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Abstract: The ground state, magnetization scenario and the local bipartite quantum entanglement of
a mixed spin-1/2 Ising–Heisenberg model in a magnetic field on planar lattices formed by identical
corner-sharing bipyramidal plaquettes is examined by combining the exact analytical concept of
generalized decoration-iteration mapping transformations with Monte Carlo simulations utilizing
the Metropolis algorithm. The ground-state phase diagram of the model involves six different
phases, namely, the standard ferrimagnetic phase, fully saturated phase, two unique quantum
ferrimagnetic phases, and two macroscopically degenerate quantum ferrimagnetic phases with two
chiral degrees of freedom of the Heisenberg triangular clusters. The diversity of ground-state spin
arrangement is manifested themselves in seven different magnetization scenarios with one, two or
three fractional plateaus whose values are determined by the number of corner-sharing plaquettes.
The low-temperature values of the concurrence demonstrate that the bipartite quantum entanglement
of the Heisenberg spins in quantum ferrimagnetic phases is field independent, but twice as strong if
the Heisenberg spin arrangement is unique as it is two-fold degenerate.

Keywords: Ising–Heisenberg model; chiral degrees of freedom; magnetization process; bipartite
quantum entanglement; rigorous results

1. Introduction

Quantum entanglement has been attracting a lot of attention in the last few years
mainly due to its crucial role in the development of quantum computers, superdense
coding, quantum communication, quantum teleportation, as well as quantum information
theory [1–3]. The application potential of this unique phenomenon also exceeds into the
quantum biology [4,5] and quantum metrology [6,7].

In quantum theory, quantum entanglement provides a novel platform for exploring
long-range quantum correlations, quantum phase transitions as well as exotic properties
of many-body systems [8–11]. The low-dimensional Heisenberg spin models, involving
quantum fluctuations between spins, play a significant role in this regard because they
have been proven to be ideal candidates for a rigorous investigation of the entangled
states under the influence of the external stimuli such as magnetic field (homogeneous
or inhomogeneous) and/or temperature [12–24]. Moreover, many analytical and nu-
merical calculations have been performed to examine the tuning of the quantum and
thermal bipartite entanglement by varying the exchange anisotropy parameter [19–28], the
uniaxial single-ion anisotropy [16,17], the Dzyaloshinskii–Moriya interaction (spin-orbit
coupling) [18–20,26,27], the next-nearest-neighbour interaction [13,14,29], as well as by
introducing impurities into the system [28,30].
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However, the rigorous investigation of the bipartite entanglement in the pure Heisen-
berg models represents a complex task, which is considerably limited due to a non-
commutability of spin operators in the Hamiltonian. This computational problem makes
the rigorous study of the phenomenon in general inaccessible across whole parameter
space of the systems. On the other hand, replacing some of the Heisenberg spins with three
spin components by the Ising ones with only one (z-) component at the nodal lattice sites is
the alternative way to exactly examine the entanglement in various simpler mixed-spin
Ising–Heisenberg models by using the standard transfer-matrix method [31] and/or the
concept of generalized mapping transformations [32–35]. Taking into account the fact that
the finite Heisenberg clusters formed by three-component Heisenberg spins are indirectly
coupled with each other through the intermediate one-component Ising spin(s), one finds
that the eigenstates of two adjacent Heisenberg clusters are separable. Thus, any quantity
measuring the local bipartite entanglement in the considered mixed-spin model can be
rigorously calculated for each quantum Heisenberg cluster separately.

To date, the bipartite entanglement has been rigorously examined in several one- (1D)
and two-dimensional (2D) mixed-spin Ising–Heisenberg models formed by the identical
Heisenberg dimers or triangular clusters which interact with each other via the intermediate
nodal Ising spin(s) [36–45]. The investigations brought a deeper insight into the thermal
and magnetic-field-driven changes of the phenomenon [36–43], the impact of the model’s
parameters on the phenomenon [36,39–45], as well as the evolution of the phenomenon near
and above second-order (continuous) phase transitions [44,45] without any artefacts arising
from approximations. Despite their simplicity and the general opinion that the simpler
mixed-spin Ising–Heisenberg systems involving isolated local quantum correlations are
artificial models, some of the results were in a very good correspondence with ones obtained
for more complex Heisenberg counterparts [40] and also with experiments [38,46,47].

In the present paper, we will rigorously solve a spin-1/2 Ising–Heisenberg model in
a longitudinal magnetic field on 2D lattices formed by identical corner-sharing trigonal
bipyramidal plaquettes. Our recent studies [45,48] of the model without magnetic field
on the particular lattice with four inter-connected bipyramidal units have shown that
this quantum mixed-spin model represents a suitable playground for a rigorous study of
various unconventional physical phenomena such as the macroscopic degeneracy of the
spontaneous long-range order caused by chiral spin degrees of freedom, the spin frustration,
and the bipartite entanglement. The aforementioned findings motivated us to extend
the investigation of the model also to the effect of the longitudinal magnetic field. The
goals of the present paper are to shed a light on the nature of ground states invoked by the
applied field, to identify the actual fractional plateaus in the zero-temperature magnetization
process, to find out a general formula describing how the values of these plateaus depend
on the current number of interconnected bipyramidal plaquettes and, finally, to quantify the
bipartite quantum entanglement between the Heisenberg spins in individual ground states.

In addition to the academic interest, our investigation of the spin-1/2 Ising-Heisenberg
model on 2D lattices formed by interconnected trigonal bipyramids is motivated by the
existence of a class of geometrically frustrated structures, namely cobaltates YBaCo4O7
(Y denotes a rare-earth ion) [49] and anion-radical salts (MDABCO+)(C•−60 ) (MDABCO+

represents N-methyldiazabicyclooctanium cation, C•−60 is a radical anion) [50], in which one
can clearly identify corner-sharing trigonal bipyramidal clusters. Although the mentioned
compounds do not represent a precise experimental realization of the magnetic structure
proposed in the present paper, we hope that a targeted design of the magnetic material
with a magnetic structure of interconnected trigonal bipyramids is feasible. The targeted
chemical synthesis involving highly anisotropic spin carriers such Dy3+ or Co2+ magnetic
ions and anion-radical salts could possibly afford desiring such a quantum mixed-spin
system. The findings presented in this paper could serve as a motivation for chemists to
achieve this goal.

The outline of the paper is as follows: in Section 2, a magnetic structure of the
investigated model is described and the most important steps of its rigorous treatment
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combining the analytical and numerical approaches are clarified. In Section 3, we present
the most interesting numerical results for the ground state and the magnetization process
of the model. The section also includes an analysis of the bipartite quantum entanglement
in the individual ground states. Finally, the summary of the most important findings are
presented in Section 4.

2. Model and Its Rigorous Treatment

We consider a mixed spin-1/2 Ising–Heisenberg model in a longitudinal magnetic
field on 2D lattices consisting of identical corner-sharing trigonal bipyramidal plaquettes, as
is schematically depicted in Figure 1 for one particular lattice with four such plaquettes. In
this figure, the common vertices of plaquettes (white circles) are occupied by the Ising spins
σ = 1/2 that interact with other spins solely through their z-components. The rest ones
(red circles), forming internal equilateral triangles oriented perpendicularly to the plaquette
axes, are occupied by the Heisenberg spins S = 1/2 that are coupled to each other via x-, y-,
and z-components. Assuming q bipyramidal plaquettes share a common vertex, the total
Hamiltonian of the mixed spin-1/2 Ising–Heisenberg model can be written as a sum of
plaquette (five-spin cluster) Hamiltonians Ĥ = ∑

Nq/2
j=1 Ĥj, where N labels the total number

of the nodal lattice sites occupied by the Ising spins (we consider the thermodynamic limit
N → ∞). Each plaquette Hamiltonian Ĥj contains all exchange interactions realized within
the jth Ising–Heisenberg trigonal bipyramid and Zeeman terms that describe the influence
of the applied external magnetic field on magnetic moments of the individual spins:

Ĥj =− JH

3

∑
k=1

[
∆(Ŝx

j,kŜx
j,k+1 + Ŝy

j,kŜy
j,k+1) + Ŝz

j,kŜz
j,k+1

]
− JI

3

∑
k=1

Ŝz
j,k(σ̂

z
j + σ̂z

j+1)

− HH

3

∑
k=1

Ŝz
j,k −

HI
q
(σ̂z

j + σ̂z
j+1).

(1)

In the above, Ŝα
j,k (α = x, y, z) and σ̂z

j are spatial components of the spin-1/2 operator of
the Heisenberg spin from the jth triangle and z-component of the Pauli operator with
the eigenvalues ±1/2 at the jth nodal lattice site, respectively, which satisfy the periodic
boundary conditions Ŝα

j,4 ≡ Ŝα
j,1 and σ̂z

Nq/2+1 ≡ σ̂z
1 . The parameter JH marks the XXZ

Heisenberg interaction within the Heisenberg triangles, ∆ is the exchange anisotropy
parameter in this interaction, and JI labels the Ising-type interaction between the nearest-
neighbouring Ising and Heisenberg spins. The last two terms HH and HI in the second
line of Equation (1) are Zeeman terms, which account for the magnetostatic energy of the
Heisenberg and Ising spins in an applied longitudinal magnetic field, respectively.

Figure 1. A schematic representation of the j-th trigonal bipyramidal plaquette and the mixed
spin-1/2 Ising–Heisenberg model on the particular 2D lattice with four (q = 4) corner-sharing
bipyramidal plaquettes. White circles label lattice sites occupied by the Ising spin σ = 1/2 and red
circles denote lattice sites occupied by the Heisenberg spin S = 1/2. Black dashed lines illustrate the
Ising-type interaction JI between the Ising and Heisenberg spins and red solid lines indicate XXZ
Heisenberg exchange interaction JH(∆) between the Heisenberg spins in the plaquette.
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As we have shown in our recent work on the zero-field case of the model [45], it is
convenient for further calculations to introduce the composite spin operators:

t̂j =
3

∑
k=1

Ŝj,k , t̂α
j =

3

∑
k=1

Ŝα
j,k (α = x, y, z), (2)

which determine the total spin of the Heisenberg triangular clusters and its spatial compo-
nents, respectively. From the definition of the latter operators, one can easily obtain the
spin identity (t̂α

j )
2 = 3/4 + 2 ∑3

k=1 Ŝα
j,kŜα

j,k+1. This, in combination with the identity for the

square of the total composite spin operator (t̂j)
2 = t̂j · t̂j = (t̂x

j )
2 + (t̂y

j )
2 + (t̂z

j )
2, allows

one to find the following two relations for the Heisenberg spin operators from the same
triangular cluster:

3

∑
k=1

(
Ŝx

j,kŜx
j,k+1 + Ŝy

j,kŜy
j,k+1

)
=

1
2

[
(t̂j)

2 − (t̂z
j )

2
]
− 3

4
,

3

∑
k=1

Ŝz
j,kŜz

j,k+1 =
1
2
(t̂z

j )
2 − 3

8
. (3)

Bearing in mind the above relations and the definition of the z-component of the
composite spin operator t̂z

j listed in Equation (2), the plaquette Hamiltonian (1) can be
expressed in the alternative form:

Ĥj =
3JH

8
(2∆+1)− JH∆

2
(t̂j)

2 +
JH
2
(∆− 1)(t̂z

j )
2 − JI t̂z

j (σ̂
z
j + σ̂z

j+1)

− HH t̂z
j −

HI
q
(σ̂z

j + σ̂z
j+1).

(4)

It is easy to prove that the operators (t̂j)
2, t̂z

j appearing in Equation (4) satisfy the commuta-

tion relations
[
Ĥj, (t̂j)

2] = 0 and
[
Ĥj, t̂z

j
]
= 0, which implies that they are both conserved

quantities with well defined quantum spin numbers tj(tj + 1) and tz
j = {−tj,−tj + 1, . . . , tj}

for tj = {3/2, 1/2}, respectively. In this regard, Equation (4) represents a fully diagonal
form of the plaquette Hamiltonian (1), which implies that the corresponding energy eigen-
values can be expressed in terms of the respective quantum spin numbers:

Etj ,tz
j
=

3JH
8

(2∆+1)− JH∆
2

tj(tj + 1) +
JH
2
(∆− 1)(tz

j )
2 − JI tz

j (σ
z
j + σz

j+1)

− HHtz
j −

HI
q
(σz

j + σz
j+1).

(5)

At this calculation stage, the partition function of the considered spin-1/2 Ising–Heisen-
berg model can be partially factorized due to commuting character of different plaquette
Hamiltonians and written in terms of the eigenvalues (5) of the plaquette Hamiltonian:

Z = Tr exp
(
−βĤ

)
= ∑
{σn}

Nq/2

∏
j=1

Trj exp
(
−βĤj

)
= ∑
{σn}

Nq/2

∏
j=1

∑
tj ,tz

j

gtj exp
(
−βEtj ,tz

j

)
. (6)

Here, β = 1/(kBT) (kB is the Boltzmann’s constant and T is the absolute temperature
of the system), and the summation symbol ∑{σn} denotes a summation over all possible

spin configurations of the Ising spins, the product symbol ∏
Nq/2
j=1 runs over all trigonal

bipyramids, and the double summation symbol ∑tj ,tz
j

runs over all possible values of the
quantum numbers tj, tz

j of the composite spins. Finally, gtj is the degeneracy factor, which
takes the value 1 for the quantum number tj = 3/2 and 2 for the quantum number tj = 1/2.
After performing double summations over tj and tz

j , one gains the effective Boltzmann’s
weight w(σz

j , σz
j+1), which depends only on the Ising spin states σz

j , σz
j+1, and, thus, it can be
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replaced by a simpler but equivalent expression using the generalized decoration-iteration
mapping transformation [32–35]:

w(σz
j , σz

j+1) = ∑
tj ,tz

j

gtj exp
(
−βEtj ,tz

j

)
= 2 exp

[
βHI

q
(σj + σj+1)−

βJH
4

]

×
{[

exp(βJH∆) + 2 exp
(
− βJH∆

2

)]
cosh

[
βJI
2

(σz
j + σz

j+1) +
βHH

2

]

+ exp(βJH) cosh
[

3βJI
2

(σz
j + σz

j+1) +
3βHH

2

]}

= A exp
[

βJeff σz
j σz

j+1 +
βHeff

q
(σz

j + σz
j+1)

]
.

(7)

The novel effective parameters A, Jeff, and Heff emerging on the right-hand side of Equa-
tion (7) are determined by ’self-consistency’ of the algebraic approach used:

A = 4
√

w+w−w2
0 , Jeff = kBT ln

(
w+w−

w2
0

)
, Heff =

kBTq
2

ln
(

w+

w−

)
. (8)

Here, w± = w(±1/2,±1/2) and w0 = w(±1/2,∓1/2). After substituting Equation (7)
into Equation (6), one obtains the rigorous equivalence between the partition function Z
of the spin-1/2 Ising–Heisenberg model given by the Hamiltonian (1) and the partition
function ZIM of the effective spin-1/2 Ising model on the corresponding q-coordinated 2D
lattice given by the HamiltonianHIM = −Jeff ∑

Nq/2
〈j,n〉 σz

j σz
n − Heff ∑N

j=1 σz
j :

Z(T, JH , JI , ∆, HH , HI) = ANq/2ZIM(T, Jeff, Heff). (9)

The mapping relation (9) represents the crucial result of the rigorous solution of the
considered 2D spin-1/2 Ising–Heisenberg model in an external magnetic field because of
all important physical quantities clarifying a ground-state arrangement, magnetization
process, and quantum bipartite entanglement between the Heisenberg spins, namely, the
local magnetization mI = 〈σ̂z

j 〉 and mH = 〈∑3
k=1 Ŝz

j,k〉 per nodal Ising spin and Heisenberg
triangular cluster, respectively, the total magnetization m per bipyramidal plaquette, as well
as the pair correlation functions Cxx(yy)

HH = 〈Ŝx
j,kŜx

j,k+1〉 = 〈Ŝ
y
j,kŜy

j,k+1〉, Czz
HH = 〈Ŝz

j,kŜz
j,k+1〉

and Czz
IH = 〈σ̂z

j Ŝz
j,k〉 = 〈σ̂

z
j+1Ŝz

j,k〉, can be directly derived from the formula for the Gibbs
free energy G = −kBT lnZ by means of the differential calculus:

mI = − 1
2N

∂G
∂HI

, mH = − 2
Nq

∂G
∂HH

, m =
qmH + 2mI

q
, (10a)

Czz
HH =

2
3NqJH

(
∆

∂G
∂∆
− ∂G

∂JH

)
, Cxx(yy)

HH = − 1
3NqJH

∂G
∂∆

, Czz
IH = − 1

3Nq
∂G
∂JI

. (10b)

The final analytical expressions of all the physical quantities listed in Equation (10a,b)
depend on the on-site magnetization mIM = 〈σz

j 〉IM and the pair correlation function
Czz

IM = 〈σz
j σz

j+1〉IM of the effective 2D q-coordinated spin-1/2 Ising lattice with the
temperature-dependent nearest-neighbour interaction Jeff in the temperature-dependent
magnetic field Heff. Because an exact solution for the 2D spin-1/2 Ising model in an external
magnetic field still belongs to unresolved issues of condensed matter physics, one has to
resort to some numerical algorithm applicable to the 2D Ising lattices to gain the accurate
results for mIM and Czz

IM. In the present paper, we will employ the classical Monte Carlo
(MC) simulations implementing the standard Metropolis algorithm [51,52] for the effective
spin-1/2 Ising lattice of a sufficiently large linear size L.
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3. Discussion of the Numerical Results

In this section, we will proceed to a discussion of the most interesting numerical
results for the 2D spin-1/2 Ising–Heisenberg model in an external magnetic field with
the antiferromagnetic Ising-type interaction JI < 0 between the Ising and Heisenberg
spins. For simplicity, we will assume that the local magnetic fields acting in the Ising and
Heisenberg spins are identical HI = HH = H. The absolute value of the interaction JI will
be used as an energy unit for defining a relative strength of the Heisenberg interaction
JH/|JI | and the magnetic field H/|JI |.

3.1. Ground-State Phase Diagrams

First, we take a look at possible magnetic ground-state arrangement of the model,
which can be determined by a systematic inspection of the eigenvalues (5) of the pla-
quette Hamiltonian (1) for all possible combinations of quantum spin numbers tj, tz

j
entering therein. The typical ground-state phase diagrams are depicted in Figure 2 in the
JH/|JI | − H/|JI | parameter plane for two representative values of the exchange anisotropy
∆ = 0.5 and 2 by assuming four different numbers q of corner-sharing trigonal bipyramidal
plaquettes forming 2D lattices. As one can see from Figure 2a, the ground-state phase dia-
gram of the model with the easy-axis exchange anisotropy ∆ = 0.5 contains four different
ground states. Specifically, two ground states are macroscopically degenerate quantum
ferrimagnetic phases | − 1/2; 1/2〉R,L and |1/2; 1/2〉R,L, which differ from each other only
by the orientation of Ising spins with respect to the applied magnetic field as indicated by
the corresponding eigenvectors and eigenenergies per plaquette:

|±1/2; 1/2〉R,L =
Nq/2

∏
j=1
|±〉σz

j
⊗ |1/2, R or L〉4j

, (11a)

E|±1/2;1/2〉R,L
=

JH
4

+
JH∆

2
∓ JI

2
− (q± 2)H

2q
. (11b)

The state vector |1/2, R or L〉4j
in Equation (11a) describes a quantum superposition of

three different up-up-down spin states of the j-th Heisenberg triangular cluster with two
opposite (Right- and Left-hand side) chiral degrees of freedom:

|1/2, R〉4j
=

1√
3

(
|↑↑↓〉+ e

2πi
3 |↑↓↑〉+ e

4πi
3 |↓↑↑〉

)
4j

,

|1/2, L〉4j
=

1√
3

(
|↑↑↓〉+ e

4πi
3 |↑↓↑〉+ e

2πi
3 |↓↑↑〉

)
4j

,
(12)

The two-fold degeneracy of each Heisenberg triangle results in the field-independent
macroscopic degeneracy 2Nq/2 of the phases |−1/2; 1/2〉R,L and |1/2; 1/2〉R,L, which is
obviously highly sensitive to the current number q of interconnected trigonal bipyrami-
dal plaquettes (Heisenberg triangular clusters). The direct relation between the number
of plaquettes sharing a common vertex and the macroscopic degeneracy of the phases
|−1/2; 1/2〉R,L, |1/2; 1/2〉R,L is also reflected in a current value of the residual entropy
per nodal Ising spin observed in both the phases. Specifically, it proportionally grows
with q [53]:

Sres

NkB
= lim

N→∞

1
N

ln 2Nq/2 ≈ 0.347q. (13)

The other two ground states are the classical ferrimagnetic phase |−1/2; 3/2〉 and
the fully saturated phase |1/2; 3/2〉. These two phases again differ from each other only
by the orientation of the Ising spins with respect to the applied magnetic field, while the
Heisenberg spins are fully polarized into the magnetic field direction without any quantum
correlations between their x- and y-components in both phases:
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|±1/2; 3/2〉 =
Nq/2

∏
j=1
|±〉σz

j
⊗ |↑↑↑〉4j

, (14a)

E|±1/2;3/2〉 = −
3JH

4
∓ 3JI

2
− (3q± 2)H

2q
. (14b)

The uniqueness of the classical spin arrangements in the phases |−1/2; 3/2〉 and |1/2; 3/2〉
given by Equation (14a) is reflected in the zero entropy per Ising spin S/(NkB) = 0 in
parameter regions corresponding to these phases.

It is obvious from Figure 2a that the classical ferrimagnetic phase |−1/2; 3/2〉 can
be detected in the whole parameter region with the ferromagnetic Heisenberg coupling
JH/|JI | > 0 and partially also in the region with the antiferromagnetic Heisenberg in-
teraction JH/|JI | < 0. By contrast, the macroscopically degenerate quantum phases
|−1/2; 1/2〉L,R and |1/2; 1/2〉L,R are stable solely for the antiferromagnetic Heisenberg
couplings JH/|JI | < 0. Finally, the saturated phase |1/2; 3/2〉 represents the actual ground
state at high enough magnetic fields regardless of whether the ferro- or antiferromagnetic
Heisenberg interaction JH/|JI | is considered.

-8 -6 -4 -2 0 2 4 6
0

2

4

6

8

10  = 0.5|1/2;3/2>

|1/2;1/2>
R,LH

 / 
|J I

|

JH / |JI|

|-1/2;3/2>
|-1/2;1/2>R,L

(a)
-6 -4 -2 0 2 4 6 8
0

2

4

6

8

10  = 2|1/2;3/2>

|1/2;1/2>
R,LH

 / 
|J I

|

JH / |JI|

|1/
2;1

/2>

|-1/2;1/2>R,L |-1/2;1/2>

|-1/2;3/2>

  q = 3
  q = 4
  q = 5
  q = 6

(b)

Figure 2. The ground-state phase diagram of the spin-1/2 Ising–Heisenberg model on 2D lattices
with three (q = 3), four (q = 4), five (q = 5), and six (q = 6) corner-sharing trigonal bipyramidal
plaquettes in the JH/|JI | − H/|JI | parameter plane for two representative values of the exchange
anisotropy parameter: (a) ∆ = 0.5 and (b) ∆ = 2.

On the other hand, the ground-state phase diagram corresponding to the model with
the easy-plane anisotropy ∆ = 2 is a little more complex (see Figure 2b). It contains
two more ground states in addition to the previous four, namely, the unique quantum
ferrimagnetic phases |−1/2; 1/2〉 and |1/2; 1/2〉 with the Heisenberg triangular clusters
in a symmetric quantum superposition of three possible up-up-down spin states but an
opposite orientation of the Ising spins:

|±1/2; 1/2〉 =
Nq/2

∏
j=1
|±〉σz

j
⊗ 1√

3
(|↑↑↓〉+|↑↓↑〉+|↓↑↑〉)4j

, (15a)

E|±1/2;1/2〉 =
JH
4
− JH∆∓ JI

2
− (q± 2)H

2q
. (15b)

As shown in Figure 2b, both the quantum ferrimagnetic phases |−1/2; 1/2〉 and |1/2; 1/2〉
emerge in the ground-state phase diagram exclusively in the parameter region of the
ferromagnetic Heisenberg interaction JH/|JI | > 0. Naturally, the zero entropy per Ising
spin S/(NkB) = 0 solely can be detected in their stability regions due to unique quantum
spin arrangement given by Equation (15a).

In addition to their location in the zero-temperature JH/|JI | − H/|JI | parameter plane,
it is also possible to understand from Figure 2 how the individual phases develop de-
pending on the number q of corner-sharing bipyramidal plaquettes. Namely, the quantum
ferrimagnetic phases |−1/2; 1/2〉R,L, |−1/2; 1/2〉 and the classical one |−1/2; 3/2〉 are
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gradually extended to stronger magnetic fields with increasing number q of the corner-
haring plaquettes. Moreover, the classical phase |−1/2; 3/2〉 simultaneously spreads to the
regions of stronger antiferromagnetic (ferromagnetic) Heisenberg interactions JH/|JI | < 0
(JH/|JI | > 0). The remaining three phases |1/2; 1/2〉R,L, |1/2; 1/2〉 and |1/2; 3/2〉 faithfully
follow the evolution of the adjacent ones |−1/2; 1/2〉R,L, |−1/2; 1/2〉, |−1/2; 3/2〉: the
quantum phases |1/2; 1/2〉R,L, |1/2; 1/2〉 are gradually shifted to stronger antiferromag-
netic and ferromagnetic Heisenberg interactions JH/|JI | < 0 and JH/|JI | > 0, respectively,
and the saturated one |1/2; 3/2〉 is shifted to stronger magnetic fields.

3.2. Magnetization Process

The rich ground-state phase diagrams depicted in Figure 2 suggest various zero-
temperature magnetization scenarios of the studied spin-1/2 Ising–Heisenberg model
either with one, two or three different plateaus at fractional values of the saturation magne-
tization msat = (3q + 2)/(2q). In accordance with the definition of the total magnetization
m per plaquette listed in Equation (10a), the values of these plateaus are given by a current
number q of the trigonal bipyramids sharing a common vertex:

m
msat

=
q− 2

3q + 2
,

q + 2
3q + 2

,
3q− 2
3q + 2

. (16)

The first (lowest) magnetization plateau at m/msat = (q− 2)/(3q + 2) can be identified at
low magnetic fields in the stability regions of the macroscopically degenerate quantum fer-
rimagnetic phase |−1/2; 1/2〉R,L and the unique quantum ferrimagnetic phase |−1/2; 1/2〉.
The second one at m/msat = (q+ 2)/(3q+ 2) is a result of the spin arrangements present in
the quantum phases |1/2; 1/2〉R,L and |1/2; 1/2〉, and therefore it can be found at moderate
magnetic fields. The highest fractional plateau at m/msat = (3q− 2)/(3q + 2) relates to
the classical ferrimagnetic phase |−1/2; 3/2〉.

To illustrate the above statements, two three-dimensional (3D) plots of the isothermal
magnetization curves for the particular version of the lattice with four (q = 4) corner-
sharing bipyramidal plaquettes are depicted in Figure 3 at the sufficiently low temperature
kBT/|JI | = 1.5× 10−3. The plots are the outcomes of MC simulations for 100× 100 nodal
lattice sites (Ising spins), which corresponds to 19,800 corner-sharing trigonal bipyramidal
plaquettes. The adequate numerical accuracy was achieved by 12× 104 MC steps per
node. For easy reference, the interaction ratio JH/|JI | is fixed to the same ranges and the
anisotropy parameter ∆ to the same values as were used in Figure 2. It can be understood
from a comparison of these plots with corresponding ground-state phase diagrams in
Figure 2 that the displayed low-temperature magnetization curves faithfully reflect up to
seven different types of zero-temperature magnetization scenarios with the real 1/7-, 3/7-,
and/or 5/7-plateaus satisfying the general formulas listed in Equation (16):

i. |−1/2; 1/2〉R,L−|1/2; 1/2〉R,L−|1/2; 3/2〉,
ii. |−1/2; 1/2〉R,L−|1/2; 1/2〉R,L−|−1/2; 3/2〉−|1/2; 3/2〉,
iii. |−1/2; 1/2〉R,L−|−1/2; 3/2〉−|1/2; 3/2〉,
iv. |−1/2; 3/2〉−|1/2; 3/2〉,
v. |−1/2; 1/2〉−|−1/2; 3/2〉−|1/2; 3/2〉,
vi. |−1/2; 1/2〉−|1/2; 1/2〉−|−1/2; 3/2〉−|1/2; 3/2〉,
vii. |−1/2; 1/2〉−|1/2; 1/2〉−|1/2; 3/2〉
(see the magnetization curves of different colors). Steep continuous rises between different
fractional plateaus as well as between fractional plateaus and the saturation magnetization
indicate a presence of the discontinuous magnetization jumps that exist at the critical
fields corresponding to the first-order phase transitions only at zero temperature. In
agreement with the ground-state analysis performed in Section 3.1, the first three magne-
tization processes i.–iii., which contain the macroscopically degenerate quantum phases
|±1/2; 1/2〉R,L, can be observed for the easy-axis exchange anisotropy ∆ = 0.5 and also
the easy-plane exchange anisotropy ∆ = 2, but only in the parameter region of the anti-
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ferromagnetic Heisenberg interactions JH/|JI | < 0. On the other hand, the magnetization
scenario iv., reflecting the single field-induced transition from the classical ferrimagnetic
phase |−1/2; 3/2〉 to the saturated one |1/2; 3/2〉, appears for both the antiferromagnetic
(JH/|JI | < 0) and ferromagnetic (JH/|JI | > 0) Heisenberg couplings. The last three magne-
tization processes v.–vii., which involve unique quantum ferrimagnetic phases |±1/2; 1/2〉,
emerge in the parameter region of the ferromagnetic Heisenberg couplings JH/|JI | > 0
under the condition ∆ > 1. It should be noted for completeness that the steep stair-
case dependences of all magnetization curves plotted in Figure 3 are generally gradually
smoothing upon increasing of temperature due to a thermal activation of excited states,
until they completely disappear.

| 1/2;1/2>R,L  |1/2;1/2>R,L  |1/2;3/2>
| 1/2;1/2>R,L  |1/2;1/2>R,L  | 1/2;3/2>  |1/2;3/2>
| 1/2;1/2>R,L  | 1/2;3/2>  |1/2;3/2>

| 1/2;3/2>i  |1/2;3/2>
| 1/2;1/2>i  | 1/2;3/2>  |1/2;3/2>
| 1/2;1/2>i  |1/2;1/2>  | 1/2;3/2>  |1/2;3/2>
| 1/2;1/2>i  |1/2;1/2>  |1/2;3/2>

Figure 3. 3D plots of the total magnetization m of the spin-1/2 Ising–Heisenberg model on the
regular lattice with four corner-sharing bipyramidal plaquettes reduced to its saturation value
msat as a function of the magnetic field H/|JI | and the interaction ratio JH/|JI | for the exchange
anisotropy (a) ∆ = 0.5 and (b) ∆ = 2 at the temperature kBT/|JI | = 1.5× 10−3 obtained by MC
simulations for the lattice with 100× 100 nodal Ising spins (19,800 bipyramidal plaquettes) by using
12× 104 MC steps per node. The curves of distinct colors refer to different magnetization scenarios
listed in the legend.

3.3. Quantum Bipartite Entanglement

The discussion in the last subsection will be devoted to a bipartite quantum entan-
glement of the Heisenberg spins in the individual ground states. It is obvious from the
plaquette Hamiltonian (1) that the spins may be quantum-mechanically entangled only
within the Heisenberg triangular clusters in individual plaquettes. Those from different
plaquettes can never be entangled due to the Ising spin at their common vertices.

In general, a degree of the bipartite quantum entanglement between the Heisenberg
spins at k-th and (k+1)-th vertex of the j-th plaquette can be quantified by the quantity
referred to as concurrence [54]. For the studied 2D spin-1/2 Ising–Heisenberg model, the
concurrence can be simply calculated from the local magnetization mH of the Heisenberg
triangular cluster and the corresponding pair correlation functions Cxx(yy)

HH , Czz
HH defined

by Equation (10a,b) through the following formula [55,56]:

Ck,k+1 = max

0, 4|Cxx(yy)
HH | − 2

√(
1
4
+ Czz

HH

)2
−
(mH

3

)2

. (17)

Of course, the identical XXZ exchange coupling JH(∆) in a given Heisenberg triangle
results in the same degree of the bipartite entanglement of the spin pairs. This is reflected
in the same values of the corresponding concurrences:
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C1,2 = C2,3 = C3,1 = C. (18)

The global picture on a degree of the bipartite quantum entanglement between the
Heisenberg spin pairs in the individual ground-state phases is illustrated in Figure 4, which
shows the low-temperature (kBT/|J| = 1.5× 10−3) density map of the concurrence C of
the spin-1/2 Ising–Heisenberg model on the regular 2D lattice with four corner-sharing
bipyramidal plaquettes in the JH/|JI | − H/|JI | plane for the fixed value of the exchange
anisotropy parameter ∆ = 2. The plotted data have again been obtained by MC simula-
tions performed for the lattice of 19,800 corner-sharing bipyramidal plaquettes, whereas
2× 107 MC steps per nodal Ising spin were used to achieve the accuracy better than 10−3.
It is clear from a direct comparison of Figure 4 with the corresponding ground-state
phase diagram depicted in Figure 2b that the Heisenberg spins forming triangular clus-
ters are quantum-mechanically entangled only if the macroscopically degenerate phases
|±1/2; 1/2〉R,L and the unique phases |±1/2; 1/2〉 are ground states. Due to the macro-
scopic degeneracy caused by two possible chiral degrees of freedom of each triangular
cluster, the bipartite entanglement of the Heisenberg spins in former two phases is half
weaker than that in latter ones. This is also proven by the corresponding zero-temperature
asymptotic values of the concurrence C|±1/2;1/2〉R,L

= 1/3 and C|±1/2;1/2〉 = 2/3. On the
other hand, the remaining white region with the zero concurrence C|±1/2;3/2〉 = 0 con-
firms completely non-entangled arrangements of the Heisenberg spins in the classical
ferrimagnetic phase |−1/2; 3/2〉 and the fully saturated phase |1/2; 3/2〉.

-6 -4 -2 0 2 4 6 8
0

2

4

6

8

10  = 2
C

|  1/2;1/2>
R,L = 1/3

H
 / 

|J I
|

JH / |JI|

C |  1
/2;

1/2
>
 =

 2/
3

C|  1/2;3/2> = 0++

+

Figure 4. The low-temperature (kBT/|J| = 1.5× 10−3) density map of the concurrence C of the spin-
1/2 Ising–Heisenberg model on the regular lattice with four corner-sharing trigonal bipyramidal
plaquettes in the JH/|JI | − H/|JI | plane for the exchange anisotropy parameter ∆ = 2 constructed
from MC simulations performed for the lattice of 19,800 bipyramidal plaquettes by using 2× 107 MC
steps per nodal Ising spin.

To get a deeper insight onto a role of pair correlations between the Heisenberg spins in
their bipartite quantum entanglement, the concurrence C as function of the magnetic field
H/|JI | and the corresponding dependencies of the pair correlation functions Cxx(yy)

HH , Czz
HH

are plotted in Figure 5 for the anisotropy parameter ∆ = 2 and two selected interaction
ratios JH/|JI | = −4 and 6 at the temperature kBT/|J| = 1.5× 10−3. The variations are
completed by low-temperature dependences of the local magnetization mI and mH to facil-
itate identification of the current ground-state spin arrangement. We note for completeness
that all the curves are results of the MC simulations for the lattice of 100× 100 nodal Ising
spins by using 2× 107 MC steps per node to achieve accuracy better than 10−3.

Figure 5a captures the sequence of field-induced phase transitions |−1/2; 1/2〉R,L−
|1/2; 1/2〉R,L−|1/2; 3/2〉. Evidently, the nonzero concurrence C = 1/3, which can be
found at the magnetic fields H/|JI | < 9 due to stability of the macroscopically degener-
ate quantum phases |±1/2; 1/2〉R,L, is a result of the negative pair correlation functions

Cxx(yy)
HH = Czz

HH = −1/12 and the reduced local magnetization mH = 1/2. Identical values
of the transverse and longitudinal correlation functions and their minus sign clearly indicate
that the macroscopically degenerate unsaturated bipartite entanglement of the Heisenberg
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spins from the same XXZ triangle comes from antiferromagnetic xx(yy) correlations of
these spins, which are of the same strength and character as those in z-axis direction.

A different situation can be found in Figure 5b, which illustrates the sequence of field-
induced phase transitions |−1/2; 1/2〉−|1/2; 1/2〉−|1/2; 3/2〉. Here, the low-temperature
concurrence C = 2/3, which can be observed at the magnetic fields H/|JI | < 7 due to
the presence of the unique quantum phases |±1/2; 1/2〉, comes from the positive value
of the transverse pair correlation function(s) Cxx(yy)

HH = 1/6, the negative longitudinal
correlation function Czz

HH = −1/12, and the reduced local magnetization mH = 1/2. It is

easy to understand from the values of Cxx(yy)
HH and Czz

HH that the origin of the local quantum
bipartite entanglement of the Heisenberg spins peculiar to the unique quantum phases
|±1/2; 1/2〉 lies in ferromagnetic xx(yy) correlations and these are twice as strong as the
antiferromagnetic ones along z-axis.

0 2 4 6 8 10
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0.0
0.5
1.0
1.5
2.0
2.5

JH / |JI| = -4
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H / |JI|

C

(a)

m
I  ,  m

H  ,  C
 xx(yy)
H
H
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C xx(yy)
HH
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H / |JI|

C

(b)

m
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H
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HH
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HH

C 0.333
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0.000

Figure 5. The low-temperature (kBT/|JI | = 1.5× 10−3) dependencies of the concurrence C, the

sub-lattice magnetization mI , mH , and the pair correlation functions Cxx(yy)
HH , Czz

HH on the magnetic
field H/|JI | of the spin-1/2 Ising–Heisenberg model on the regular lattice with four corner-sharing
bipyramidal plaquettes for the exchange anisotropy ∆ = 2 and two particular interaction ratios
(a) JH/|JI | = −4 and (b) JH/|JI | = 6. The curves are results of the MC simulations for the lattice of
100× 100 nodal Ising spins by using 2× 107 MC steps per node.

4. Conclusions

In the present work, we have comprehensively studied the ground-state properties,
possible magnetization scenarios, and the local bipartite quantum entanglement of the Heisen-
berg spins in the individual quantum ground states of the mixed spin-1/2 Ising–Heisenberg
model in a longitudinal magnetic field on 2D lattices formed by identical corner-sharing
bipyramidal plaquettes. The numerical results have been obtained by combining the exact
analytical approach called the decoration-iteration mapping transformation [32–35] with
numerical Monte Carlo simulations utilizing the Metropolis algorithm [51,52].

It has been demonstrated that the ground-state phase diagram of the investigated
quantum mixed-spin model qualitatively does not depend on its lattice topology (the
number q of corner-sharing plaquettes). In general, it involves in total six different ground
states, namely the standard ferrimagnetic phase, fully saturated phase, two unique quan-
tum ferrimagnetic phases and two macroscopically degenerate quantum ferrimagnetic
phases with two chiral degrees of freedom of the Heisenberg spins forming triangular
clusters in plaquettes. It is also proven that the diversity of the ground-state phase diagram
gives rise to seven different magnetization scenarios with one, two or up to three fractional
plateaus. The magnitudes of these plateaus are determined by the current number q of the
corner-sharing plaquettes.

Other interesting findings are concerned with the bipartite quantum entanglement,
which has been quantified by the concept of the concurrence. We have verified that the
Heisenberg spins of the same XXZ triangular cluster of a given plaquette can be entan-
gled either due to stability of the unique quantum ferrimagnetic phases, where they are
in a symmetric quantum superposition of three possible up-up-down states, or due to



Entropy 2021, 23, 1671 12 of 14

macroscopically degenerate quantum ferrimagnetic phases characterized by two chiral
degrees of freedom of each Heisenberg triangle. The strength of the entanglement in all the
phases does not depend on the applied magnetic field. Moreover, the corresponding values
of concurrence clearly indicate that the entanglement of the Heisenberg spins is twice as
strong when their arrangement is unique that when it is two-fold degenerate. Thus, it can
be concluded that the macroscopic degeneracy of the Heisenberg triangles proportionally
reduces the bipartite quantum entanglement of their spins.

Following our recent paper [45], dealing with the spin-1/2 Ising–Heisenberg model on
the planar lattice formed by trigonal bipyramids without a magnetic field, there is strong
indication that the bipartite entanglement between the Heisenberg spins observed in the
unique ferrimagnetic and macroscopically degenerated ferrimagnetic ground-state phases
in the present paper will also persist at finite temperatures. Moreover, the interesting
thermally induced reentrant behavior of the phenomenon can be expected near first- and
second-order phase transitions of the system. Our future investigation will continue in
this direction.
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