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Abstract: The reduction of high-dimensional systems to effective models on a smaller set of variables
is an essential task in many areas of science. For stochastic dynamics governed by diffusion processes,
a general procedure to find effective equations is the conditioning approach. In this paper, we are
interested in the spectrum of the generator of the resulting effective dynamics, and how it compares to
the spectrum of the full generator. We prove a new relative error bound in terms of the eigenfunction
approximation error for reversible systems. We also present numerical examples indicating that,
if Kramers–Moyal (KM) type approximations are used to compute the spectrum of the reduced
generator, it seems largely insensitive to the time window used for the KM estimators. We analyze
the implications of these observations for systems driven by underdamped Langevin dynamics, and
show how meaningful effective dynamics can be defined in this setting.

Keywords: stochastic differential equations; coarse graining; infinitesimal generator; spectral analy-
sis; extended dynamic mode decomposition; Kramers–Moyal formulae; Langevin dynamics

1. Introduction

The description of high-dimensional dynamical systems by a reduced set of variables,
usually referred to as coarse graining or model reduction, is of tremendous importance
across many different fields of research. Examples range from finance to climate modeling
to molecular biology. From the huge body of literature on the subject, we mention in
particular the Mori–Zwanzig formalism [1–5], as well as the framework of averaging and
homogenization for systems with explicit multiscale structure [6,7]. Within the field of
molecular physics, references [8–13] present important contributions to this line of research.
Here, we focus on model reduction for stochastic differential equations (SDEs), and follow
another standard approach, which is based on conditioning along level sets of the coarse
graining map [14–16]. For a detailed theoretical analysis of the method in the context of
SDEs, please see [15,17–20].

For a given coarse grained description of a system, a fundamental question to address
is the quality of approximation of the full system by means of the reduced system, as
measured by a suitable metric (which usually depends on the problem at hand). In many
cases, the approximation of spectral properties of the system’s generator is useful in this
context. The generator and its associated semigroup, also called Koopman semigroup,
are used to describe the time evolution of expectation values of observable functions. For
metastable systems, the leading generator eigenpairs provide information on slow modes
in the dynamical system. Spectral approximation results for the conditioning approach
have been obtained in [17,18].
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Another important problem to consider is the analysis and parameter estimation of
coarse grained models based on simulation data of the full system. In recent years, a
variety of methods has been developed to learn models for the Koopman semigroup off
simulation data, see [21–27] and the references therein. In Ref. [28], some of the authors
of the present study presented a conceptually simple framework for the data-driven
approximation of the Koopman generator, called gEDMD. This framework can also be
used to identify and analyze coarse grained models within the context of the conditioning
approach. The gEDMD method requires knowledge of the full system parameters. If these
parameters are unknown, they need to be replaced by a suitable approximation, such as
Kramers–Moyal (KM) formulae. These are based on averages of finite differences at a finite
offset (time window). The quality of this approximation as a function of the offset will be
addressed in this paper. Even though we focus on KM estimators here, let us mention that
a multitude of more advanced methods for parameter estimation of stochastic dynamics
are available, please see Ref. [29] for an overview. Spectral methods have been considered
in [30,31], while particular attention to the choice of time window has been paid in [7,32].
The Kramers–Moyal formulae being among the simplest estimators, we take them as the
starting point for our study.

The third focus of this study is model reduction for systems driven by underdamped
Langevin dynamics, which is a widely used model, especially in molecular and biological
physics. As the momentum variables of these dynamics often play just an auxiliary role,
an interesting question to address is how to define a reduced dynamics that only involves
the position state variables. As the conditioning approach does not provide meaningful
answers in this case, finding meaningful effective equations remains an open problem in
this setting [33–35].

In this paper, we report theoretical and numerical results on the issues raised above.
The contributions of this study are as follows:

• Concerning the first problem, we prove a new relative error bound for the approx-
imation of generator eigenvalues by the coarse grained generator, if the dynamics
is reversible (Proposition 2). This bound shows that a small projection error of the
full eigenfunctions with respect to the energy norm is required for a small eigenvalue
error. We also derive conditions to ensure that the spectrum of the reduced generator
is discrete in the first place (Proposition 1).

• Concerning the second issue, we present numerical examples indicating that, if KM
estimators are used within the gEDMD algorithm for reversible systems, on a good
set of reaction coordinates, then the resulting eigenvalue estimates seem to be fairly
insensitive to the offset used for the KM estimators (Sections 4.2 and 4.3, Conjecture
1).

• Thirdly, we suggest that, if the observations of the second part can be confirmed
theoretically, it is possible to use KM estimators at large offsets to define meaningful
effective equations for underdamped dynamics (Corollary 1). The reason is that the
statistics of the underdamped process approach those of an overdamped process
after a suitable re-scaling of time. We provide successful illustrations of this idea
using a toy example and molecular dynamics simulation data of the alanine dipeptide
(Sections 5.2 and 5.3).

The rest of this paper is organized as follows: in Section 2, we recap what is needed of
the theory of stochastic differential equations, their generators, the conditioning approach,
and the data-driven approximation of Koopman generators. In Section 3, we present
and illustrate our spectral approximation result. The technical details of the proofs are
deferred to Section 6. In Section 4, we present numerical results on the spectrum of gEDMD
models based on KM estimators for reversible systems, and conjecture that the observed
behaviour can be expected in general. We analyze the implications of this hypothesis for
systems driven by underdamped Langevin dynamics in Section 5, and provide additional
numerical results for this setting. Conclusions and the outlook follow in Section 7.
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2. Concepts
2.1. SDEs and Generators

In this paper, we consider a reversible Markov process Xt attaining values in a domain
Ω ⊂ Rd. The process is governed by the stochastic differential equation

dXt = b(Xt)dt + σ(Xt)dBt. (1)

Here, Bt denotes d-dimensional Brownian motion, the function b : Rd 7→ Rd is called the
drift, and σ : Rd → Rd×d is called the diffusion. We use the notation a(x) = σ(x)σ(x)T

for the covariance matrix of the diffusion. A standard example for dynamics of type
Equation (1) are the overdamped Langevin dynamics

dXt = −
1
γ
∇V(Xt)dt +

√
2β−1γ−1dBt, (2)

where V : Ω → R is a scalar function called the potential, while β, γ are constants corre-
sponding to the inverse temperature and the friction in physics applications.

We assume that Xt is ergodic with respect to a unique invariant measure µ with
Boltzmann density ρ ∝ exp(−F(x)), where F is called a generalized potential. In addition,
we assume the diffusion to satisfy a so-called uniform ellipticity condition

0 < η1‖v‖2 ≤ vTa(x)v ≤ η2‖v‖2, (3)

for constants η1, η2 > 0. The invariant measure µ gives rise to the Hilbert space L2
µ of all

square integrable functions with respect to that measure. We can think of these functions
as physical observables. The inner product on L2

µ is given by

〈ψ, ψ̃〉µ =
∫

Ω
ψ(x)ψ̃(x)dµ(x) =

∫
Ω

ψ(x)ψ̃(x)ρ(x)dx. (4)

For a fixed time window t ≥ 0, and an observable function ψ ∈ L2
µ, the Koopman operator

Kt describes the evolution of the expectation value of ψ by means of the dynamics (1):

Ktψ(x) = Ex[ψ(Xt)],

where Ex[·] denotes expectation given that the dynamics starts deterministically at x. The
infinitesimal generator L of the Markov process Xt is then defined as a formal time-derivative
of this expectation value:

Lψ(x) =
d
dt
Ex[ψ(Xt)]|t=0. (5)

It follows that, by describing the system in terms of the expectations Ktψ, the nonlinear
dynamical system (1) turns into a linear, but infinite-dimensional system with differen-
tial equation

d
dt
Ktψ = LKtψ.

For this reason, the Koopman operators Kt and their generator L have been studied
extensively in past decades. A technical subtlety arising from this infinite-dimensional
description is that the time-derivative (5) is not well-defined for all ψ ∈ L2

µ. For smooth and
compactly supported functions, however, stochastic calculus shows that L is well-defined,
and acts as a second order differential operator:

Lψ(x) =
d

∑
i=1

bi(x)
∂ψ(x)

∂xi
+

1
2

d

∑
i,j=1

aij(x)
∂2ψ(x)
∂xi∂xj

(6)

= b(x) · ∇ψ(x) +
1
2

a(x) : ∇2ψ(x). (7)
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Here, ∇2ψ is the Hessian matrix of the function ψ, and the colon : denotes the Frobenius
inner product between matrices, i.e., A:B = ∑i,j AijBij. For the same class of functions,
the generator is symmetric with respect to the inner product (4), and satisfies the impor-
tant equality

〈Lψ, ψ̃〉µ = −1
2

∫
Ω

a(x)∇ψ(x) · ∇ψ̃(x)dµ(x), (8)

which requires only first order derivatives. The negative of the right-hand side of Equation (8)
is called the quadratic form

Q(ψ, ψ̃) :=
1
2

∫
Ω

a(x)∇ψ(x) · ∇ψ̃(x)dµ(x). (9)

Tools from functional analysis [36,37] can be used to define (9) on a larger set of functions
Vµ, usually called the form domain. Because of (3), Q defines an inner product on the form
domain, and Vµ in fact turns into a Hilbert space with energy norm

‖ · ‖Q = Q(·, ·)1/2.

The reason to introduce all these concepts is that the energy norm will serve as error
measure for the main results of this study.

2.2. Spectral Decomposition

We are particularly interested in eigenvalues and eigenfunctions of the (negative)
generator −L. Because of (8), the spectrum of −L must be part of the non-negative real
axis. We will further assume that there is a complete set of eigenfunctions (i.e., they form
a basis of L2

µ) corresponding to discrete eigenvalues. In other words, there are functions
ψ0, ψ1, ψ2, . . . and non-negative numbers κ0 < κ1 < κ2 < . . . such that

−Lψi = κiψi. (10)

Conditions for the existence of a completely discrete spectrum are discussed in Section 6.
The assumption that all eigenvalues κi are distinct is for simplicity only, especially with
regard to the analysis in Section 6. It follows again from (8) that κ0 = 0, and ψ0 ≡ 1 is the
constant function.

The physical significance of these eigenpairs is that, by [38] (Ch 2, Thm 2.4.), the
eigenfunctions ψi are also eigenfunctions of the Koopman operators Kt for all t ≥ 0,
corresponding to eigenvalues

λi(t) = e−κit. (11)

Due to the exponential decay of all λi(t), it is common to refer to the κi as rates, and to
their reciprocals as implied timescales

ti =
1
κi

. (12)

In many applications, including molecular dynamics, we expect to find a number K of
dominant rates 0 < κ1 < . . . < κK � κK+1 separated from all others. These dominant
spectral components are of particular interest as they are related to metastability, that is,
the existence of long-lived macrostates such that transitions between those states are rare
events [22,39,40].

2.3. Dimensionality Reduction

The main topic of this study is the effect of dimensionality reduction on the generator
eigenvalues κi introduced above. Following the notation of Refs. [15,17,18], we consider
a smooth coarse graining function ξ, which maps the state space Ω ⊂ Rd onto a lower-
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dimensional space Ω̂ ⊂ Rm, where m ≤ d. For a position z ∈ Ω̂ in reduced space, we
denote the marginal probability distribution of the invariant measure µ by ν, and assume it
possesses a corresponding density function ϑ(z). The conditional expectation operator

Pψ(z) = Eµ[ψ(x) | ξ(x) = z]

computes the stationary average of a function ψ defined on Ω, conditional to ξ attaining
a fixed value z ∈ Ω̂. Using the Dirac δ-function, we can informally write the above
expression as

Pψ(z) =
1

ϑ(z)

∫
Ω

ψ(x)δ(ξ(x)− z)dµ(x).

Consider the space L2
ν of physical observables on reduced space Ω̂:

L2
ν = {ϕ : Ω̂→ R,

∫
Ω̂

ϕ2(z)dν(z) < ∞}.

By the concatenation ϕ ◦ ξ, every such function can be viewed as a function on full state
space Ω. In fact, L2

ν can be exactly identified as the subspace of functions in L2
µ which

depend only on the value of z = ξ(x), with the conditional expectation operator acting
as orthogonal projection onto this subspace [17]. Note that, unless ξ is constant, L2

ν is an
infinite-dimensional subspace.

This motivates consideration of the projected generator

Lξ = PLP . (13)

As discussed comprehensively in [17], this operator retains the shape of the generator of a
reversible Markov process Zt on Ω̂, as for smooth compactly supported functions ϕ ∈ L2

ν,
we have that

Lξ ϕ = P [Lξ] · ∇z ϕ +
1
2
P
[
∇ξTa∇ξ

]
: ∇2

z ϕ. (14)

In the above equation, Lξ is an m-dimensional vector, each entry containing the application
of L to each component of ξ, and ∇ξ is the d×m Jacobian matrix of ξ. The coefficients

bξ(z) = P(Lξ)(z), aξ(z) = P
(
∇ξTa∇ξ

)
(z) (15)

serve as effective drift and effective diffusion for the process Zt, respectively. It can also be
shown that Zt is ergodic with respect to ν [17], and we can associate with Lξ a form domain
Vν with an effective quadratic form

Qξ(ϕ, ϕ̃) =
1
2

∫
Ω̂

aξ(z)∇z ϕ(z) · ∇z ϕ̃(z)dν(z). (16)

If the projected generator also possesses a discrete spectrum with eigenvalues ωi, i = 0, 1, . . .,
comparison of those eigenvalues with the original ones κi provides information about how
well the effective dynamics Zt retain the relaxation processes of the original process. Our
results on this topic are presented in Sections 3 and 6.

2.4. Galerkin Approximation

The numerical approximation of the eigenfunctions ψi, i = 1, . . . , K is often achieved
by Galerkin projection, i.e., orthogonal linear projection of the generator to a finite-
dimensional subspace. After choosing such a space W ⊂ Vµ, with a basis set {φi}N

i=1,
the Galerkin approach consists of finding ψ̂i ∈W such that

−
〈
Lψ̂i, φj

〉
µ
= Q(ψ̂i, φj) = ω̂i

〈
ψ̂i, φj

〉
µ
∀1 ≤ j ≤ N. (17)
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Equation (17) is a generalized matrix eigenvalue problem. The approximate eigenvalues
ω̂i are also called Ritz values associated with W. If W is chosen as a subspace of Vν (given a
set of reduced variables as described in the previous section), it was shown in [17] that (17)
serves both as a weak form forL in Vµ and forLξ in Vν. Importantly, the min-max-principle
implies that for any such subspace

κi ≤ ωi ≤ ω̂i. (18)

Moreover, if simulation data {xm}M
m=1 of the full process (1), approximately sampling the

invariant measure µ, is available, the following empirical estimators

Q(φi, φj) ≈
1

2M

M

∑
m=1
∇φi(xm)

Ta(xm)∇φj(xm),
〈
φi, φj

〉
µ
≈ 1

M

M

∑
m=1

φi(xm)φj(xm) (19)

will converge to the terms in Equation (17) in the limit of infinite data. This method has been
called generator Extended Dynamic Mode Decomposition (gEDMD) [28]. Consequently, for a
subspace W ⊂ Vν comprised of functions on reduced space, gEDMD will simultaneously
approximate the eigenvalues of L and Lξ by (18). Note that, in this setting, simulation data
of the full dynamics (1) can still be used in Equation (19); it is not necessary to simulate the
effective dynamics defined by Lξ first. As the gradients in (19) are taken with respect to
the full state variables x, we have to apply the chain rule when evaluating (19) for basis
functions φi ∈W ⊂ Vν: ∇φi(ξ(x)) = ∇zφi(z)T∇ξT(x).

Note that the estimator forQ in (19) exploits reversibility of the process. An alternative
estimator, which can also be applied to non-reversible processes, is

−
〈
Lφi, φj

〉
µ
≈ − 1

M

M

∑
m=1

[
b(xm)∇φi(xm) +

1
2

a(xm) : ∇2φi(xm)

]
φj(xm). (20)

We will require this last equation in the next section.

2.5. Kramers–Moyal Estimators

The parameters bξ and aξ in (15) involve integrals over nonlinear manifolds in high-
dimensional space, and they are rarely used in practice for this reason. For a process
{Xt}t≥0 and a positive offset s > 0, define the projected first order finite difference at
time t by

dξ
s (Xt) = ξ(Xt+s)− ξ(Xt).

With this notation, the basic Kramers–Moyal (KM) formulae [41] for the approximation of bξ

and aξ are given by:

bξ(z) = lim
s→0

Eµ

[
1
s

dξ
s (X0)

∣∣∣ξ(X0) = z
]

, aξ(z) = lim
s→0

Eµ

[
1
s

dξ
s (X0)⊗ dξ

s (X0)
∣∣∣ξ(X0) = z

]
. (21)

We note that many more sophisticated approximations can be found in the literature.
KM estimators can also be used in the context of gEDMD. If the parameters b and a of the
original process (1) are unknown, gEDMD can be re-formulated upon replacing b and a by
the first order finite differences at all data points in (20). If s > 0 corresponds to a multiple
of the integration time step in a discrete trajectory {xm}M

m=1, then (20) can be converted to:

−
〈
Lφi, φj

〉
µ
≈ − 1

M

M

∑
m=1

[
1
s

dξ
s (xm)∇zφi(xm) +

1
2s

(dξ
s (xm)⊗ dξ

s (xm)) : ∇2
zφi(xm)

]
φj(xm). (22)

This estimator is consistent for s→ 0 and M→ ∞. There is a dual meaning to eigenpairs
derived from this approximation: on one hand, they serve as an approximation to the
eigenpairs of Lξ , at least for small offsets s. On the other hand, these are also approxima-
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tions to the spectrum of the generator of a non-reversible coarse grained SDE with drift
and diffusion given by (21), see again [28] for a detailed exposition. In Sections 4 and 5,
we present a numerical study on the effect of the offset s on the spectrum of this generator.
We note that similar approximations can certainly be built on more advanced estimators
than (21), but the KM formulae will suffice for this study.

3. Spectral Properties of the Projected Generator
3.1. Summary of Spectral Properties

The first major result of this study concerns the approximation error for the dominant
eigenvalues κ1, κ2, . . . by corresponding eigenvalues of Lξ . We only provide a high-level
summary of these results here, while the technically more involved statements and their
proofs can be found in Section 6.

First, we introduce conditions to ensure the spectrum of the effective generator Lξ is
also discrete, see Proposition 1. We then show in Proposition 2 and Corollary 2 that the
relative eigenvalue error

Ei =
ωi − κi

ωi

can be bounded in terms of the energy norm of the projection residual P⊥Q ψi = (I − PQ)ψi
of the corresponding eigenfunctions, with PQ denoting the Q-orthogonal projection
onto Vν:

Ei =
ωi − κi

ωi
≤ C‖P⊥Qψi‖2

Q. (23)

In other words, if the eigenfunction ψi can be written as a function of the reduced variables
z, up to a small error, then we can expect the eigenvalue κi to be reproduced well by
the effective dynamics on z. However, as the error is measured by the energy norm,
Proposition 2 shows that not only the eigenfunction ψi, but also its first order derivatives
must be approximated well by functions of z alone. In the next Section 3.2, we show that
this is not merely an academic condition, but indeed necessary.

Our result improves on existing ones in two ways. First, in Ref. [18] (Theorem 2), it was
shown that the absolute eigenvalue error of the projected generator is small if ‖LP⊥ψi‖L2

µ

and ‖P⊥ψi‖L2
µ

are small. Proposition 2 (Corollary 2) complements these results in the sense
that it bounds the relative error of eigenvalues (timescales), which is a more practical error
measure for eigenvalues close to zero, i.e., large timescales. For a more detailed elaboration
on the relationship of the projection error and the relative error of timescales, please refer
to the text after Corollary 2. Second, our bound (37) is less restrictive than the conditions
in [18], as it uses the energy norm involving only first order derivatives, while the term
‖LP⊥ψi‖L2

µ
necessarily requires second derivatives. In fact, the bound assumed in [18]

(Theorem 2) implies our bound up to another multiplicative constant (thus, it is more
restrictive), see Lemma 1.

3.2. Illustration of the Error Bound

In order to provide an illustration of the error bound, we consider a two-dimensional
Ornstein–Uhlenbeck process, that is, overdamped Langevin dynamics (2) with potential
(see Figure 1A):

V(x, y) = 1
2 (αxx2 + αyy2). (24)

We set αx = 1, αy = 5, β = γ = 1.0. The eigenvalues and eigenfunctions of this system are
known analytically. For all integers r, s ≥ 0, we have eigenvalues κr,s = rαx + sαy, with
eigenfunctions ψr,s =

1√
r!s!

Hr(x)Hs(y), using one-dimensional Hermite polynomials Hi.
The first four non-zero eigenvalues correspond to eigenfunctions which are constant in
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y-direction. The first of these eigenfunctions, ψ1,0 = x, is shown in Figure 1C. We now
consider a family of reaction coordinates

ξm(x, y) = x + 0.1 sin(my).

For m = 0, the reaction coordinate ξ0(x, y) = x perfectly captures the first eigenfunction
ψ1,0. For positive m, however, the level sets ξ−1(z) of the coarse graining map oscillate
within a vertical strip of width 0.1 around x = z, see Figure 1A for a comparison of the
level sets at m = 0 and m = 10. Due to these small scale oscillations, we still expect to find
a relatively small projection error of the eigenfunction ψ1,0, if measured by the L2

µ-norm,
but an increasingly larger error if the energy norm (involving derivatives) is employed.

3 2 1 0 1 2 3x
2

1

0

1

2

y

A: Potential and Level Sets

0.0

1.5

3.0

4.5

6.0

7.5

9.0

10.5

12.0

2 4 6 8 10m
-3

-2

-1

0
B: Approximation Error

Em
1

Projection Err. L2

Projection Err. 

3 2 1 0 1 2 3x
2

1

0

1

2

y

C: Exact First Eigenfunction

3

2

1

0

1

2

3

3 2 1 0 1 2 3x
2

1

0

1

2

y

D: First Eigenfunction m = 10

3

2

1

0

1

2

3

Figure 1. Illustration of Proposition 2 by means of a two-dimensional Ornstein–Uhlenbeck process, and one-dimensional
reaction coordinates ξm(x, y) = x + 0.1 sin(my). (A) selected level sets ξ−1(z) for m = 0 (blue) and m = 10 (green), with a
contour of the potential in the background; (B) red: L2

µ-error between exact first eigenfunction ψ1,0 = x, and the approximate
slowest eigenfunction ψ̂m

1 , computed by Galerkin projection onto the space of the first ten Hermite polynomials ψi(z), where
z is the reaction coordinate ξm. Green: the same error, but measured using the energy norm. Black: Relative eigenvalue
error Em

1 corresponding to the same approximation. The vertical axis is labeled by the decadic logarithm; (C) contour of the
exact slowest eigenfunction ψ1,0 = x; (D) contour of the approximate slowest eigenfunction ψ̂m

1 for m = 10.

In order to estimate these projection errors, we use finite-dimensional subspaces
Wm ⊂ Vm

ν , where Vm
ν is the form domain corresponding to reaction coordinate ξm. The

subspaces are spanned by the first ten Hermite polynomials Hi(z), which exactly capture
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the slowest eigenfunction for m = 0. For each subspace, we calculate the Galerkin matrices
in Equation (17) by numerical integration, and then extract the first non-trivial eigenvalues
ω̂m

1 and eigenfunctions ψ̂m
1 . We calculate the relative errors Em

1 =
ω̂m

1 −κ1,0
ω̂m

1
and the eigen-

function approximation errors ‖ψ1,0 − ψ̂m
1 ‖2, measured using both the norms on L2

µ and
the energy norm. The results are shown in Figure 1B. We observe that the L2

µ-error remains
almost constant as m increases, while the energy norm error increases steadily, reflecting
the increasingly oscillating shape of the approximate eigenfunctions ψ̂m

1 (see Figure 1D). In
agreement with our error estimate, the energy norm approximation error provides a fairly
tight bound for the relative eigenvalue error Em

1 . It should be noted that the quantities
shown here only provide upper bounds for the relative error E1 and the projection error δ2

1 ,
but they suffice for the purpose of illustration.

In summary, this example confirms the eigenvalue error bound provided in Propo-
sition 2, and it also highlights the importance of capturing the derivatives of generator
eigenfunctions of interest when selecting a reaction coordinate for coarse graining.

4. Spectral Properties and Kramers–Moyal Estimators

The second part of this work is a numerical study on the effect of employing Kramers–
Moyal type approximations when estimating spectral properties of projected generators.
As explained in Section 2.5, KM estimators can be incorporated into the gEDMD method
by means of Equation (22) if the full system parameters b and a are not known. Again, we
stress that using gEDMD to calculate eigenvalues in this way possesses a dual meaning: it
is an approximation to the eigenvalues of Lξ , but also an approximation to the eigenvalues
of a non-reversible dynamics with parameters given by (21). We find that for projections
onto a good set of reaction coordinates ξ, i.e., coordinates which are known to capture the
slow dynamics of a system well, it is possible to use a surprisingly large offset parameter s
in Equation (22).

4.1. Methods

In all of the following examples, we generate long realizations of the system under
investigation, by employing the Euler–Maruyama method with discrete integration time
step ∆t, for M steps, such that the total simulation time equals M∆t. The only exception
is the molecular example in Section 5.3, where a molecular dynamics code was used to
generate the data, see the references given there. For the application of gEDMD on one-
dimensional domains, we either use Gaussian basis functions φi, or periodic Gaussians φ

p
i

if the domain is periodic:

φi(z) = exp
[
− 1

2ρ
(z− zi)

2
]

, φ
p
i (z) = exp

[
− 1

2ρ
sin2(

1
2
(z− zi))

]
, (25)

with bandwidth ρ and centers zi ∈ Ω̂. On two-dimensional domains, we use products of
the univariate functions defined above, centered on a regular grid.
With these basis functions, the Galerkin matrices for gEDMD are calculated in different
ways. As a reference, we use estimators (19), which require knowledge of the full system
parameters. In addition, we use the estimator (22) with a series of offsets s > 0. We then
solve the generalized eigenvalue problem (17) for each of these cases. Eigenvalue estimates
thus obtained are denoted by ω̂0

i and ω̂s
i , respectively. We keep track of the relative error

Es
i =
|ω̂s

i − ω̂0
i |

ω̂s
i

, (26)

and also monitor the reciprocals t̂0
i =

(
ω̂0

i
)−1, t̂s

i =
(
ω̂s

i
)−1, which serve as estimates of

the implied timescales (12). Additionally, we also extract estimates of the K dominant
eigenfunctions from each of these eigenvalue problems, and apply the PCCA method [42]
to determine metastable decompositions of the domain based on these eigenfunctions.
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PCCA returns K membership functions χj(z), j = 1, . . . , K, such that ∑K
j=1 χj(z) = 1 at all

points z, and χj(z) indicates the degree of membership of each point z to metastable state j.

4.2. Lemon Slice Potential

We consider overdamped Langevin dynamics Equation (2) in the “lemon slice” potential

V(r, ϕ) = cos(4ϕ) +
1

cos(0.5ϕ)
+ 10(r− 1)2 +

1
r

, (27)

where r, ϕ are two-dimensional polar coordinates, at inverse temperature β = 1.0 and
friction γ = 1.0. A contour of the potential is shown in Figure 2. Note that the second and
the last term in (27) impose an infinite barrier along the negative x-axis and at the origin.
The slow dynamics of this system correspond to transitions between the four main minima
of the potential V, we therefore find three dominant timescales t1 ≈ 2.6, t2 ≈ 0.95, t3 ≈ 0.75,
see [28] for a previous analysis of the same example. Hence, we can select the polar angle
ϕ as a suitable reaction coordinate ξ(x, y) = ϕ(x, y). In this case, the effective drift bξ and
diffusion aξ can even be calculated analytically, see Appendix A, they are indicated by
the black lines in Figure 3A,B. The data set we use comprises M = 5 · 106 data points at
integration time step ∆t = 10−3.

2 1 0 1 2x
2

1

0

1

2

y

0

2

4

6

8

10

Figure 2. Contour plot of the lemon slice potential Equation (27).

Since applying gEDMD with a positive offset in (22) corresponds to approximating the
generator of an SDE with coefficients (21), and we also have analytical expressions for the
exact effective parameters bξ and aξ , we first provide a comparison between these analytical
parameters and histogrammed estimates of Equation (21). We find in Figure 3A,B that the
exact drift and diffusion are recovered well for small s, as expected, while very different
results are obtained as s increases. In particular, the effective diffusion is no longer constant
as a function of ϕ for large s.

Next, we compare the dominant spectra of the generators corresponding to these
different dynamics. To this end, we employ gEDMD with fifteen Gaussian basis func-
tions (25), centered at equal distance between zi = −2.8 and zi = 2.8, each of width ρ = 0.1,
as described in Section 4.1. In Figure 3C, we show the first three timescales t̂s

i compared
to their reference values, and also the relative errors Es

i , see (26). As s increases by about
two orders of magnitude, the relative errors remain within a ten to twenty percent margin
around the references, which is generally acceptable from a practical point of view. As
shown in Figure 3D, the membership functions χj, j = 1, . . . , 4 generated by the PCCA
method for s = 0.1, barely differ from the ones computed using full system parameters.
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We therefore conclude that the dominant spectrum is approximately retained by all models
up to s = 0.1. In other words, the structure of the spectrum is unchanged as long as the
offset is clearly smaller than the slow timescales, even though the KM estimates for drift
and diffusion are very different from the analytical coefficients bξ and aξ .

/2 0.0 /2
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b(
)

A: Drift
s=0.001
s=0.010

s=0.100
Ref

/2 0.0 /2
0

2

4

a(
)

B: Diffusion

s=0.001
s=0.010

s=0.100
Ref

10 3 10 2 10 1s

1

2

3

ts i

C: Timescales and Relative Errors

Exact
ts
1

ts
2

ts
3

-3

-2

-1

Es i

/2 0.0 /2

D: PCCA Memberships

0

1

(
)

Exact
s=0.1

Figure 3. Analysis of effective dynamics on the polar angle for the lemon slice potential. (A) numerical estimates of effective
drift for different values of the offset s, compared to the reference in black; (B) the same for the effective diffusion; (C) implied
timescales t̂s

1, t̂s
2, t̂s

3 extracted from gEDMD models using KM formulae at various offsets s (solid lines), compared to the
results of applying gEDMD with full system parameters (dashed black lines). We also show the relative errors Es

i (26) for
all three timescales (thin dashed lines, scale on the right, labeled by decadic logarithm); (D) four metastable membership
functions generated by the PCCA method, extracted from a gEDMD model at offset s = 0.1 (green) and using exact system
parameters (black).

4.3. Prototypical Molecular Potential

In order to confirm the observations made in the previous section, we study a more
complex example. The system is designed to mimic a small molecule consisting of five
atoms. The three-dimensional Euclidean coordinates of all five atoms thus define the
system’s fifteen-dimensional state space. We imagine these five atoms to be linked by bonds
like a chain. The dynamical model is again the overdamped Langevin dynamics (2), with a
potential energy comprised of typical molecular interactions, namely harmonic bond, bond
angle, and dihedral potentials. The precise parameters can be found in Appendix B. Note,
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however, that the system is only qualitatively similar to a small molecule, since parameter
values and the units of time and energy do not correspond to physical values. We also do
not include any solvent molecules or velocities. The data set comprises M = 2 · 106 data
points at integration time step ∆t = 5 · 10−3.

The system parameters are tuned in such a way that the two dihedral angles φ1, φ2,
spanned by those five atoms, capture the slow dynamics of the system, corresponding
to transitions between six symmetrically arranged minima of the effective free energy
in the φ1-φ2-plane, see Figure 4A. We run the reference gEDMD analysis using 100 two-
dimensional Gaussian basis functions centered on a ten-by-ten grid, with ρ = 0.05. Five
dominant implied timescales between t1 ≈ 25 and t5 ≈ 10 (black lines in Figure 4C) are
determined, and the six energy minima are recovered as metastable states by a PCCA
analysis, as shown in Figure 4B.

/2 0 /21
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/2

2

A: Effective Energy

0.00

0.05

0.10

0.15

0.20
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B: Metastable States
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0
2

Figure 4. Analysis of the effective dynamics of a prototypical five atom molecular system in the space of its dihedral
angles φ1, φ2. (A) effective free energy in dihedral angle plane; (B) decomposition into six metastable states based on
PCCA analysis of a gEDMD model with exact system parameters. Gray dots represent transition states where none of
the memberships χj exceeds 0.6. (C) first five implied timescales t̂s

i extracted from gEDMD models with KM estimators at
various offsets s (solid lines), compared to the gEDMD model with exact system parameters (dashed black lines). Error bars
were computed by bootstrapping. We also show the mean relative error Es

i given in (26) (thin dashed lines, scale on the
right, labeled by decadic logarithm); (D) decomposition into six metastable states based on PCCA analysis of a gEDMD
model at offset s = 1.0.
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We repeat the same experiment as for the previous example: using the same basis
set of 100 Gaussians, we apply gEDMD with KM estimators (22), for a series of offsets
between s = 5 · 10−3 and s = 1.0. The corresponding timescale estimates t̂s

i and the relative
errors Es

i are also shown in Figure 4C. The relative errors are generally larger than for the
previous example, but still within an acceptable range of ten to forty percent. Applying
the PCCA analysis to the model extracted at s = 1.0, we are still able to reproduce the
correct metastable decomposition of reaction coordinate space. In summary, we can still
conclude that the dominant spectrum is retained as long as the offset is at least an order of
magnitude smaller than the fastest interesting timescale.

4.4. Summary of Observations

The previous two examples have indicated that, at least for reversible systems, and for
a good selection of reaction coordinates, it is possible to use the KM estimators within the
framework of gEDMD without disrupting the overall structure of the dominant spectrum.
We state this observation as a conjecture, which will be investigated and made quantitative
in future work:

Conjecture 1. Let ξ be a good set of reaction coordinates for a reversible process Xt, which capture
the slow part of the dynamics well (e.g., small projection errors δi as in Proposition 2). Let s be an
offset such that 0 < s � tK. Then, it is possible to recover the dominant spectrum by applying
gEDMD with KM estimators, as in (22), at least in a qualitative sense.

Note that Conjecture 1 is equivalent to saying that the effective dynamics with pa-
rameters (21) will retain the dominant spectrum well in the setting described above. In
addition, the quality of a gEDMD approximation depends on the basis set. Conjecture 1
should be understood in the sense of using gEDMD with a powerful basis set, such that
the basis set error does not play a major role.

5. Underdamped Langevin Dynamics

The third topic of this paper is to study the implications of the first two results for
systems driven by underdamped Langevin dynamics. Let us recall that the theoretical
analysis presented in Sections 3 and 6 hinges on the reversible setting. In addition, the
numerical results on KM estimators shown in Section 4 were using the reversible over-
damped Langevin process (2) (OL process from now on). However, a popular dynamical
model, especially in molecular physics, are underdamped Langevin dynamics (UL process)
in position and momentum space (q, p), where q ∈ Ω is the position of the system and
p ∈ Rd is its momentum. The equations of motion are

dqt = ptdt, (28)

dpt = −∇V(qt)dt− γptdt +
√

2γβ−1dBt. (29)

Here, V, γ, β have the same physical meaning of energy, friction, and inverse temperature,
as in (2) above. The invariant density of the process (28) and (29) factors as

µ(q, p) = µP(p)µQ(q) ∝ exp(− β

2
pT p) exp(−βV(q)). (30)

The underdamped process is not reversible, so the error theory developed in this paper
does not apply. However, it is well known that, for large enough friction, if we observe
the position coordinate qt only at every s-th step, for s large, this time-rescaled process
behaves like an OL process. This phenomenon is called the overdamped limit, and gives rise
to the following idea: if we select a reaction coordinate ξ = ξ(q), which does not depend
on momentum, then ξ(qks), k = 1, 2, . . ., observed at large offset s, behaves like a projected
OL process. If we employ KM estimators or related approaches at the same offset within
the context of gEDMD, we effectively compute models for the OL dynamics. Our error
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theory does apply to the reversible OL process, and, if our Conjecture 1 is correct, we still
get the dominant spectrum of these OL dynamics right by using KM formulae at a large
offset. This idea will be illustrated by numerical examples in the following subsections.

5.1. Projection and Re-Scaling of the Underdamped Process

We start by discussing the projection of the underdamped Langevin process by a map
ξ = ξ(q) depending only on the position coordinates. Oftentimes, one is not interested
in quantities that explicitly depend on the momenta, which renders this a realistic setting
(see [35] for an approach to model reduction which includes the momenta). Unfortunately,
the coefficients of the effective dynamics (13) are identically zero in this case, see also [34,43].
To see this, it is readily checked using the definition of the generator that Lξ = p · ∇qξ
and ∇ξTa∇ξ = 0. Using the definition of the parameters (15), the factorization (30) of
the invariant measure, and the fact that µP(p) is the density of a multivariate normal
distribution with mean zero, we find that

bξ(z) = P(Lξ)(z)

=
∫

Ω×Rd
Lξ(q, p)µ(q, p)δ(ξ(q, p)− z)dq dp

∝
∫

Ω×Rd
p · ∇qξ(q) exp(−βV(q)) exp(− β

2
pT p)δ(ξ(q)− z)dq dp

=

[∫
Ω

exp(−βV(q))∇T
q ξ(q)δ(ξ(q)− z)dq

]
·
[∫

Rd
p exp(− β

2
pT p)dp

]
= 0,

aξ(z) = P(∇ξTa∇ξ) = 0.

How can one define a suitable effective dynamics in this case? As already mentioned
above, if the friction γ is sufficiently large, the positional component qt behaves like a
reversible overdamped dynamics (2) on long time scales. More precisely, if we observe
the positions qks, k = 1, 2, . . . for an offset s� 1

γ , then the statistics of this process will be
approximately the same as those of an OL process Xt in position space, observed at the
same offset. A particular pair of statistics to observe is given by the KM formulae (21). As a
consequence, if the reaction coordinate ξ captures the slow dynamics of the OL process
Xt well, and if in addition our Conjecture 1 is correct, then we can use the KM estimators
on the underdamped data to build a good model (or a suitable effective dynamics) for the
overdamped process Xt.

The following corollary provides a formal derivation of this argument, again in a
qualitative sense, thus connecting the results of Sections 3 and 4.

Corollary 1. Let Xt ∈ Ω ⊂ Rd denote the OL process (2). Moreover, assume that ξ is good
reaction coordinate for Xt (e.g., small projection errors δi in Proposition 2). Let (qt, pt) denote the
UL process on Ω×Rd with the same parameters as Xt.

(i) For γ sufficiently large, the statistics of the positional component qt of the underdamped
process, and of the overdamped process Xt, approximately agree at offsets much larger than 1

γ .
(ii) If in addition Conjecture 1 is true, then application of the Kramers–Moyal estimator (22)

at offsets tK > s > 1
γ to qt, allows for recovering the dominant spectrum by means of gEDMD.

Proof. (i) Setting ε = 1
γ , and re-scaling the UL process (28) and (29) by (qc

t , pc
t ) =

(qcγt, pcγt) = (qct/ε, pct/ε), the re-scaled equations of motion are

dqc
t =

c
ε

pc
t dt,

dpc
t = −

c
ε
∇V(qc

t )dt− c
ε2 pc

t dt +
1
ε

√
2β−1c dBt.
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For sufficiently large γ and c ≥ 1, Theorem 18.1 of [6] implies that the law of qc
t is close to

that of
dQc

t = −c∇V(Qc
t )dt +

√
2β−1c dBt.

We note that Qc
t is a time re-scaling of Xt via Qc

t = Xcγt, hence we have for functions
f = f (q) ∈ L2

µQ
(Ω):

EµQ [ f (qcγt)] ≈ EµQ [ f (Xcγt)]. (31)

(ii) In particular, the approximate equality (31) applies directly to estimator (22) for
s > 1

γ . If Conjecture 1 is true, the resulting gEDMD models will qualitatively retain the
leading timescales of the process Xt.

5.2. Langevin Toy Model

To illustrate the ideas outlined in the previous section, we first consider another
two-dimensional toy potential

V(x, y) = 3x4 − 5x2 + 1.5x + 3y2, (32)

shown in Figure 5. For γ = 10, β = 0.4, we generate data of both the UL and OL processes
for this potential, each data set comprising M = 107 points at integration time step
∆t = 10−3. For both dynamical models, the slowest transition in this energy landscape is
the crossing of the barrier around x = 0, thus ξ(x, y) = x is a suitable reaction coordinate in
both instances. The associated implied timescale in the OL model is t1 ≈ 7.3. The effective
drift in the overdamped case simply corresponds to the x-derivative of the x-dependent
part the potential, while the effective diffusion remains constant, see the black dashed lines
in Figure 6A,B.
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Figure 5. Two-dimensional model potential (32).

We first illustrate the relationship between the overdamped limit and estimates of
drift and diffusion by means of KM formulae. In Figure 6A,B, we show histogrammed
estimates of the KM expressions (21), using both the OL and UL simulation data. We see
that, for a small offset s = 10−3, UL estimates are almost zero, while the OL data lead to
estimates close to the analytical values. Both findings are as expected. For a much larger
offset s = 0.5, however, both estimates are significantly different from what we find for
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small offsets, and, most importantly, the overdamped and underdamped estimates agree
well. This in line with our qualitative argument in Corollary 1(i).

We apply gEDMD to both data sets, using the KM estimators as in (22), for a series of
offsets between s = 10−3 and s = 1.0. The basis set is comprised of fifteen Gaussian basis
functions (25), centered uniformly between x = −2.5 and x = 2.5, each of width ρ = 0.1.
From all of these models, we extract the slowest implied timescale t̂s

1 and the relative errors
Es

1, and present the results in Figure 6C. As expected, OL estimates are highly accurate at
small offsets. For large offsets, these estimates remain within the same error margin that
we have seen before. Estimates based on the UL data, however, are far off for small offsets
(as the coefficients of the corresponding dynamics are essentially zero), but once the offset
exceeds the critical value s > 1

γ = 0.1, they are about as accurate as those based on OL
data. We also verify in Figure 6D that, for both data sets, the two metastable states of the
effective dynamics can be correctly identified by applying PCCA to the eigenvectors of the
gEDMD model at a large offset s = 0.5.

This example shows that, upon increasing the offset, it is possible to find a sweet spot
where s is larger than the critical relaxation time 1

γ , but smaller than the slowest timescale
t1, such that meaningful effective dynamics for the UL process along x can be defined in
this regime.
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Figure 6. Analysis of effective dynamics on the x-coordinate of the two-dimensional toy potential Equation (32). (A) numerical
estimates of effective drift for different values of the offset s using both OL data (dots) and UL data (crosses); (B) the same for
the effective diffusion; (C) leading implied timescale t̂s

1 obtained from gEDMD models of the projected OL data (dots) and
UL data (crosses), as a function of s, compared to the reference value in black. The reference was extracted from a gEDMD
model using exact system parameters. We also show the relative error Es

i for both data sets (thin dashed lines, scale on the right,
labeled by decadic logarithm). The vertical gray line indicates the critical relaxation time 1

γ ; (D) PCCA memberships extracted
from gEDMD models at offset s = 0.5 for both data sets, compared to the reference gEDMD model in black.
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5.3. Alanine Dipeptide

Our final numerical example is a more complex data set, namely molecular dynamics
simulations of the alanine dipeptide. The data we use is the same as in Refs. [44,45],
consisting of M = 106 points at 1ps time spacing. The dynamical model is the UL process
as in Section 5.2, using the AMBER 99 molecular force field [46] as potential V. Friction is
set to γ = 0.1 ps−1, and β is derived from the temperature T = 300 K via β−1 = kBT, using
the Boltzmann constant kB. As is well-known from numerous previous studies, the slow
dynamics of alanine dipeptide can be represented well in the space of backbone dihedral
angles φ, ψ. Figure 7 A shows the effective free energy landscape in the space of these
reaction coordinates. Three major minima can be identified, which correspond to three
metastable states of the full dynamics. The corresponding transition timescales t1 ≈ 1 ns
and t2 ≈ 0.1 ns are indicated by the black lines in Figure 7B.
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Figure 7. Analysis of effective dynamics for alanine dipeptide in the space of its backbone dihedral angles φ, ψ. (A) effective free
energy of the original simulation data in the φ− ψ-plane. Metastable states correspond to the two deep minima on the left, and the
shallow minimum on the right; (B) slowest two timescales t̂s

1, t̂s
2 computed by gEDMD models at various offsets s, compared to the

reference values in black. Error bars were estimated by bootstrapping. We also show the mean relative error Es
i (26) (thin dashed lines,

scale on the right, labeled by decadic logarithm); (C) metastable decomposition into three states determined by applying PCCA to the
eigenfunctions of the gEDMD model at s = 5 ps. Gray dots represent transition states where none of the memberships χj exceeds 0.6.
(D) The same for s = 50 ps, but using only two states.

For gEDMD, we employ a similar basis set as in Section 4.3, comprised of 100 periodic
Gaussians, centered on a ten-by-ten grid between −2.5 and 2.5, with bandwidth ρ = 0.05.
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We compute gEDMD models for a range of offsets between s = 1 ps and s = 50 ps. The
resulting first two implied timescales t̂s

1, t̂s
2 and the corresponding relative errors Es

i are
shown in Figure 7B. These results confirm the findings of the previous examples, as both
leading timescales are roughly reproduced for all offsets considered. The relative error
Es

2 for the second timescale is generally larger than what we observed in the previous
examples, but it is still acceptable in the context of this example. An interesting observation
is that, for small offsets, we are able to fully recover both slow processes by a PCCA analysis.
The corresponding state decomposition is shown in Figure 7C. For a larger offset which is
comparable to the timescale t2, the faster transition within the left part of the plane appears
to be blurred out. However, applying PCCA with only two metastable states still recovers
the slowest process, as indicated by the decomposition in Figure 7D.

6. Precise Statements on Spectral Properties and Their Proofs

In this section, we provide detailed proofs of the spectral approximation results outlined
in Section 3.

6.1. Form Domain

We consider an open domain Ω ⊂ Rd, and make the assumption of uniform ellip-
ticity (3). The generator L in (7) can be defined initially on the set of smooth functions or
smooth and compactly supported functions. The form domain Vµ can then be obtained as
the closure of this initial domain with respect to the Dirichlet norm

‖ψ‖2
1 = ‖ψ‖2

L2
µ
+ Q(ψ, ψ). (33)

We note that, on domains with a boundary, the choice of initial domain has an impact on
the boundary conditions. In addition, we can restrict all function spaces to the orthogonal
complement of the constant one function without explicitly changing the notation.

The assumption of uniform ellipticity implies that Vµ is also a Hilbert space if
equipped with the energy norm

‖ · ‖Q = Q(·, ·)1/2. (34)

In many cases of practical interest, the energy and Dirichlet norms are equivalent [36]. We
state this as an assumption and generally use the energy norm on Vµ in what follows:

Assumption 1: The Dirichlet norm (33) and energy norm (34) are equivalent.

6.2. Solution Operator and Discrete Spectrum

The solution operator T : Vµ → Vµ associated with Q is defined by

Q(T ψ, ψ̃) = 〈ψ, ψ̃〉µ ∀ψ̃ ∈ Vµ. (35)

Assumption 2: The solution operator is compact on Vµ with norm ‖ · ‖Q.

As a consequence of this assumption, the generator possesses a complete set of
eigenfunctions ψi ∈ Vµ with eigenvalues κi, i = 1, 2, . . ., which are given as reciprocals of
the eigenvalues of T . There is a number of well-known settings where Assumption 2 can
be shown to hold. These include bounded Lipschitz domains with Dirichlet, Neumann, or
periodic boundary conditions, as well as overdamped Langevin dynamics with a potential
satisfying suitable growth conditions on the potential V [36].

6.3. Coarse Grained Generator and Its Spectrum

Analogously to Section 6.1, the projected generator Lξ can be defined initially on the
set of smooth or smooth and compactly supported functions in L2

ν, which is an infinite-
dimensional subspace of L2

µ [17]. Using the effective quadratic form Qξ (16), the effective
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form domain Vν can be defined again by completion of the initial domain with respect to
the corresponding Dirichlet norm ‖φ‖2

1,ξ = ‖φ‖2
L2

ν
+Qξ(φ, φ). Due to the relations [17]

〈φ, φ̃〉ν = 〈φ ◦ ξ, φ̃ ◦ ξ〉µ, Qξ(φ, φ̃) = Q(φ ◦ ξ, φ̃ ◦ ξ), (36)

Assumption 1 carries over to the effective Dirichlet norm and the effective energy norm.
In order to proceed from this point, some care needs to be taken with regard to the coarse
graining map:

Assumption 3: The coarse graining map ξ is such that the effective form domain Vν is a
subspace of Vµ.

Remark 1. Assumption 3 will hold in many cases of practical interest, which include the projection
of a periodic domain onto a lower-dimensional periodic domain by a function ξ which respects the
periodic boundary conditions. As a negative example, however, consider an SDE on a rectangle in
two-dimensional space, with absorbing boundary conditions. Choose the coarse graining function
as the projection onto the first coordinate axis. The form domain and the effective form domain will
be given as first order Sobolev spaces with zero boundary conditions, but the effective form domain
is not contained in the full form domain as its elements do not vanish on parts of the full boundary
which are parallel to the first coordinate axis.

If Assumption 3 holds, it makes sense to define the Q-orthogonal projection from Vµ

onto Vν, which we denote by PQ. As a first main result, we show that assumptions 1, 2,
and 3 are sufficient to ensure that the spectrum of Lξ is also discrete:

Proposition 1. If assumptions 1, 2, and 3 hold, the spectrum of Lξ is discrete.

Proof. By assumption 1, the effective solution operator T ξ is uniquely defined on Vν by

Qξ(T ξ φ, φ̃) = 〈φ, φ̃〉ν ∀φ̃ ∈ Vν.

It is readily checked that T ξ = PQT PQ. Since PQ is bounded and T is compact by
assumption 2, so is T ξ . Hence, its spectrum (and correspondingly that of Lξ) is discrete.

6.4. Approximation Result

Next, we derive a bound on the eigenvalue error of Lξ in terms of the energy norm
approximation error of the dominant eigenfunctions of L. The idea is to apply classical
Galerkin error estimates to a sequence of finite-dimensional subspaces Wh in Vν, and
exploit that these provide approximations to the (nonzero) eigenvalues of both L and Lξ .

Proposition 2. Denote the projection error of eigenfunction ψi with respect to the energy norm by
δi = ‖P⊥Qψi‖Q. The relative error between the i-th eigenvalues of Lξ and L is bounded by

ωi − κi
ωi

≤
[

1 + max
j=1,...,i−1

ω2
j κ2

i

(ωj − κi)2 ‖(I − PQ)T ‖
2
Q

]
δ2

i . (37)

Proof. We consider a sequence Wh of finite-dimensional subspaces in the reduced space
Vν. For every Wh, the Q-orthogonal projection from Vµ onto Wh is labeled by Ph

Q, and
the corresponding Qξ-orthogonal projection in Vν is called Ph

Q,ξ . We assume that all Wh

contain the projections PQψj for j = 1 . . . , i, and satisfy the following approximability
condition in Vν (which holds in any separable Hilbert space):

lim
h→0
‖(I − Ph

Q,ξ)φ‖Qξ = 0 ∀φ ∈ Vν. (38)
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Note that the spaces Wh are just of auxiliary nature, their sole purpose being to reconcile
the theory of [47]—that uses finite-dimensional approximation spaces—with our infinite-
dimensional Vν. There is no need to specify them in detail, and h only serves as a formal
parameter here. Using (18), and by applying [47] (Theorem 3.2) to the approximation of L,
we find that for any of the approximation spaces Wh:

ωi − κi
ωi

≤ ω̂i − κi
ω̂i

≤
[

1 + max
j=1,...,i−1

ω̂2
j κ2

i

(ω̂j − κi)2 ‖(I − P
h
Q)T ‖2

Q

]
‖(I − Ph

Q)ψi‖2
Q

=

[
1 + max

j=1,...,i−1

ω̂2
j κ2

i

(ω̂j − κi)2 ‖(I − P
h
Q)T ‖2

Q

]
δ2

i ,

where ω̂i are the Ritz values associated with Wh, see Section 2.4. The last equality holds
because PQψi ∈Wh by assumption. It remains to study the pre-factor in the limit of h→ 0.
We conclude from (38) that ω̂i → ωi as h → 0, which already yields the first term in the
pre-factor. Regarding the second term, we first observe that Ph

Q = Ph
Q,ξPQ, since for any

ψ ∈ Vµ and φ ∈Wh:〈
ψ−Ph

Q,ξPQψ, φ
〉
Q
=
〈
(PQ + P⊥Q )ψ−Ph

Q,ξPQψ, φ
〉
Q

=
〈
PQψ−Ph

Q,ξPQψ, φ
〉
Q
=
〈
(I − Ph

Q,ξ)PQψ, φ
〉
Qξ

= 0.

The third equality is due to (36), while the last equality is due to the definition of Ph
Q,ξ .

With this result, and using pointwise convergence (38) of Ph
Q,ξ to the identity in Vν, we

conclude for any ψ ∈ Vµ:

lim
h→0
‖(I − Ph

Q)ψ−P⊥Qψ‖Q = lim
h→0
‖(PQ −Ph

Q)ψ‖Q

= lim
h→0
‖(I − Ph

Q,ξ)PQψ‖Qξ = 0.

Combing this pointwise convergence of I − Ph
Q towards P⊥Q in Vµ, and compactness of

the solution operator, we have

lim
h→0

(I − Ph
Q)T = (I − PQ)T

with respect to the operator norm. This establishes the second term in the pre-factor and
hence the proposition.

To make the bound from the previous result more accessible, we will bound the term
involving the operator T .

Corollary 2. In the setting of Proposition 2, the following error bound holds:

ωi − κi
ωi

≤
[

1 +
κ2

i
κ2

1
max

j=1,...,i−1

ω2
j

(ωj − κi)2

]
δ2

i . (39)

Proof. As already mentioned, it follows from (35) that

T ψi =
1
κi

ψi ∀i ≥ 1.

Since the ψi are Q-orthogonal, it follows that ‖T ‖Q = 1
κ1

. Furthermore, since PQ is a
Q-orthogonal projection, so is I − PQ, and thus both have Q-norm at most one. It follows
that ‖(I − PQ)T ‖Q ≤ 1

κ1
, and hence the claim.
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Remark 2. Due to the equivalence of the norms ‖ · ‖Q and ‖ · ‖1, the bound in Proposition 2 also
applies to the latter norm. Let P1 denote the orthogonal projection onto Vν with respect to the
Dirichlet norm. Then,

‖P⊥Qψi‖Q ≤ ‖P⊥1 ψi‖Q ≤ C‖P⊥1 ψi‖1.

6.5. Comments

The bound from Corollary 2 allows some interpretation. Note that, in (39), the ratio
of the eigenvalues κ1, κi of L and the relative difference of eigenvalues κi and ωj of L
and Lξ (respectively) play a role. Let us fix i and assume that the first i timescales are
comparable, meaning that κi/κ1 is a moderate number. Let us further assume that the
squared projection errors δ` are all much smaller than the relative eigenvalue gaps, i.e.,

δ2
` � min

{
1,

κj − κj−1

κj

}
∀j, ` = 1, . . . , i.

Then, inductively from j = 1 to j = i, it follows that (ωj − κj)/ωj ≈ O(δ2
j ), since we find

that ωj ≈ κj, thus the relative differences between κ` and ωj are large for j 6= `, which
makes the term in the square brackets on the right-hand side of (39) moderate. Hence, in
this situation, the relative error of the i-th timescale’s approximation is effectively governed
by the projection error δ2

i .
We also note that the bound assumed in [18] (Theorem 2) implies our bound up to

another multiplicative constant:

Lemma 1. Let us consider the diffusion (1), satisfying (3), on a bounded domain with smooth
boundary and reflecting boundary conditions. If ‖LP⊥ψi‖L2

µ
≤ δi, then there is a C > 0 such that

the assumptions of Proposition 2 are satisfied with

‖P⊥Qψi‖Q ≤ Cδi. (40)

Proof. We use the weighted Sobolev spaces Hk
µ [48]. Since the spatial domain is bounded

and µ is smooth, it is a weight in Muckenhoupt class, cf. [48] (Equation (1.2)). The regularity
conditions [48] (Equations (2.2)–(2.4)) are satisfied by assumption. Now, the result follows
directly from the weighted Agmon–Douglis–Nierenberg estimate [48] (Theorem 2.4) giv-
ing ‖u‖H2

µ
≤ C‖Lu‖L2

µ
for some C > 0 independent of u. Using assumption 1 and (3),

we have

‖P⊥Qψi‖Q ≤ ‖P⊥ψi‖Q ≤ C‖P⊥ψi‖H1
µ
≤ C‖P⊥ψi‖H2

µ

≤ C‖LP⊥ψi‖L2
µ
≤ Cδi.

concluding the proof.

7. Conclusions

We have investigated the approximation of high-dimensional diffusion processes
by effective dynamics defined on the lower-dimensional space of reduced variables. For
reversible diffusions, a new relative error bound for the approximation of eigenvalues of
the infinitesimal generator by the eigenvalues of a reduced generator was proved. Our
bound shows that a small projection error of the corresponding generator eigenfunctions,
measured by the energy norm, is sufficient for small eigenvalue errors.

In addition, we have presented numerical examples regarding the data-driven esti-
mation of the eigenvalues of projected generators by means of the gEDMD method. If the
full system parameters are unknown, they need to be approximated, for example using
Kramers–Moyal formulae. We have presented numerical examples that, for reversible



Entropy 2021, 23, 134 22 of 25

systems, and good reaction coordinates, the resulting spectral estimates seem to remain
stable across a long range of time windows in the KM-estimators.

Finally, we have suggested a strategy to define meaningful effective equations for
underdamped Langevin dynamics on a subset of its position space. Exploiting the over-
damped limit, and using KM estimators at large time windows, we can effectively model a
projected overdamped process on the same domain. Numerical examples have confirmed
the feasibility of this approach.

Future work will focus on providing a theoretical foundation for the observations
stated in Conjecture 1. In addition, the relation between the positional coordinate of an
(underdamped) Langevin process on long timescales, and the corresponding overdamped
Langevin equation (cf. Corollary 1(i)), needs to be analyzed in more detail.
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Appendix A. Lemon Slice Potential: Effective Drift and Diffusion Coefficients

Here, we calculate the effective drift and diffusion if the lemon slice potential Equation (27)
is projected onto the polar angle ξ(x, y) = ϕ(x, y). We start by expressing the generator L
in polar coordinates. The Laplacian operator in polar coordinates is

∆ f =
∂2 f
∂r2 +

1
r2

∂2 f
∂ϕ2 +

1
r

∂ f
∂r

.

Moreover, it follows from the chain rule and the definition of ξ that for any function f ,

∂ f
∂x

= cos ϕ
∂ f
∂r
− sin ϕ

r
∂ f
∂ϕ

,

∂ f
∂y

= sin ϕ
∂ f
∂r

+
cos ϕ

r
∂ f
∂ϕ

.

The generator in polar coordinates then becomes

L = −
[

∂V
∂r

∂

∂r
+

1
r2

∂V
∂ϕ

∂

∂ϕ

]
+

1
β

[
∂2

∂r2 +
1
r2

∂2

∂ϕ2 +
1
r

∂

∂r

]
.
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Applying the generator to the reaction coordinate ξ, only one of the terms above is non-zero,
resulting in

Lξ = − 1
r2

∂V
∂ϕ

=
1
r2

[
4 sin(4ϕ)− sin(0.5ϕ)

2 cos2(0.5ϕ)

]
.

In order to evaluate the first term in Equation (15), we note that the Jacobian determinant
of ξ is J(x, y) = 1

r2 , and that the stationary distribution factors, canceling the ϕ-dependent
term. We are left with

bξ(ϕ) =
1

ϑ(ϕ)

∫ ∞

0

1
r2

[
4 sin(4ϕ)− sin(0.5ϕ)

2 cos2(0.5ϕ)

]
rµ(r, ϕ)dr

=
1

C2

[
4 sin(4ϕ)− sin(0.5ϕ)

2 cos2(0.5ϕ)

] ∫ ∞

0

1
r

exp(−10(r− 1)2 − 1
r
)dr

=
C1

C2

[
4 sin(4ϕ)− sin(0.5ϕ)

2 cos2(0.5ϕ)

]
,

with the definitions C1 :=
∫ ∞

0
1
r exp(−10(r − 1)2 − 1

r )dr and C2 :=
∫ ∞

0 r exp(−10(r −
1)2 − 1

r )dr. For the diffusion, we obtain

∇ξTa∇ξ = 2

[(
∂ξ

∂x

)2
+

(
∂ξ

∂y

)2
]

= 2J(x, y) =
2
r2 .

Inserting this into the second term in (15), and using the same arguments as before, we end
up with

aξ(ϕ) =
2C1

C2
.

Appendix B. Parameters of Prototypical Molecular Example

The system we considered in Section 4.3 is defined as follows: denote the three-
dimensional position vectors of atoms one through five by ri, 1 ≤ i ≤ 5. We denote the
pairwise distances between atoms i, j by di,j, the bond angle formed by atoms i, j, k by
θi,j,k, and the dihedral angle formed by atoms i, j, k, l by φi,j,k,l . The potential energy is
then defined as a superposition of harmonic bond terms, harmonic bond angle terms, and
dihedral angle terms:

V(r1, . . . , r5) =
4

∑
i=1

1
2

kb(di,i+1 − d0)2+

+
3

∑
i=1

1
2

kθ(θi,i+1,i+2 − θ0)2

+
2

∑
i=1

kφ(1− cos(ni
φ φi,i+1,i+2,i+3)).

(A1)

The constants appearing above are set to

kb = 1, d0 = 2, kθ = 1, θ0 =
π

2
, kφ = 0.02, n1

φ = 3, n2
φ = 2.

The overdamped Langevin dynamics (2) with potential (A1) are simulated at inverse
temperature β = 15, for 107 discrete steps at integration time step ∆t = 10−3. For the
purpose of our analysis, we retain only every fifth step of this trajectory.



Entropy 2021, 23, 134 24 of 25

References
1. Mori, H. Transport, collective motion, and Brownian motion. Prog. Theor. Phys. 1965, 33, 423–455.
2. Zwanzig, R. Nonlinear generalized Langevin equations. J. Stat. Phys. 1973, 9, 215–220.
3. Chorin, A.J.; Hald, O.H.; Kupferman, R. Optimal prediction and the Mori–Zwanzig representation of irreversible processes. Proc.

Natl. Acad. Sci. USA 2000, 97, 2968–2973.
4. Chorin, A.J.; Hald, O.H.; Kupferman, R. Optimal prediction with memory. Physica D 2002, 166, 239–257.
5. Hijón, C.; Español, P.; Vanden-Eijnden, E.; Delgado-Buscalioni, R. Mori–Zwanzig formalism as a practical computational tool.

Faraday Discuss. 2009, 144, 301–322.
6. Pavliotis, G.; Stuart, A. Multiscale Methods: Averaging and Homogenization; Springer Science & Business Media: Berlin, Germany,

2008.
7. Pavliotis, G.A.; Stuart, A.M. Parameter estimation for multiscale diffusions. J. Stat. Phys. 2007, 127, 741–781.
8. Clementi, C. Coarse-grained models of protein folding: Tol-models or predictive tools? Curr. Opin. Struct. Biol. 2008, 18, 10–15.
9. Noé, F.; Clementi, C. Collective variables for the study of long-time kinetics from molecular trajectories: theory and methods.

Curr. Opin. Struct. Biol. 2017, 43, 141–147.
10. Noid, W. Perspective: Coarse-grained models for biomolecular systems. J. Phys. Chem. 2013, 139, 090901.
11. Prinz, J.H.; Wu, H.; Sarich, M.; Keller, B.; Senne, M.; Held, M.; Chodera, J.D.; Schütte, C.; Noé, F. Markov models of molecular

kinetics: Generation and Validation. J. Chem. Phys. 2011, 134, 174105.
12. Rohrdanz, M.A.; Zheng, W.; Maggioni, M.; Clementi, C. Determination of reaction coordinates via locally scaled diffusion map.

J. Chem. Phys. 2011, 134, 124116.
13. Saunders, M.G.; Voth, G.A. Coarse-Graining Methods for Computational Biology. Annu. Rev. Biophys. 2013, 42, 73–93.
14. Weinan, E.; Vanden-Eijnden, E. Metastability, conformation dynamics, and transition pathways in complex systems. In Multiscale

Modelling and Simulation; Springer: Berlin, Germany, 2004; pp. 35–68.
15. Legoll, F.; Lelièvre, T. Effective dynamics using conditional expectations. Nonlinearity 2010, 23, 2131.
16. Froyland, G.; Gottwald, G.A.; Hammerlindl, A. A trajectory-free framework for analysing multiscale systems. Phys. D 2016,

328, 34–43.
17. Zhang, W.; Hartmann, C.; Schutte, C. Effective dynamics along given reaction coordinates, and reaction rate theory. Faraday

Discuss. 2016, 195, 365–394.
18. Zhang, W.; Schütte, C. Reliable Approximation of Long Relaxation Timescales in Molecular Dynamics. Entropy 2017, 19, 367.
19. Legoll, F.; Lelièvre, T.; Olla, S. Pathwise estimates for an effective dynamics. Stoch. Process. Appl. 2017, 127, 2841–2863.
20. Lelièvre, T.; Zhang, W. Pathwise estimates for effective dynamics: the case of nonlinear vectorial reaction coordinates. Multiscale

Model. Simul. 2019, 17, 1019–1051.
21. Schütte, C.; Fischer, A.; Huisinga, W.; Deuflhard, P. A Direct Approach to Conformational Dynamics Based on Hybrid Monte

Carlo. J. Comput. Phys. 1999, 151, 146–168.
22. Dellnitz, M.; Junge, O. On the Approximation of Complicated Dynamical Behavior. SIAM J. Numer. Anal. 1999, 36, 491–515.
23. Noé, F.; Nüske, F. A variational approach to modeling slow processes in stochastic dynamical systems. Multiscale Model. Simul.

2013, 11, 635–655.
24. Williams, M.O.; Kevrekidis, I.G.; Rowley, C.W. A Data-Driven Approximation of the Koopman Operator: Extending Dynamic

Mode Decomposition. J. Nonlinear Sci. 2015, 25, 1307–1346. doi:10.1007/s00332-015-9258-5.
25. Mardt, A.; Pasquali, L.; Wu, H.; Noé, F. VAMPnets for deep learning of molecular kinetics. Nat. Commun. 2018, 9, 1–11.
26. Klus, S.; Nüske, F.; Koltai, P.; Wu, H.; Kevrekidis, I.; Schütte, C.; Noé, F. Data-Driven Model Reduction and Transfer Operator

Approximation. J. Nonlinear Sci. 2018, 28, 985–1010..
27. Wu, H.; Noé, F. Variational approach for learning Markov processes from time series data. J. Nonlinear Sci. 2020, 30, 23–66.
28. Klus, S.; Nüske, F.; Peitz, S.; Niemann, J.H.; Clementi, C.; Schütte, C. Data-driven approximation of the Koopman generator:

Model reduction, system identification, and control. Phys. D Nonlinear Phenom. 2020, 406, 132416.
29. Kessler, M.; Lindner, A.; Sorensen, M. Statistical Methods for Stochastic Differential Equations; CRC Press: Boca Raton, FL, USA, 2012.
30. Gobet, E.; Hoffmann, M.; Reiß, M. Nonparametric estimation of scalar diffusions based on low frequency data. Ann. Stat. 2004,

32, 2223–2253.
31. Crommelin, D.; Vanden-Eijnden, E. Diffusion Estimation from Multiscale Data by Operator Eigenpairs. Multiscale Model. Simul.

2011, 9, 1588–1623.
32. Zhang, L.; Mykland, P.A.; Aït-Sahalia, Y. A tale of two time scales: Determining integrated volatility with noisy high-frequency

data. J. Am. Stat. Assoc. 2005, 100, 1394–1411.
33. Bittracher, A.; Hartmann, C.; Junge, O.; Koltai, P. Pseudo generators for under-resolved molecular dynamics. Eur. Phys. J. Spec.

Top. 2015, 224, 2463–2490.
34. Bittracher, A.; Koltai, P.; Junge, O. Pseudogenerators of spatial transfer operators. SIAM J. Appl. Dyn. Syst. 2015, 14, 1478–1517.
35. Duong, M.H.; Lamacz, A.; Peletier, M.A.; Schlichting, A.; Sharma, U. Quantification of coarse-graining error in Langevin and

overdamped Langevin dynamics. Nonlinearity 2018, 31, 4517.
36. Bakry, D.; Gentil, I.; Ledoux, M. Analysis and Geometry of Markov Diffusion Operators; Springer Science & Business Media: Berlin,

Germany, 2013; Volume 348.
37. Davies, E.B. Metastable states of symmetric Markov semigroups II. J. Lond. Math. Soc. 1982, 2, 541–556.

https://doi.org/10.1007/s00332-015-9258-5


Entropy 2021, 23, 134 25 of 25

38. Pazy, A. Semigroups of Linear Operators and Applications to Partial Differential Equations; Springer: New York, NY, USA; Berlin,
Germany, 1983.

39. Davies, E.B. Metastable states of symmetric Markov semigroups I. Proc. Lond. Math. Soc. 1982, 45, 133–150.
40. Deuflhard, P.; Huisinga, W.; Fischer, A.; Schütte, C. Identification of almost invariant aggregates in reversible nearly uncoupled

Markov chains. Linear Algebra Appl. 2000, 315, 39–59.
41. Risken, H.; Haken, H. The Fokker–Planck Equation: Methods of Solution and Applications, 2nd ed.; Springer: Berlin, Germany, 1989.
42. Deuflhard, P.; Weber, M. Robust Perron cluster analysis in conformation dynamics. Linear Algebra Appl. 2005, 398, 161–184.
43. Schütte, C. Conformational Dynamics: Modelling, Theory, Algorithm, and Application to Biomolecules; Habilitation Thesis, Freie

Universität Berlin, Berlin, Germany, 1998.
44. Nüske, F.; Wu, H.; Prinz, J.H.; Wehmeyer, C.; Clementi, C.; Noé, F. Markov state models from short non-equilibrium simulations—

Analysis and correction of estimation bias. J. Chem. Phys. 2017, 146, 094104.
45. Wang, J.; Olsson, S.; Wehmeyer, C.; Pérez, A.; Charron, N.E.; De Fabritiis, G.; Noé, F.; Clementi, C. Machine learning of

coarse-grained molecular dynamics force fields. ACS Cent. Sci. 2019, 5, 755–767.
46. Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J.L.; Dror, R.O.; Shaw, D.E. Improved side-chain torsion potentials

for the Amber ff99SB protein force field. Proteins Struct. Funct. Bioinform. 2010, 78, 1950–1958.
47. Knyazev, A.V.; Osborn, J.E. New a priori FEM error estimates for eigenvalues. SIAM J. Numer. Anal. 2006, 43, 2647–2667.
48. Cejas, M.E.; Durán, R.G. Weighted a priori estimates for elliptic equations. arXiv 2017, arXiv:1711.00879.


	Introduction
	Concepts
	SDEs and Generators
	Spectral Decomposition
	Dimensionality Reduction
	Galerkin Approximation
	Kramers–Moyal Estimators

	Spectral Properties of the Projected Generator
	Summary of Spectral Properties
	Illustration of the Error Bound

	Spectral Properties and Kramers–Moyal Estimators
	Methods
	Lemon Slice Potential
	Prototypical Molecular Potential
	Summary of Observations

	Underdamped Langevin Dynamics
	Projection and Re-Scaling of the Underdamped Process
	Langevin Toy Model
	Alanine Dipeptide

	Precise Statements on Spectral Properties and Their Proofs
	Form Domain
	Solution Operator and Discrete Spectrum
	Coarse Grained Generator and Its Spectrum
	Approximation Result
	Comments

	Conclusions
	Lemon Slice Potential: Effective Drift and Diffusion Coefficients
	Parameters of Prototypical Molecular Example
	References

