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Abstract: Biconvex programming (or inequality constrained biconvex optimization) is an important
model in solving many engineering optimization problems in areas like machine learning and signal
and information processing. In this paper, the partial exactness of the partial optimum for the penalty
function of biconvex programming is studied. The penalty function is partially exact if the partial
Karush–Kuhn–Tucker (KKT) condition is true. The sufficient and necessary partially local stability
condition used to determine whether the penalty function is partially exact for a partial optimum
solution is also proven. Based on the penalty function, an algorithm is presented for finding a partial
optimum solution to an inequality constrained biconvex optimization, and its convergence is proven
under some conditions.

Keywords: biconvex programming; partial optimum; partially exact penalty function; partial exact-
ness; partial local stability

1. Introduction

Multi-convex programming is a non-convex optimization problem [1,2], where bicon-
vex programming is a special case. It is ubiquitous nowadays in fields such as control [3–5],
machine learning [6,7], signal and information processing [8,9], communication [10,11],
and also NP-hard problems [12]. The existing research on multi-convex programming
mainly solves some very special models [12–19]. These studies all give specific methods for
each special model. When problems change, new methods need to be studied. Biconvex
programming is a simple case of multi-convex programming, and it is also studied in
research [14] as a special case. Therefore, it is of great significance to study the algorithm of
biconvex programming for solving practical engineering optimization problems.

Bilinear programming is the simplest case of biconvex programming and is the earliest
and most studied as per [14]. There are two main ways to solve bilinear programming. One
is the simplex algorithm based on sub-problems, and the other is the alternating direction
method. For example, Liang and Bai [15] and Hajinezhad and Shi [16] both proposed the
alternating direction method of multipliers (ADMM) algorithm for two special bilinear
programming problems, where the extended Lagrangian penalty function uses a square
penalty. Furthermore, Charkhgard et al. [17] presented a multi-linear programming
algorithm using the linear programming algorithm.

In 2007, Gorski et al. [14] reviewed the development of the theory and algorithms of
biconvex optimization. The biconvex functions have some good properties that are similar
to convex functions, such as the biconvex separation theorem and an equivalence between
local optimal solutions and stationary points. The biconvex programming algorithm
is based on the idea that the solution to alternating sub-problems can converge to the
stationary point of the original problem. For example, in 2015, Li et al. [18] studied
an alternating convex search method to solve a stationary point problem of biconvex
programming. In 2016, Shah et al. [19] presented an alternating search method with a
square penalty function to solve biconvex programming, which had great effect in image
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recognition. Al-Khayyaltt and Falk [20] discussed an algorithm of biconvex programming
using the idea of branch-and-bound.

In short, based on the above, the mainstream method used to solve biconvex pro-
gramming is an alternative to subproblem solving, because the bi-convexity of biconvex
programming guarantees the convergence of alternative search methods and effectually
cuts down the scale of problem solving via decomposition calculation. Hence, in view of
the large scale of biconvex programming(BCP), alternative subproblem solving will be the
main method adopted in further research regarding biconvex programming.

In this paper we consider biconvex programming with inequality constraints as
follows:

(BCP) min h(u1, u2)

s.t. gi(u1, u2) ≤ 0, i = 1, 2, · · · , m,

where h, gi : Rn1 × Rn2 → R(i = 1, 2, · · · , m) are biconvex if h(u1, u2) and gi(u1, u2) are
convex in u1 ∈ Rn1 for every fixed u2 and in u2 ∈ Rn2 for every fixed u1. Let u = (u1, u2)
and I = {1, 2, · · · , m}. The feasible set of (BCP) is denoted by:

U = {(u1, u2) ∈ Rn1 × Rn2 | gi(u1, u2) ≤ 0, i ∈ I}.

Let
U(u2) = {u1 ∈ Rn1 | gi(u1, u2) ≤ 0, i ∈ I}.

When u2 is fixed, define the suboptimal problem:

(BCP)(u2) min h(u1, u2)

s.t. u1 ∈ U(u2).

Let
U(u1) = {u2 ∈ Rn2 | gi(u1, u2) ≤ 0, i ∈ I}.

When u1 is fixed, define the suboptimal problem:

(BCP)(u1) min h(u1, u2)

s.t. u2 ∈ U(u1).

Many practical engineering optimization problems can be transformed into biconvex
programming, for example the two-cardinality sparse convex optimization problem and
the nonconvex quadratic programming problem.

It is well known that an effective method to solve constrained optimization is by
penalty function [21]. Its main idea is to transform a constrained optimization problem
into a sequence of unconstrained optimization subproblems that are easier to solve. When
the penalty function is not exact, many calculations are needed to solve unconstrained
optimization subproblems so as to obtain an approximate solution to inequality constrained
optimization. For example, it is proven that the exact penalty function method for solving
constrained optimization is very efficient, as first proposed by Zangwill (1967) in [22].
In theory, if the penalty function is exact, to obtain an optimal solution to a constrained
optimization problem only one unconstrained optimization subproblem is solved. Hence,
the exact penalty function algorithm takes less time than the inexact penalty function
algorithm. Additionally, this approach has recently received great attention from both
theoretical and practical arenas. Many studies were later presented based on the exact
penalty function algorithm, such as Rosenberg (1986) [23] and Di Pillo (1986) [24]. In
addition, it is essential to determine the exactness of a penalty function under the stability
condition [25,26]. Hence, this paper mainly focuses on the relationship between the partial
exactness of the penalty function and the partial stability of biconvex programming. On
the other hand, there exist other approaches to reduce constrained optimization problems
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to unconstrained ones; for example, the index method presented in the monograph [27] or
the method for computable boundaries presented in [28]. This shows the significance of
the study of the partial exact penalty function.

In order to ensure exactness, we propose the following penalty function:

Hp(u1, u2, ρ) = h(u1, u2) + ρ ∑
i∈I

max{gi(u1, u2), 0}p,

where penalty parameter ρ > 0 and 0 < p ≤ 1. By the definition of exactness in [29],
a penalty function is exact at p = 0.5, but is not exact at p = 1, such that min

x∈R1
f (x) =

x s.t. x2 ≤ 0. Hence, the exactness of an optimization problem depends on the structure of
the problem. In this paper, we will study the exactness of a more extensive penalty function
for biconvex programming than the one presented in [30].

The remainder of the paper is organized as follows. In Section 2, for a partial opti-
mum solution, the partial exactness of the penalty function is proven under the partial
Karush–Kuhn–Tucker (KKT) condition or the partial stableness condition. An algorithm is
presented to find out a partial optimum solution to (BCP) with convergence.

2. Partial Exactness and a Penalty Function for (BCP)

According to Gorski et al. [14], defining the partial optimum of (BCP) is very mean-
ingful. The concept of the partial optimum of (BCP) is given as follows:

Definition 1. Let (u∗1 , u∗2) ∈ U. If:

h(u∗1 , u∗2) ≤ h(u1, u∗2), ∀u1 ∈ U(u∗2), (1)

h(u∗1 , u∗2) ≤ h(u∗1 , u2), ∀u2 ∈ U(u∗1), (2)

then (u∗1 , u∗2) is called a partial optimum of (BCP). A partial optimum (u∗1 , u∗2) of (BCP) means
that u∗1 is an optimal solution to (BCP)(u∗2) and u∗2 is an optimal solution to (BCP)(u∗1).

Next, let us give the equivalence of a partial optimum of (BCP) to a partial KKT point
under some conditions.

Let h, gi : Rn1 × Rn2 → R, i ∈ I = {1, 2, · · · , m} be biconvex and differentiable. Let
(u∗1 , u∗2) ∈ U. If there are αi(i = 1, 2, · · · , m) such that:

∇h(u∗1 , u∗2) +
m

∑
i=1

αi∇gi(u∗1 , u∗2) = 0, (3)

αigi(u∗1 , u∗2) = 0, αi ≥ 0, i = 1, 2, · · · , m, (4)

then (u∗1 , u∗2) is a KKT point of (BCP).

Let (u∗1 , u∗2) ∈ U. If there are α
(1)
i , α

(2)
i (i = 1, 2, · · · , m) such that:

∇u1 h(u∗1 , u∗2) +
m

∑
i=1

α
(1)
i ∇u1 gi(u∗1 , u∗2) = 0, (5)

∇u2 h(u∗1 , u∗2) +
m

∑
i=1

α
(2)
i ∇u2 gi(u∗1 , u∗2) = 0, (6)

α
(1)
i gi(u∗1 , u∗2) = 0, α

(2)
i gi(u∗1 , u∗2) = 0, α1

i ≥ 0, α2
i ≥ 0, i = 1, 2, · · · , m, (7)

then (u∗1 , u∗2) is a partial KKT point of (BCP).
Let (u∗1 , u∗2) ∈ U. The constraint of (BCP) is called a partial Slater constraint qualifica-

tion at (u∗1 , u∗2), if there is (ū1, ū2) ∈ Rn1 × Rn2 such that:

gi(u∗1 , ū2) < 0, gi(ū1, u∗2) < 0, i = 1, 2, · · · , m.
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In fact, if the Slater constraint qualification is satisfied for a convex programming, an
optimal solution of the convex programming is equal to a KKT condition. For biconvex
programming, we have the results in [28] as follows.

Theorem 1. Let (u∗1 , u∗2) ∈ u. If (BCP) is satisfied with partial Slater constraint qualification at
(u∗1 , u∗2), then (u∗1 , u∗2) is a partial optimum of (BCP) if and only if (u∗1 , u∗2) is a partial KKT point
of (BCP).

Corollary 1. Let (u∗1 , u∗2) ∈ u be a partial optimum of (BCP). If (BCP) is satisfied with partial
Slater constraint qualification at (u∗1 , u∗2), then (u∗1 , u∗2) is a KKT point of (BCP) if and only if (5),
(6), and (7) hold with α1

i = α2
i , i = 1, 2, · · · , m.

Example 1. Let the biconvex programming:

(BCP1) min h(x, y) = xy

s.t. g1(x, y) = 1− x− y ≤ 0,

where h, g1 : R × R → R. For ∀θ ∈ (0, 1), it is clear that (x, y) = (θ, 1− θ) is the partial
KKT point and the partial optimum of (BCP1). If y = 1− x, then h(x, y) = x − x2. We have
h(x, y)→ −∞ as x → ∞. Hence, a local optimal solution to (BCP1) cannot be solved, such as in
(x, y) = ( 1

2 , 1
2 ).

Example 1 means that if there is no optimal solution to biconvex programming,
there may exist a partial KKT point or a partial optimum. It is obvious that an optimal
solution to biconvex programming is the partial optimum. For biconvex programming,
there is a partial optimum even if an optimal solution to biconvex programming is not
obtained. Example 1 further indicates that the partial optimum is very important to
biconvex programming.

Let ρ > 0 be given. Consider the following optimization problem:

(BCP(u2; ρ)) min Hp(u1, u2, ρ), s.t. u1 ∈ Rn1 .

where u1 is a decision variable when u2 is fixed, and

(BCP(u1; ρ)) min Hp(u1, u2, ρ), s.t. u2 ∈ Rn2 .

where u2 is a decision variable when u1 is fixed.

Definition 2. Let (ū∗1 , ū∗2) ∈ Rn1 × Rn2 . If:

Hp(ū∗1 , ū∗2 , ρ) ≤ Hp(u1, ū∗2 , ρ), ∀u1 ∈ Rn1 , (8)

Hp(ū∗1 , ū∗2 , ρ) ≤ Hp(ū∗1 , u2, ρ), ∀u2 ∈ Rn2 , (9)

then (ū∗1 , ū∗2) is called a partial optimum of Hp(u1, u2, ρ).

Next, we define the concept of a partially exact penalty function for biconvex pro-
gramming as follows.

Definition 3. (1) Let (u∗1 , u∗2) be a partial optimum of (BCP). If there is a ρ′ such that (u∗1 , u∗2)
is a partial optimum of Hp(u1, u2, ρ) for ∀ρ > ρ′, then Hp(u1, u2, ρ) is called a partially exact
penalty function.

(2) Let (u∗1 , u∗2) be a partial optimum of Hp(u1, u2, ρ). If (u∗1 , u∗2) of Hp(u1, u2, ρ) is a partial
optimum of (BCP), then ρ is called a partially exact value of the penalty parameter.

Example 2 below shows the partial exactness of a penalty function under different p
values.
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Example 2. Let the biconvex programming:

(BCP2) min h(x, y) = xy + x + y

s.t. x2 + y2 ≤ 0.

It is clear that (0, 0) is a partial optimum of (BCP2). The penalty function for (BCP2) is
defined by:

Hp(x, y; ρ) = xy + x + y + ρ max{x2 + y2, 0}p.

When p = 1, a partial optimum of min
x,y∈R

H1(x, y; ρ) is (x(ρ), y(ρ)) = (− 1
2ρ+1 ,− 1

2ρ+1 ).

Letting ρ→ +∞, we have (x(ρ), y(ρ))→ (0, 0). Hence, H1(x, y, ρ) is not a partially exact
penalty function. When p = 0.5, we have:

H0.5(x, y; ρ) = xy + x + y + ρ
√

x2 + y2.

A partial optimum of min
x,y∈R

H0.5(x, y; ρ) is (0, 0) for ρ ≥ 0. Hence, H0.5(x, y, ρ) is a partially

exact penalty function for ρ ≥ 1. Example 2 means that the partial exactness of penalty
function depends on the parameter p.

Example 3. Let the biconvex programming:

(BCP3) min h(x, y) = xy

s.t. xy ≥ 1.

It is easy to verify that (x∗, y∗) = (θ, 1
θ )

T is an optimal solution to (BCP3) for any θ 6= 0.
Thus, (x∗, y∗) = (θ, 1

θ )
T is a partial optimum of (BCP3) too. The example illustrates that all

partial optimums of (BCP) may be optimal solutions.
(x∗, y∗) = (1, 1)T is a partial optimum of (BCP3). The square penalty function for

(BCP3) is defined by:
H2(x, y; ρ) = xy + ρ max{0, 1− xy}2.

It is easy to check that (x∗, y∗) = ( 1
δ (1−

1
2ρ ), δ) is a partial optimum of H2(x, y, ρ) for δ 6= 0

and ρ ≥ 1. It is easy to check that H2(x, y; ρ) is not partially exact.
For 0 < p ≤ 1, a penalty function for (BCP3) is defined by:

Hp(x, y; ρ) = xy + ρ max{0, 1− xy}p.

We have that (x∗, y∗) = (1, 1) is a partial optimum of Hp(x, y; ρ) for ρ > 1. It is easy to
check that Hp(x, y; ρ) is partially exact for ρ > 1. We easily check that (1, 1) is a KKT point.

Example 3 illustrates that the partially exact penalty function for a partial optimum
can be as good as traditional exact penalty functions.

We prove the similarity of the partially exact penalty result to [28].

Theorem 2. Let h(u1, u2) ≥ 0, ∀(u1, u2) ∈ Rn1 × Rn2 . Let (u∗1 , u∗2) ∈ U be a partial optimum

of (BCP). If (u∗1 , u∗2) is a KKT partial point of (BCP), i.e., there are α
(1)
i , α

(2)
i (i = 1, 2, · · · , m) such

that (5), (6), and (7) are true, then Hp(u1, u2, ρ) is a partially exact penalty function for ρ > ρ∗,
where:

ρ∗ = max{h(u∗1 , u∗2), α
(1)
i , α

(2)
i |i = 1, 2, · · · , m}.
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Proof. If (u∗1 , u∗2) is a partial KKT point of (BCP), there are α
(1)
i and α

(2)
i (i = 1, 2, · · · , m)

such that (5), (6) and (7) are true. Because h(u1, u2), gi(u1, u2)(∀i ∈ I) are biconvex functions
for ∀u1 ∈ Rn1 and ∀u2 ∈ Rn2 , we have:

h(u1, u∗2) ≥ h(u∗1 , u∗2) +∇u1 h(u∗1 , u∗2)
T(u1 − u∗1), (10)

gi(u1, u∗2) ≥ gi(u∗1 , u∗2) +∇u1 gi(u∗1 , u∗2)
T(u1 − u∗1), i ∈ I, (11)

h(u∗1 , u2) ≥ h(u∗1 , u∗2) +∇u2 h(u∗1 , u∗2)
T(u2 − u∗2), (12)

gi(u∗1 , u2) ≥ gi(u∗1 , u∗2) +∇u2 gi(u∗1 , u∗2)
T(u2 − u∗2), i ∈ I. (13)

By (5), (7), (10), and (11), we have:

h(u1, u∗2) ≥ h(u∗1 , u∗2)−
m

∑
i=1

α
(1)
i ∇u1 gi(u∗1 , u∗2)

T(u1 − u∗1)

≥ h(u∗1 , u∗2) +
m

∑
i=1

α
(1)
i (gi(u∗1 , u∗2)− gi(u1, u∗2))

= h(u∗1 , u∗2)−
m

∑
i=1

α
(1)
i gi(u1, u∗2). (14)

Let P(t) = max{t, 0}p, t ∈ R, and 0 < p ≤ 1. Let us take ρ > ρ∗ with ρ∗ = max{h(u∗1 , u∗2),

α
(1)
i , α

(2)
i |i = 1, 2, · · · , m}. If there is a gi(u1, u∗2) > 1, then P(gi(u1, u∗2)) > 1. We have:

h(u1, u∗2) + ρ
m

∑
i=1

P(gi(u1, u∗2)) ≥ ρ∗ ≥ h(u∗1 , u∗2),

i.e.,
Hp(u1, u∗2 , ρ) ≥ Hp(u∗1 , u∗2 , ρ).

Otherwise, if gi(u1, u∗2) ≤ 1 for ∀i ∈ I, from (14) we have:

h(u1, u∗2) + ρ
m

∑
i=1

P(gi(u1, u∗2)) ≥ h(u∗1 , u∗2)

+
m

∑
i=1

(ρ max{gi(u1, u∗2), 0}p − α
(1)
i gi(u1, u∗2)).

Hence, for ρ > ρ∗, we have:

Hp(u∗1 , u∗2 , ρ) ≤ Hp(u1, u∗2 , ρ). (15)

Similarly, for ρ > ρ∗, we have:

Hp(u∗1 , u∗2 , ρ) ≤ Hp(u∗1 , u2, ρ).

By Definition 2, we have that Hp(u1, u2, ρ) is a partially exact penalty function for ρ > ρ∗.

Note. If there is a number A such that h(u1, u2) ≥ A for any (u1, u2) ∈ Rn1 × Rn2 ,
then the conclusion of Theorem 2 holds too. If we let h1(u1, u2) = h(u1, u2)− A, we have
h1(u1, u2) ≥ 0 on Rn1 × Rn2 . It is clear that the problem

(BCP)1 min h1(u1, u2)

s.t. gi(u1, u2) ≤ 0, i = 1, 2, · · · , m,

is equal to the problem (BCP). Particularly, when p = 1, we have the following conclusion.
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Theorem 3. Let (u∗1 , u∗2) ∈ U be a partial optimum of (BCP). If (u∗1 , u∗2) is a KKT partial point

of (BCP), i.e., there are α
(1)
i and α

(2)
i (i = 1, 2, · · · , m) such that (5), (6), and (7) are true, then

H1(u1, u2, ρ) is a partially exact penalty function with p = 1 for ρ > ρ∗, where:

ρ∗ = max{α(1)i , α
(2)
i |i = 1, 2, · · · , m}.

Theorem 3 is consistent with Theorem 2 in [28].
Similar to that for a constrained penalty function presented in [25,26], the concept of

stability for a penalty function of (BCP) is defined. Let s1 = (s1
1, s1

2, · · · , s1
m) and:

U(u2, s1) = {u1 ∈ Rn1 | gi(u1, u2) ≤ s1
i , i ∈ I}.

When u2 is fixed, define a perturbed problem:

(BCP)(u2, s1) min h(u1, u2)

s.t. u1 ∈ U(u2, s1).

Let s2 = (s2
1, s2

2, · · · , s2
m) and:

U(u1, s2) = {u2 ∈ Rn2 | gi(u1, u2) ≤ s2
i , i ∈ I}.

When u1 is fixed, define a perturbed problem:

(BCP)(u1, s2) min h(u1, u2)

s.t. u2 ∈ U(u1, s2).

Definition 4. Let (u∗1 , u∗2) be a partial optimum of (BCP), and u∗1s1
and u∗2s2

be optimal solutions
to (BCP)(u∗2 , s1) and (BCP)(u∗1 , s2), respectively, for any s1, s2 ∈ Rm. If there is a ρ′ > 0 such that:

h(u∗1 , u∗2)− h(u∗1s1
, u∗2) ≤ ρ|s1|, ∀ρ > ρ′, (16)

h(u∗1 , u∗2)− h(u∗1 , u∗2s2
) ≤ ρ|s2|, ∀ρ > ρ′, (17)

where |s1| =
m
∑

i=1
P(s1

i ) and |s2| =
m
∑

i=1
P(s2

i ), then Hp(u1, u2, ρ) is partially stable at (u∗1 , u∗2).

Furthermore, if there are a γ > 0 and a ρ′ > 0 such that (16) and (17) hold for |s1| ≤ γ and
|s2| ≤ γ, then Hp(u1, u2, ρ) is partially locally stable at (u∗1 , u∗2).

Theorem 4. Let (u∗1 , u∗2) be a partial optimum of (BCP). If Hp(u1, u2, ρ) is partially stable, then
Hp(u1, u2, ρ) is a partially exact penalty function at (u∗1 , u∗2).

Proof. Let us prove that Hp(u1, u2, ρ) is a partially exact penalty function when Hp(u1, u2, ρ)
is partially stable at (u∗1 , u∗2). Suppose that Hp(u1, u2, ρ) is not a partially exact penalty
function. According to the definition of partial stability, for any s1, s2, we obtain that there
is a ρ′ satisfying that:

h(u∗1 , u∗2)− h(u∗1s1
, u∗2) ≤ ρ|s1|, ∀ρ > ρ′, (18)

h(u∗1 , u∗2)− h(u∗2 , u∗2s2
) ≤ ρ|s2|, ∀ρ > ρ′. (19)

Then, there always exists some ρ > ρ′ such that (u∗1 , u∗2) is not a partial optimum of
Hp(u1, u2, ρ), i.e., there is some (u′1, u′2) such that:

Hp(u′1, u∗2 , ρ) < Hp(u∗1 , u∗2 , ρ) = h(u∗1 , u∗2),

Hp(u∗1 , u′2, ρ) < Hp(u∗1 , u∗2 , ρ) = h(u∗1 , u∗2).
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Thus,
h(u′1, u∗2) + ρ ∑

i∈I
P(gi(u′1, u∗2)) < h(u∗1 , u∗2),

h(u∗1 , u′2) + ρ ∑
i∈I

P(gi(u∗1 , u′2)) < h(u∗1 , u∗2).

Suppose that u′1 ∈ U(u∗2), u′2 ∈ U(u∗1). We have:

h(u′1, u∗2) < h(u∗1 , u∗2),

h(u∗1 , u′2) < h(u∗1 , u∗2).

This implies that h(u′1, u∗2) < h(u∗1 , u∗2) < h(u′1, u∗2) and h(u∗1 , u′2) < h(u∗1 , u∗2) < h(u∗1 , u′2),
which shows that (u∗1 , u∗2) is not a partial optimum of (BCP). A contradiction occurs. Hence,
u′1 ∈ U(u∗2) and u′2 ∈ U(u∗1) do not hold, and ∑

i∈I
P(gi(u′1, u∗2)) > 0 or ∑

i∈I
P(gi(u∗1 , u′2)) > 0.

Let s′1 = (s1′
1 , s1′

2 , . . . , s1′
m)
> with s1′

i = gi(u′1, u∗2) and s2′ = (s2′
1 , s2′

2 , . . . , s2′
m)
> with

s2
i = gi(u∗1 , u′2), i = 1, 2, · · · , m, and u∗1s′1

and u∗2s′2
be optimal solutions to (BCP)(u∗2 , s′1) and

(BCP)(u∗1 , s′2), respectively. Then, h(u∗1s′1
, u∗2) ≤ h(u′1, u∗2) and h(u∗1 , u∗2s′2

) ≤ h(u∗1 , u′2). Thus,

h(u∗1s′1
, u∗2) ≤ h(u′1, u∗2),

h(u∗1 , u∗2s′2
) ≤ h(u∗1 , x′2).

Therefore,

h(u∗1s′1
, u∗2) + ρ ∑

i∈I
P(s1′

i ) ≤ h(u′1, u∗2) + ρ ∑
i∈I

P(s1′
i )

= Hp(u′1, u∗2 , ρ) < h(u∗1 , u∗2),

and:

h(u∗1 , u∗2s′2
) + ρ ∑

i∈I
P(s2′

i ) ≤ h(u∗1 , u′2) + ρ ∑
i∈I

P(s2′
i )

= Hp(u∗1 , u′2, ρ) < h(u∗1 , u∗2),

which shows that:
h(u∗1 , u∗2)− h(u∗1 , u∗2s′2

) > ρ|s′1|,

h(u∗1 , u∗2)− h(u∗1s′1
, u∗2) > ρ|s′2|,

where |s′1| = ∑
i∈I

P(s1′
i ) and |s′2| = ∑

i∈I
P(s2′

i ). These inequalities contradict (18) and (19).

Hence, that Hp(x, y, ρ) is not partially stable yields a contradiction with the assumption,
which proves that Hp(x, y, ρ) is a partially exact penalty function.

Theorem 5. Let (u∗1 , u∗2) be a partial optimum of (BCP). If Hp(u1, u2, ρ) is a partially exact
penalty function at (u∗1 , u∗2), then Hp(u1, u2, ρ) is partially locally stable. In particular, for p = 1,
H1(u1, u2, ρ) is partially stable.

Proof. Let us prove that Hp(x, y, ρ) is partially locally stable when Hp(x, y, ρ) is a partially
exact penalty function. According to the definition of a partially exact penalty function, if
(u∗1 , u∗2) is a partial optimum of (BCP), there always exist some ρ > ρ′ such that:

Hp(u∗1 , u∗2 , ρ) ≤ Hp(u1, u∗2 , ρ), ∀u1 ∈ Rn1 , (20)

Hp(u∗1 , u∗2 , ρ) ≤ Hp(u∗1 , u2, ρ), ∀u2 ∈ Rn2 . (21)
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Let u∗1s1
and u∗2s2

be optimal solutions to (BCP)(u∗2 , s1) and (BCP)(u∗1 , s2), respectively, for
any s1, s2 ∈ Rm. By (20), and (21), we have:

h(u∗1 , u∗2) = Hp(u∗1 , u∗2 , ρ) ≤ Hp(u∗1s1
, u∗2 , ρ), (22)

h(u∗1 , u∗2) = Hp(u∗1 , u∗2 , ρ) ≤ Hp(u∗1 , u∗2s2
, ρ). (23)

It is clear that for s1
i ≤ 1, s2

i ≤ 1(i ∈ I), we have:

P(gi(u∗1s1
, u∗2)) ≤ P(s1

i ), P(gi(u∗1 , u∗2s2
)) ≤ P(s2

i ), i ∈ I. (24)

From (22), (23), and (24), for |s1| ≤ m and |s2| ≤ m:

h(u∗1 , u∗2)− h(u∗1s1
, u∗2) ≤ ρ|s1|, ∀ρ > ρ′,

h(u∗1 , u∗2)− h(u∗1 , u∗2s2
) ≤ ρ|s2|, ∀ρ > ρ′.

It follows from the definition that Hp(x, y, ρ) is partially locally stable.

Theorem 4 and Theorem 5 mean that the stability condition is sufficient for the partial
exact penalty function, but the necessary condition of the partial exact penalty function is
partially locally stable, as shown in the following example.

Example 4. Let the perturbed problem (BCP3), and its (BCP3(x, s1)) and (BCP3(y, s2)):

(BCP3)(x, s1) min
y

h(x, y) = xy

s.t. 1− xy ≤ s1,

(BCP3)(y, s2) min
x

h(x, y) = xy

s.t. 1− xy ≤ s2.

It is clear that (x∗, y∗) = (1, 1) is a partial optimum of (MCP3) and its objective function
value is 1. x∗s1

= 1 − s1 and y∗s2
= 1 − s2 are optimal solutions to (BCP3)(1, s1) and

(BCP3)(1, s2), respectively, for any s1, s2 ∈ R. Let P(t) = max{t, 0}p and s1, s2 ≤ 1 with
0 < p < 1. For ρ > 1,

h(x∗, y∗)− h(x∗, y∗s1
) = 1− (1− s1) ≤ ρP(s1),

h(x∗, y∗)− h(x∗s1
, y∗) = 1− (1− s2) ≤ ρP(s2),

then Hp(x, y, ρ) is partially locally stable. When p = 1, H1(x, y, ρ) is partially stable.

3. Partial Optimum Penalty Function Algorithm for (BCP)

Now, we present an algorithm to solve a partial optimum of (BCP) by solving the
penalty function problem BCP(ρ) as follows.

BCP(ρ) min Hp(u1, u2, ρ) s.t.(u1, u2) ∈ Rn1 × Rn2 .

Based on the above results, the Partial Optimum Penalty Function Algorithm (Algorithm 1)
was designed to compute a partial optimum of (BCP).

We prove the convergence of the Algorithm 1 in Theorem 6. Let:

S(L, h) = {(u1, u2) | L ≥ h(u1, u2), }

be a level set. If for any given L > 0, S(L, h) is bounded, then S(L, h) is called bounded.
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Algorithm 1: POPFA Algorithm
Step 1: Choose ρ1 > 0, N > 1, 0 < p ≤ 1 and k = 1.
Step 2: Solve (uk

1, uk
2) to be a partial optimum of

min Hp(u1, u2, ρk) s.t.(u1, u2) ∈ Rn1 × Rn2 .

Step 3: If (uk
1, uk

2) is feasible to (BCP), stop and (uk
1, uk

2) is a partial optimum of
(BCP).

Otherwise, ρk+1 = Nρk, k =: k + 1 and go to Step 2.

Theorem 6. Let {(uk
1, uk

2)} be the sequence generated by the Algorithm 1 and h(·) be continuous.
(i) If {(uk

1, uk
2)}(k = 1, 2, · · · , k̄) is a finite sequence (i.e., the Algorithm 1 stops at the k̄-th

iteration), then (uk̄
1, uk̄

2) is a partial optimum of (BCP).
(ii) Let {(uk

1, uk
2)} be an infinite sequence, sequence {Hp(uk

1, uk
2, ρk)} be bounded and the

level set S(L, h) be bounded. Then {(uk
1, uk

2)} is bounded and any limit point (u∗1 , u∗2) of it is a
partial optimum of (BCP).

Proof. (i) The conclusion is clear.
(ii) By the Algorithm 1, since {Hp(uk

1, uk
2, ρk)} is bounded as k→ +∞, there must be

some L > 0 such that:

L > Hp(uk
1, uk

2, ρk)

≥ h(uk
1, uk

2) + ρk

m

∑
i=1

P(gi(uk
1, uk

2)) (25)

≥ h(uk
1, uk

2).

Since h is continuous and the level set S(L, h) is bounded and closed, {(uk
1, uk

2)} and
{h(uk

1, uk
2)} are bounded. Without loss of generality, suppose (uk

1, uk
2)→ (u∗1 , u∗2). Hence,

there is an A > 0 such that h(uk
1, uk

2) > −A. From (25), we have:

m

∑
i=1

P(gi(uk
1, uk

2)) ≤
1
ρk

(L− h(uk
1, uk

2)) <
L + A

ρk
.

We have
m
∑

i=1
P(gi(uk

1, uk
2))→ 0 as ρk → +∞. Hence, (u∗1 , u∗2) is a feasible solution to (BCP).

Let any ū1 ∈ U(u∗2) and ū2 ∈ U(u∗1). Since (uk
1, uk

2) is a partial optimum of

min Hp(u1, u2, ρk) s.t.(u1, u2) ∈ Rn1 × Rn2 ,

we have:
h(uk

1, uk
2) ≤ Hp(uk

1, uk
2, ρk) ≤ Hp(ū1, uk

2, ρk),

h(uk
1, uk

2) ≤ Hp(uk
1, uk

2, ρk) ≤ Hp(uk
1, ū2, ρk).

Let k→ +∞, and the above inequations are:

h(u∗1 , u∗2) ≤ h(ū1, u∗2),

h(u∗1 , u∗2) ≤ h(u∗1 , ū2).

Hence, (u∗1 , u∗2) is a partial optimum of (BCP).

Theorem 6 means that the Algorithm 1 has good convergence in theory. From The-
orem 4, when the penalty function is partially stable, the Algorithm 1 solves a single
unconstrained optimization problem for the smaller penalty parameter ρ. Since the penalty
function Hp(u1, u2, ρ) is nonsmooth for 0 < p < 1, it is necessary to smooth the constrained
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nonsmooth term to design an effective algorithm. Therefore, the smoothing algorithm
of a partial exact penalty function is worthy of further study. In fact, for p = 1, we have
published a paper regarding a smoothing partially exact penalty function algorithm [30],
where two numerical examples show the proposed algorithm is effective for biconvex
programming.

4. Conclusions

In this paper, we studied the partial optimum solution to biconvex programming
using the penalty function, which is partially exact. The form of this penalty function is
more general than that in [28]. We proved that the partial exactness of the penalty function
for biconvex programming is equivalent to the partial KKT condition, and we proved that
the partial exactness of the penalty function for biconvex programming is equivalent to
partially local stability. Based on the penalty function, the Algorithm 1 was theoretically
presented to solve a partial optimum solution to biconvex programming. The convergence
of the algorithm was also proven. The Algorithm 1 may solve a partial optimum solution
to biconvex programming under the smaller penalty parameter. In the future, we may
study the smoothing problem of the partial exact penalty function and its algorithm.
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