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Abstract: This work concerns the theoretical description of the quantum dynamics of molecular
junctions with thermal fluctuations and probability losses. To this end, we propose a theory for de-
scribing non-Hermitian quantum systems embedded in constant-temperature environments. Along
the lines discussed in [A. Sergi et al., Symmetry 10 518 (2018)], we adopt the operator-valued Wigner
formulation of quantum mechanics (wherein the density matrix depends on the points of the Wigner
phase space associated to the system) and derive a non-linear equation of motion. Moreover, we
introduce a model for a non-Hermitian quantum single-molecule junction (nHQSMJ). In this model
the leads are mapped to a tunneling two-level system, which is in turn coupled to a harmonic mode
(i.e., the molecule). A decay operator acting on the two-level system describes phenomenologically
probability losses. Finally, the temperature of the molecule is controlled by means of a Nosé-Hoover
chain thermostat. A numerical study of the quantum dynamics of this toy model at different temper-
atures is reported. We find that the combined action of probability losses and thermal fluctuations
assists quantum transport through the molecular junction. The possibility that the formalism here
presented can be extended to treat both more quantum states (∼10) and many more classical modes
or atomic particles (∼103 − 105) is highlighted.

Keywords: molecular junction; non-Hermitian quantum mechanics; open quantum system dynamics;
quantum thermodynamics

PACS: 31.15.xg; 02.60.Cb; 05.30.-d; 05.60.Gg; 03.67.Pp

MSC: 80M99; 81-08; 81-10; 81P99

1. Introduction

Molecular junctions are nano-devices composed of metal or semiconductor electrodes
known as leads [1,2]. A single molecule simulates a conducting bridge between the
leads. Such a nanostructure is almost perfectly suited to study non-equilibrium quantum
transport [1,2].

Various approaches satisfactorily befit the investigation of the phenomenology of
molecular junctions [2]. In this work, we introduce a simple toy model of a molecular
junction [2] in order to perform a qualitative study aimed at singling out universal features
of such systems. To this end, the operator-valued Wigner formulation of quantum me-
chanics [3–5] is particularly useful to embed quantum toy-models in quantum phase space
baths since it can simultaneously describe dissipative phenomena and thermal fluctuations.
A quantum-classical molecular junction model has been studied in [6].
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In general, theories of quantum transport offer an acceptable representation of excita-
tions and state population transfer. They usually assume that what is transferred does not
disintegrate or disappear from the system. Such a physical property is expressed through
the conservation of probability. On the contrary, by definition, the probability in quantum
systems with gain and loss is not conserved. Such a feature can be incorporated in the
theory by introducing non-Hermitian Hamiltonians [7–12]. Recently, the development of
non-Hermitian quantum mechanics (NHQM) has been propelled by various experiments
on many systems (see [13,14] and references therein). While in this work a non-equilibrium
quantum statistical mechanics of molecular junctions is adopted, linear equations of mo-
tion are used in [10–12]. Conceptually, this can be understood in terms of the different
theoretical targets: In [10–12] the target is to study non-equilibrium transport. Instead,
our work is aimed at showing the possibility of a statistical mechanical description for
non-Hermitian quantum systems in classical bath [15].

Since probability non-conserving quantum systems are open quantum
systems [14], it is natural to formulate NHQM in terms of the density matrix [15–22].
Typically, a non-Hermitian Hamiltonian is either derived by means of the Feshbach
formalism [23,24] or it is postulated as an ansatz (see [15–22]). It is remarkable that
there is a third possibility according to which a non-Hermitian Hamiltonian may arise
from stroboscopic measurements performed on an ancilla-subsystem added to a quan-
tum system, a very interesting process capable of generating entanglement [25]. Given
a non-Hermitian Hamiltonian and assuming that the Schrödinger equation is still valid,
one derives a probability non-conserving equation of motion for the density matrix of the
system [25]. However, in order to meet the need of establishing a proper quantum statistical
theory, this non-Hermitian equation of motion for the density matrix is generalized into a
non linear-one [15–22]. Essentially, this is the origin of the difference between the linear
approach of [10–12] and the non-linear approach of [15–22].

Various investigations on thermal effects in molecular junctions are found in the
literature [26–28]. However, to the best of our knowledge, thermal effects have been inves-
tigated separately from probability losses of molecular junctions. In light of the previous
considerations, the purpose of this work is to combine the non-linear equation for the
density matrix of a system with a non-Hermitian Hamiltonian and temperature control
in quantum phase space dynamics [29]. Temperature control is technically implemented
by means of the Nosé-Hoover chain [30] thermostat, formulated in terms of quasi-Lie
brackets [3]. The unified formalism here reported is developed for studying a greater
variety of phenomena than those accessible to theories treating thermal fluctuations and
probability losses separately. In detail, the theory is obtained through the density matrix
approach to non-Hermitian quantum mechanics [15–22] and it is expressed in terms of
the operator-valued formulation of quantum mechanics [3–5,15]. For clarity, we highlight
the three mathematical ingredients that must be combined for building our formulation.
First, we need an approach for describing quantum operators in terms of operator-valued
Wigner phase space functions. The conceptual framework of this specific theory assumes
an Eulerian picture where a Hilbert space, or a space of quantum discrete states, is de-
fined for each point X = (Q, P) of phase space. Accordingly, the operator-valued Wigner
function [3–5] may also be called phase-space-dependent density matrix. The consistent
coupling of quantum and phase space degrees of freedom requires that quantum dy-
namics in the Hilbert space associated to X also depends non-locally on the quantum
dynamics associated to different points X′. Likewise, the dynamics of X does not only
depend on its quantum space but it also depends on the quantum spaces of other points X′

and vice versa. In practice, such a dependence can be implemented through a variety of
algorithms [31–34]. When the Hamiltonian is quadratic, one can expand the operator-
valued Moyal bracket [35,36] up to linear order in h̄ and obtain quantum equations of
motion [37].

The second ingredient entering our theory is the requirement that the degrees of
freedom in phase space evolve in time satisfying the constraint determined by the constant
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thermodynamic temperature. The temperature control of the classical degrees of freedom
is achieved in silico by means of the Nosé-Hoover chain algorithm [30]. We find such an
approach advantageous because the formulation of the Nosé-Hoover chain algorithm can
be realized within the theoretical framework given by the quasi-Lie brackets [3]. Such
brackets allow one to generalize the Nosé-Hoover chain algorithm, originally formulated
for classical systems only, to the more general case of the operator-valued formulation of
quantum mechanics [29,35,36].

The third ingredient, of course, is that the modeling of the leads provides a non-
Hermitian quantum system.

When all these three theoretical features are simultaneously taken into account, we
obtain an equation that generalizes the one arising from the quantum-classical quasi-Lie
bracket [3] because it can describe probability gain/loss [15] too. Moreover, since such an
equation keeps the thermodynamic temperature of the phase space degrees of freedom
constant by means of the Nosé-Hoover chain algorithm [3,30,35,36], it generalizes the
equations used in [15–22], which did not implement any thermodynamic constraint.

In this paper we investigate the time evolution of a single-molecule junction toy-model
represented by a non-Hermitian Hamiltonian with a parametric phase space dependence.
The isolated leads are represented by a two-level system. In this situation, the transport
of the occupation probability of one or the other state can only occur through quantum
tunneling. The molecule connecting the two leads is modeled by a harmonic oscillator.
When we consider only the coupling between the harmonic mode and the two-level
system, the total system is considered closed. In this case, transport can take place both
via tunneling and via the channel given by the oscillator. In order to build a complete non-
Hermitian quantum single-molecule junction model at constant temperature, the closed
spin-boson system is transformed into an open quantum system by means of two theoretical
steps. The first step is to consider a decay operator acting on the two-level system. This
operator introduces another transport channel that does not conserve probability and then
breaks time-reversibility.

The second step is to put the harmonic mode into contact with a heat bath. Of
course, this condition forces the molecule to have the same temperature of the bath and
to experience fluctuations according to the canonical ensemble probability distribution.
In practice, the action of the constant-temperature bath on the molecule is implemented
by means of the Nosé-Hoover chain thermostat. For this reason, in the following we will
use wording such as “heat bath”, “constant-temperature environment”, or “Nosé-Hoover
chain thermostat” interchangeably.

The final complete non-Hermitian Hamiltonian is designed to represent two lossy
leads interacting with a thermalized molecule.

The organization of the paper is the following: In Section 2 we give a short summary
of the density matrix approach to the dynamics of a system governed by a non-Hermitian
Hamiltonian. In Section 3 we describe briefly how to treat non-Hermitian quantum systems
interacting with classical degrees of freedom. We present the main theoretical results of
this work in Section 4, where we introduce the mathematical formalism describing the
quantum dynamics of a non-Hermitian quantum system interacting with classical degrees
of freedom at constant temperature. In Section 5 we introduce the non-Hermitian quantum
single-molecule junction model. The results of the numerical calculations are reported in
Section 6. Finally, our conclusions are given in Section 7.

2. Quantum Dynamics of Non-Hermitian Systems

Consider a quantum system described by a non-Hermitian Hamiltonian operator:

Ĥ = Ĥ − iΓ̂, (1)
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where Ĥ and Γ̂ are Hermitian operators (Γ̂ is the decay operator). In the presence of a
probability sink or source, the dynamics of the system is defined in terms of the following
equations (we set h̄ = 1):

d
dt
|Ψ(t)〉 = −iĤ|Ψ(t)〉 , (2)

d
dt
〈Ψ(t)| = i〈Ψ(t)|Ĥ† , (3)

where |Ψ(t)〉 and 〈Ψ(t)| are state vectors of the system. Equations (2) and (3) reduce to the
standard Schrödinger equation when Γ̂ = 0.

The density matrix approach to non-Hermitian quantum systems [15–22] is obtained
upon introducing at any t > 0 a Hermitian, semipositive defined, but non-normalized
density matrix:

Ω̂(t) = |Ψ(t)〉〈Ψ(t)| . (4)

The equation of motion for Ω̂ [16,20,22] is obtained by taking the time derivative of
Equation (4) and using Equation (1):

d
dt

Ω̂(t) = −i
[
Ĥ, Ω̂(t)

]
−
[
Γ̂, Ω̂(t)

]
+ , (5)

where [..., ...] is the commutator and [..., ...]+ is the anticommutator. Equation (5) is lin-
ear but, nevertheless, it describes an open quantum system. This is possible since it
is defined in terms of a decay operator that physically describes the presence of prob-
ability sources/sinks, arising from the hidden system with which the open quantum
system interacts.

Equation (5) is non-Hermitian, breaks time reversibility and does not conserve the
trace of Ω̂(t). In fact, from Equation (5) one can easily derive:

d
dt

Tr
(
Ω̂(t)

)
= −2Tr

(
Γ̂Ω̂(t)

)
. (6)

In order to obtain a well-founded statistical mechanics of non-Hermitian quantum
systems, one can introduce the normalized density matrix:

ρ̂(t) =
Ω̂(t)

Tr
(
Ω̂(t)

) . (7)

This operator ρ̂(t) obeys the non-linear equation:

d
dt

ρ̂(t) = −i
[
Ĥ, ρ̂(t)

]
−
[
Γ̂, ρ̂(t)

]
+ + 2ρ̂(t)Tr

(
Γ̂ρ̂(t)

)
. (8)

As a consequence of its very definition and of Equation (8), Tr(ρ̂(t)) = 1 at all times.
Equation (8) breaks time reversal symmetry and is non-linear. In practice, the formalism
trades off the non-conservation of probability in Equation (5) with the non-linearity of
Equation (8). As the linear Equation (5), the non-linear Equation (8) describes the dynamics
of an open quantum system. Consistently, averages of arbitrary operators, e.g., χ̂, can be
calculated by means of the normalized density matrix ρ̂ as:

〈χ̂〉(t) = Tr(ρ̂(t)χ̂) . (9)

Equation (9) establishes the foundations of the statistical interpretation of non-Hermitian
quantum mechanics.
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3. Non-Hermitian Quantum Systems Set in Phase Space

Non-Hermitian quantum systems can be embedded in phase space [15]. In the
following, we sketch the derivation given in [15]. Let us consider a system described
by a hybrid set of coordinates (x̂, X), where x̂ are quantum coordinates (operators) and
X = (Q, P) are phase space coordinates (an obvious multidimensional notation is used
in order not to clutter formulas with too many indices). In this specific case, the Xs
describe the phase space coordinates of the system. As we have already discussed in
the Introduction, the description of the system, using the operator-valued-formulation of
quantum mechanics, can be established via an Eulerian point of view according to which
a space of state vectors is defined for any point X of phase space [3–5] so that x̂ (and
operators defined in terms of x̂) can act on it. In such a hybrid space there are operators
that depend only on x̂, which we denote with the symbol ˆ on top of the operator, e.g., Γ̂.
There are pure phase space functions which we denote by their arguments, e.g., HB(X), or
G(X, t) when there is also an explicit time dependence. Finally, there are operators that
depend both on x̂ and (parametrically) on X. We denote the latters with the symbol ˜ on
top, e.g., Ω̃(t) ≡ Ω̂(X, t).

In the non-Hermitian case, we consider a Hamiltonian operator with parametric
dependence on phase space:

H̃ = Ĥ + HB(X) + H̃I − iΓ̂

= H̃S − iΓ̂ , (10)

where Ĥ is the Hermitian Hamiltonian of the quantum subsystem, HB(X) is the Hamil-
tonian of the degrees of freedom in phase space, H̃I describes the interaction between
the quantum system and the bath, and H̃S = Ĥ + HB(X) + H̃I . Of course, H̃ is the total
non-Hermitian Hamiltonian of the system with Γ̂ as the decay operator.

When the operator Γ̂ acts on the quantum dynamical variables of the non-Hermitian
quantum system, it has been shown [15] that, as a generalization of the equations given
in [3–5], the equation of motion becomes:

∂

∂t
Ω̃(t) = −i

[
H̃S, Ω̃(t)

]
−
[
Γ̂, Ω̃(t)

]
+ +

1
2
{

H̃S, Ω̃(t)
}
B −

1
2
{

Ω̃(t), H̃S
}
B , (11)

where Ω̃(t) is the phase-space-dependent non-normalized density matrix of the system and

B =

[
0 1
−1 0

]
(12)

is the symplectic matrix written in block form. Using it, one can write the Poisson bracket
in the form adopted in Equation (18):

{
H̃S, Ω̃(t)

}
B ≡

2N

∑
I,J=1

∂H̃S

∂XI
BI J

∂Ω̃(t)
∂XJ

. (13)

The dimension of phase space is 2N.
The trace of the phase-space-dependent density matrix T̃r is defined as:

T̃r
(
Ω̃(t)

)
= Tr′

∫
dXΩ̃(X, t) , (14)

where Tr′ denotes a partial trace over the quantum dynamical variables x̂ and
∫

dX is the
integral in phase space. The trace T̃r

(
Ω̃(t)

)
obeys the equation of motion:

d
dt

T̃r
(
Ω̃(t)

)
= −2T̃r

(
Γ̂Ω̃(t)

)
. (15)

The result given in Equation (15) is proven in Appendix A.
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Let us now introduce a phase-space-dependent normalized density matrix ρ̃(X, t):

ρ̃(X, t) =
Ω̃(X, t)

T̃r
(
Ω̃(X, t)

) . (16)

Quantum statistical averages of an arbitrary phase-space-dependent operator χ̃ can now
be calculated as:

〈χ̃〉(t) = T̃r(ρ̃(t)χ̃) . (17)

The phase-space-dependent normalized density matrix obeys the non-linear equation of
the motion below:

∂

∂t
ρ̃(t) = −i

[
H̃S, ρ̃(t)

]
−
[
Γ̂, ρ̃(t)

]
+ + 2ρ̂(t)T̃r

(
Γ̂ρ̃(t)

)
+

1
2
{

H̃S, ρ̃(t)
}
B −

1
2
{

ρ̃(t), H̃S
}
B . (18)

4. Non-Hermitian Quantum Systems Set in a Constant-Temperature Phase Space

Equations (11) and (18) describe the dynamics of non-Hermitian quantum systems
embedded in phase space [15]. When considering open quantum systems in more general
settings, it is common to consider the effects of thermal fluctuations. Phase space coordi-
nates undergo thermal fluctuations when their microscopic equilibrium state is described
by the canonical distribution function. In this ensemble the thermodynamic temperature is
constant. Within the framework of the operator-valued Wigner formulation of quantum
mechanics [3–5], temperature constraints are efficiently formulated by means of quasi-Lie
brackets [3,35,36]. In the classical case, deterministic thermostats, such as the Nosé-Hoover
chain thermostat [30], are also implemented by means of quasi-Lie brackets [38–40]. Below,
we briefly explain how this is achieved. In silico (i.e., on the computer), temperature
control is realized by augmenting the dimensions of phase space using just a few additional
degrees of freedom. The new higher dimensional phase space is known as extended phase
space. We indicate points in the extended phase space by means of the symbol Xe. In the
case of the Nosé-Hoover chain thermostat, upon introducing two fictitious coordinates
Λ1, Λ2 with their associated momenta Π1, Π2, we have the following point in the extended
phase space:

Xe = (Q, Λ1, Λ2, P, Π1, Π2) . (19)

To lighten the notation, the phase space coordinates of the Nosé-Hoover chain thermostat
are denoted as Y = (Λ1, Λ2, Π1, Π2). For the reader, the symbol Y denotes a calligraphic
Y. A generic operator acting upon the extended phase space is identifiable by the apex
e. Considering a classical system with a potential term V(Q) and Hamiltonian HB(X) =
P2/2 + V(Q), the extended phase space Hamiltonian (see [38–40] and references therein)
includes the Nosé-Hoover chain energy [30,38] and is defined as:

He(Xe) = HB(X) +
2

∑
K=1

(
Π2

K
2µK

)
+ gkBTΛ1 + kBTΛ2

= HB(X) + Hnhc(Y) , (20)

where µK are fictitious inertial parameters, T is the termodynamic temperature, kB is the
Boltzmann constant, and N is the number of physical coordinates Q that are thermalized.
The equation of motion in extended phase space can be written as:

Ẋe
K = {Xe

K, He}Be =
2(N+2)

∑
I,J=1

∂Xe
K

∂Xe
I
Be

I J
∂He

∂Xe
J
=

2(N+2)

∑
J=1

Be
KJ

∂He

∂Xe
J

, (21)
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where the first and second equality define a quasi-Lie bracket. The last equality enlighten
the matrix structure of the equations of motion. This last form also allows one to compactly
define the compressibility of phase space:

κe ≡
2(N+2)

∑
I=1

∂Ẋe
I

∂Xe
I
=

2(N+2)

∑
I,J=1

∂Be
I J

∂Xe
I

∂He

∂Xe
J
= −N

Π̇1

µ1
− Π̇2

µ2
(22)

The antisymmetric matrix Be, entering Equations (21) and (22), is defined as:

Be =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−1 0 0 0 −P 0
0 −1 0 P 0 −Π1
0 0 −1 0 Π1 0

, (23)

is an antisymmetric phase-space-dependent matrix generalizing the symplectic matrix
in Equation (12). Equation (21) is called a quasi-Hamiltonian equation because, while
conserving He(Xe), it cannot be derived from the Hamiltonian formalism alone: In order to
write the equation of motion (21), together with He(Xe), one also needs the antisymmetric
matrix Be in Equation (23). The equation of motion for the distribution function f (Xe, t) is:

∂

∂t
f (t) = −{ f (t), He}Be − κe f (t) . (24)

Given the discussion above, our task becomes that of generalizing Equation (24) to a
non-Hermitian quantum system. The phase-space-dependent Hamiltonian of the quantum
system must be defined on the extended phase space of the Nosé-Hoover chain thermostat:

H̃e = Ĥ + HB(X) + H̃I + Hnhc(Y)− iΓ̂

= H̃e
S − iΓ̂ . (25)

A phase-space-dependent non-normalized density matrix Ω̃e(t) can be introduced as well.
We postulate that Ω̃e(t) obeys the equation of motion:

∂

∂t
Ω̃e(t) = −i

[
H̃e

S, Ω̃e(t)
]
−
[
Γ̂, Ω̃e(t)

]
+ +

1
2
{

H̃e
S, Ω̃e}

Be − 1
2
{

Ω̃e, H̃e
S
}
Be − κe

SΩ̃e(t) .
(26)

In the absence of the quantum degrees of freedom, Equation (26) reduces correctly to
Equation (24). Moreover, when (ΛI , ΠI) → 0, with I = 1, 2, (which means that the
Nosé-Hoover thermostat is not applied), Equation (26) reduces unerringly to Equation (11).

The trace T̃re of the density matrix Ω̃e(t) involves an integral over the extended
phase space:

T̃re(Ω̃e(t)
)
= Tr′

∫
dXeΩ̃e(Xe, t) . (27)

The equation of motion of the trace defined in Equation (27) has the same structure of
Equation (15):

d
dt

T̃re(Ω̃e(t)
)
= −2T̃re(Γ̂Ω̃e(t)

)
. (28)

Appendix B shows how Equation (28) is obtained.
The phase-space-dependent normalized density matrix in the extended phase space,

ρ̃e(Xe, t), is defined in analogy with Equation (16) as:

ρ̃e(Xe, t) =
Ω̃e(Xe, t)

T̃re
(
Ω̃e(Xe, t)

) . (29)
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In analogy with Equation (17), quantum statistical averages are calculated as:

〈χ̃e〉e(t) = T̃re(ρ̃e(t)χ̃e) . (30)

The phase-space-dependent normalized density matrix in Equation (29) obeys the non-
linear equation of motion:

∂

∂t
ρ̃e(t) = −i

[
H̃e

S, ρ̃e(t)
]
−
[
Γ̂, ρ̃e(t)

]
+ + 2ρ̃e(t)T̃re(Γ̂ρ̃e(t)

)
+

1
2
{

H̃e
S, ρ̃e}

Be − 1
2
{

ρ̃e, H̃e
S
}
Be − κe

Sρ̃e(t) . (31)

We remark that Equations (26) and (31) are two important results of this work since these
equations define the dynamics of a non-Hermitian quantum system embedded in a classical
bath at constant temperature.

5. Model of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature

In this section we formulate a molecular junction toy-model described by a non-
Hermitian Hamiltonian denoted by H̃m. The various energy contributions entering the
Hermitian terms in part of the Hamiltonian model are:

Ĥm = −∆σ̂z , (32)

Hm
B (X) =

P2

2
+

ω2

2
Q2 , (33)

H̃m
I (Q) = −cQσ̂x , (34)

Hm
nhc(Y) =

2

∑
K=1

(
Π2

K
2µK

+ kBTΛK

)
. (35)

The two-level system Hamiltonian Ĥm describes quantum transport between the leads in
terms of the variation of the population of a ground and an excited state. The extended
phase space point Xm is defined as in Equation (21) but the model considers a single Q
coordinate and its conjugate momentum Π. Transport in the isolated two-level system
takes place through tunneling. The inclusion in the model description of the decay operator
Γ̂m opens a channel through which the population of the states can disappear forever from
the two-level system. The explicit form of Γ̂m will be given later on when we transform
to the adiabatic basis. This subsystem is also coupled to a harmonic mode, with free
Hamiltonian Hm

B (Q), by means of an interaction Hamiltonian H̃m
I . The harmonic mode

opens another channel for the transport of the population between the leads. In addition
to this, the harmonic mode is embedded in a thermal bath via the Nosé-Hoover chain
thermostat with energy Hm

nhc. The complete non-Hermitian Hamiltonian model H̃m reads:

H̃m(Xm) = Ĥm + Hm
B (X) + H̃m

I (Q) + Hm
nhc(Y)− iΓ̂m

= H̃m
S (Xm)− iΓ̂m , (36)

where the last equality also defines the Hermitian part of the Hamiltonian model, i.e.,

H̃m
S (Xm) = Ĥm + Hm

B (X) + H̃I(Q) + Hm
nhc(Y) . (37)

To the authors’ knowledge, the Hamiltonian model in Equation (36) provides a novel
non-linear approach to the modeling of lossy molecular junctions in thermal baths. Figure 1
displays a pictorial representation of the non-Hermitian quantum single-molecule junction
(nHQSMJ) model at constant temperature.
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Figure 1. Pictorial representation of the non-Hermitian quantum single-molecule junction (nHQSMJ)
model. The leads are represented by two gray triangles. The spring portrays the molecule connecting
the leads. The arrows with the cyan cusps depict the state of the two-level system (TLS), depending
on its position along the junction. When the TLS is in the left lead, the arrow points downward.
As the TLS moves toward the right lead, the arrow rotates until it reaches the upward position,
which implies a complete transfer to the right lead. The sink below the right lead absorbs the TLS
probability in an irreversible way. In the formalism, the sink is represented by a Hermitian decay
operator. The decay operator acts on quantum states that in turn determine probabilities. Hence, the
action of the sink unfolds upon an ensemble of trajectories of the TLS system. The picture also shows
a box separating the molecular junction from the environment. The drawing of the box resembles
on purpose that of an oven with a thermostat on top. The thermostat temperature is set at the same
value of the TR temperature of the environment. The thermostat controls the temperature inside the
oven so that it is equal to that of the environment. The yellow color inside the oven and around it, in
the environment, conveys the idea of thermal equilibrium.

The abstract dynamics of the nHQSMJ model is obtained upon using the non-Hermitian
Hamiltonian (36) in Equation (31). The abstract equations of motion can be represented
using different basis sets. The approach described in [31] is based on the representation in
the adiabatic basis. We also adopt such an approach here. The adiabatic Hamiltonian is
defined as:

h̃m
ad(Q) = Ĥm + Hm

B (X) + H̃m
I (Q)− P2

2
, (38)

and the adiabatic basis is introduced through the eigenvalue equation:

h̃m
ad(Q)|Φα(Q)〉 = Eα|Φα(Q)〉 . (39)
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In practice, the adiabatic states are a kind of dressed states of the quantum system when
it interacts with approximately “frozen” classical degrees of freedom. The operator Γ̂m is
chosen in a phenomenological way. In the adiabatic basis, it is taken as:

Γ̂m =
γ

2

[
1 0
0 0

]
. (40)

In this way we describe a model where the excited state is in contact with a sink while the
ground state is left unperturbed.

The abstract equation of motion for the non-normalized density matrix of the model is:

∂

∂t
Ω̃m(t) = −i

[
H̃e

S, Ω̃m(t)
]
−
[
Γm, Ω̃m(t)

]
+ +

1
2
{

H̃m
S , Ω̃m}

Bm

− 1
2
{

Ω̃m, H̃m
S
}
Bm − κm

S Ω̃m(t)

=
(
−iL̃m − iL̂Γm

)
Ω̃m(t) . (41)

The antisymmetric matrix Bm has the same structure of that in Equation (23), but it
considers only the physical degrees of freedom of the harmonic modes. Accordingly, the
phase space compressibility of the model becomes κm

S = −(Π̇1/µ1)− (Π̇2/µ2).
Equation (41) introduces the two Liouville operators:

−iL̃m = −i
[
H̃e

S, ...
]
+

1
2
{

H̃m
S , ...

}
Bm − 1

2
{

..., H̃m
S
}
Bm − κm(...) , (42)

−iL̂Γm
= −[Γm, ...]+ . (43)

The equation of motion (41) is represented into the adiabatic basis as:

d
dt

Ω̃m
αα′(t) = ∑

ββ′

(
−iL̃m

αα′ ,ββ′ − iL̂Γm

αα′ ,ββ′
)

Ω̃m
ββ′(t) . (44)

In Equation (44) we introduced the two Liouville super-operators −iL̃m
αα′ ,ββ′ and −iL̂Γm

αα′ ,ββ′ .

We first consider L̃m
αα′ ,ββ′ . We have:

−iL̃m
αα′ ,ββ′ =

(
−iωαα′ − iL̃m

αα′ − κm)δαβδα′β′ + T̃αα′ ,ββ′ , (45)

where ωαα′ = Eα(Q)− Eα′(Q) is the Bohr frequency. The operator:

iL̃m
αα′ = P

∂

∂Q
+

1
2
(Fα(Q) + Fα′(Q))

∂

∂P
+ P

Π1

µ1

∂

∂P
+

−Π1

µ1

∂

∂Λ1
−
(

P2 − kBT
) ∂

∂Π1
+ Π1

Π2

µ2

∂

∂Π1
+

−Π2

µ2

∂

∂Λ2
−
(

Π2
1

µ1
− kBT

)
∂

∂Π2
(46)

is a classical-like Liouville operator generating the dynamics of the physical coordinates X
under the feedback of the fictitious coordinates Y . In Equation (46) we have also introduced
the Hellmann–Feynman force:

Fα(Q) = −∂Eα(Q)

∂Q
. (47)

This is the force acting on the harmonic oscillator when state α is occupied.
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The adiabatic surfaces transition operator T̃αα′ ,ββ′ is purely off-diagonal. In the adia-
batic basis it is expressed as:

Tαα′ ,ββ′ = δα′β′P · Cαβ(Q)

(
1 +

1
2
S̃αβ ·

∂

∂P

)
+ δαβP · C∗α′β′(Q)

(
1 +

1
2
S̃∗α′β′ ·

∂

∂P

)
,

where

Cαβ = 〈Φα(Q)| ∂

∂Q
|Φβ(Q)〉 , (48)

S̃αβ =

(
Eα − Eβ

)
P · Cαβ(Q)

Cαβ(Q) . (49)

Equation (48) defines the adiabatic coupling vector Cαβ. This vector quantifies the super-
position of the adiabatic states when Q changes. Equation (49) introduces the vector S̃αβ.
If dimensional coordinates were introduced, S̃αβ would have the dimension of momen-
tum. Roughly speaking, S̃αβ provides the momentum variation when jumping from one
adiabatic surface to the other.

We now consider L̂Γm
. In general, a decay operator Γ̃α,β can always be decomposed

in a diagonal part Γ̃d
αβ = Γ̃αβδαβ, and an off-diagonal part Γ̃o

αβ = Γ̃αβ

(
1− δαβ

)
, so that

Γ̃α,β ≡ Γ̃d
αβ + Γ̃o

αβ. However, in the case of the decay operator of the nHQSMJ model

adopted here, and defined in Equation (40), we have
(
Γ̃m)o

αβ
= 0. Hence, we have:

iLΓm

αα′ ,ββ′ = γm
αα′δαβδα′β′ , (50)

where γm
αα′ = Γm

αα + Γm
α′α′ .

Using Equations (45) and (50), Equation (44) becomes:

d
dt

Ω̃m
αα′(t) = −∑

ββ′

[(
iωαα′ + γm

αα′ + iL̃m
αα′ + κm

S
)
δαβδα′β′ + T̃αα′ ,ββ′

]
Ω̃m

ββ′(t) . (51)

Equation (51) provides the equation of motion for the density matrix of the nHQSMJ
model at constant temperature. This equation can be implemented through a variety of
algorithms [31–34].

6. Calculations and Results

We consider a situation where the molecule is weakly coupled to the leads. This
implies that neglecting the action of the transition operator T̃αα′ ,ββ′ in Equation (51), the
phase-space-dependent density matrix is propagated by means of the sequential short-time
propagation (SSTP) algorithm [31,32] as:

Ω̃m
αα′(t) =

nstep

∏
j=1

∑
αα′

e−i(ωαα′−iγm
αα′−iκm+L̃m

αα′)τΩ̃m
αα′ , (0)

=
nstep

∏
j=1

∑
αα′

e−iL̃m,(0)
αα′ τΩ̃m

αα′(0) , (52)
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where τ = t/nstep and the non-Hermitian adiabatic Liouville super-operator is −iL̃m(0)
αα′ =

−iωαα′ − γm
αα′ − κm

S − iL̃m
αα′ . Quantum statistical averages can be calculated as:

T̃rm(ρ̃m(t)χ̃m) =
∑αα′

∫
dXmΩ̃m

αα′(Xm, t)χ̃α′α(Xm)

∑σ

∫
dXmΩ̃m

σσ(Xm, t)

=
∑αα′〈Ω̃m

αα′(t)χ̃α′α〉m
∑σ〈Ω̃m

σσ(t)〉m
, (53)

where the bracket 〈...〉m stands for the average in the extended phase space of the model.
We implement Equation (53) in the following way [31,32]. Once the quantum initial state is
assigned for every point of the extended phase space, the calculation of quantum averages
can be performed by sampling the initial Xe with a Monte Carlo algorithm. The point
Xm is then propagated over the assigned quantum state for a time length t. The time
step τ = t/nstep in Equation (53) must be chosen and small enough to minimize the
numerical error. In the calculation we take the following uncorrelated form of the initial
phase-space-dependent density matrix:

Ω̃e(Xm, 0) = Ω̂m(0)Ωm
B (X, 0)Ωm

nhc(Y , 0) , (54)

where

Ω̂m(0) =

[
0 0
0 1

]
, (55)

Ωm
B (X, 0) =

tanh(βω/2)
π

exp
(
− tanh(βω/2)

ω
Hm

B (X)

)
, (56)

Ωm
nhc(Y , 0) =

∏2
J=1 δ(ΛJ) exp(−Π2

J /2)

Zm
Y

(57)

and ∫
dY

2

∏
J=1

δ(ΛJ) exp(−Π2
J /2σ2). (58)

Calculations were performed with fixed values of γ = 0.1, ω = 1/3, ∆ = 1, and
c = 0.007, time step τ = 0.005, number of time steps nstep = 104, and number of Monte
Carlo steps nmcs = 25 · 103. All the values of the parameters are given in a dimensional
units. A total of 20 different values of the inverse temperature were considered upon
chosing βl+1 = 1/Tl+1 = β0(1 + l), with l = 0, ..., 19 and β0 = 0.0005. For each βl we
have investigated four different types of dynamics: (i) Unitary dynamics, (ii) constant-
temperature dynamics, (iii) non-unitary dynamics, and (iv) non-unitary dynamics at
constant temperature. Initial conditions are chosen with the two-level system in its ground
state and the bath in a thermal state. It is useful to introduce Ξ̂m and X̂m, the non-
normalized and normalized reduced density matrices, respectively. We write their matrix
elements in the adiabatic basis as:

Ξm
αα′ =

∫
dXmΩ̃αα′ , (59)

Xm
αα′ =

∫
dXmρ̃αα′ . (60)

Both reduced density matrices can be easily calculated by means of our numerical approach.
In order to check the numerical scheme, we calculated the evolution in time of

T̃r(Ω̃m(t)). The results are shown in Figure 2. When the decay operator is set to zero,
Panels (a) and (b), the trace of the density matrix is conserved with extremely good numer-
ical precision both when the dynamics is unitary and when the temperature is controlled.
This provides a convincing indication that our algorithm conserves important dynam-
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ical invariants. Panels (c) and (d) in Figure 2 show the decrease in time of T̃r(Ω̃m(t))
non-unitary dynamics. Moreover, there is no appreciable difference between unitary and
constant-temperature dynamics.
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Figure 2. Plot of T̃r(Ω̃(t)). The values of the parameters of the calculation are: number of time
steps = 10,000, number of Monte Carlo points = 2500, time step τ = 0.005, γ = 0.1, ω = 1/3,
∆ = 1, coupling constant c = 0.007, and inverse temperature β = 0.0050. The red line shows the
average trend while the cyan area around it, which is hardly visible, displays the statistical error
of the calculation. Panels (a) and (b) show the results of the calculations when the dynamics takes
place for the isolated single-molecule junction (SMJ) dynamics and for the SMJ dynamics at constant
temperature, i.e., SMJ+NHC dynamics, respectively. Panel (c) shows the result of the calculation
when a decay operator acts onto the SMJ, which is for SMJ+nH dynamics. Finally, in Panel (d) all
types of dynamics are considered together, i.e., SMJ+nH+NHC dynamics. It is easy to see that the
trace is conserved when the Hamiltonian is Hermitian. Instead, the population drops to about one
half in the case of nH dynamics.

In Figure 3 we show the time-evolution of Ξm
αα(t) and Xm

αα(t)〉m, with α = 1, 2,
defined in Equations (59) and (60), respectively. Panels (a) and (b) display Ξm

11(t) and
Ξm

22(t), respectively. Initially, adiabatic states are equally occupied. However, according to
Equation (40), only the occupation of the excited state experiences depletion, see in Panel
(a). Panels (c) and (d) of Figure 3 show Xm

11 (t) and Xm
22 (t), respectively. The behavior of

Xm
11 (t) is hardly distinguishable from that of Ξm

11(t). However, the situation is different for
Xm

22 (t) in Panel (d). As a matter of fact, while Ξm
22(t) is constant, Xm

22 (t) increases so that
T̃rm(ρ̃m(t)) = Xm

11 (t) +Xm
22 (t) = 1.



Entropy 2021, 23, 147 14 of 22

0 10 20 30 40 50

t

0.00

0.25

0.50

0.75

1.00

Ξ
1
1
(t

)

a) Ξ11(t)

0 10 20 30 40 50

t

0.00

0.25

0.50

0.75

1.00

Ξ
2
2
(t

)

b) Ξ22(t)

0 10 20 30 40 50

t

0.00

0.25

0.50

0.75

1.00

χ
m 1
1
(t

)

c) χm11(t)

0 10 20 30 40 50

t

0.00

0.25

0.50

0.75

1.00

χ
m 2
2
(t

)

d) χm22(t)

Figure 3. The plots show the diagonal elements of the density matrices resulting from nH+NHC
dynamics. Panels (a) and (b) show the behavior of the non-normalized density matrix elements
Ξ11(t) and Ξ22(t), respectively. Panels (c) and (d) display the behavior of the normalized density
matrix elements Xm

11 (t) and Xm
22 (t). They can be discussed by looking at Panel (d) of Figure 2. The

values of the parameters of the calculations are: number of time steps = 10,000, number of Monte
Carlo points = 2500, time step τ = 0.005, γ = 0.1, ω = 1/3, ∆ = 1, c = 0.007, and β = 0.0050.
The red line is the average trend, the cyan area (almost invisible to the eye) is the error. In Panel
(a) the effects of the decay operator Γ̂m can be observed. The trend in Panel (b) clarifies the cause
for the evolution of the trace in Figure 2. There is no difference between Panel (a,c) since the trace
decreases because of the decrease of Ω11. The comparison between Panel (b,d) and further clarifies
that the cause of the population loss of the excited state is the action of the decay operator and not
the energy transfer.

In Figure 4 we show the real part of the reduced off-diagonal element Re(Xm
12 (t)).

For the chosen values of the parameters, dephasing occurs on the same time scale of the
population’s depletion of the excited state.
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Figure 4. The plot shows the real part of Xm
12 (t), which is the off-diagonal element of the reduced

normalized density matrix. Panels (a) and (b) show the results of the calculations when the dynamics
takes place for the isolated single-molecule junction (SMJ) dynamics and for the SMJ dynamics
at constant temperature, i.e., SMJ+NHC dynamics, respectively. Panel (c) shows the result of the
calculation when a decay operator acts onto the SMJ, SMJ+nH. Finally, in Panel (d) all types of
dynamics are considered together, i.e., SMJ+nH+NHC dynamics. The values of the parameters of the
calculations are: mumber of time steps = 10, 000, number of Monte Carlo points = 2500, time step
τ = 0.005, γ = 0.1, ω = 1/3, ∆ = 1, c = 0.007, and β = 0.0050. The red line is the average trend, the
cyan area (which is almost invisible to the eye) is the error. The trend clearly shows decoherence.

Figure 5 displays the time evolution of the population difference for β = 0.0075.
Below each plot showing the time evolution of the population difference, the Fourier
transform is also displayed. The Fourier transform of Panel (a) displays two peaks:
One at a small frequency and one at a higher frequency. The Rabi-like oscillations of
the population difference at a distant time are signs of the absence of stable quantum
transport in the nHQSMJ model. Nosé-Hoover chain dynamics, shown in Panel (b), sup-
presses the peak at small frequency. The Rabi-like oscillations of the population difference
at distant time are less pronounced: They take place at a relatively high frequency, as
the Fourier transform shows, around zero. This indicates that in the presence of ther-
mal noise the population difference oscillates around zero so that transport is stable.
Figure 6 shows the time evolution of the population difference β = 0.0050, which corre-
sponds to a temperature higher than that in Figure 5. All the effects shown by Figure 5
appear more marked in Figure 6. This can be seen as a particular instance of environment-
assisted quantum transport: Remarkably, the noise provided by an environment can defeat
Anderson localization [41] and assist quantum transport. The idea that the noise of the
environment could enhance quantum transport, instead of suppressing it, has been pos-
tulated to explain the high efficiency of energy transport in photosynthetic systems [42].
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Obviously, the noise-enhancement of quantum transport can take place only below a cer-
tain threshold. Above it, transport is suppressed by the quantum Zeno effect [43]. In Panel
(c), Hamiltonian dynamics of the bath is combined with a non-zero decay operator acting
on the two-level system. As seen, the decay operator suppresses the high frequencies in the
Rabi-like oscillations of the population difference at distant time. Such oscillations show
that, even in this case, quantum transport is not very stable. Comparison of the dynamics in
Panel (b) and in Panel (c) shows that there is a difference between thermal and probability
sink dissipation: The first suppresses low frequency oscillation while the second damps
high frequency oscillations. As one can expect, the combination of the two dynamics,
shown in Panel (d), leads to the suppression of both frequencies, increasing the efficiency
and the stability of the population transport. Calculations for β = 0.0025 are reported
in Figure 7. The results are indistinguishable to the human eye from those obtained at
β = 0.0075. This reinforces the conclusion that quantum transport in the nHQSMJ model
is enhanced by coupling the two-level system with a probability sink and controlling the
temperature of the molecule.
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Figure 5. The plot shows the average population transfer vs. time for different types of dynamics.
The values of the parameters of the calculation are number of time steps = 10,000, number of Monte
Carlo points = 2500, τ = 0.005, γ = 0.1, ω = 1/3, ∆ = 1, g = 0.007, and β = 0.0075). The red line
indicates the average trend, the cyan area represents the error. The blue line denotes the Fourier
transform of the time evolution of the average value (the data are considered after t = 20). Panel (a)
displays the results for the SMJ dynamics. One can observe that the values oscillate with low and
high frequency. Panel (b) displays the dynamics of the SMJ with temperature control (SMJ+NHC
dynamics). The thermostat facilitates the population transfer and stabilizes its average. The low
frequency terms are highly damped while the high frequency ones are unaltered. Panel (c) shows that
the effect of the decay operator (SMJ+nH dynamics) is to cancel the high frequency term. Finally, in
(d), it is shown that the union of the NHC thermostat and decay operator (SMJ+nH+NHC dynamics)
determines a stable tranfer. Both the low and the high frequency terms are strongly damped.
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Figure 6. The plot shows the average population difference vs. time for different types of dynamics.
The values of the calculation parameters are: number of time steps = 10,000, number of Monte Carlo
points = 2500, τ = 0.005, γ = 0.1, ω = 1/3, ∆ = 1, g = 0.007, and β = 0.0050). The red line indicates
the average trend, the cyan area represents the error. The blue line denotes the Fourier transform
of the time evolution of the average value (the data are considered after t = 20). Panel (a) displays
an average population transfer for the SMJ dynamics where low frequency oscillations are strongly
damped. In Panel (b) it is shown that a higher temperature damps high frequency oscillations in
SMJ+NHC dynamics. Statistical error appears to be somewhat greater. Panel (c) shows that the
effect of the decay operator is to damp high frequency oscillations in SMJ+nH dynamics. Panel (d)
shows that the combined action of the NHC thermostat and the decay operator, i.e., SMJ+nH+NMJ
dynamics determines a stable transfer process. Both low and high frequency oscillations are strongly
damped, except for a very weak oscillation at a very low frequency.
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Figure 7. The plot shows the average population transfer vs. time for different types of dynamics.
NMDS = 10,000, NMCP = 2500, τ = 0.005, γ = 0.1, ω = 1/3, ∆ = 1, g = 0.007, and β = 0.0025.
The red line is the average trend, the cyan area is the error. The blue line is the Fourier transform,
carried out after the stabilization of the trend (from t = 20 onward). In Panel (a) the population
difference oscillates with low and high frequency contributions (for SMJ dynamics). Panel (b) shows
that the thermostat (SMJ+NHC dynamics) facilitates the population transfer and stabilizes it more
than in the case of lower temperatures. The low frequency terms are highly damped while the
high frequency ones are unaltered. Panel (c) shows that the effect of the decay operator (case of
the SMJ+nH dynamics) is to cancel the high frequency term. Finally, Panel (d) shows that the
SMJ+nH+NHC dynamics displays a stable transfer: Both the low and the high frequency terms are
strongly damped.

7. Conclusions

In this work, we constructed a theory for studying non-Hermitian phase-space-
dependent quantum systems at constant temperature. This theory is based on an operator-
valued Wigner formulation of quantum mechanics or, in other words, on a phase-space-
dependent density matrix. The condition of constant temperature in phase space was
achieved by means of the Nosé-Hoover chain thermostat. A mathematical result of the
formalism is the derivation of the non-linear equation of motion for the normalized phase-
space-dependent density matrix of the system. We remark that this result, considering
a constant temperature bath, improved the theory developed in [15] where the tempera-
ture fluctuations were not constrained. These latter situation is somewhat unrealistic in
common experiments.

This theory was applied to a model of a non-Hermitian quantum single-molecule
junction. We emphasize that this model treated probability loss and thermal fluctuations
on the same level. In detail, the model comprised of a two-level system with a probability
sink coupled to a thermalized harmonic mode. The structure of our model was conjectured
upon drawing an analogy with the process of noise-assisted transport [44–46]. In our
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case, we expect that the assisted quantum transport arises from the combined action of the
probability sink and the constant-temperature fluctuating molecule. Indeed, we observed a
transport enhancement in silico upon simulating numerically the non-Hermitian quantum
single-molecule junction model for a range of temperatures, while keeping the values
of the other parameters constant. The Fourier transformed signal in frequency space
showed that the Nosé-Hoover chain thermostat suppresses the slow frequencies while the
probability sink damps the high frequency oscillations of the population difference of the
non-Hermitian quantum single-molecule junction model at a constant temperature.

The non-Hermitian quantum single-molecule junction model at constant temperature
introduced in this paper could more accurately be classified as a particular instance of
a class of models. As a matter of fact, it could be easily generalized by considering a
greater number of quantum states (∼10) and an even greater number of classical modes
(∼103 − 105). Of course, more sophisticated algorithms would have to be used for cal-
culating the evolution of the density matrix. We also note that spin models that were
similar but simpler than the non-Hermitian quantum single-molecule junction model
introduced in this paper could be solved analytically when obeying certain symmetry
properties [47–55]. It would be interesting to investigate whether the extension of these
models to non-Hermitian quantum mechanics would still be analytically treatable. We
defer such generalizations to future work.
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Appendix A. Time Evolution of the Trace of Ω̃(t)

The trace of Equation (11):

d
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The last term in the right hand side of Equation (A1) can be transformed as follows:
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Substituting Equation (A2) in the right hand side of Equation (A1), one obtains:

d
dt
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However, the last term in the right hand side of Equation (A3) is zero:
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because of the antisymmetry of B. Equation (A4) allows one to obtain Equation (15).

Appendix B. Time Evolution of the Trace of Ω̃e(t)

The trace of Equation (26) is:

d
dt
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One can find the following identity:
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Inserting Equation (A6) in Equation (A5) one obtains:

d
dt
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One can now find the following identity:
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Equation (A8) is obtained exploiting the identity:
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which derives from the fact that the trace of a symmetric matrix times an antisymmetric
matrix is identically zero. Finally, substituting Equation (A8) in Equation (A7), one obtains
Equation (28).
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