208.

21. An, J.L.; Lei, J.H.; Song, Y.Z.; Zhang, X.R.; Guo, J.M. Tensor based multiscale low rank decomposition for hyperspectral images
dimensionality reduction. Remote Sens. 2019, 11, 1485–1503.

22. Nie, F.; Huang, H.; Ding, C. Low-rank matrix recovery via efficient schatten p-norm minimization. In Processing of the
Twenty-Sixth AAAI Conference on Artificial Intelligence, Toronto, ON, Canada, 22–26 July 2012; pp. 655–661.

23. Gu, S.H.; Zhang, L.; Zuo, W.M. Weighted nuclear norm minimization with application to image denoising. In Processing of the
IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, America, 23–28 June 2014; pp. 2862–2869.

24. Xie, Y.; Gu, S.; Liu, Y. Weighted schatten p-norm minimization for image denoising and background subtraction. IEEE Trans.
Image Process. 2016, 25, 4842–4857.

25. Zhang, H.M.; Qian, J.; Zhang, B.; Yang, J.; Gong, C.; Wei, Y. Low-Rank matrix recovery via modified Schatten-p norm minimization
with convergence guarantees. IEEE Trans. Image Process. 2020, 29, 3132–3142.

26. Zuo, W.M.; Meng, D.Y.; Zhang, L. A generalized iterated shrinkage algorithm for non-convex sparse coding. In Processing of the
IEEE International Conference on Computer Vision, Sydney, Australia, 12 April 2013; pp. 217–224.

27. Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K. Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE
Trans. Image Process. 2007, 16, 2080–2095.

28. Zhang, K.; Zuo, W.; Zhang, L. FFDNet: Toward a fast and flexible solution for CNN based image denoising. SSIM. IEEE Trans.
Image Process. 2018, 27, 4608–4622.


	Introduction
	Related Work
	Weighted Schatten p-Norm Minimization
	NonLocal Self-Similarity

	Principle and Method of WSNLEC
	Low Rank Error
	Core Idea of WSNLEC
	Solution Method
	WSNLEC in Image Denoising

	Experimental Results and Analysis
	Experimental Setup
	Experimental Results of Noise Reduction Algorithms with Different Standard Deviations
	Experimental Results of Denoising Algorithms for Different Test Images
	Visual Effects of Different Denoising Algorithms

	Conclusions
	References

