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Abstract: The adaptation of deep learning models within safety-critical systems cannot rely only on
good prediction performance but needs to provide interpretable and robust explanations for their
decisions. When modeling complex sequences, attention mechanisms are regarded as the established
approach to support deep neural networks with intrinsic interpretability. This paper focuses on the
emerging trend of specifically designing diagnostic datasets for understanding the inner workings of
attention mechanism based deep learning models for multivariate forecasting tasks. We design a
novel benchmark of synthetically designed datasets with the transparent underlying generating pro-
cess of multiple time series interactions with increasing complexity. The benchmark enables empirical
evaluation of the performance of attention based deep neural networks in three different aspects:
(i) prediction performance score, (ii) interpretability correctness, (iii) sensitivity analysis. Our analysis
shows that although most models have satisfying and stable prediction performance results, they
often fail to give correct interpretability. The only model with both a satisfying performance score and
correct interpretability is IMV-LSTM, capturing both autocorrelations and crosscorrelations between
multiple time series. Interestingly, while evaluating IMV-LSTM on simulated data from statistical
and mechanistic models, the correctness of interpretability increases with more complex datasets.

Keywords: multivariate time series; attention mechanism; interpretability; synthetically
designed datasets

1. Introduction

Applying deep learning (DL) models to multivariate time series data [1] has recently
gained growing popularity in a variety of critical application domains such as climate,
environment, healthcare [2], finance, as well as other social good domains [3] or Internet
of Things driven critical infrastructures [4]. However, the adaptation of deep learning
methodology within such safety-critical application scenarios and systems cannot rely
only on prediction performance but has to provide human understandable, interpretable,
and robust explanations for their decisions. In general, explainable artificial intelligence
considers different methodologies, techniques, and tools for achieving explainability for
different target users (e.g., machine learning experts, domain experts or general end
users) [5] in various DL models by either directly using intrinsically interpretable (self-
explainable) models [6] or by relying on post hoc (usually model agnostic) interpretability
techniques such as popular Shapley additive explanations (SHAP) [7]. In her perspective
work [6], Cynthia Rudin argues that we should focus on developing and using models that
are inherently interpretable, as well as that we should be very careful when applying post
hoc explanation techniques in high-stakes applications involving critical decision making.
In addition, DL methodologies also have to incorporate human domain knowledge during
training and learn and reason about human high-level cognitive concepts.

As a recently emerging trend of evaluating DL methodologies from a human high-
level cognition perspective, different real-world and synthetically designed datasets were
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proposed and utilized defining and evaluating specific image, video, and text human
high-level understanding tasks. These include now a long list of large-scale image fine art
collection Wikiart for high-level subjective aspects of human perception (i.e., aesthetics, vi-
sual sentiment, and memorability) [8], Omniglot dataset for evaluating human-like concept
learning [9], e-SNLI dataset providing human-annotated natural language explanations of
the entailment relations [9], CLEVR dataset for question-answering based visual reasoning
tasks [10], CATER dataset for compositional actions and temporal reasoning or even specif-
ically constructed datasets for evaluating abstract reasoning with visual IQ tests based on
Raven’s Progressive Matrices [11] or mechanics based on update rules of two-dimensional
cellular automaton Conway’s Game of Life [12,13].

Most of these efforts were focused on neural architectures for a common DL appli-
cation based on unstructured data modalities such as image, video, and text. Although,
in recent years, time series forecasting with deep learning has been intensively studied [1],
novel research trend for eventuating interpretability of deep learning models within time
series prediction tasks has just started to emerge [14–17]. A recent survey by Lim and
Zohran outlines the state-of-the-art techniques available for common forecasting prob-
lems based on DL architectures [1]. Recently, Ismail and co-authors introduced the first
benchmark that systematically evaluates different saliency methods across multiple DL
models for multivariate time series setting [16]. Furthermore, another study proposed a
Performance-Explainability Framework to benchmark existing machine learning methods
and then applied it to current state-of-the-art models for multivariate time series classifica-
tion setting [18]. However, to best of our knoweldge currenlty there is no benchamark that
allows interpretability analysis for multivariatie time series forecasting setting.

One common time series prediction task is (multivariate) forecasting, where a model
given the historical values of one (or more) time series as input tries to predict the future
values of one (or more) time series. In a multivariate setting, when more than one time series
is used as input or output, forecasting output can be future values of all input variables (time
series) or future output of just one independent input variable, which has some relationship
with other input variables. Deep learning models based on encoder-decoder architectures
are currently considered state-of-the-art for this task and for modeling complex sequential
data, where different encoders such as convolution neural networks (CNN) with dilated
convolution, recurrent neural networks (RNN), and attention mechanisms can be used to
incorporating temporal information.

Attention mechanisms are also regarded as the established approach to support deep
neural networks with intrinsic interpretability when modeling complex sequences. On the
other hand, post-hoc interpretability methods typically disregard sequential dependencies
between inputs and are not usually suited for application to time series data with complex
causal associations. The mechanism is embedded into a model and learns the weighted
average of hidden states from different time steps in a long sequence, allowing the model
to focus on significant time steps in the past directly. One can interpret these attention
weights as the strength of the causal relationship between different data points. A recent
work on interpretability of attention distributions shows that the attention distributions
could be utilized in specifically accustomed DL models to provide faithful and plausible
explanations for models’ predictions [19]. If higher attention weights imply a more sig-
nificant impact on the model’s predictions, then we consider attention distributions as
faithful explanations, while we can also consider them as plausible explanations if they
provide human-understandable justification for the model’s predictions [19]. In this paper,
we set to benchmark attention-based models for multivariate time series prediction task.
We investigate the predictive power of these models and interpretability correctness.

Equal weight is put on understanding if the interpretability of models is correct and
how confident models are regarding interpretability. Using a custom time series, we
can safely evaluate models’ interpretability because we know the underlying process for
generating the data in detail. This is why we create new datasets and do not use one of
the standard benchmarks, such as CauseMe [20–22] and M4 [23]. For the CauseMe dataset,
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one can know the type of underlying process, i.e., is time series generated by linear, logistic,
or some other autoregressive process, but cannot determine if interpretability given by the
model is correct (one will not be able to score it more quantitatively than the correct or
wrong nature of the process). Furthermore, most of the time series in the CauseMe dataset
only have autoregressive processes. They lack interactions between multiple time series,
which is essential to our evaluation, and we want to determine if models can catch these
interactions. M4 dataset consists of real-world data where there is no understanding of the
underlying process. Data is transformed and masked so that it is impossible to know the
origin of it. Furthermore, the M4 dataset has only a singular time series per example. Thus,
by knowing the underlying process entirely and changing the parameters of processes
that generate the data, we can better explore the domain of model performances and
understand where they perform best and where they break.

This paper focuses on the emerging trend of specifically designing diagnostic datasets
for understanding the inner workings of attention mechanism based DL models for multi-
variate forecasting tasks. Creating new synthetic datasets allowed us to choose interactions
between time series. By knowing the underlying mechanics of the dataset, we were able to
validate models’ interpretability, i.e., how models perform when we have variable complex
data interactions. To the best of our knowledge, we are the first to create transparent
datasets for multivariate-time series forecasting tasks and utilize these for prediction,
stability, interpretability performance evaluation of neural architectures with inherent
interpretability (by incorporating attention mechanism). Few recent studies aiming to
interpret deep neural networks applied to time series data in multivariate setting does not
cover interactions between time series (such as [18]) or are focused on evaluation on post
hoc explainability techniques (such as [16]).

The main contributions of this work are:

• We design a novel benchmark of synthetically designed datasets with the transparent
underlying generating process of multiple time series interactions with increasing
complexity for understanding the inner workings of attention mechanism based deep
learning models for multivariate forecasting tasks.

• Using the designed benchmark, we conduct a comprehensive analysis of the perfor-
mance of existing attention based deep neural networks in three different aspects:
prediction performance score, interpretability correctness, sensitivity analysis.

• We demonstrate that although most models have satisfying and stable prediction
performance results, they often fail to give correct interpretability and that intrin-
sic interpretability increases with the complexity of interactions between multiple
time series.

The rest of the paper is structured as follows: Section 2 contain an overview of the
deep learning models for multivariate time series data that will be evaluated, in Section 3,
we present details of experimental and evaluation framework/setup, Section 4 contains
experimental results, and in Section 5 conclusions and outlook are presented.

2. Deep Learning Models for Multivariate Time Series Data

This paper aims to understand and benchmark how different DL models with inherent
explainability perform, both in prediction performance (for example, accuracy of prediction)
and quality of given interpretability, i.e., do models find correct causality between different
time series. We focus on existing attention-based models because one can interpret attention
coefficients as the model’s feature’s importance. Four models that will be analysed are:

• seq2graph [24]
• Interpretable Multi-Variable Long short-term memory (IMV-LSTM) [25]
• Temporal Causal Discovery Framework (TCDF) [26]
• Dual Stage attention (DA-RNN) [27]
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2.1. seq2graph

The idea behind the seq2graph model is to use gated recurrent units (GRU) to create a
directed weighted graph from multivariate time series. The architecture consists of four
different parts: Encoder, Dual-purpose RNN, Transformation Layer, and Decoder.

The Encoder is a bidirectional GRU unit. Outputs h from the Encoder are concatenated
with input into the model and then sent to the Dual-Purpose RNN. The architecture of
the dual-purpose layer is the same as the Decoder layer. Both calculate attention scores
from layer input. This input is multiplied with attention scores and then fed through the
GRU unit, with tanh activation applied in the end. Attention coefficients in Dual-purpose
RNN are called α coefficients, and they model autocorrelation (Equation (5) in [24]). For
each time series in the dataset at time t, and the window size w, of RNN layer in the neural
network, we have N α coefficients, where N is the number of time-series in the dataset,
and each α coefficients has w values. As these are attention coefficients, they sum to 1.
Attention coefficients in the Decoder layer are called β coefficients (Equation (9) in [24]),
and they model crosscorrelation. Similar to α coefficients, we have N β coefficients, and β
coefficients also sum to 1. Dual-purpose RNN layer produces sequence vd = vd

1, vd
2, ..., vd

m
for d-th time series. Dual-Purpose RNN and Encoder work on each time series separately.
The role of the transformation layer is to join outputs from different time series to one
feature vector. The output from every Dual-purpose RNN is concatenated, so that sequence
vd becomes a feature vector, and we introduce time dimension as the ordering of time series,
i.e., we create new vector W = v1, v2, ..., vd. This vector is used as input to the Encoder
layer, which produces a prediction for each time series. seq2graph model is the only one
that allows us to train the model for each time series simultaneously. Other models require
that we train a different model for each time series. It is important to note that we added a
linear layer at the end of the seq2graph model to predict outside default range [−1, 1].

2.2. Interpretable Multi-Variable Long Short-Term Memory

Interpretable Multi-Variable Long short-term memory (IMV-LSTM) model introduces
a novel recurrent unit. The idea of IMV-LSTM is to make use of the hidden state ma-
trix and develop an associated update scheme, such that each element (e.g., row) of the
hidden matrix encapsulates information exclusively from a specific variable of the input.
The hidden state vector is replaced with a hidden state matrix, where each n-th matrix
row corresponds to n-th input variable. Cell input activation vector is replaced with the
hidden state update, which is defined as: j̃t = tanh(Wj ⊗ h̃t−1 +Uj ⊗ xt + bj) (Equation (1)
in [25]), where h̃t−1 is hidden state matrix and xt is input vector. Parameters Wj and Uj
represent layer weights, while bj represents bias vector. There are two different instances
of IMV-LSTM: IMV-LSTM-Full, which behaves in the same way as standard LSTM but
enjoys interpretability (achieved by changing the hidden update vector by j̃t, and IMV-
LSTM-Tensor, where gates and memory cells are matrices as well. In IMV-LSTM gates
only scale hidden state and memory cell, so variable-wise organizations in the data hidden
state are preserved. To further deepen intuition with IMV-LSTM, one can think about
IMV-LSTM-Tensor as a set of parallel LSTMs, where each processes one variable series
and then merges via the mixture. The hidden states, specific to each variable, are derived
as a mixture of auto and cross-correlation mechanisms. Same as seq2graph, IMV-LSTM
model has α and β coefficients that model autocorrelation and crosscorrelation respectively.
The hidden state matrix h̃ is used as input to calculate attention coefficients α. Product
of α and hidden state matrix h̃ is concatenated with h̃, i.e., [α ∗ h̃, h̃], and used as input to
attention mechanism to calculate β coefficients.

2.3. Temporal Causal Discovery Framework

Temporal Causal Discovery Framework (TCDF) consists of N independent attention-
based Convolutional neural networks (CNNs), all with the same architecture but with a
different target time series, i.e., different models for predicting each time series. TCDF is
based on generic Temporal Convolutional Network (TCN) architecture. TCDF uses multi-
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ple convolutional layers with dilatation to increase the receptive field, and to deal with the
accuracy degradation problem introduced by multiple layers, TCDF model uses residual
connections. Target time series is also used as input to model autocorrelation. To model
cross-correlation, TCDF extends TCN architecture by introducing one-dimensional depth-
wise separable convolution. Channels are kept separate by applying a different kernel to
each input channel, followed by a 1× 1 pointwise convolution. Interpretability is gained
by introducing an attention mechanism. TCDF implements attention as a trainable 1× N-
dimensional vector that is element-wise multiplied with the N input time series. Authors
of TCDF argue that one would prefer hard attention over soft attention. To bridge this gap
between soft attention used in the model and hard attention, which is preferred, TCDF
applies a semi-binarization function.

2.4. Dual Stage Attention

Dual stage attention (DA-RNN) architecture consists of four different parts: Input
attention, Encoder, Temporal Attention, and Decoder. The input attention mechanism com-
putes the attention weights for multiple driving series. Attention weights are multiplied by
input and then fed to the LSTM encoder unit. The temporal attention system computes the
attention weights based on the previous decoder’s hidden state. As Decoder input, the sum
of the attention weighted encoder hidden states is used. The output of the last decoder
LSTM unit is the predicted result. It is important to note that all other neural networks that
we analyse try to model autocorrelation first and crosscorrelation after, while DA-RNN
tries to choose driving time series, i.e., models crosscorrelation, as the first step, and then
tries to find temporal causation, i.e., models autocorrelation.

2.5. Overview of Analyzed Deep Learning Models

The overview and classification of evaluated models is presented in Figure 1 according
to the recently introduced Performance-Explainability Framework, which incorporates six
major evaluation components (performance, comprehensibility, granularity, information,
faithfulness, user). The performance component in the framework assesses the performance
of DL models and corresponds to the relative performance of a model on a particular appli-
cation and evaluation setting compared to the state-of-the-art model. Comprehensibility
corresponds to the ability of the user to understand how the model works and produces
certain predictions. The granularity component tells us on which level the model gives ex-
plainability, i.e., if the explanation is given to a single prediction (Local) or given for overall
model behavior (Global). The information component describes the type of information
that is given by the model to the user. The faithfulness component tells us how much
an end-user can trust the explanations of model predictions. The user category indicates
the audience to whom the explanations are accessible, i.e., how much prior knowledge is
needed to understand model explanations.

Performance Comprehensibility Granularity Information Faithfulness User

Features   

Features+Time   

Features+Time
+Values   

Uni Itemsets   

Multi Itemsets   

Uni Sequences   

Multi Sequences   

Causal   White Box   Global & Local   Perfect   

Average   

BlackBox   Local   

Multi Sequences   

Imperfect   

Machine 
Learning 
Expert   Below   BlackBox   

Global   

Causal   

Imperfect   

Broad Audience   

Average   

BlackBox   Local   

Causal   

Imperfect   

Domain Expert   

Best   

BlackBox   Local   

Causal   

Average   Domain Expert   

DA-RNN
TCDF
seq2graph
IMV-LSTM

Figure 1. Parallel coordinates plot of evaluated models within Performance-Explainability Framework.
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3. Experimental and Evaluation Framework/Setup
3.1. Synthetic Time Series Datasets

To analyze model performance in prediction accuracy and interpretability, we created
set of synthetic data from models presented in Table 1.

Table 1. Models used for benchmarking, with each successive dataset model’s complexity is increased: constant time series
(dataset 1) to autoregressive (dataset 2) and nonlinear autoregressive (dataset 3) with no interaction between time series,
two interdependent time series without autoregression (dataset 4), first series is autoregressive (dataset 5) and nonlinear
autoregressive (dataset 6) time series with all other time series calculated from first, custom vector autoregression model
(dataset 7), switching time series (dataset 8). Additionally, we created two datasets from statistical and mechanistic models:
The logistic map inspired model (dataset 9) and the Ising model on the first-order 2D square lattice (dataset 10).

Name Formula Parameters

Dataset 1 Xn,t = Cn + εt Cn = N(0, 1)

Dataset 2 Xn,t = ctlag Xn,t−tlag + εt c3 = 1/2, c7 = 1/2

Dataset 3 Xn,t = tanh(ctlag Xn,t−tlag + εt) c3 = 5/7, c7 = 1/7, c9 = 1/7

Dataset 4 X1−n,t = ctlag Xn,t−tlag + εt c2 = 2/5, c5 = 1/5, c9 = 2/5

Dataset 5 Xn,t = cn,tlag X0,t−tlag + εt

c0,3 = 1/2, c0,4 = 1/2
c1,9 = 1
c2,2 = 1/2, c2,7 = 1/2
c3,3 = 1/10, c3,4 = 1/10, c3,8 = 4/5
c4,2 = 1/3, c4,5 = 2/9, c3,8 = 4/9

Dataset 6 Xn,t = tanh(Cn,tlag X0,t−tlag + εt)

c0,3 = 1/2, c0,4 = 1/2
c1,9 = 1
c2,2 = 1/2, c2,7 = 1/2
c3,3 = 1/10, c3,4 = 1/10, c3,8 = 4/5
c4,2 = 1/3, c4,5 = 2/9, c3,8 = 4/9

Dataset 7

X0,t = c0,1X0,t−1 + c0,5X0,t−5 + εt
X1,t = 1 + c1,2X0,t−2 + εt
X2,t = c2,1X1,t−1 + c2,4X3,t−4 + εt
X3,t = 1 + c3,4X2,t−4 + c3,1X0,t−1 + εt
X4,t = c4,4X4,t−4 + c4,1X1,t−1 + εt

c0,1 = 1/4, c0,5 = 3/4
c1,2 = −1
c2,1 = 1, c2,4 = 1
c3,4 = −2/7, c3,1 = 5/7
c4,4 = 12/22, c4,1 = 10/22

Dataset 8

if X0,t−5 > 1/2 :
X0,t = c0,1X0,t−1 + c0,3X0,t−3 + εt
X1,t = X0,t−5 + εt
X2,t = X0,t−4 + εt
X3,t = c3,1X3,t−1 + c3,4X3,t−4 + εt
else:
X0,t = c0,1X0,t−1 + c0,3X0,t−3 + εt
X1,t = X3,t−2 + εt
X2,t = X3,t−4 + εt
X3,t = c3,1X3,t−1 + c3,4X3,t−4 + εt

c0,1 = 1/2, c0,3 = 1/2
c3,1 = 1/2, c3,4 = 1/2

Dataset 9 H(σ) = −∑〈i,j〉 Ji,jσiσj − µ ∑j hjσj T=2, Tc, 2.75

Dataset 10
X0,t = rX0,t−3(1− X0,t−3)
X1,t = rX1,t−5(1− X1,t−5)
X2,t = 1/2X0,t−3 + 1/2X1,t−5

r=1.5, 2.5, 3.2, 3.55, 3.56996

Each dataset consists of N time series, and with each successive dataset, we increase
the model’s complexity. We start with a set of N constant time series (dataset 1). For datasets
2 and 3, time series are autoregressive and nonlinear autoregressive, and there is no
interaction between time series. Dataset 4 consists of two interdependent time series
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without autoregression. The next two sets consist of one (nonlinear) autoregressive time
series, and all other time series are calculated from autoregressive (dataset 5 and 6). Datasets
2 and 5 and datasets 3 and 6 have similar dynamics, and nonlinear activation is added
to see the impact of nonlinearity on model performance and interpretability. Dataset 7 is
a custom vector autoregression model. The switching time series are used for dataset 8.
Depending on the first time series’s value, the next step is generated by a different set of
rules. Differences between datasets 1–8 are plotted in Figure 2 to visualize interactions,
linearity, and complexity better.

Interaction Linearity Complex behaviour

None   

Autocorrelation   

Crosscorrelation   

Autocorrelation & 
Crosscorrelation   

   1

   2,3

   4

   5,6,7,8

Constant   

Linear   

Non-linear   

   1

   2,4,5,7,8

   3,6

None   

Mixed definition   

Switch   

   1,2,3,4,5,6

   7

   8

Figure 2. Parallel coordinates plot of multivariate time-series synthetic datasets with embedded
interactions, linearity, and complexity. Datesets are presented in detail in Table 1.

Additionally we created two datasets from statistical and mechanistic models. Logistic
map inspired model and Ising model on first-order 2D square lattice was used to generate
dataset 9 and 10. Logistic map is defined as xn+1 = rxn(1− xn), so we constructed a model
for multiple time-series in dataset 9 using r coefficient equal to:

• 1.5—time-series quickly converge to (1.5–1)/1.5
• 2.5—time-series converge to (2.5–1)/2.5 but will fluctuate a bit before
• 3.2—time-series oscillate between two values
• 3.55—time-series oscillate between more than 4 values
• 3.56996—time-series enter chaotic domain

A logistic map is of particular interest because we can have chaotic behavior generated
by a simple rule. For both Ising and logistic map inpired model, there is no need to
incorporate noise into data. All examples in other tests need noise, or they converge to a
single value. Once we enter a single value space, causality becomes trivial.

For Ising model [28,29], first-order means that spins only interact with their closest
neighbors. We use 2D squared lattice, i.e., each spin has four neighbors, and the dimension
of the lattice is 10× 10. 2D squared lattice is the simplest lattice in which we can observe
phase transition. We analyze lattice at a temperature equal to 2, Tc, and 2.75. Phase
transition should be observed at temperature Tc = 2.269 in dimensionless units.

Datasets 1–8, and 10 were generated in the same manner. For each time series in the
dataset, we sample 10 points from the normal distribution N (µ = 0, σ2 = 1), and then
these points are used as initial points for a time series. After initializing values are set,
we generate values at each time step given by a model in Table 1. Values are generated
sequentially through time. For datasets 1–8, we add Gaussian noise εt with probability f at
each time step. Value of noise is sampled from a normal distribution with mean equal to
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µnoise (for all of our experiments, the value of this parameter is equal to 0) and standard
deviation equal to σ2

noise:

εt =

{
N (µ = µnoise, σ2 = σ2

noise), p = f ,
0, p = 1− f .

To generate dataset 9, we use first-order 2D squared Ising lattice where spins only
interact with their closest neighbors, i.e., each spin has four neighbors. The dimension of
the lattice is 10 × 10. 2D squared lattice is the simplest lattice in which one can observe
the phase transition at the temperature of Tc = 2/ ln(1 +

√
2) = 2.269 (in dimensionless

units). For state at t = 0 we sampled 100 values of either: state up (value equal to
1) with probability 0.5 or state down (value equal to 0) with probability 0.5. All other
points are generated using Metropolis algorithm. For each time-series in datasets 1–10
we generated 20,000 points and discarded first 1000. Code used for the generation of all
presented datasets is available on the GitHub repository (https://github.com/hc-xai/mts-
interpretability-benchmark).

3.2. Quantitative Evaluation—Prediction Performance

Noise parameters used in datasets 1–8 are:

• µnoise = 0
• σ2

noise = 0.1
• f = 0.3
• N = 5 (except for dataset 4 N = 2, and dataset 7, 8 N = 4)

Since there is no need to incorporate noise into data for Ising model (dataset 9),
and logistic map inspired model (dataset 10), we used Tc = 2/ ln(1 +

√
2) = 2.269 (phase

transition), and r = 3.56996 (chaotic domain) respectively. All interactions in data had lag
lower than 10. We also used a window of 10 while training and testing the model. We used
the window the same as maximal lag because we do not test how models perform if some
data is missing, i.e., we evaluate models when all needed information is available. Every
time series was generated with a length of 20,000. The last 2000 points were used as a test
set. Mean squared error (MSE) was used as an error for evaluation.

In every experiment, MSE was calculated for each single time series. These errors were
averaged and reported as experiment error. Multiple experiments were run for each model:

• IMV-LSTM—3 experiments
• seq2graph—5 experiments
• TCDF—10 experiments
• DA-RNN—3 experiments

The number of experiments per model varies because of the time needed to train and
evaluate the model. From error on a single experiment, we calculate average error and
standard deviation of error. This is done on train data and test data and reported as a
model error.

3.3. Qualitative Evaluation—Interpretability

To analyze if models learn correct causality, we take a closer look at the models’ in-
terpretability. Datasets used to evaluate interpretability are 2, 4, 8, 9, and 10. These data
are used to distinguish how models learn and discover autocorrelation or crosscorrela-
tion (or any higher-order interactions). Hyperparameters are the same as those used in
quantitative analysis. Causality is taken across multiple experiments. We report both the
average value of causality and standard deviation. We want to understand what causality
the model has learned and how it corresponds with true causality with the average value.
Using standard deviation, we can understand how stable this causality is from experiment
to experiment. We look both at the temporal causality and cross time-series causality.

https://github.com/hc-xai/mts-interpretability-benchmark
https://github.com/hc-xai/mts-interpretability-benchmark
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3.4. Sensitivity Analysis—Dependence on Hyperparameters

To evaluate how models perform for different values of parameters used in data
generation (µnoise, σ2

noise, f , N), we perform what we call sensitivity analysis. We vary one
parameter while keeping other parameters fixed. Values of these other parameters are the
same as those we used in quantitative analysis Section 3.2. This analysis is done for three
parameters: σ2

noise, f , and N. Varying µnoise was not considered because time-series diverge
more often than not if we vary µnoise significantly while keeping other parameters fixed.

Every sensitivity analysis test was run on two different datasets: one which should
be considered easier and one which should be considered more challenging. For example,
dataset 7 is the more challenging dataset for noise frequency f and amount of noise σ2

noise
and for the number of time series N more challenging dataset is dataset 5. Parameters
range is specified as follows:

• Noise frequency: f —from 0 to 1 with step 0.05
• Noise amount: σ2

noise—values are: 0.01, 0.05, 0.1, 0.2, 0.5, 1, 2, 3, and 5
• Number of time series: N—from 3 to 20 with step 2

The experiment was run three times for every model except for seq2graph, where we
ran the experiment 5 times. Same as in quantitative analysis, time series was generated
with a length of 20,000, with the last 2000 points taken as the test set. MSE was used as an
error for evaluation, and it is reported in the same manner.

4. Experimental Results

In this section, we present the results of our experiments. First, we show the per-
formance of models based on their predictive power. Next, we discuss interpretability
correctness and stability given by models. After that, we test how models perform when
we change the parameters of data generation. Finally, we look at IMV-LSTM performance
on data from statistical and mechanistic models (dataset 9 and dataset 10). The code used
for experiments is written in the Python programming language and all neural network
models are implemented in PyTorch. IMV-LSTM, TCDF, and DA-RNN are initiated and
trained with default parameters available on their GitHub repositories. The authors im-
plemented the seq2graph model, as the code was not available with the original paper.
For training of seq2graph, we use Adam optimizer, with a learning rate of 0.01/3, batch
size of 128, and 5 epochs. The training and prediction for all models were performed on
Intel(R) Xeon(R) Gold 6142 CPU, with 252 GB of RAM, and an NVIDIA GeForce RTX 2080
Ti GPU.

4.1. Quantitative Analysis

In Table 2, we can see the average experiment MSE for each model. The IMV-
LSTM model is the best performing one across most datasets, followed by DA-RNN
and seq2graph models. Models follow similar error patterns across datasets. It is inter-
esting to see that the TCDF model has slight deviations from this error pattern, both in
performance (measured by average MSE) and stability (measured by the standard devia-
tion of MSE). TCDF is the only model that uses convolution layers, while all other models
use sequential layers. It is also interesting to see that IMV-LSTM is the worst performing
model on dataset 1, which should be the easiest. Furthermore, for IMV-LSTM, the average
MSE on this dataset is lower than the average MSE on dataset 8. In Table 2, we also added
the performance of Exponential Smoothing RNN (ES-RNN) model [30] on Datasets 1–8 for
comparison. ES-RNN model is the winner of the M4 competition and it uses exponential
smoothing to capture non-stationary trends and learns additional effects with the RNN.
In general, hybrid models utilize deep neural networks in two manners: to encode time-
varying parameters for non-probabilistic parametric models, and to produce parameters of
distributions used by probabilistic models. We do not further analyse ES-RNN because it
does not provide interpretability to user. Furthermore, ES-RNN has univariate input, not
multivariate, i.e., it takes single time series as input.
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Table 2. Model prediction performance on all datasets. The average experiment MSE for each model is reported as a score.
We do not report seq2graph results on dataset 9 because the model had memory problems. Dataset 9 consists of 100 series
in our experiment, and seq2graph cannot model that many time series. ES-RNN model (the winner of the M4 competition)
is added for comparison and evaluated only on datasets 1–8. ES-RNN is only used in quantitative analysis since it does not
provide interpretability.

Dataset DA-RNN IMV-LSTM seq2graph TCDF ES-RNN

1 0.00293 ± 1×10−5 0.02905 ± 9×10−7 0.00303 ± 9×10−5 0.0033 ± 0.0002 0.003731 ± 1×10−6

2 0.00150 ± 6×10−5 0.0018 ± 0.0002 0.011 ± 0.007 0.02 ± 0.01 0.001496 ± 9×10−6

3 0.00013 ± 1×10−5 0.000125 ± 6×10−6 0.00001 ± 2×10−5 0.0006 ± 0.0004 0.000137 ± 1×10−6

4 0.000244 ± 2×10−6 0.000238 ± 5×10−6 0.00032 ± 6×10−6 0.002 ± 0.002 0.00045 ± 1×10−4

5 0.00229 ± 7×10−5 0.00138 ± 3×10−5 0.0020 ± 0.0001 0.005 ± 0.003 0.017833 ± 1×10−6

6 0.00210 ± 1×10−5 0.00143 ± 6×10−5 0.00213 ± 0.0001 0.005 ± 0.002 0.018541 ± 1×10−6

7 0.009 ± 0.001 0.0051 ± 0.0006 0.008 ± 0.001 0.021 ± 0.007 0.0120 ± 0.0002
8 0.286 ± 0.006 0.258 ± 0.002 0.18 ± 0.05 0.3 ± 0.1 0.250 ± 0.001
9 0.3353 ± 0.0005 0.2688 ± 0.0001 - 0.348 ± 0.007 -

10 0.002 ± 0.001 (9 ± 1)×10−5 0.006 ± 0.008 0.03 ± 0.01 -

In Figure 3, we can see the standard deviation of experiment error divided by average
experiment error. We can see that the IMV-LSTM model is the best performing model with
the lowest variance. TCDF is a model with the highest variance across all datasets. It is
interesting to see that the constant time series has a low standard deviation, which means
that models constantly perform worse than other on datasets (excluding dataset 7 and 8).

1 2 3 4 5 6 7 8 9 10
Dataset

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(M
SE

)/
(M

SE
)

DA-RNN
IMV-LSTM
TCDF
Seq2Graph

Figure 3. Stability of prediction performance by dataset. On y-axis we plot standard deviation of MSE
divided by mean value of MSE. The x-axis corresponds to the index of dataset. As we can see TCDF
model is the model with most unstable performance across most datasets, with seq2graph having
worse performance on datasets 2 and 10. IMV-LSTM is the model with most stable performance.

4.2. Qualitative Analysis

Interpretability given by seq2graph, TCDF, DA-RNN, and LSTM models will be
discussed in this section.

4.2.1. seq2graph

In the left panel in Figure 4, we show expected values of β coefficients for dataset 4.
Rows are indices of the target series that we are predicting, while columns represent the
impact of series i on the target series (as in all figures that show β coefficients). As dataset 4
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consists of two time-series, where first is generated by second and vice versa, we expected
to see high values on antidiagonal and low values on the main diagonal. In the right panel
in Figure 4, we can see mean β values given by seq2graph on dataset 4. Seq2graph is biased
towards the first time series in the dataset, which is seen across most datasets.
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Figure 4. Ground truth (left panel) and mean β values (right panel) from seq2graphs model for
dataset 4. The y-axis corresponds to the target series index, and the x-axis corresponds to the index
of series whose impact on selected target series we plot. This dataset consists of two time-series that
are generated from each other without autoregression included. This is the reason we expect high
values on antidiagonal. β coefficients of seq2graph differ from what we expect, and they are biased
towards time-series with index 0.

We believe this problem occurs because of artificial transformation from feature vector
to time series vector before Decoder RNN part of the model. The feature vector from each
time series is concatenated into one sequence, and the order of the time series is introduced
as a time dimension.

In Figure 5 we plot mean α coefficients for dataset 2. Same as the plot for β coefficients,
the y-axis shows the target series index, while the x-axis shows the time lag. The color
shows the value of α. We would expect to see high values for lags 3 and 7, for all time-series,
and low values for all other lags. As we can see, the seq2graph model is biased towards the
beginning of the window. Bias towards the beginning or towards the end of the window is
seen across all datasets. We suspect that this bias comes from using LSTM cells.

0 1 2 3 4 5 6 7 8 9

0
1
2
3
4 0.2

0.4

0.6

Figure 5. The mean values of α coefficients of seq2graph model for dataset 2. The y-axis corresponds
to the index of target series and x-axis corresponds to the time lag whose impact on selected target
series we plot. We can see seq2graph bias towards beginning of the window.

Furthermore, the interpretability we get from the seq2graph model does not have
high confidence. To show this, we plot mean β coefficients for dataset 2. For this dataset,
we used N = 5. It consists of only autoregressive time-series, i.e., there is no interaction
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between time-series, so we expect to have high values on the main diagonal, and all other
values should be close to zero.

The left panel in Figure 6 shows mean β values for dataset 2 across three different
experiments. The maximum value is 0.22, and the minimum value is 0.18. In the right panel
in Figure 6, we can see the standard deviation of the same dataset’s β values. The mini-
mum value is 0.04. With uniform mean β values, high standard deviation suggests that
the seq2graph model’s interpretability is highly uncertain, even though the model has
satisfying quantitative analysis scores. It is important to notice that if there were no in-
terpretability, i.e., all attention values are equal, we would see a beta value of 0.2 (as they
should sum to 1 for single target time series). When you take in consideration that mean β
values are in range [0.18, 0.22] with standard deviation of ∼0.05, statistically, β values are
not different from value of 0.2.
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Figure 6. Mean (left) and standard deviation (right) of β coefficients from seq2graphs model for
dataset 2. The y-axis corresponds to the target series index, and the x-axis corresponds to the index
of series whose impact on selected target series we plot. In the left panel, we plot the mean values
of β coefficients of seq2graph model for dataset 2. Similar to the analysis on Figure 4, we can see
that seq2graph is biased to one time series. In this case, it is time series with index 2 and a lesser
extent time series with index 0 (i.e., beginning of the window). We plot the standard deviation of β

coefficients in the right panel, averaged across all experiments. High standard deviation with almost
uniform mean values suggests low confidence in given interpretability.

4.2.2. TCDF

As mentioned in Section 2.3, TCDF applies semi-binarization to attention outputs to
achieve hard attention. We look at these “hard” outputs in the analysis. In the left panel in
Figure 7 we can see the heatmap of percentage of retrieved causal relationships given by
the TCDF model on dataset 2. TCDF gives correct interpretability, but it does not find it in
every experiment. This is especially seen on the last time series in dataset 2, where only in
10% of cases model found any causality. However, when TDCF does recognize causality, it
is correct. The potential reason for this could be that it is necessary to decide the threshold
of importance for the model, which could vary from dataset to dataset highly. Furthermore,
it is a bit impractical to have to choose this threshold. It either means that one needs to run
the model multiple times, which introduces human bias and is prone to overfitting, or one
has to choose it beforehand, which introduces high uncertainty to interpretability. In the
right panel in Figure 7 we plot heatmap of percentage of retrieved causal relationships for
dataset 4. Here we find interesting behavior of TCDF. On dataset 4, if TCDF finds causality,
it says that single series is generating both series in the dataset. In 70% of experiments, it is
time series with index 0 and in 30% experiments, it is a time series with index 1.
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Figure 7. Percentage of TCDF retrieved causality association within series in dataset 2 and 4. On the
y-axis, we plot the target time series. The x-axis corresponds to the index of the series whose impact
on the selected target series we count. Values in a single row do not need to sum to 1 for TCDF
because there can be a case where TCDF did not find any causality for the targeted time series. These
are not attention coefficients. In the left panel, we plot the percentage of experiments that TCDF
did find causality for dataset 2. We can see that interpretability is correct for this dataset. However,
for the last time series, it found causality in a small percentage of experiments. It is crucial to notice
that TCDF never found incorrect causality in this dataset. In the right panel, we plot the percentage
of experiments that TCDF did find causality for dataset 4. For this dataset, TCDF always says that a
single time series is generating both of them. In the majority of experiments, it was time series with
index 0.

Finally, if we look at heatmap of percentage of retrieved causal relationships for dataset
8, which is shown in Figure 8, we can see both problems with TCDF interpretability. First,
for time series with index 2 and 3, the interpretation is that they are generated by time
series with index 2 and 3, which is wrong. Either the first or last time series generate these
time series. Second, causality is missing for the last time series in 60% of experiments.

When we look at temporal causality, given by TCDF, we see that it is wrong in almost
all experiments and datasets. There are usually multiple temporal casualties in our datasets,
but TCDF usually gives only one, and that one is almost always not correct.
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Figure 8. Percentage of TCDF retrieved causality association within series in dataset 8. On y-axis
we plot target time series. The x-axis corresponds to the index of series whose impact on selected
target series we count. Values in single row do not need to sum to 1 for TCDF, because there can
be an experiment where TCDF did not find any causality for targeted time series. In this figure we
plot interpretability given by TCDF on dataset 8. We can see that TCDF gives correct interpretability
for time series with index 0 and 3, whose behaviour is autoregressive. For time series with index
1 and 2, this model gives wrong interpretability. Furthermore, even though model gives correct
interpretability for time series with index 3, it is only found in 40% of experiments.
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4.2.3. IMV-LSTM

The only model that shows a reasonable interpretation of most datasets is IMV-
LSTM. In Figure 9 we plot mean values of β coefficients for dataset 4 (left) and dataset 2
(right). If we look at mean β values for dataset 4, we can see that IMV-LSTM gives correct
interpretability. However, confidence is still relatively low.
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Figure 9. The mean values of β coefficients from IMV-LSTM model for dataset 4 and dataset 2.
The y-axis corresponds to the target series index, and the x-axis corresponds to the index of series
whose impact on selected target series we plot. left) In the left panel, we plot mean β coefficients of
IMV-LSTM model for dataset 4. We can see that IMV-LSTM model gives correct interpretability for
this dataset, but with low confidence. In the right panel, we plot mean β coefficients of IMV-LSTM
for dataset 2. Again, IMV-LSTM model gives correct interpretability, but with high confidence on
this dataset.

A comparable result can be seen on dataset 2, shown on the right panel in Figure 9,
correct interpretability, but with high confidence. For simple datasets, IMV-LSTM gives
correct interpretability for causality between different time series.
If we look at mean α coefficients of IMV-LSTM for dataset 2, time-series with index 2,
shown in Figure 10, we can see that they are biased towards the end of the window. Again,
bias towards the beginning of the window or end of the window is seen across all datasets.
LSTM layer in the model is the probable cause. It is also important to note that α values
usually have dynamic (differ from a uniform distribution) only in time series which have
high β values.
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Figure 10. The mean values of α coefficients of IMV-LSTM model for dataset 2. The y-axis corresponds
to the target series’s index, and the x-axis corresponds to the time lag whose impact on the selected
target series we plot. We can see that IMV-LSTM is also biased towards the end of the window.
However, it is crucial to notice that for time series which do not impact target series, α coefficients
are uniform.
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However, for more complex datasets, IMV-LSTM model fails to give correct inter-
pretability. In Figure 11 we show mean β values for dataset 8. For the first and last time
series, we have correct interpretability.
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Figure 11. The mean values of β coefficients from IMV-LSTM model for dataset 8. The y axis
corresponds to the index of target series and x axis corresponds to the index of series whose impact
on selected target series we plot. We can see that IMV-LSTM gives correct interpretability for time
series with index 0 and 3, whose behaviour is autoregressive. For time series with index 1 and 2, this
model gives wrong interpretability.

For the second and third time series (index 1 and 2), interpretability is wrong. Different
rules are used to generate these time series, based on the value of time series 0. This dataset
is possibly too complex for model to learn correct interpretability, so it defaults to a rather
autoregressive causality. This behavior is seen with TCDF also.

4.2.4. DA-RNN

Attention coefficients given by DA-RNN cannot be interpreted without additional
transformations (this is true for both input attention, which models crosscorrelation, and for
temporal attention). Aggregating input attention gives us a value that corresponds to β
coefficients. Note that the DA-RNN model does not have interpretability connected to
autocorrelations. It only models crosscorrelations using attention coefficients. Aggregating
temporal attention gives us values that correspond to α coefficients. However, these α
coefficients can not be mapped to the input time series. They can only be mapped to encoder
outputs. DA-RNN uses LSTM as an encoder layer, making it impossible to map temporal
attention to specific input time series, producing aggregated temporal interpretability.

In the left panel in Figure 12, we plot ground truth for dataset 5. For this dataset, one
would expect high values in the first columns, as time series with index 0 is the one that
generates all other time series. In the right panel, in Figure 12, we plot β coefficients for
DA-RNN for dataset 5. Values are missing on the main diagonal as DA-RNN does not
model autocorrelation with attention. As we can see, DA-RNN does not produce expected
values. Values are highly uniform, with a slight bias towards the first time series. We cannot
evaluate interpretability on datasets 2 and 3 because the time series in these datasets are
autoregressive. Furthermore, it is not meaningful to analyze interpretability on dataset 4,
as DA-RNN gives only one attention coefficient (attention coefficient need to sum to 1).
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Figure 12. Ground truth (left panel) and aggregated β values (right panel) from the DA-RNN model
for dataset 5. The y-axis corresponds to the target series index, and the x-axis corresponds to the
index of series whose impact on selected target series we plot. This dataset consists of N = 5 time
series that are generated from time series with index 0. This is the reason we expect high values in
the first column. β coefficients of DA-RNN differ from what we expect. Furthermore, the distribution
of these coefficients is highly uniform.

In Figure 13, we plot α coefficients for dataset 7 for time series with index 0. Here,
the y-axis does not correspond to the input time series index but to the index of feature in
Encoder output. DA-RNN has the same problem as IMV-LSTM and seq2graph, i.e., models
that use sequential layers. They are either biased towards the beginning or end of the
window. We suspect this behavior originates from these sequential layers.
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Figure 13. The mean values of α coefficients of the DA-RNN model for dataset 7 for time series with
index 0. The y-axis corresponds to the index of feature in Encoder output, and the x-axis corresponds
to the time lag whose impact on selected target series we plot. We can see that DA-RNN is biased
towards the end of the window. The same behavior is seen with seq2graph and IMV-LSTM.

4.3. Sensitivity Analysis

In Section 4.1, we analyzed the performance of the models, and here we are only inter-
ested in the effect of hyperparameters (that generate time series) on models performance,
i.e., we will look at average error divided by maximum model error.

4.3.1. Dependency on Noise Frequency

In the left panel in Figure 14 we can see average error divided by maximum model
error for four models depending on noise frequency f for dataset 2. For all models, error
increases as the control parameter increases. We can see somewhat of phase transition
at f = 0.4. After this point, performance for all models oscillates heavily with the noise
frequency parameter. All models show a similar pattern, and there is a slight deviation for
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the TCDF model. Its performance deteriorates a bit quicker than other models. At f = 0.3,
it has 80% of maximum model error, while IMV-LSTM achieves 80% maximum loss at
almost a f = 0.9. Similar transition behavior is also seen on dataset 7, where we have a
phase transition around f = 0.6, as shown in the right panel in Figure 14. On this dataset,
TCDF behaves in the same way as other models.
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Figure 14. In the left panel, we can see how the maximum error percentage for specific model changes with f for dataset 2.
We observe a change in behavior at around f = 0.4. In the right panel, we can see results for dataset 7. Here we see a change
in behavior around f = 0.6. All models show similar behavior with a slight deviation from the TCDF model on dataset 2.

4.3.2. Dependency on Noise Amplitude

Similar effects can also be seen in experiments where we vary the noise amount σ2
noise.

In Figure 15, we can see the average model error in percentage of maximum model error,
divided by σ2

noise, for the dataset 2. It is important to normalize the percentage error by
noise amplitude in the experiment because of how we generated data. In most cases,
σ2

noise is the parameter that defines the order of magnitude for time series.As we can see,
in Figure 15 models have an almost linear dependence on σ2

noise, with the TCDF model
having nearly perfect linear dependence. The same effect is seen in dataset 7. The only
difference is that TCDF has a curve more similar to other models. Linear dependency
between normalized error and σ2

noise is interesting because it suggests that noise amplitude
does not just increase error in points where we add noise but makes it harder for the model
to learn correct behavior overall.
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Figure 15. Maximum error percentage divided by σ2
noise vs. σ2

noise for dataset 2. We see that models
have an almost linear dependency on σ2

noise, with TCDF achieving almost perfect linearity.
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4.3.3. Dependency on Number of Time Series

Finally, we look at how these models perform when we vary the number of time series
N they model. We see somewhat similar performance as in the noise frequency experiment.
In Figure 16 we plot the average model error percentage for the dataset 2 for different
values of N. The curve for seq2graph model only goes to N = 13 time series. Reason for
this is that seq2graph model had memory problems when we surpassed N = 13 time series.
All models have similar behavior, and we see an abrupt change at N = 10.
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Figure 16. Percentage of maximum model error vs. number of time series N for dataset 2. We can
see a significant increase in error percentage at N = 10. Notice that seq2graph only goes to N = 13.
For higher N, seq2graph model had memory problems.

The performance of models on dataset 5 is different from what we saw with the
dataset 2, as shown in Figure 17. The number of time series has almost no effect on models,
besides outlier at N = 5. Furthermore, all models have almost identical behavior. We
suspect that this effect occurs because time series are entirely driven by time series with
an index 0. Models only need to understand that time series 0 is a generator and find
the correct mapping. On dataset 2, which is N independent autoregressive time series,
the model needs to understand that every time series is autoregressive and then find the
correct mapping.
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Figure 17. Percentage of maximum model error vs. number of time series N for dataset 5. For this
dataset percentage of the maximal model error is almost independent of N, and this behavior is
almost identical for all models.
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4.4. Simulated Data from Statistical and Mechanistic Models

Since IMV-LSTM is the only model (from the ones that we investigated) that shows cor-
rect interpretation for most datasets, we will further investigate IMV-LSTM interpretability
on time series generated from the Ising model and Logistic map inspired model.

4.4.1. Ising Model

To analyze the performance of IMV-LSTM at Ising dataset, we ran ten experiments.
If we look at the left panel in Figure 18, showing mean β coefficients for IMV-LSTM, we
can see that model discovered correct interactions. We can confirm this by comparing
results with results of [31]. In this paper, the authors used Restricted Boltzmann Machines
(RBM) to extract correlations between spins. They look at the matrix WWT , where W is
the weight matrix that maps the visible layer to the hidden layer. Authors argue that the
product of weight matrices WWT must reflect correlations between spin variables of the
input configurations. Their result for WWT is practically identical to the result shown in
Figure 18.

It is necessary to stress that IMV-LSTM for Ising was trained differently from RBM.
RBM has two fully connected layers, one visible and one hidden, and it is trained with
standard RBM loss. IMV-LSTM is trained to predict each spin’s direction in the next
time step, with MSE loss. Furthermore, the figure generated by IMV-LSTM is somewhat
more blur than the one produced by RMB. We attribute this blurriness to LSTM layers
and attention mechanism, which are known to dilute importance (the opposite of a fully
connected layer that is not considered a spatial part of time series). If we compare β
coefficients on temperature before and after phase transition, we can see that the figure
becomes even more blurred on a lower temperature (shown in the right panel in Figure 18).
This is expected behavior because spins become frozen at a lower temperature, i.e., they do
not change state over many time steps, causing long-range correlations.
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Figure 18. The y axis corresponds to the index of target series and x axis corresponds to the index of series whose impact
on selected target series we plot. On left image we plot mean β values for dataset 9 for T = 2.75. Model shows that first
neighbours have highest impact on targeted spin with diminishing impact for higher order neighbours. Spin correlation
given by RMB approach. We can see high similarity between these values and values given by IMV-LSTM. Same graph as
left, but with T = 2. At temperatures lower than critical, spins become frozen and we have long-range correlations. This
long-range correlation is what makes this graph more blurry.

For most spin values in dataset 9, mean α values (Figure 19) are near uniform with a
slight increase or decrease towards the edge of the window. However, spins that impact
the next state of spin that we analyze have an importance coefficient with a higher range,
i.e., the model prefers specific time steps for these spins. Here, preferability is correctly
assessed; the model gives the highest importance to the last time step, which is the lag
we used to generate the dataset. The highest importance score is seen in the spin that
we analyze.

This is also one of the more interesting properties of IMV-LSTM. Even from α coef-
ficients, one can see which time series impact output. This helps us understand how the
model makes a prediction and helps us understand how the model is trained, which is a
step towards more explainable neural networks.
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Figure 19. IMV-LSTM mean α coefficients for spin #40. The x-axis corresponds to the time lag, and the
y-axis corresponds to the index of spin. We only show interaction with selected spins, as there are 100
of them. As we can see, spins that interact with our selected spin have the most diverse values. Spins
that do not interact with spin #40, for instance, spin #20 or spin #37, have almost uniform values
across all time stamps.

4.4.2. Logistic Map Inspred Model

Rather interesting results can be seen on Logistic map data, i.e., dataset 10. The impor-
tance given by the model is becoming more and more correct when we approach chaotic
behavior (Figure 20). One of the reasons for this could be that, while we are far from
chaotic behavior, that is, when data oscillate between two values, there is no reason for
the model to learn correct interpretability. The model can learn anything and still make
correct predictions. This would be a somewhat underutilization of model capabilities.
Furthermore, when the model oscillates between a few values, there is no fundamental
reason that learning to copy only this value is wrong interpretability. Similar phenomena
are seen on the Ising dataset, where importance coefficients are a lot more dispersed at
lower temperatures caused by frozen spins. Frozen spins mean that spins stay in the same
state for most of the time and only change state on rare occasions. The model learns to map
the last state and does not bother to learn true causality.

Once we enter chaotic behavior, we can see that we have correct interpretability for
the logistic map time series, i.e., time series with indexes 1 and 2. However, for the third
time series, which is just the average of the first 2, we have the wrong interpretation. It is
essential to state that IMV-LSTM has great performance on this dataset, qualitative wise,
i.e., mean squared error is extremely small. For the low r parameter, it is practically zero.
This means that IMV-LSTM can create correct predictions without fully transforming its
weights into something interpretable to humans.
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Figure 20. The mean values of β coefficients from IMV-LSTM model for dataset 10 for 3 different values of r: 1.5, 3.55
and 3.56996. The y-axis corresponds to the index of target series and x-axis corresponds to the index of series whose
impact on selected target series we plot. left) In the left panel we plot mean values of β coefficients for r = 1.5. As we
can see, the interpretability is completely wrong, but in this regime, logistic map converges to single value. In the middle
panel we plot mean values of β coefficients for r = 3.55. As we can see, the interpretability is much closer to expected
behaviour. In this regime, logistic map oscillates between several different values, so it is beneficial to model to learn correct
interpretability. In the right panel we plot mean values of β coefficients for r = 3.56996. As we can see, the interpretability is
almost correct with high confidence.

5. Conclusions and Outlook

This paper analyzed four different neural network architectures with inherent inter-
pretability (or causal neural networks) for multi-time series analysis: seq2graph, IMV-
LSTM, TCDF, and DA-RNN. An analysis of the confidence and correctness of networks’
interpretability, not just prediction performance, was the central point of this paper. We
utilize synthetic datasets with increasing complexity levels of interaction between multiple
time series as a benchmark for validating models’ interpretability.

For instance, dataset 2, a set of N independent autoregressive time series, showed
us that seq2graph could not correctly interpret the data generating process. Dataset 4 is
the first dataset that incorporated interaction between different time series. It showed
us that the TCDF model could not interpret this interaction between time series even
though it can model auto-causality easily. Dataset 8 showed us that IMV-LSTM while
giving correct interpretability for all other datasets, breaks when we incorporate switch-like
behavior to our data. TCDF and seq2graph did not produce correct interpretability for most
datasets (TCDF only gave correct interpretability for dataset 2). Also, seq2graph had low
confidence in given interpretability. The model that produced correct interpretability for
most of the datasets was IMV-LSTM. Interestingly, the interpretability given by TCDF and
IMV-LSTM on dataset 8 is almost identical. When we looked at temporal interpretability,
both seq2graph and IMV-LSTM, which are RNN based neural networks, were biased to
either beginning or the end of the window. We assume this is a consequence of the usage
of RNN layers.

Evaluated attention-based models have satisfying MSE performance on these datasets,
even though they do not give correct interpretability. Models can learn to predict without
understanding the underlying data generating process. Prediction performance, measured
by MSE, ranked IMV-LSTM as the best performing model, followed closely by the DA-RNN
and seq2graph model. The worst performing model was TCDF. Stability of performance,
measured by the variance of MSE, showed that TCDF had the largest variance, while IMV-
LSTM had the lowest, which positioned the IMV-LSTM model as both the best-performing
one and the most stable one.

Datasets 9 and 10 (statistical and mechanistic model, respectfully) showed us interest-
ing behavior. The increasing complexity of the underlying process (increasing probability
of spin switch) for dataset 9 or going from oscillating between two values in time series
to a more chaotic one for dataset 10 shows an increase in interpretability’s correctness.
Interpretability given by IMV-LSTM on first-order 2D squared Ising lattice was correct,
which we can confirm by comparing it with RBM’s interpretability. On the logistic map
dataset, we saw interesting behavior of interpretability coefficients. As we approach the
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more chaotic regime of the logistic map, interpretability is becoming more and more correct.
This brings up interesting phenomena of interpretability. If a dataset is too easy to learn,
there is no point for a model to produce correct interpretability. The model can learn how
to make a correct prediction without learning the mechanics which generated the data.
This is also seen on the Ising dataset with lower temperatures, where spins stay in the same
state for a longer time. For more complex problems, it is beneficial for a neural network to
learn the underlying process.

Experimental settings based on artificially created transparent benchmark datasets
provided us with insightful weaknesses in current state-of-the-art, attention-based architec-
tures’ performance and behavior. Motivated by these insights, future work will focus on
designing and experimenting with novel neural architectures that can provide more stable
and faithful interpretability. However, the limitation of our study is that our experimental
settings are mainly focused on multivariate time series single output forecasting tasks
and specific well-known generative processes applicable to some real-world domains. We
plan to extend our experimental setting with other multivariate prediction tasks, including
multi-input/multi-output classification and forecasting settings from various domains that
include real-world datasets.
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