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Abstract: We build an analysis based on the Algorithmic Information Theory of computational
creativity and extend it to revisit computational aesthetics, thereby, improving on the existing efforts
of its formulation. We discuss Kolmogorov complexity, models and randomness deficiency (which is a
measure of how much a model falls short of capturing the regularities in an artifact) and show that
the notions of typicality and novelty of a creative artifact follow naturally from such definitions. Other
exciting formalizations of aesthetic measures include logical depth and sophistication with which we
can define, respectively, the value and creator’s artistry present in a creative work. We then look at
some related research that combines information theory and creativity and analyze them with the
algorithmic tools that we develop throughout the paper. Finally, we assemble the ideas and their
algorithmic counterparts to complete an algorithmic information theoretic recipe for computational
creativity and aesthetics.

Keywords: computational creativity; computational aesthetics; algorithmic information theory;
Kolmogorov complexity; typicality novelty and value; computational complexity

1. Introduction

The principal idea in Algorithmic Information theory (AIT) is that we can quantify
an absolute information content in an object with an algorithm or a program (a set of
instructions) that gives rise to an object on some fixed machine. Named after the researchers
who individually discovered this concept, such information complexity is known as the
“Solomonoff–Kolmogorov–Chaitin” [1–3] or simply Kolmogorov complexity. Its classical
counterpart, Shannon’s information theory, defines the entropy of an object as the length of
code needed to encode it when it is a probabilistic outcome of a source (the more probable
the object is as an outcome, the less entropy it has).

Such analysis is vital for when we talk about the communication overhead of a
message, but it often is insufficient when we start talking about the essence of an individual
entity. For example, the argument that the meaningful information content in “War and
Peace” can be measured by including it in a set of possible novels with a probability
distribution defined over the members, is a weak one [4].

This problem is less severe and more natural to analyze in an algorithmic setting,
where a concise description of “War and Peace” would mean the description or algorithm
“knows” about its global theme and at times Tolstoy’s intent. Moreover, such computation-
focused method opens up ways of examining the object that goes beyond just measuring
its information content: the length of the computation may point toward how information
becomes buried under redundancy.

Additionally, the resources taken up by this process denote the difficulty involved in
generating the object, and, perhaps most importantly, the corresponding algorithm helps
measure the regularities and randomness embedded in the object.
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We apply these information theoretic notions to computational creativity and aes-
thetics. Our work is made more challenging because of the difficulty in giving a holistic
definition of creativity and of the aesthetic beauty of an artifact, but several criteria exist for
its assessment, which have links to information measure. For example: Ritchie [5] proposes
that typicality or novelty and value should be included in assessment of a creative artifact.
The 4‘P’ perspective of creativity [6] identifies the producer, process, press (context) along
with the product as important dimensions of creativity and describes how each of these
components is needed for the proper assessment of a creative artifact.

Formalizing these entities independently of each other is challenging; however, with
the tools from AIT, we can investigate how these creative components may be identified
when our reference point is the creative object itself. We motivate this by noting that
the object is the first piece of tangible evidence that a creative phenomenon occurred.
Additionally, the creator and creative process leave their identifying marks in the object,
which later influences the perception invoked by the object in its observers.

In AIT, this is analogous to finding the sophistication (the aggregate of the creator’s
stylistic properties in the object), logical depth (the computational difficulty associated with
the generation of the artifact) and a minimum sufficient model (the regularities in the object
as seen through a set of similar objects) of the artifact. Measures like this provide a firm
computational underpinning of some fundamental yardsticks of creativity, and the focus
of this paper is to look at a creative artifact through an algorithmic lens—taking each of the
algorithm’s length, runtime, plausibility and meaningfulness into account.

1.1. Motivation

Application of algorithmic information theory in analysis of creative objects has been
known for a while, but only the basic ideas have been explored. For example the plain and
conditional version of Kolmogorov complexity [7], the latter of which denotes the infor-
mation content with access to auxiliary data, have been shown to be remarkably effective
in classifying and clustering symbolic music [8,9] into genres and composers. A broader
scope of using Kolmogorov complexity in finding structure is universally applicable [10,11],
but it is not always the case that we will find an object with low Kolmogorov complexity
interesting or beautiful [12].

Similarly, objects with high complexity can either be only random noise, which has the
maximum possible Kolmogorov complexity or, in special cases, can store incompressible
meaningful styles of its creator [13]; simply knowing the complexities of the objects is
not enough to differentiate between these choices. Even looking for objects of “medium”
complexity is insufficient: such an object might either be the product of substantial com-
putational effort (which, in our telling, makes it a high-quality work) or could be trivial
repeated patterns augmented with random bits to make it appear serious (Figure 1).

Only by looking at the actual computational effort undertaken by the object’s most
probable source, that is, focusing on the creator, can we assess the object’s quality; the
raw value of Kolmogorov complexity is insufficient. Additionally, while the conditional
Kolmogorov complexity is an important measure of similarity between two objects [9], it
is more useful to extract the regularities in an object that we shall call a model and then
analyze the left-out conditional randomness. Then, a good model will be most successful in
compressing the object and classifying it into a category that is most appropriate.
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(a) (b) (c)
Figure 1. (a) is a simple highly compressible black canvas as compared to the random noise in (b). Neither has any aesthetic
value. However, their combination (c) is also not valuable, illustrating the notion that raw complexity is not a measure of
aesthetic quality: meaningless objects can be found across the spectrum of possible complexity scores. Image taken from:
Zenil et al. [12].

1.2. Summary of Results

In this paper, we build this theory of creativity of computationally created objects and
expand on AIT driven ways to assess them. We begin by discussing preliminary definitions
of Kolmogorov complexity and analyzing the algorithmic probability of an artifact, which
is an important benchmark for assigning credibility to a given description of an artifact.
In particular, the algorithmic probability tells us exactly why concision is preferred to
redundancy, formalizing the Occam’s Razor principle. We then focus on the concept
of models.

They describe the recognizable information in an artifact where we use a two-part
code for its description; the other part describes the artifact’s individual aspects. The model
describes what we normally associate with a genre or a creator’s oeuvre. We then show
how typicality or novelty can be assessed for an artifact with respect to a model.

The concept of logical depth allows us to assess the computational effort required to
produce an object: if an object with high compressibility has only slow-running short
programs, the most likely explanation for the object is that it required substantial effort
on the creator’s part to produce it, and it is valuable. Most remarkably, the concept of
sophistication allows us to identify the signatory styles of a creator that can be used to
generate objects that share these properties.

Highly sophisticated objects can be regarded as masterpieces, as they contain all the
incompressible but non-random creative styles of a skilled creator. These concepts have not
previously been extended to the domain of computational creativity. Next, after our full
exploration of new ideas, we discuss some related works and revisit existing formulations
of order and complexity to define computational aesthetics. A casual reader may skip ahead
to this section for a more ready discussion on the related research on the current topic.

However, due to their dependence on the ideas presented hereafter, the reader can
also benefit from reading through the paper sequentially. At the end of the paper, we
summarize the ideas presented, with a complete recipe based on algorithmic information
theory for the fundamental concepts in creativity and aesthetics.

This work is an extended version of our conference paper [13]. However, we give
here a more complete argument and discussions on the following topics that we did not
cover before: the algorithmic complexity and probability of an artifact’s existence, the various
formulations of model and their role in defining non-randomness, logical depth as value
and its non-equality to compressibility, sophistication as and encapsulation of core creator
properties and its relation to logical depth.
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2. Descriptional Complexity and Existence of an Artifact
2.1. Kolmogorov Complexity

We use this section to discuss the foundational Kolmogorov or Descriptional complex-
ity. At the outset, we fix our computational model to be a Turing machine. The influential
Church–Turing thesis [14,15] theorizes that any effective computation carried out by a
human being can be simulated by a Turing machine. Although equating the creative
process to the running of a Turing machine may seem reductive, we employ this compu-
tational model to enforce rigor and consistency. Moreover, it is not difficult to imagine a
Turing machine playing the role of an inanimate creator that outputs a binary description
of the creative artifact (e.g., pixel values of an image and a sheet music description of
a composition).

The Turing machines that we work with are deterministic. This determinism helps
one to pinpoint a machine that can absolutely generate an object x on some input in
a finite amount of time with no uncertainty, which is essential for effective complexity
analysis. These machines compute partial recursive functions and are defined only for
some inputs, namely those on which the machines reach an accepting state. On the other
inputs, the Turing machines either halt in a non-accepting state or run forever, and the
function is undefined.

A Turing machine can be fully described by how many input, work and output tapes
it has; the contents of the tapes; the positions of the pointers that move on the tapes; and
the transition function. This description along with a corresponding input on which the
Turing machine halts and outputs a binary version of an artifact x constitutes a concise
functional description; we call this encoding a “program”.

These encodings or program descriptions of Turing machines are recursively enumer-
able: there exists a total recursive function that incrementally outputs all possible Turing
machine descriptions (for a more detailed discussion on effective enumeration of partial
recursive functions see section 1.7.1 of Li and Vitányi [7]) effectively enumerating all partial
recursive functions.

An artifact in question can be an output of several of these Turing machines on
appropriate inputs. It is important to distinguish between a function and the Turing
machine or algorithm that computes it. For example, we can have a function that, on
lexicographically increasing input i, outputs the ith letter in “War and Peace”, but there can
be countably many number of ways in which this function can be computed. The shortest
description for the object constitutes its absolute information content or Kolmogorov
complexity [7].

To formalize this, we fix a Universal Turing Machine (UTM) U, which, given these
programs, can simulate the corresponding machine on the encoded input. It is not difficult
but tedious to imagine a UTM that accepts programs of form 1k0i and acts as follows:
it starts enumerating successive strings in {0, 1}∗ and checks whether it encodes a valid
Turing machine; if it does, then the UTM replaces a 1 in 1k with a blank and continues.

Finally after finding the kth valid Turing machine, T, the UTM simulates it with the
input i and behaves as T would on a representation of T’s tape contents. The powerful in-
variance theorem [7] states that there can be many such machines U, but that we should select
one that is additively optimal—that is, the programs that it accepts are not too inefficient.

For example, a UTM may only accept programs that are padded with a constant
number, c of zeroes, but they do not have any functional value. The Kolmogorov complexity
of an artifact x is then the length of the shortest program that, when run on such a UTM,
halts in finite time with output x.

K(x) = min
p
{|p| : U(p) = x} (1)

The function K(·) is not computable; there is not a single function K, such that it
outputs the shortest program for all strings. A simple paradigm, like “enumerate and
run all programs with lexicographically increasing length and the first program that halts
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with output x is its complexity”, does not work precisely because it is not decidable when
or which program will halt. However, such absoluteness provides a lower-bound and a
robust test-bed to evaluate and compare various information extraction methods.

To elaborate, the class of all description methods forms a hierarchy: some description
methods take fewer bits to describe some objects than others. The foundation of AIT
relies on certain niceness properties of this hierarchy; specifically it should have an unique
minimal element that minorizes all other description methods. This unique element is that
with which we define Kolmogorov complexity.

However, this does not stop us from having a fixed description method (artificial
neural networks, context-free grammars, Huffman coding etc.) and comparing descriptions
within that class [9,16]. For example: auto-encoders, when trained on a collection of
paintings, attempt to concisely encode the data while minimizing the role of “noise” in it.
The “size” of an optimal auto-encoder network can be used to approximate the dataset’s
Kolmogorov complexity.

The usefulness of this description method depends on there being a certain computable
minimal auto-encoding network that concisely describes the data, which gives us a lower-
bound for comparison within this class. To compare this description method with another,
say, a general purpose image compressor like JPEG, we package up everything a UTM (a
typical daily-use computer) needs to decode the two description method.

For the auto-encoder, it might need the necessary Python and TensorFlow packages,
and, for the JPEG, it would require the JPEG software to properly decode a compressed
image. This way, we can always choose a suitable method to describe a particular data set
that does not contain too much irrelevant information.

2.2. Algorithmic Probability

All of this background raises the question: Why should a concise description be
preferred to one that contains redundancy? It is because concise descriptions are algorith-
mically more probable to be the artifact’s actual source. Here, we elaborate this.

If we write on the UTM’s input tape the results of an infinite coin-toss, and the UTM
halts with output x after reading the first |p| bits, then the probability of x’s existence can
be directly linked to probability that program p is a prefix of our infinite coin toss, 1

2|p|
. The

sum over all such programs P(x) = ∑p
1

2|p|
can be regarded as the algorithmic probability

of producing x.
However, consider the scenario where, for every artifact x, there is a Turing machine

T that specializes in x, that is it outputs x for all inputs i. A program p that encodes
this Turing machine and the inputs, has length at least |T|+ |i|. Then, consider the total
probability that our infinite coin toss generates this program:

2−|T| ∑
i∈{0,1}∗

2−|i| = ∞ ≤ P(x),

which is unfortunate: P(x) is not a proper probability distribution.
To answer interesting questions like “What is the probability that x will be generated

by the UTM?”, we need to go even further and require ∑x P(x) ≤ 1. This is solved
by the Kraft inequality, which gives necessary conditions for an encoding scheme like
this (e.g., each program is mapped to an artifact) to become a proper probability mass
distribution [17]. It states that ∑p 2−l(p) ≤ 1 if the corresponding set of strings {p} is prefix
free or uniquely decodable.

This can be achieved by padding the original p with dlog |p|e bits of information
about its own length: p → 1|p|0p, which makes the prefix free program much less likely
to be generated by a fair coin toss and reduces its contribution to the overall probability.
However, now the program encodes all necessary information needed to instruct the UTM
on when to stop reading from its input tape and start executing.
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Thus, we enforce the UTM to only accept prefix free encoding of programs and call
P(x) the universal a priori probability, QU(x) = ∑p:U(p)=x 2−|p| ≤ 1. Equality holds if, for
each valid initial segment, the UTM U halts with output x.

Being the shortest, the program p that witnesses the K(x) contributes 1
2−|p|

to QU(x),
which is larger than any other program, and thus p is the most probable source of x on the
UTM. This rule implies that artifacts with short descriptions are overwhelmingly more
likely to be produced than the ones with only longer descriptions, but one must also
consider the fact that there are many more long programs than short one.

Consider string x : |x| = n with K(x) = log n + O(1) as highly compressible and
strings with K(x) = n1−ε as almost incompressible strings. Since there are overwhelmingly
more incompressible strings than compressible ones and that counter-actively algorith-
mic probability favors those strings that have short descriptions, Woo [18] showed that
following two results hold in the limit n→ ∞:

(i) E(
log n
− log QU

) = ∞

(ii) E(
− log QU

n1−ε
) = ∞ for any ε > 0,

where E(·) denotes the expected value. Then, (i) shows there is a non-negligible probability
for the occurrence of highly compressible strings, whereas (ii) shows that there is also a
non-negligible probability for the occurrence of nearly incompressible strings.

This prevents us from naïvely expecting that because there are more random strings
the chance of finding a compressible string is exponentially small. Instead, the algorithmic
a priori probability QU(x) ensures that there are also factors working in favor of the
occurrence of outputs with short programs. This notion of algorithmic probability becomes
important again later when we talk about logical depth, the most probable computational
explanation and the associated effort to generate an artifact.

3. The Order and Complexity of an Artifact

A useful derivative of Kolmogorov complexity is its conditional version K(x|y), which
denotes the shortest program to generate x on U, which has been furnished with auxiliary
information y.

K(x|y) = min{|p| : U(p, y) = x} (2)

Such a notion generalizes the unconditional definition as K(x) = K(x|ε) and also illustrates
a natural way of describing objects with a predisposition to prior knowledge or inductive
bias y. Additionally, the relation between K(x) and K(x|y) highlights x’s structure: if
K(x|y) < K(x), then x and y share commonalities, while K(x|y) = K(x) means they are
maximally different [7].

It is an elegant fact that using the conditional Kolmogorov complexity, we can express x
with a two-part code, the first of which describes the regularities or recognizable properties
y and the second part of which is the information exclusive to x [19]. This paves the way
to robustly define the typicality and novelty of an artifact x with respect to y that concisely
models a genre, a creator’s oeuvre, or a set of artifacts with which we want to analyze an
unknown artifact with. The next three sections elaborate this idea.

3.1. Two-Part Code and Models

The plain Kolmogorov complexity K(x) lets us quantify the minimum information
needed to create an artifact x on a UTM from scratch; the shortest program that witnesses
this contains no redundancy; every bit of it is information needed for x. However, is it
meaningful information? If x starts as a blank canvas and we flip a fair coin to determine
each of its pixel values, then, with overwhelming probability, this painting constitutes its
own short program; also with overwhelming probability, the painting is meaningless.
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On the other hand, let x be a painting of rain where we determine the position of
the rain drops randomly. Then, x can be described by the binary program pd where
p is the non-random specification that x is a painting of rain and d is the accidental
information containing the positions of the raindrops. This is formalized with a two-part
code description of x: the length K(M) of the first part describing an appropriate model M
computed by a Turing machine, T and the length of the second part K(x|M) describing the
left-out irregularities or random aspects of x after M squeezes out the regularities of x [20].

K(x) = min{K(M) + K(x|M) : M ∈ {M1, M2, . . . . . .}}+ O(1) (3)

Here, we use model as a hypernym to quantify the regularities in sets of objects and with
which we recognize the regularities in x. The best model, M encapsulates the useful
or compressible information in x, while minimizing the total description length. In rel-
evant research [20,21], analysis has been mostly done with M denoting a finite set of
objects. However, a model can also be a total recursive [22] or probability density function
(PDF) [21]—each with its own properties and relevance. We discuss here the finite set and
total recursive function frameworks, leaving the PDF approach for future work.

3.1.1. Finite Set Model

The most natural way to formulate M is by a finite set of objects {x1, . . . , xn} signifying
a history of observed phenomena with which a new object x is described. Following
Ritchie [5], we call this the “inspiring set”. Then, K(M) is the length of the shortest
program that generates the set and halts. The conditional information K(x|M) can be
thought of x’s index in this set, as, with the set at our disposal, we only need d = log |M|
bits to locate x in M (|d| = ∞ if x 6∈ M) completing the reconstruction. However, model M
has to be such that the two-part code or cumulative information K(M) + log |M| through
which M describes x, is no greater than K(x) + O(1).

Since M describes a set of objects, in most cases, it is almost bound to be larger than x
itself (the complexity K(M) of a sensible model for a set of haikus will almost surely be
larger than any individual K(x), as haikus are small objects and not very compressible [23]).
Hence, a complexity restriction α is imposed on M such that K(M) ≤ α. This, however
restrictive, ensures the model does not contain irrelevant information and also points to a
lossy compression scheme of the set where it may no longer describe the set completely
but only as allowed by α.

For example: M may describe “rain paintings”, and K(x|M), a specific one depending
on the positions of the raindrops. If we are only allowed to use |p| = α bits to describe the
painting to an observer, we may just indicate that it is a painting of rain and the particular
positions of the raindrops may be chosen by the observer at random.

3.1.2. Total Recursive Function Model

A more general class of models is the class of total recursive function M with which
the issue of meaningful information versus accidental information is put in its starkest
form. Here, the model M represents the projectable or shareable properties in a group of
objects and its total recursive structure allows it to inject the properties into the input it
receives to create more objects than the set it was built from. Thus, K(M) is the length of
the most concise Turing machine that computes our inspiring set {x1, . . . , xn} such that
there exist parameterizations di : M(di) = xi for all xi.

The input d can be found by letting M run on strings with lexicographically increasing
length, and d is the first such string on which M halts and computes x; if no such string is
found, then d = ∞. Mondol and Brown [9] realized this modeling in the form of context-
free patterns for a corpus of symbolic music: compositions from the same creator contain
projectable pitch patterns that can be accumulated, and an unknown music string can be
analyzed on the basis of whether or not it contains the patterns (Figure 2).
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M x
T9→ 62 60 T1→ . . . T79 T80 . . . T79 62 T80 . . .

T10→ 65 67 T81→ T79

d︷ ︸︸ ︷
T88 67 67 T79

T17→ 62 62 T82→ T86 T70 T9 60

T70→ 64 62
...

T79→ T70 60 T86→ 55 55 60 T17 64
T87→ T70 T70 T9
...

Figure 2. The left column is dictionary M of MIDI pitch patterns collected from a corpus of Beatles
songs; the patterns exceed a certain occurrence threshold—they are frequently repeated in the artist’s
songs. The right column is a song “Let it Be” from the same artist, with highlighted pitch patterns
from M and the individual patterns that can be regarded as extra information d.

3.2. Randomness Deficiency and Typicality

We can associate a model M, however it may be defined, that describes a set of
observed phenomena {x1, . . . , xn} with an observer’s familiar domain: the artists’ oeuvre,
genres, collection of artifacts that share the same cultural contexts, etc. We can then measure
how “typical” a new artifact x may seem to them with the “fitness” of the model M for x.
Ritchie [5] used “typicality” to measure the extent to which a produced item is an example
of an artifact class. We refine this argument with the randomness deficiency [20].

LetM = {M1, M2, . . .} be the set of finite sets containing x, where, for each Mi ∈ M,
K(x) ≤ K(Mi) + |d| + O(1), where d is the extra information, Mi requires to complete
x’s two-part description. These Mi are called algorithmic sufficient statistics [21]. These
models allow a description of x with only a small increase in complexity while separating
its randomness from the non-random part. The task still remains to choose the one among
the candidates {Mi} that best-fits x, and, for that, we look at the second element of the
two-part code, d.

Recall that, in the event where M denotes a finite set, it takes about log |M| bits to
locate any x ∈ M (when M is a total recursive function, the extra information is the first
input on which M halts with output x). This amount is called the data-to-model code
length and is different from K(x|M). It is worthwhile to note here that, even though the
two-part code is defined with the conditional complexity with respect to the model K(x|M)
(Equation (3)), we make here the distinction between the raw input d to M and K(x|M), the
latter of which is an input program fit for a UTM. If M instead consumed q : |q| = K(x|M),
which is the shortest program for x given M, it would imply M is capable of running q and
is a Universal Turing Machine itself, which it is not. On a similar note, if a model class does
contain a universal model that can simulate all other models, this model class is not suitable
for defining two-part codes consisting of meaningful and accidental information [19].

Since K(x|M) is the length of the smallest program outputting x given M, it leverages
M and x in a way that could be much smaller than |d|. The difference between these
quantities is defined as randomness deficiency, δ(x|M):

δ(x|M) = |d| − K(x|M)

A high δ(x|M) means that x contains more redundancy than captured by M; hence, M is
not a best-fitting model for x and x is not a typical outcome of M. In other words, typical
artifacts are maximally random with respect to the model that describes them, and we
cannot significantly improve the conditional description of x given M than specifying
its index or the input to it. Contemplate a model M that generates paintings of children
playing on a playground after receiving their positions as input (Figure 3a). If we generate
the input, d randomly, then, with overwhelming probability, K(x|M) ≈ |d|.
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(a) (b)

Figure 3. The children playing “Duck, Duck, Goose” are much more regularly positioned (b) than
the randomly playing children (a).

In this case, the painting has low randomness deficiency and is maximally typical
relative to this model. However, if the painting, x we have is of children playing “Duck,
Duck, Goose” where the player positions are less random (Figure 3b), the model no
longer will concisely describe the painting. This is because, K(x|M) will make use of the
information that a specific game is being played to compress x even further than it was
possible for the previous painting. Moreover, randomly generated player-positions are
much less likely to contain any regularities, which also makes x to be an unlikely output of
M. We thus define the “typicality” of an artifact as follows.

Definition 1. Let M represent a minimal sufficient finite set model of {x1, x2, . . . , xm} such that
K(M) + log |M| ≤ K(xi) + O(1) for 1 ≤ i ≤ m. Then, the typicality of an object x with respect
to this model is as follows.

typicality (finite set) (x|M) = −δ(x|M) = K(x|M)− log |M| (4)

Let M represent a minimal sufficient total recursive function model of the inspiring set
{x1, x2, . . . , xm} such that there exist parameters {di} : M(di) = xi and K(M) + |di| ≤ K(xi) +
O(1) for 1 ≤ i ≤ m. Then, the typicality of an object x with respect to this model is as follows.

typicality (total recursive function) (x|M) = −δ(x|M) = K(x|M)− |d| (5)

When x is not in M’s range, then |d| = ∞ and we find the lowest typicality −∞. If
typicality is close to the maximum value 0, then there are no simple special properties
that single x out from the majority of elements in M. Note that, based on M, the typicality
that x exhibits can be akin to either H-creativity (producing an idea/artifact, which is
wholly novel within the culture, not just the creator’s oeuvre) or P-creativity (producing
an idea/artifact, which is original as far as the creator is concerned) [24]. However, the
analysis we present here is effective for understanding both, if M contains members that
are consistent with the class that we are interested in.

3.3. Novelty

The notion of “novelty” is related to but not exactly “atypicality”, the inverse of
“typicality” as we discussed above. We need additional properties of the object being a
surprising or unexpected outcome of the contemplated model. McGregor [25] addressed
this idea by defining the novelty of an object by looking at its information distance [26]
from each of a collection of objects of the same class and choosing the minimum of these
distances as the novelty of the new object. In the same paper, the author critiqued the idea
by pointing out that the observer estimating novelty needs to have a perceptual frame in
which to work. This approach can be fleshed out using the model and data-to-model code
that we described earlier.

The central motivation in our two-part code discussion has been to find the true source
for x, which we try to achieve by modeling the data at hand as best as we can. However,
there is a non-zero probability that the outcome of 100 fair coin-flips is 00 . . . 0. A modeling
method that identifies flipping a fair coin as the cause of this outcome is surely a bad
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method, even though the source of the data it came up with happens to be the true cause.
However, in real-world problems, such as modeling creative products, the data can be just
unique or accidental for the model that actually produced it.

A monkey hitting keys at random on a typewriter keyboard for an infinite amount
of time will almost surely type any given text, such as, the complete works of William
Shakespeare. An observer after examining the first few thousand outputs of this typing
will create a model, “monkey typing on typewriter”, but if the next output is the first page
of Hamlet then it will surely come as a shock to them.

In this case, the accidental element is in the raw data, d that the monkey-model is
supposedly printing out and the fact that the current data is so different from the previously
observed data. Thus, for novel and unexpected artifacts the model might still describe
the regularities in the object; but, the extraordinary conditions or the data-to-model code
that caused the model to output it, sets the object apart from other objects created by the
same model.

Let model M be a minimum sufficient statistic for the inspiring set {x1, . . . , xm}. Then,
there exist parameters di, d : M(di) = xi, K(M) + |di| ≤ K(xi) + O(1) for 1 ≤ i ≤ m. An
artifact x is novel with respect to a model, M, if it is an unlikely and original outcome of the
model. The object, x may be still producible from model M (just like “Hamlet” is producible
from a “monkey hitting keys on a typewriter”, but with astoundingly low probability), but
the remaining distinctiveness d : M(d) = x is an indicator that there are better models to
produce x (consider the model M accidentally finding a set of ordered locations to place
the children in the playground when location are being randomly generated).

Model M’s unfitness is captured by x’s reduced kinship with other artifacts {xi},
using which M was created. Note that, M is the common information between the novel
object and the inspiring set, and the data that set them apart are the inputs {di} and d to
the model M. Thus, the extent to which x is novel is determined by how much information
in shared between {di} and d.

The novelty of x is then essentially captured by the mutual information I({di} : d) =
K(d)− K(d|{di}) between d and {di} (Li and Vitányi [7], p. 249). The less {di} informs
on d, the more novel x is, reaching its maximum at I({di} : d) = 0. On the other hand,
if di and d are similar in structure, it indicates that the individuality that x possesses
after M has extracted its regularities, is not unique. Hence, the object is not surprising,
which could implicitly mean that the randomness deficiency δ(x|M) is large. However,
I({di} : d) measures the difficulty with which we figure this unfitness out even with the
available information.

Definition 2. Let M represent a minimal sufficient total recursive function model of the inspiring
set {x1, x2, . . . , xm} such that there exist parameters {di} : M(di) = xi and K(M) + |di| ≤
K(xi) + O(1) for 1 ≤ i ≤ m. Then, the novelty of an artifact x, which may or may not be in the
inspiring set but is producible from M with parameter d : M(d) = x, is

novelty (x|M) = −I({di} : d) = K(d|{di})− K(d) (6)

Note that, our mutual information formulation of novelty is related to the information
distance formulation by McGregor [25], as the information distance increases when mutual
information decreases in general. However, our approach can model a “perceptual frame”
to analyze an artifact, which cannot be done using the information distance between pair
of artifacts. This was a limiting concern for McGregor himself [25].

Novelty can thus be compared to explorations undertaken by an artist that remodel
our understanding of a genre or a pre-conceived idea of a category. Learning and applying
new techniques as well as exposure to new environments and influences, can bring about
novel objects that capture the general spirit of the inspiring set but are difficult to be
recognized in their light. John Cage’s 4’33” [27] is a prime example of such an artifact; it is
one of the most influential yet controversial classical music pieces of the 20th century [28].



Entropy 2021, 23, 1654 11 of 24

4. Value as Computational Effort

In addition to the length, a program has other important properties that let us evaluate
the overall creation process of an artifact. For example, when the UTM runs the program,
how much of its tapes are occupied at any given time, whether the steps it takes are
random or logical and how many logical steps at minimum is required to output an artifact
x. Answers to these questions let us measure the minimum amount of resources needed
to generate an artifact and this is non-trivially connected to the “value”, “quality” or
“usefulness” assignable to the creative artifact. This section presents this argument.

4.1. Logical Depth and Its Relation to Value

The length of a program that generates an artifact is not a sufficient indication of
the computational complexity that is associated with the generation process. Complex
computations can be expressed concisely—more so if the program that is undertaking the
mammoth task is also the one that witnesses the Kolmogorov complexity of the artifact
or close to it in size. An object like DNA, is something really simple but disguised by
complicated manipulations of nature or computations by a computer.

This computational “effort” to generate an artifact from scratch can measured be in
time, space or energy required by the program. All of these are resources that we may
have restricted access to. As such, we tend to naturally value an object for which an
extraordinary amount of these resources was needed to create it. However, a computer
that embarks on a long computation will naturally radiate heat when it manipulates or
erases information [29]; to cool it down, we need to spend energy still, making the spent
energy almost proportional to the spent time.

The discussion on assigning value to space is rather tricky; as space can be reused
without extra cost and even the polynomial space complexity class PSPACE contains some
of the most difficult problems (P ⊆ NP ⊆ PSPACE [30]). As such, we suggest that it is
more interesting to discuss problems with bounded time.

Note that, due to the incomputability of K(x), we cannot know the actual time required
by the shortest program for it. Rather, we decide for each program when to stop its running
by defining a computable time bound t(|x|) as a function of the artifact’s length, as it is
natural to assume that a program will take less time to print a 8-bit-long string than to
print a 512-bit-long one. The important key here is that we know when to halt the program
using the computable property of the time bound.

We then define here a time-bounded version Kt(x), which is the length of the shortest
program p that outputs x within time t(|x|).

Kt(x) = min
p
{|p| : C(p) halts with x in time at most t(|x|)} (7)

Intuitively, as t(|x|) becomes larger, the length of the program that needs this time can
become shorter, as it takes more time for them to create a large artifact than it takes an
already larger program. In other words, Kt(x) suffers from Kt(x)− K(x) redundancy or
ad hocness, as Kt(x) may have to store some information about x without meaningfully
compressing it and decompression from a shorter description may require time that we do
not have. This difference is known as the Computational Depth of x [31].

cdeptht(x) = Kt(x)− K(x) (8)

As t grows, excluding the pathological cases (programs doing unnecessary compu-
tations), the non-randomness in x becomes disguised by complicated manipulations or
computations by the program.

However, it is not always economical to sacrifice in time for a small gain in length. In
Conway’s game of life, a simple initial configuration can give rise to non-trivial organized
complexity after running for an exponential amount of time. This may lead us to think that
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this final configuration is valuable: it is attainable from its initial simplicity but only with
great endeavours.

However, if it can be reached from other slightly more complex initial settings within
polynomial time, then it no longer seems as valuable as it did before. Therefore, a more
appropriate way of defining value is: an object is valuable only if all of its short programs
are slow-running. In other words, almost all of its algorithmic probability comes from slow
and short programs. This is captured succinctly by the logical depth [32], which we adopt as
a formal measure of x’s aesthetic value.

Definition 3. The value or quality of a creative product x is the minimum computational effort or
time needed to produce it from an s-significant short description.

values(x) = depths(x) = min
p
{time(p) : U(p) = x and |p| ≤ K(x) + s} (9)

Here, s denotes the significance of the witness program, p in terms of its contribution
1

2K(x)+s to x’s existence or algorithmic probability: the less s is, the more probable it is for
p to be x’s actual source on U. Thus, p’s computational effort is also increasingly close
to the most probable way in which x was created. Among these available candidates,
the minimum time taken by them is considered to avoid selecting programs that despite
producing the desired object do so inefficiently, whereas other similar-length programs are
faster. High computational depth is an indicator of high logical depth; however, the latter
is a stronger concept as it weighs programs by their contributed algorithmic probability

1
2K(x)+s and conservatively selects the least time spent by these programs in order to avoid
overestimating the artifact’s computational effort.

4.2. Compressibility 6= Value

We propose that what makes a creative object valuable is not its information content,
but rather the amount of computational or creative work it relieves its receiver from
repeating, which was plausibly done by its originator. A sequence that represents the
outcomes of n coin tosses, has high information content but little value.

Conversely, a book on algebra may list a number of difficult theorems, but has very
low Kolmogorov complexity, since all the theorems are derivable from the initial few
definitions and axioms. However, such derivations can be time-consuming and if we
transmit only a short description containing the theorems of the book, a receiver has to
spend a long time to reconstruct their proofs. Sending the entire book does not increase
the information content transmitted, but now the receiver has all the useful information
readily available for adaption.

Thus, the value of an object does not depend on its absolutely unpredictable parts
(information content), nor on its obvious redundancy (verbatim repetitions, for example),
but rather on what might be called its buried redundancy— parts reproducible only with
difficulty, things the receiver could, in principle, have figured out on their own, but only at
considerable cost in resources or computation [32].

Note that such definition of value also protects us from certain pitfalls; like claims that
highly compressible and regular objects are valuable. Rather, we seem to attach value to
objects that are meaningful, and often such meaning is acquired over time. In Colton’s Art
exhibit example, a similar scenario is described where an art enthusiast deems a painting
of random dots more valuable than another similar painting, as it had a meaning attached
to it provided by the painter [33], which is that “the random dots depicted his personal
relationships, and the color and positions of the dots symbolized how he felt about them”.

This allows a more succinct description of the painting than the verbatim description
of the dots’ positions and color, as the profiles of the dots are no longer random. More-
over, such a painting would be impossible without the author building the relationships
throughout their life.
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In an interesting study, Zenil et al. [12] showed that complex but non-random images
that we would normally assign value to takes more time to generate from their lossless
PNG (Portable network graphics) compressions (Figure 4).

Figure 4. The mono-coloured image on the left is more compressible than the complex one on the
right; yet, the latter takes more decompression time from its short program. Image taken from:
Zenil et al. [12].

On the other end of the spectrum, highly random objects, which are not compressible
and are often of little value to us, can be generated quickly from their similar-length
programs (Figure 5).

Figure 5. The image on the left is purely random noise. Hence, a suitable program that generates it
will contain a lot of verbatim descriptions, taking little time to reproduce the image. The image on
the right, by the virtue of being highly compressible, takes more decompression time from its short
program. Image taken from: Zenil et al. [12].

It is important to note here that this object-dependent notion of value does not consider
the cultural context in which it was conceived nor the observer’s perspective, which may
differ from person to person. Conceivably, much of this cultural background knowledge
could also be modeled [34]. Instead, what it correctly predicts is that valuable objects are
extremely rare: there are far more random objects in the universe than there are highly
regular compressible ones; even less are among those which are programs and go through
a long derivation to create something meaningful.

This takes us to the discussion of creative process and the importance of the logical
steps taken in an artifact’s generation.

4.3. The Logical Steps of a Creative Process

We highlight here one more aspect of logical depth—its ability to identify the most
likely and effective generation process for an artifact in the presence of multiple plausible
theories. A logically deep object is an outcome of a long, non-random and non-trivial
computational process, and the evidence of this becomes expressed through the artifact’s
subjective organization. Any ad hoc or random step involved in the process will necessarily
increase the program length that witnesses such process, making it a less viable source for
the artifact.

In “The Library of Babel”, a short fiction by Borges [35], the librarians attempt to
discern which of the books are meaningful in a library that contains all possible 410-page
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books with a 25-letter alphabet. This exhaustive search that leads to finding a meaningful
book, is indicative of the object’s non-random generation process. The short program that
encodes this search is not much larger than the meaningful short program that actually
produced the book and so can be counted among its plausible sources.

Moreover, this is similar to the diagonalization process of creating logically deep or
valuable artifacts [32]: consider generating an artifact x with value T (some large number).
We enumerate all programs p : |p| ≤ T, run each of them for time T, check whether the
cumulative probability ∑p:U(p)=x 2−|p| of programs that halt with output x is significant or
larger than 2−|x| (which means x is compressible and has a more probable source than a
verbatim description).

If we do find an object x that is less probable to be created by these T-fast programs,
then we can say with high probability that x has value at least T (as programs taking more
time than T may be able to produce x; the algorithm we just described is certainly one
among them). This is a very slow process, taking more than 2T steps to create an object
with value T (similar to going through a large number of books in “The Library of Babel”
to find a meaningful one).

However, this process cannot be sped up due to the slow-growth law , which states
that a fast deterministic process cannot turn a shallow or valueless object into a deep and
valuable one [32]. If it did, then this process along with the shallow object (can be an
empty string) could be encoded as a program that generates the valuable object quickly,
contradicting the fact that the object is valuable.

A delightful example of non-trivial creative process is yet another short story by
Borges [35], “Pierre Menard, Author of the Quixote”, where the author writes about
Menard’s great effort to recreate, line for line, the first few chapters of “Don Quixote”.
Menard does this solely from an intimate knowledge about the book’s context and meaning—
which Borges implies as being much shorter and more concise than the book itself.

On the other hand, logically shallow artifacts can be produced with little effort by
programs that are not too much larger than the shortest one. A fraudster or charlatan may
claim that a complex-looking creative product is a result of a slow-running short program,
thus, artificially inflating its value. However, if the object has an equal-length fast program,
which involves no ad hoc steps in generating the object, then it is equally likely that the
latter is the true generative process for the object. If the object can be produced by taking a
small number of non-random steps, then it is certainly possible that the fraudster program
takes unnecessary pathological steps in order to seem serious.

In Colton’s Dots example, a dishonest painter can masquerade a truly random painting
as a valuable one by supplying the observer with a short program that pretends to simulate
the events and relationships of the painter’s life up to the point of creating the painting,
which could require exponential time to halt [33]. However, an observer with limited time
but access to the logical depth of the painting (through an orcle) can quickly disregard the
false claim by generating a fast program that outputs the painting with a length close to
the given pretend program.

Hence, the most plausible creative process is carried out by a program that is s-close
to the shortest one for a fixed and small s. In addition, the work to reproduce x from
the program cannot involve any unnecessary, ad hoc assumptions except for the s bit
redundancy; if it does, then it will no longer be s-significant.

Definition 4. An s-significant creative process of a product x is simulated by the UTM upon input
p such that |p| ≤ K(x) + s, U(p) = x and p takes the minimal non-random steps among all
s-incompressible programs for x.

If a short program p has a slow deductive reasoning process, it is not evidence against
the plausibility of this program. In fact, if the product has no comparably concise programs
to compute it quickly, this is evidence of the non-triviality of the generative process. A
great work of autobiography is one example of this: if we just consider the written text
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as its acceptable representation, then its information content is low [36]. However, the
existence of such literature stands evidence of a profoundly-led life by the author and the
significance of the events that happened within that lifetime.

5. Sophistication and the Creator

We now discuss another exciting idea in AIT, sophistication, which lets us formalize
the characteristic styles and creative properties that a creator leaves in the artifacts they
generate. This is analogous to effective complexity defined by Gell-Mann and Lloyd [37]
in an effort to separate regularities from randomness. In their work, they advocate for
considering a work to be of quality if its regular parts are complex:

“We may call a novel complex if it has a great many different characters, scenes,
subplots, and so on, so that the regularities of the novel require a long description.”

This section formalizes this notion along with a mechanism for identifying masterpieces,
artifacts that have a maximal amount of non-random regularities.

5.1. Generative Attributes of a Creator

In Section 3.1.2, we talked about formulating a model with a total recursive function,
which generates a set of inspiring objects on appropriate inputs. Here, we reintroduce
total recursive functions but furnish it with a different purpose—to capture the structural
information in an individual object x that shows evidence of some planning that went into
x’s generation.

In our discussion of logical depth, we have seen that the complexity and meaningful
information in an object do not have a causal relationship; in fact evidence suggests that
they may very well be orthogonal to each other [22]. The notion of sophistication is an
attempt to decouple the part of an object that is an aggregate of shareable or projectable
properties from its incidental information with a two-part code.

This is not too different from our discussion on total recursive model but here the focus
is on extraction of such structure from the object itself and its relation to the source of the
object. The total program p that witnesses the sophistication of an artifact, needs |d| extra bits
to complete a two-part description (Equation (10)) of the artifact. The data-to-model code
length |d| helps determine the typicality of the artifact with respect to the total program p.

In optimal cases, where the two-part code length |p|+ |d| is not too large (a constant c
away) from the artifact’s Kolmogorov complexity K(x), |p| offers an upper-bound on the
structure present in the artifact [19]. In this case, the artifact has low randomness-deficiency
or is typical with respect to this program [38]. If, instead, it had high randomness deficiency
or larger |d|, the c-closeness to K(x) will have to be violated.

Originally, sophistication was also defined as a monotonic function: on larger inputs,
the total function should be able to produce larger outputs with the same property [22].
This helped define structure in infinite objects for which the program length stays the same
while the input becomes larger. However, more importantly, it allowed a way to assign
intelligence to the artifact’s creator. Consider a music generator, which is broadcasting
self-composed music and whose inner mechanism is unknown to the observer.

If the composition obeys some simple rule, such as repeating the same patterns or
sounds maximally random, then we would not attribute intelligence to the source. If,
however, the composition exhibits complex structure, which is only possible through
rigorous planning and meaningful exploration, we might suspect the existence of an skilled
creator. Hence, sophistication is that quality of an object that sets apart the artist’s talent
from their incidental impulses.
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Definition 5. The creative quality of the creator inherent in an artifact x is measured by the object’s
c-significant sophistication sophc(x). That is, we can say that the generator program p of length
sophc(x) produced x on input d leaving out all but c bits of redundancy.

Creator Attributes (x) =sophc(x) = min{|p| : p is total, a parameterization d

exists for which U(p, d) = x and |p|+ |d| ≤ K(x) + c}
(10)

Here, the significance parameter c calibrates the redundancy the total description
length |p|+ |d| is allowed to have; it may be c bits longer than x’s shortest description.
However, in order to reduce c, if we furnish p with properties that are accidental or
exclusive to x, then it might fail to recognize objects that are generated by the same source.
Hence, the significance parameter c is interpreted as a confirmation of the description (p, d)
before regarding extra structure represented by a longer program p′.

The utility of such formulation to define a creator becomes further evident through
the following example: consider a total function backward(x) that on any input x, reverses
the string (x̃) and outputs xx̃: backward(011) = 011110, backward(0010) = 00100100. Such
properties are often difficult to find and will be overlooked by a mechanism that tries to
find superficial patterns (e.g., LZ78), but work as an excellent compression scheme for the
product for which they are defined.

However, more importantly, such functions have generative qualities. If we enforce
properties, such as injection or monotony on the total function, we essentially create a method
that can generate creative artifacts with a certain style embellishments (p) upon receiving
influences (d) from the environment. Furthermore, by using a UTM with two prefix-free
input tapes, we can analyze how likely an artifact x is a product of a creator simulated by a
program p by analyzing the likelihood of obtaining a prefix-free d in fair coin tosses [23,39].

Computability

The idea of sophistication is, of course, not without challenges: Grover [40] reports
that it is not possible to fully separate the structure from noise in an object and, thus, sophis-
tication is not objectively quantifiable. Gell-Mann and Lloyd [37] reiterates this concern by
noting that depending on the person or machine trying to capture the regularities, different
properties of the artifact may present themselves. For example, a necktie designed by Jerry
Garcia may be described by its complex patterns. However to a dry cleaner, the coffee and
wine stains on the necktie may appear to be more prominent features, as to them the origin
of the tie is its owner [37].

Rather, for a fixed UTM and c, sophistication provides a theoretical upper bound
on the structural properties of a string [41]. Sophistication is non-increasing in c and for
c = |x|+ O(1), sophistication is bounded by log |x|. This is because with a large c, we can
find a total program that tells a trivial “print” program to read the first dlog|x|e bits of the
data, which is now the raw x and output it. However, is it possible to arrive at a non-trivial
total function? The answer lies in its relation to logical depth.

Both logical depth and sophistication are measures of meaningful complexity in an
object. One uses dynamic resources (program time), the other uses static ones (program
size). Thus, the two measures are not necessarily correlated [42], because a short unas-
suming program can take a long time. An example of this is the characteristic sequence of
the diagonal halting problem, χ, where each bit χ[i] is 1 if the ith program halts. Despite
its apparent importance, the n-bit prefix χn = χ[0 . . . n− 1] of χ is highly redundant with
K(χn) = log n + O(1).

The intuition is that we only need to specify the number of indices that contain 1. Once
this log n number is known, we can dovetail all the programs p0, . . . , pn−1 on an UTM and
stop the computation once the desired number of programs have halted [7]. This procedure
can be easily converted to a total recursive function that on input log n prints out the first n
bits of the halting sequence, so its sophistication is low. Yet, this is computationally very
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expensive, taking at least as much time as the slowest program in the above enumeration
requires to halt.

Rather, logical depth can be used as a mechanism to find structure. We formalize this
with the converging hypotheses argument [22]: consider the same music generator as in the
previous section. As we observe more of its music, more structure becomes apparent, thus,
forcing revisions of hypotheses as to the generator’s structure. Let x denote the complete
music and xn its observable prefix. At step n, we would like to find the hypothesized
generator pn and its parameterization dn : pn(dn) = xn and |pn|+ |dn| ≤ K(xn) + c.

If for the previous hypothesis pn−1, we find an input dn−1 : pn−1(dn−1) = xn, |pn−1|+
|dn−1| ≤ K(xn) + c then we move onto a larger prefix without updating the hypothesis.
Note that, this input will be easy to find if the function is strictly monotonic [22]. Otherwise,
we exhaustively search through all programs (not necessarily total) p : |p| ≤ n and data
d : |d| ≤ n− |p| in order of increasing length and let them run for ldepthc(xn) steps.

We choose the shortest p = pn : |p| + |d| ≤ K(xn) + c that satisfies these criteria.
This way, as more composed music is revealed, previous hypothesized generators are
abandoned for one of two reasons. The most straightforward reason is that the subsequent
parts of the composition is inconsistent (do not fall in the generator’s range). In this case,
the program is changed in favor of one which is less powerful (shorter, using longer data).
The other reason for abandoning a program is that as more parts of the composition is
observed, structure becomes apparent, which was not previously so; that is, use of a more
powerful, longer program results in a shorter description when including the required
input to generate xn.

Such a procedure might not give the smallest compression program for the music
generator itself. However, it increasingly describes the properties of initial segments of its
generated music x, which can be used to compress the larger initial segments increasingly
better as n→ ∞.

5.2. Non-Stochastic Objects or Masterpieces

Sophistication is also a natural way to measure how much information of an artifact we
can throw away without losing the ability to query its properties (without false positives).
These properties constitute the non-stochastic part of an artifact and a remarkable outcome
of this notion is absolutely non-stochastic objects [21]. These are highly sophisticated artifacts
whose non-stochastic properties contribute to almost all of their complexity. We now show
that creative masterpieces fall into this category

An absolutely non-stochastic object, whose complexity is mostly comprised of non-
random structure, has neither minimal nor maximal complexity. Hence they are not typical
outcomes of any total recursive program that exhibits low structure (e.g., model that
outputs random outcomes of fair coin tosses or strings of 1 s). Additionally, non-stochastic
objects have no optimal programs that are of relatively small complexity, that is they exhibit
high randomness deficiency or atypicality for any program p with K(p)� K(x).

Rather, these objects are typical outputs only of programs p that have complexity close
to their own, K(p) ≥ K(x)−O(1) [21]. Non-stochastic information is highly improbable to
be generated through a random process. Thus, they cannot contribute to the data portion of
the two-part code in a short program and must be included in the non-random model part.

Thus, the program p, which witnesses the sophistication of such an artifact show-
cases the creator’s elaborate techniques, mastery and creative properties that can be pio-
neering and transformative. When a non-stochastic object is an output of a unique and
highly sophisticated program, it is ambitious in scale and depicts innovation, pushing a
medium or genre to new directions. Hence, absolute non-stochasticity is a pre-cursor to
creative masterpieces.
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Definition 6. A creative masterpiece x is absolutely non-stochastic or highly sophisticated, that
is, they exhibit low randomness deficiency (needing small additional data) only for total recursive
programs p that have complexity close to their own, K(p) ≥ K(x)−O(1). For programs p with
K(p) < K(x), they will either require large additional data or they will not be in those programs’
range at all.

If we were to partition a creative masterpiece into meaningful complexity and random
noise, we will find that almost all of its complexity comes from useful incompressible
properties. Moreover, the amount of such non-randomness is also significant. Thus, non-
stochastic artifacts reside in a Goldilocks complexity zone: Shen [43] showed that these
objects have complexity of at least K(x) ≥ n

2 −O(log n). This lower-bound for complexity
helps distinguish a sophisticated artifact from the rest of the creator’s oeuvre.

Let S be a finite set that is a minimal sufficient statistic for x, which means x ∈ S
and K(S) + log |S| = K(x) + O(1). Consider the other artifacts {x′} in S, for which S is
a sufficient statistic; that is, the artifacts are typical examples of S. If they have length
much larger than |x|, but K(x′) ≈ K(x), then we cannot say x′ is a masterpiece, as for
these objects, K(x′) � |x′ |

2 −O(log |x′|). However, since these objects are compressible
and exhibit substantial non-trivial structure p, they can be considered “good” artifacts.
Thus, a masterpiece, which is a product of its generative program p having relatively high
complexity while being absolutely non-random, is an extremely rare phenomenon.

High Sophistication = Strong Depth

A result by Antunes and Fortnow [42] shows that artifacts with high sophistication that
is, sophc(x) > n− 2 log n− 2c, are also logically deep. This can be shown by a diagonalization
argument, which we briefly state here : since highly sophisticated artifacts have total
recursive programs p : |p| > n− 2 log n− 2c, we enumerate all the artifacts that can be
produced with a total recursive program q : |q| ≤ n− 2 log n− 2c and inputs d : |d| <
n− |q| − c within some really large but finite time bound, T.

Let T be the maximum time taken among all the q and d pairs. If we enumerate all
artifacts that have q and d as their two-part code, which halts within the time-bound T,
we have created all the artifacts that are not sophisticated. Moreover, these artifacts are T-
shallow. Hence, lexicographically the first artifact that is not in this set is both sophisticated
and logically deep. This is also fortified by Joosten et al. [44]: the average runtime of Turing
machines computing a function increases, with probability close to 1, as a function of the
number of states.

This indicates that, machines not terminating (almost) immediately tend to occupy
all the resources at hand. In other words, sophisticated objects, which require complex
programs and cannot be generated by simpler ones, also require long computations by
those programs.

This interplay between complexity of machines and difficulty of execution takes
an extreme form in strongly deep or transcendent objects [22,32]. These objects exhibit
unbounded quantity of inner structure even after an observer spends a considerable
amount of time looking for such structure (i.e., basis for compression) [45]. More formally,
let t(n) be any recursive and reasonable (does not grow too fast with n) time bound with
|x| = n. Then, any observation Kt(x) of a strongly deep product x will still exhibit high
computational depth Kt(x)− K(x) (Section 4.1, Equation (8)).

This is comparable to a synopsis of a great novel, which, in principle, would be
insufficient to exhaust its value, as significant portion of the novel’s meaningfulness will
likely remain undiscovered by it. Similarly, the extent of computational effort and resources
needed to recreate a creative product nearly identical to the highly sophisticated artifact,
alludes to its strong depth or quality.

The documentary “Tim’s Vermeer” [46] contains one such example where an Amer-
ican inventor, Tim Jenison with intimate knowledge about Vermeer and his techniques,
attempted to reproduce “The Music Lesson” [47] over a span of almost six years. Regard-
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less of the painting’s artistic proximity to the original, the question remains whether such
a recreation is able to exhaust the original’s value [48]. Such effort is indicative of the
resources at the minimum needed to represent a great artwork as such.

6. Related Works and Discussion

With all of the background of Sections 2–5, we now present some prior research on
computational aesthetics and discuss how some of formulations can be reviewed using the
tools we discussed above.

To the best of our knowledge, the current work is the first detailed look at the relation-
ship between some of fundamental ideas in computational creativity (typicality, novelty,
value, creator-properties and qualities of masterpieces) and their counterparts in AIT. Sig-
nificant earlier work can be attributed to Moles [49] who examined the role of classical
information theory in aesthetic perception: an observer selects and abstracts structure
from their sensory input (a picture, a musical sequence, a written text) and the “selective
information” and “redundancy” in the received message are largely related to intuitive
quantities like “degree of unexpectedness” and “originality”.

The author views meaningful messages as being invariably embedded in a background
of “noise” and that an observer’s perception actively selects the meaningfulness from a
muddled context. Prior to introducing information theory in this field, Birkhoff [50]
examined the formalization of the aesthetic measure M of an object with the ratio of its
“order” (O) and “complexity” (M), M = O

C .
The specific definition of O and C depends on the type of analyzed objectl however, it

must ensure that the resulting M reflects the aesthetic quality of the object. This led Birkhoff
to define complexity as the number of units in the object, which require a conscious act of
attention (e.g., the number of tones in a melody or number of edges of a tile), whereas order
is characterized by the pleasant feelings associated with the basic properties of objects,
such as symmetry, repetition, similarity and balance.

Later, Rigau et al. [51] further formalized the ratio M with a normalized redundancy
or compressibility ratio. This is achieved by defining complexity with an encoding length
of the object: e.g., sRGB color representation of a picture and order with compressibility,
which is measured as the difference between the above encoding and the optimal encoding
using some compression scheme, e.g., PNG compression of images.

They show experimental results that such measure assigns a higher M to Mondrian’s
painting than it does to Van Gogh’s and Pollock’s paintings, which is due to the latter artists’
works’ relative lower compressibility (Figure 6). Several other authors have introduced
different measures with the purpose of quantifying aesthetics: Kosheleva et al. [52] consider
the running time t(p) of a program p, which generates a given artifact as a formalization
of Birkhoff’s complexity C, and a monotonically decreasing function of the length of the
program l(p) (i.e., an approximation of Kolmogorov complexity) represents order O.

(a) Composition with Red,
Blue, Black, Yellow and Gray—
Piet Mondrian, 1921.

(b) Olive Trees with the
Alpilles in the Background—
Vincent van Gogh, 1889.

(c) Shimmering Substance—
Jackson Pollock, 1946.

Figure 6. (a) contains considerably more order than (b,c). Image taken from: Rigau et al. [51].
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Thus, the aesthetic measure is defined by M = 2−l(p)

t(p) , and a measure of “beauty” of the

object is the smallest value of the product t(p)2l(p) over all possible programs that generate
this artifact.

Another important work is Schmidhuber [53]’s attempt to formalize certain aspects
of depicting essence of artistic objects. The author proposes that an artwork should “look
right” and that its Kolmogorov complexity should be small; relating such properties to
informal notions, such as “good artistic style” and “beauty”.

The technical discussions on the effectiveness of AIT in extracting meaningful infor-
mation from low-entropy artifacts like music were pioneered by Cilibrasi et al. [54] and
Cilibrasi and Vitanyi [55], where the authors approximate the Kolmogorov complexity
K(x) of a symbolic music piece x with a general purpose compression scheme like LZ78.
They defined a normalized information distance or

NID =
K(xy)−min{K(x), K(y)}

max{K(x), K(y)} ,

between two music pieces x and y. The NID(x, y) is defined based on a measure of x
and y’s shared information (the numerator), which is approximated using their combined
compression length K(x, y).

If the two pieces are similar, then the compressor will leverage this redundancy and
K(x, y) will be close to K(x) or K(y). Of course, general-purpose compressors may not be
appropriate for this application. Mondol and Brown [9] demonstrated a practical method
for approximating the conditional Kolmogorov complexity of a symbolic music string
using a context-free grammar as a valid model for compressing the music sequences.

If two music pieces are similar, the context-free patterns of one can be used to compress
a similar music piece. Ens and Pasquier [56] used NID to approximate the statistical
significance of inter-corpora artifact distance between generated artifacts of a style imitation
system and the reference artifacts, which it tries to emulate. Svangård and Nordin [57]
used the NID to predict how interesting new images would be to an observer comparing it
to a library of aesthetic images.

In order to approximate the NID, they used a combination of ZIP and JPEG compres-
sion of the images and predict how “aesthetically pleasing” an artifact would seem to an
observer by estimating its average NID from the images in the library. The authors then
compare these predictions to an user’s evaluation of aesthetic quality of an image and
show that the NID can distinguish between “ugly” and “pretty” images with an accuracy
better than the random baseline. Their process of assessing “aesthetic pleasure” almost
echoes McGregor’s attempt [25] to formalize novelty, we mentioned in Section 3.3.

The relationship between value and the computational effort of a source to generate
an artifact was noticed through the formulation of logical depth [32]. Zenil et al. [12] used
PNG decompression time as logical depth to show that images that we would normally
consider valuable had a high decompression time (Section 4.2). Vidal and Delahaye [58],
in particular, cited exactly this same quantity in their proposal of an ethical mandate to
protect artifacts that contain computational significance of the same sort.

A Formal Framework

We revisit the formulation of aesthetic beauty as the ratio O
C . Specifically, Rigau

et al. [51] approximated this ratio with relative redundancy |x|−K(x)
|x| equating order with

|x| − K(x), the amount by which x can be compressed. While this might work for objects
that lie at either extreme of randomness (strings formed by coin-toss or repetitions of bits),
it fails precisely for objects that are in-between.

For a highly sophisticated object, this definition measures exactly the opposite of
order, as such objects exhibit structure through almost all of their complexity. Kosheleva
et al. [52] defines order in a similar manner with 2−l(p), both arguing that the smaller
l(p) = K(x), the more order 2−l(p) or x − K(x) is there in the object. However, their
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definition of complexity with the runtime of the program, which witnesses the largest
2−l(p), is potentially of concern.

We now know that time(p) is far from being a measure of complexity of an object;
rather, it marks the derivation-time of an object from a plausible short program. Thus, a
large time(p) will assign high complexity to an object that has high subjective organization
and in fact, can be generated from a short program through a long computation.

We thus reformulate O
C of an artifact, x by defining order with K(M), where M

models the regularities in x leaving out the additional K(x|M) accidental information and
K(M) + K(x|M) ≤ K(x) + O(1). Based on our discussion, M can be built either from
a coherent set of inspiring objects with which we want to recognize x or it can be its
sophistication or useful properties that can be used to generate similar objects.

The denominator or complexity is simply the raw Kolmogorov complexity K(x). Then,
K(M)
K(x) assigns highest aesthetic beauty to masterpieces and lowest to objects that exhibit low

structure (random strings or sequences of 1’s have low complexity models: fair coin-toss
generators or printing |x| 1’s).

Finally, we present the algorithmic recipe in Table 1, summarizing the concepts pre-
sented in this paper. This highlights an exciting mapping from creative entities to their
counterparts in algorithmic information theory and can be followed for computational
analysis of creativity and aesthetics.

Table 1. An algorithmic recipe for computational creativity and aesthetics.

Creative Entity Attributes Algorithmic Information
Theory Notion

Artifact

Typicality Randomness
Deficiency

Novelty
Mutual Information

between model
parameters

Order and Noise Model and
data-to-model codes

Creative
Process

Non-randomness Logical Steps of s-significant
program

Value (also
of artifact)

s-significant
Logical Depth

Creator
Skills and

Style Sophistication

Masterpiece Non-stochasticity

7. Conclusions

We looked at some of the fundamental concepts of creativity and aesthetics through
the lens of algorithmic information theory. We talked about the probability of an artifact’s
existence on a universal machine and saw how Kolmogorov complexity favors artifacts
with short descriptions, even though the overwhelming majority of objects in our universe
are random and incompressible. We formalized the typicality and novelty of a never-
before-seen artifact with a model and data-to-model codes, built from an inspiring set of
already-observed objects.

Perhaps more importantly, we laid a groundwork for conceptualizing value. His-
torically, researchers have often attempted to perceive this dimension of an artifact with
its compressibility. However, as was shown, we tend to assign value to artifacts, which
cannot be produced easily and which display a high amount of subjective organization.
We discussed what it means to be an authentic creative process: an observer or critic’s
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time-bounded explanation Kt(x) of an artwork x can be influenced by the real creative
process of the artist; while they can also dismiss the fraudulent claims of a charlatan by
seeing through the actual value of an artifact.

Such interplay between artists and critics has been often absent from previous com-
putational understandings of creative work and its quality. Additionally, the notion of
sophistication lets us illustrate a creator’s virtuosity present in their creative product. The
input d to a generator program p that we called accidental information, can be thought of
as the inspiration or an encoding of the surrounding environment that influences a creator
program p.

A particular delightful outcome of sophistication is its ability to describe masterpieces
in the form of highly sophisticated artifacts, whose existence is only possible through an
absolutely non-stochastic program. These concepts and formalization provide a reliable
theoretical foundation upon which other models (e.g., machine learning) can be built
and evaluated.
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