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Abstract: Fuzzy differential equations provide a crucial tool for modeling numerous phenomena
and uncertainties that potentially arise in various applications across physics, applied sciences and
engineering. Reliable and effective analytical methods are necessary to obtain the required solutions,
as it is very difficult to obtain accurate solutions for certain fuzzy differential equations. In this
paper, certain fuzzy approximate solutions are constructed and analyzed by means of a residual
power series (RPS) technique involving some class of fuzzy fractional differential equations. The
considered methodology for finding the fuzzy solutions relies on converting the target equations into
two fractional crisp systems in terms of ρ-cut representations. The residual power series therefore
gives solutions for the converted systems by combining fractional residual functions and fractional
Taylor expansions to obtain values of the coefficients of the fractional power series. To validate the
efficiency and the applicability of our proposed approach we derive solutions of the fuzzy fractional
initial value problem by testing two attractive applications. The compatibility of the behavior of the
solutions is determined via some graphical and numerical analysis of the proposed results. Moreover,
the comparative results point out that the proposed method is more accurate compared to the other
existing methods. Finally, the results attained in this article emphasize that the residual power series
technique is easy, efficient, and fast for predicting solutions of the uncertain models arising in real
physical phenomena.

Keywords: triangular fuzzy number; residual power series method; fractional calculus; approxi-
mate solution

1. Introduction

Fuzzy set theory is of considerable interest in mathematics that generalizes the classical
probability. The theory fulfills the need to express information of human knowledge in
mathematical forms. Since its inception [1], it has been successfully applied in many fields,
most notably in the areas of decision making, modeling uncertainty, pattern recognition,
image processing, machine learning, economics, and artificial intelligence [2,3]. In the last
few years, modeling uncertainty has gained the attention of numerous scholars as one
of the most popular theories of describing physical phenomena using fuzzy fractional
initial value problems (IVPs). In some cases, simulation and modeling of a real physical
phenomenon shows information about issues associated with uncertainty. Such uncertainty
may result from several factors, including the process of data collection and measurement
errors, determining the initial data, and so forth. Therefore, it is necessary to develop
convenient and reliable methods to clarify the presence of uncertainty in parameters,
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variables, and constants in a mathematical structure of different phenomena that can
appropriately address the fuzzy fractional IVPs and study their qualitative and quantitative
physical behavior.

Fuzzy differentiation and integration in recent years has witnessed fast-growing ap-
plication in diverse and widespread fields in natural science and engineering, for instance,
electrical engineering, synchronized hyperchaotic systems, quantum optics, chaotic sys-
tems, medicine, and many others (see [4–8]). In the literature, different fractional derivative
operators have been proposed and improved, such as the Riemann–Liouville, Caputo,
Caputo–Fabrizio, and conformable concepts (see [9–12]). Consequently, various numer-
ical methods have been developed to deal with these fractional operators; for further
applications, refer to [13–18]. The investigation of FFDEs and their solutions was initially
established by Agarwal et al. in [19], in which they solved FFDE with respect to Riemann–
Liouville differentiability. This contribution has spurred numerous researchers to devote
their interest towards the study of the theoretical results of the existence and uniqueness of
solutions side by side with the numerical approximation methods of FFDEs, including the
reproducing kernel Hilbert space method, the fractional Euler method, the fuzzy Laplace
transform method, the variational iteration method, the Adomian decomposition method,
the Jacobi operational matrix method, the Taylor series expansion method, and others
(see [20–23]).

The basic purpose of this analysis is to develop a framework to investigate the fuzzy
approximate solutions of a certain class of fuzzy fractional IVP with respect to fuzzy
conformable fractional derivative by applying the residual power series (RPS) technique.
The proposed technique was initially introduced as an attractive novel numeric-analytic
approach for constructing the series solutions for fuzzy IVPs by determining the component
values of the expansion series. It depends on the fractional derivative of the so-called
truncation residual error function in each stage of finding the solution. RPS has been
widely used to find out the solutions of linear and nonlinear issues of fractional differential
and fractional integrodifferential equations, including fractional Newell–Whitehead–Segel
equation [24], fractional Sawada–Kotera–Ito, Lax, and Kaup–Kupershmidt equations [25],
time-fractional Fokker–Planck equations [26], fractional Kundu–Eckhaus and massive
Thirring models [27], coupled fractional resonant Schrödinger equation [28], and the
fractional Sharma–Tasso–Olever equation [29]. The proposed algorithm is straightforward,
accurate and powerful for creating a series of solutions for different models that occur in
applied mathematics without terms of perturbation, discretization, and linearization. For
more information about advanced different and approximate methods, refer to [30–35] and
references therein.

In this analysis, we intend to design an efficient algorithm capable of implementing a
direct and accurate iterative method to find approximate solutions to the fuzzy system in
view of the conformable fractional sense of the domain of interest. The rest of this analysis
is organized as follows. In the next section, some mathematical preliminaries and basic
definitions related to fuzzy numbers, fuzzy conformable differentiation and fractional
Taylor’s formula are reviewed. In Section 3, the formulation of fuzzy fractional IVPs of
order β is presented. The principle of the RPS method to detect the solutions of fuzzy
fractional IVPs is introduced in Section 4. In Section 5, two linear FFDEs with appropriate
fuzzy initial data under fuzzy conformable differentiability are tested to illustrate the
simplicity and potential of the RPS approach for determining the approximate solutions.
Finally, the conclusion of this work is given in Section 6.

2. Preliminaries

This section provides the fundamental definitions and preliminary results for eluci-
dating sufficient fuzzy analysis theory, to enable us to investigate the fuzzy approximated
solutions for certain classes of FFDEs. Throughout this article, <F refers to the set of all
fuzzy numbers.
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Definition 1. [36] The β-th conformable fractional derivative starting from η of a function
ϕ : [η, ∞)→ R is denoted Cβ and defined as:

Cβ ϕ(t) = lim
ε→0

ϕ(m−1)
(

t + ε(t− η)m−β
)
− ϕ(m−1)(t)

ε
, β ∈ (m− 1, m] , t > η,

and Cβ ϕ(η) = lim
t→η+
Cβ ϕ(t) provided that lim

t→η+
Cβ(t) exists and ϕ(t) is (m− 1)-differintiable in

some (0, η), η > 0.

Definition 2. [5] A fuzzy number is defined as a fuzzy set ω : < → [0, 1] such that

• ω is upper semi-continuous, i.e., limt→ξ ω(t) ≥ ω(ξ), ∀ξ ∈ <.
• ω is convex, i.e., for each ξ, η ∈ <, and 0 ≤ γ ≤ 1, we have ω(γξ + (1− γ)η)

≥ min(ω(ξ), ω(η)).
• ω is normal, i.e., there is at least one point ξ ∈ < such that ω(t) = 1.
• [ω]0 = {ξ ∈ < : ω(ξ) > 0} is compact set.

Theorem 1. [6] Let ω, ω : [0, 1]→ < satisfy the following conditions:

(i) ω is a bounded non-decreasing function.
(ii) ω is a bounded non-increasing function.
(iii) ω(1) ≤ ω(1).
(iv) For each i ∈ (0, 1], limρ→i−ω(ρ) = ω(i) and limρ→i−ω(ρ) = ω(i).
(v) limρ→0+ω(ρ) = ω(0) and limρ→0+ω(ρ) = ω(0).

Then, ω : [0, 1]→ < given by ω(t) = sup{ρ|ω(ρ) ≤ t ≤ ω(ρ)} is a fuzzy number with
parameterization

[
ωρ, ωρ

]
. Furthermore, if ω : [0, 1]→ < is a fuzzy number with parameteriza-

tion
[
ωρ, ωρ

]
, then the functions ωρ and ωρ satisfy the aforesaid conditions (i)–(v). Consequently,

the arbitrary fuzzy number ω can be presented as an ordered pair of functions
(

ωρ, ωρ

)
.

Definition 3. [7] For D : <F ×<F → <+ ∪ {0}, the mapping D(ω, ϕ) can be defined as
D(ω, ϕ) = sup0 ≤ρ≤1DH

{
[ω]ρ, [ϕ]ρ

}
for arbitrary fuzzy numbers ω =(ω, ω) and

ϕ =
(

ϕ, ϕ
)

, where DH is the Hausdorff metric:DH

{
[ω]ρ, [ϕ]ρ

}
= max

{∣∣∣ωρ − ϕ
ρ

∣∣∣, ∣∣∣ωρ − ϕρ

∣∣∣}.

Definition 4. [7] The β-th fuzzy conformable fractional derivative for fuzzy function ω : (a, b)→ <F
for β > 0 is denoted by Cβ and defined by

(
Cβω

)
(t) = lim

ζ→0+

ω
(
t + ζt1−β

)
	ω(t)

ζ
= lim

ζ→0+

ω(t)	ω
(
t− ζt1−β

)
ζ

, β ∈ (0, 1].

Remark 1. We define Cβω(0) = lim
t→0+
Cβω(t) provided the limit is exists. Furthermore, ω is β-th

fuzzy conformable differentiable whenever Cβω(t) exists for β > 0.

Definition 5. [7] For t0 ∈ [a, b], a > 0, and β > 0, we say that ω : [a, b]→ <F is strongly
generalized βth-fuzzy conformable differentiable at t0 if there exists an element Cβω(τ) ∈ <F such
that either:

(i) The H-differences ω
(

t0 + ζt1−β
0

)
	 ω(t0), ω(t0) 	 ω

(
t0 − ζt1−β

0

)
exist for each suffi-

ciently small ζ > 0, and lim
ζ→0+

ω
(

t0+ζt1−β
0

)
	ω(t0)

ζ = lim
ζ→0+

ω(t0)	ω
(

t0−ζt1−β
0

)
ζ = Cβω(t0).
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(ii) The H-differences ω(t0) 	 ω
(

t0 + ζt1−β
0

)
, ω
(

t0 − ζt1−β
0

)
	 ω(t0) exist, for each suffi-

ciently small ζ > 0, and lim
ζ→0+

ω(t0)	ω
(

t0+ζt1−β
0

)
−ζ = lim

ζ→0+

ω
(

t0−ζt1−β
0

)
	ω(t0)

−ζ = Cβω(t0).

It is worth mentioning here that the limits are taken in the metric space (<F ,D).

Remark 2. If ω is fuzzy differentiable for any point t ∈ (a, b) in terms of (i) of Definition 2.5,
then ω is a (1; β)-fuzzy conformable differentiable on [a, b] and its derivative is Cβ

1 ω(t). Likewise,
ω is a (2; β)-fuzzy conformable differentiable on [a, b], if ω is fuzzy differentiable for any point
t ∈ (a, b) in terms of (ii) of Definition 2.5 and its derivative is Cβ

2 ω(t).

Theorem 2. [7] Assume that ω : [a, b]→ <F is a fuzzy function satisfies the following conditions:

(i) For each t ∈ [a, b], there exists δ > 0 such that the H-differences: ω
(
t + ζt1−β

)
	ω(t) and

ω(t)	ω
(
t− ζt1−β

)
exists for all ζ ∈ [0, δ).

(ii) For each t ∈ [a, b] and h > 0 there exists a constant ` > 0 such that DH

(
ω(t+ζt1−β)−ω(t)

ζ, Cβω(t)

)
< h,

and DH

(
ω(t)−ω(t−ζt1−β)

ζ, Cβω(t)

)
< h, for all ζ ∈ [0, `). Then, the set of functions [ω(t)]ρ is β-th

conformable differentiable and its derivative is
[
Cβω(t)

]
ρ
=
[
Cβωρ(t), Cβωρ(t)

]
, where

[ω(t)]ρ =
[
ωρ(t), ωρ(t)

]
for each ρ ∈ [0, 1].

Next, theorems assist us to convert the FFDEs into a system of ordinary fractional differen-
tial equations.

Theorem 3. [7] Assume that ω : [a, b]→ <F is a fuzzy function. Let [ω(t)]ρ =
[
ωρ(t), ωρ(t)

]
for each ρ ∈ [0, 1]. Then,

(i) If ω is (1; β)-fuzzy conformable differentiable, then ωρ and ωρ are β-th conformable differen-

tiable functions on [a, b] and
[
Cβω(t)

]
ρ
=
[
Cβωρ(t), Cβωρ(t)

]
.

(ii) If ω is (2; β)-fuzzy conformable differentiable, then ωρ and ωρ are β-th conformable differen-

tiable functions on [a, b] and
[
Cβω(t)

]
ρ
=
[
Cβωρ(t), Cβωρ(t)

]
.

Definition 6. [37] A fractional expansion representation at t = η has the following form:

∞

∑
k=0

ak(t− η) βk = a0 + a1(t− η)β + a2(t− η)2β + · · · ,

where 0 ≤ n− 1 < β ≤ n, and t ≥ η is a fractional power series (PS) about η.

Theorem 4. [38] Suppose that ϕ(t) has the following fractional PS representation at t = η:

ϕ(t) =
∞

∑
k=0

ak(t− η) βk, 0 ≤ n− 1 < β ≤ n, t ∈ [ η, η + R),

where ϕ(t) ∈ C[η, η + R), then the unknown functions ak are in the form ak = Ckβ ϕ(η)
βkk!

for

k = 0, 1, 2, . . ., such that Ckβ = Cβ·Cβ · · · Cβ, k-times.

Remark 3. It should be mentioned that there is an exciting recent work on the conformable Euler
method for finite difference discretization of FIVPs [39,40] showing that the fractional Taylor
expansions in terms of the conformable fractional derivative presented in [36] is valid for β = 1. An
alternative definition of the conformable fractional derivative introduced in [40] based on the exact
spectral derivative discretization finite difference method showing that the conformable fractional
derivative [36] is a fractional change of a variable rather that a fractional operator. In view of the
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results of [*], Definition 6 and Theorem 4 are incorrect, and the RPS results-based thereon can
therefore be improved.

Definition 7. [40] Given a real-valued function on [0, ∞), the conformable fractional derivative
has the following alternative definition:

Tβ
t ϕ(t) =

C
0 Tβ

t ϕ(t) ≡ lim
h→0

CFD
0 ∆β

t ϕ(t) = βlim
h→0

ϕ(t + h)−ϕ(t)
(t + h)β − tβ

,

where C
0 Tβ

t ϕ(0) is understood to mean C
0 Tβ

t ϕ(0) = lim
t→0+

C
0 Tβ

t ϕ(t).

3. Fuzzy Conformable Fractional Initial Value Problems

Recently, fuzzy DEs have emerged as a powerful instrument for mathematical model-
ing of numerous real-life phenomena. In this section, let us consider the following fuzzy
fractional IVPs of order β:

Cβω(t) = F (t, ω(t)), a ≤ t ≤ b, β ∈ (0, 1] , (1)

with the fuzzy initial condition
ω(a) = σ (2)

where Cβ indicates the fuzzy conformable fractional derivative of order β, F : [a, b]×<F → <F
is a continuous fuzzy-valued function, σ ∈ <F and ω(t) is unknown analytical function to
be determined. Consequently, if F (·) is a crisp function, then the solution ω(t) of IVPs (1)
and (2) is a crisp. Otherwise, if F (·) is a fuzzy function, then the IVPs (1) and (2) may
possess only fuzzy solution ω(t). Anyhow, we assume that F (·) is a fuzzy function.

The (m)-fuzzy solution of the fuzzy fractional IVPs (1) and (2) is a function ω : [a, b]→ <F
which is (m; β)-fuzzy conformable differentiable and satisfies (1) and (2). To obtain the
fuzzy solution ω(t), we firstly convert the fuzzy fractional IVPs (1) and (2) into equivalent
systems of fractional IVPs, based upon the type of the fuzzy conformable differentiability
and the fuzzy solution ω which satisfies the above conditions of Theorem 2. Then, by
rewriting Cβω(t), ω(t), and the initial data ω(a), respectively, as a ρ-cut representation:[
Cβωρ(t), Cβωρ(t)

]
,
[
ωρ(t), ωρ (t)], and

[
ωρ(a), ωρ (a)] =

[
δρ, δρ

]
. Additionally,F (t, ω(t))

can be reformulated as
[
F ρ

(
t, ωρ(t), ωρ(t)

)
, F ρ

(
t, ωρ(t), ωρ(t)

)]
. The following systems

will hold based on using Theorem 3:

(1) If ω(t) is (1; β)-fuzzy conformable differentiable, then the corresponding crisp system
of the IVPs (1) and (2) will be written in the form of the following:

Cβωρ(t) = F ρ

(
t, ωρ(t), ωρ(t)

)
Cβωρ(t) = F ρ

(
t, ωρ(t), ωρ(t)

)
ωρ(a) = δρ, ωρ(a) = δρ

(3)

(2) If ω(t) is (2; β)-fuzzy conformable differentiable, then the corresponding crisp system
of IVPs (1) and (2) will be written in the form of the following:

Cβωρ(t) = F ρ

(
t, ωρ(t), ωρ(t)

)
Cβωρ(t) = F ρ

(
t, ωρ(t), ωρ(t)

)
ωρ(a) = δρ, ωρ(a) = δρ

(4)

The formulation of the fuzzy fractional IVPs (1) and (2) along with Theorem 2.3 show
us how to deal with numerical solutions of fuzzy fractional IVPs. The original fuzzy
fractional IVPs can be converted into a crisp system of fractional IVPs equivalently.
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This indicates that no need to rewrite the numerical methods for the crisp systems
of the fractional IVPs in the fuzzy setting, but, instead, we may use the numerical
methods directly on the obtained crisp systems.

4. Primary Principle of Residual Power Series Approach

This section is devoted to justifying the strategy of our proposed method in predicting
and investigating the approximate solutions for the fuzzy fractional IVPs (1) and (2).
The basic mainstay of the RPS approach is applying the residual error notion and the
fractional Taylors series, where the components of truncated fractional Taylor’s series are
computed via deriving the truncated fractional residual functions [41–49], see also [50–53]
for further results.

Theorem 5. For ρ ∈ [0, 1], let ωρ(t), and ωρ(t) have the following fractional expansions about
t = η,

ωρ(t) =
∞
∑

k=0

cktβk

βkk!
,

ωρ(t) =
∞
∑

k=0

dktβk

βkk!
,

(5)

where 0 < β ≤ 1 and t ∈ [ η, η + R). If Cβωρ(t) and Cβωρ(t) are two continuous on [ η, η + R),

then the unknown functions ck and dk are in the forms ck =
Ckβωρ(η)

βkk!
and dk =

Ckβωρ(η)

βkk!
for

k = 0, 1, 2, . . . , where Ckβ = Cβ·Cβ · · · Cβ, k-times.

Proof. We need to prove that the unknown coefficients in the fractional expansions (5)
have the forms:

ck =
Ckβωρ(η)

βkk!
and dk =

Ckβωρ(η)

βkk!
for k = 0, 1, 2, . . . .

Suppose that ωρ(t) and ωρ(t) are two functions which have the fractional PS ex-
pansions as in Definition 2.5. Its clear that, if we put t = η in (5) leads to c0 = ωρ(η),
d0 = ωρ(η) and ck = dk = 0, for k ≥ 1. Next, by operating β-th conformable fractional
derivative on both sides of (5) gives

Cβωρ(t) = βc1 + 2βc2(t− η)β + 3βc3(t− η)2β + 4βc4(t− η)3β + · · · ,
Cβωρ(t) = βd1 + 2βd2(t− η)2β + 3βd3(t− η)2β + 4βd4(t− η)3β + · · · .

(6)

Substitution of t = η into (6) leads to c1 =
Cβωρ(η)

β and d1 =
Cβωρ(η)

β .

Additionally, we can apply Cβ on both sides of (6) to get

C2βωρ(t) = 2β2c2 + 6β2c3(t− η)β + 12β2c4(t− η)2β + · · · ,
C2βωρ(t) = 2β2d2 + 6β2d3(t− η)β + 12β2d4(t− η)2β + · · · .

(7)

Then, by substituting t = η into (7) gives that c2 =
C2βωρ(η)

2β2 and d2 =
C2βωρ(η)

2β2 .

Again, by operating Cβ on both sides of (7), we have

C3βωρ(t) = 6β3c3 + 24β3c4(t− η)β + · · · ,
C3βωρ(t) = 6β3d3 + 24β3d4(t− η)β + · · · .

(8)

After that, substitute t = η into (8) to obtain that c3 =
C3βωρ(η)

3!β3 and d3 =
C3βωρ(η)

3!β3 .

Continuing in the same manner, apply Cβ k-times, and then substitute t = η into the
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obtained fractional expansions so that the pattern of ck and dk can be found. Therefore, the
unknown coefficients in the fractional expansions (5) have the forms

ck =
Ckβωρ(η)

βkk!
and dk =

Ckβωρ(η)

βkk!
for k = 0, 1, 2, . . .

Now, the process of obtaining (1)-solution of the crisp system (3) corresponding the
first case of fuzzy fractional IVPs (1) and (2) will be discussed. The same fashion can be
used to create (2)-solution. To reach our purpose, we assume that the solutions of the crisp
system (3) about the initial point t = 0 have the following fractional PS forms

ωρ(t) =
∞
∑

k=0

cktβk

βkk!
, t ≥ 0, 0 < β ≤ 1, ρ ∈ [0, 1],

ωρ(t) =
∞
∑

k=0

dktβk

βkk!
, t ≥ 0, 0 < β ≤ 1, ρ ∈ [0, 1].

(9)

We can approximate the solutions ωρ(t) and ωρ(t) for the system (3) by the following
j-th fractional PS approximate solutions

ω
j
ρ(t) =

j
∑

k=0

cktβk

βkk!
, t ≥ 0, 0 < β ≤ 1, ρ ∈ [0, 1],

ω
j
ρ(t) =

j
∑

k=0

dktβk

βkk!
, t ≥ 0, 0 < β ≤ 1, ρ ∈ [0, 1].

(10)

Applying the initial data of (3), when j = 0, in the expansions (10), we verify that the
0-th fractional PS approximate solutions of ωρ(t) and ωρ(t) are ω0

ρ(t) = c0 = δρ = ωρ(0)

and ω
j
ρ(t) = d0 = δρ = ωρ(0).

Hence, the j-th fractional PS approximate solutions (10) can be reformulated as

ω
j
ρ(t) = δρ +

j
∑

k=1

cktβk

βkk!
, t ≥ 0, 0 < β ≤ 1, ρ ∈ [0, 1],

ω
j
ρ(t) = δρ +

j
∑

k=0

dktβk

βkk!
, t ≥ 0, 0 < β ≤ 1, ρ ∈ [0, 1].

(11)

To find out the coefficients ck and dk, for k = 1, 2, 3, . . . , j of the fractional expansions (11),
one can solve the following fractional algebraic equations manually for the target coefficients

C(j−1)βResj
ρ
(0) = 0,

C(j−1)βResj
ρ(0) = 0, j = 1, 2, . . . ,

(12)

where Resj
ρ

and Resj
ρ are called the j-th fractional residual functions of the crisp system (3)

and defined as follows

Resj
ρ
(t) = Cβω

j
ρ(t)−F ρ

(
t, ω

j
ρ(t), ω

j
ρ(t)

)
,

Resj
ρ(t) = Cβω

j
ρ(t)−F ρ

(
t, ω

j
ρ(t), ω

j
ρ(t)

)
,

(13)

and the ∞-th fractional residual functions of the system (3) have the forms

lim
j→∞

Resj
ρ
(t) = Res

ρ
(t) = Cβωρ(t)−F ρ

(
t, ωρ(t), ωρ(t)

)
,

lim
j→∞

Resj
ρ(t) = Resρ(t) = Cβωρ(t)−F ρ

(
t, ωρ(t), ωρ(t)

)
.

(14)
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Indeed, some useful facts concerned with the fractional residual functions are listed
below, and form the mainstay of the RPS scheme

� Res
ρ
(t) = 0 and Resρ(t) = 0 for each t ≥ 0.

� lim
j→∞

Resj
ρ
(t) = Res

ρ
(t) and lim

j→∞
Resj

ρ(t) = Resρ(t) for each t ≥ 0.

� CmβResj
ρ
(0) = 0 and CmβResj

ρ(0) for m = 0, 1, 2, . . . , j.

Based on this analysis, the process of obtaining the coefficients ck and dk in the frac-
tional expansions (11) construct the fractional PS approximate solutions for the system (3)
by RPS method which can be summarized via the next algorithm. �

Algorithm 1. To deduce the approximate solutions of (3) in detail, one can perform the following
manner by one of the known software packages like MATHEMATICA 12.

Step I: Write the system (3) in the form C
βωρ(t)−F ρ

(
t, ωρ(t), ωρ(t)

)
= 0

Cβωρ(t)−F ρ

(
t, ωρ(t), ωρ(t)

)
= 0

Step II: Suppose that the solutions of the system (3) about the initial point t = 0 have the
fractional PS expansion forms

ωρ(t) =
∞

∑
k=0

cktβk

βkk!
, ωρ(t) =

∞

∑
k=0

dktβk

βkk!
, t ≥ 0, 0 < β ≤ 1, ρ ∈ [0, 1].

Step III: Set c0 = ωρ(0) = δρ and d0 = ωρ(0) = δρ, then the j-th fractional PS approximate

solutions ω
j
ρ(t) and ω

j
ρ(t) of ωρ(t) and ωρ(t) can be written respectively as

ω
j
ρ(t) = c0 +

j

∑
k=1

cktβk

βkk!
and ω

j
ρ(t) = d0 +

j

∑
k=1

dktβk

βkk!
, t ≥ 0, 0 < β ≤ 1, ρ ∈ [0, 1].

Step IV: Define the j-th fractional residual functions Resj
ρ
(t) and Resj

ρ(t) such that

Resj
ρ
(t) = Cβω

j
ρ(t)−F ρ

(
t, ω

j
ρ(t), ω

j
ρ(t)

)
,

Resj
ρ(t) = Cβω

j
ρ(t)−F ρ

(
t, ω

j
ρ(t), ω

j
ρ(t)

)
.

Step V: Substitute ω
j
ρ(t) and ω

j
ρ(t) in Resj

ρ
(t) and Resj

ρ(t) so that

Resj
ρ
(t) = Cβ

(
c0 +

j
∑

k=1

cktβk

βkk!

)
−F ρ

(
t, c0 +

j
∑

k=1

cktβk

βkk! , d0 +
j

∑
k=0

dktβk

βkk!

)
,

Resj
ρ(t) = Cβ

(
d0 +

j
∑

k=0

dktβk

βkk!

)
−F ρ

(
t, c0 +

j
∑

k=1

cktβk

βkk! , d0 +
j

∑
k=0

dktβk

βkk!

)
.

Step VI: Consider j = 1, in Step V, then solve Res1
ρ
(t) = 0 and Res1

ρ(t) = 0 at t = 0 for c1 and d1.

Therefore, the first fractional PS approximate solutions ω1
ρ(t) and ω1

ρ(t) will be obtained.
Step VII: For j = 2, 3, . . . , r in Step V, apply the operator (j− 1)β-th on both sides of the

resulting fractional equations such that C(j−1)βResj
ρ
(t) and C(j−1)βResj

ρ(t). Then, by solving

C(j−1)βResj
ρ
(0) = 0 and C(j−1)βResj

ρ(0) = 0, cj and dj can be obtained.

Step VIII: Write the forms of the obtained coefficients cj and dj in terms of j-th fractional PS

expansions ω
j
ρ(t) and ω

j
ρ(t) and repeat the above steps to reach a closed-form in terms of infinite

series as in Step II. Elsewhere, the solution obtained will be representing the j-th fractional PS
approximate solutions of the crisp system (3).
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5. Applications and Numerical Simulations

In this section, we consider two fuzzy fractional IVPs of order β to demonstrate the
efficiency and applicability of the RPS approach. Here, all of the symbolic and numerical
computations performed by using Mathematica 12.

Application 1. Consider the following fuzzy fractional IVPs

Cβω(t) = [ρ + 1, 3− ρ] + ω(t) , t ∈ [0, 1], (15)

with the fuzzy initial condition
ω(0) = 0, (16)

where 0 < β ≤ 1 and ρ ∈ [0, 1].
By using Theorem 3 and the type of fuzzy conformable differentiability, we have the

following cases:
Case I: If ω(t) is (1; β)-fuzzy conformable differentiable, then the corresponding crisp

system of the fuzzy fractional IVPs (15) and (16) will be written in the form of the following:
Cβωρ(t) = (ρ + 1) + ωρ(t),
Cβωρ(t) = (3− ρ) + ωρ(t),

ωρ(0) = 0, ωρ(0) = 0,
(17)

For the standard case β = 1, the fuzzy exact solution in the ρ-cut representation has
the form [ω(t)]ρ = [ρ + 1, 3− ρ]

(
et − 1

)
.

In view of the last discussion for the RPS scheme, starting with ωρ(0) = 0 and
ωρ(0) = 0, assume that the j-th approximate fractional PS solutions for the fractional IVPs
system (17) have the following forms

ω
j
ρ(t) =

j

∑
k=1

cktβk

βkk!
, ω

j
ρ(t) =

j

∑
k=0

dktβk

βkk!
, t ≥ 0, 0 < β ≤ 1, ρ ∈ [0, 1], (18)

where the unknown coefficients ck and dk for k = 1, 2, 3, . . . , j can be determined by
constructing the j-th fractional residual functions Resj

ρ
(t) and Resj

ρ(t) for (17) such that

Resj
ρ
(t) = Cβ

(
j

∑
k=1

cktβk

βkk!
,

)
−

j
∑

k=1

cktβk

βkk!
− (ρ + 1),

Resj
ρ(t) = Cβ

(
j

∑
k=1

dktβk

βkk!

)
−

j
∑

k=0

dktβk

βkk!
− (3− ρ).

(19)

For j = 1, we have Res1
ρ
(t) = Cβ

(
c1tβ

β

)
− c1tβ

β − (ρ + 1) = c1

(
β−tβ

β

)
− ρ − 1 and

Res1
ρ(t) = Cβ

(
d1tβ

β

)
− d1tβ

β − (3− ρ) = d1

(
β−tβ

β

)
− 3 + ρ. Then, Res1

ρ
(0) = 0 and Res1

ρ(0)

= 0 gives c1 = ρ + 1 and d1 = 3− ρ.

For j = 2, we have Res2
ρ
(t) = Cβ

(
(ρ+1)tβ

β + c2t2β

2β2

)
−
(
(ρ+1)tβ

β + c2t2β

2β2

)
− (ρ + 1)

=
(
(ρ + 1) + c2tβ

β

)
−
(
(ρ+1)tβ

β + c2t2β

2β2

)
− ρ − 1 and Res2

ρ(t) = Cβ
(
(3−ρ)tβ

β + d2t2β

2β2

)
−(

d1tβ

β + d2t2β

2β2

)
− (3− ρ) =

(
(3− ρ) + d2tβ

β

)
−
(
(3−ρ)tβ

β + d2t2β

2β2

)
− 3 + ρ. By applying Cβ

both sides of Res2
ρ
(t) and Res2

ρ(t) yields CβRes2
ρ
(t) = c2 − (ρ + 1) − c2tβ

β and CβRes2
ρ(t)

= d2 − (3− ρ)− d2tβ

β and then, by solving Res2
ρ
(0) = 0 and Res2

ρ(0) = 0, we conclude that

c2 = ρ + 1, and d2 = 3− ρ.
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In the same manner, for j = 3, we have C2βRes3
ρ
(t) = C2β (Cβ

(
(ρ+1)tβ

β + (ρ+1)t2β

2β2 + c3t3β

6β3

)
−
(
(ρ+1)tβ

β + (ρ+1)t2β

2β2 + c3t3β

6β3

)
− (ρ + 1) ) = C2β (

(
(ρ + 1) + (ρ+1)tβ

β + c3t2β

2β2

)
− ( (ρ+1)tβ

β + r
(ρ+1)t2β

2β2 + c3t3β

6β3

)
− ρ− 1 ) = c3 − (ρ + 1) − c3tβ

2β and C2βRes3
ρ(t) = C2β

(
Cβ
(
(3−ρ)tβ

β +

(3−ρ)t2β

2β2 + d3t3β

6β3

)
−
(
(3−ρ)tβ

β + (3−ρ)t2β

2β2 + d3t3β

6β3

)
− (3− ρ)

)
= C2β

((
(3− ρ) +

(3−ρ)tβ

β

+ d3t2β

2β2

)
−
(
(3−ρ)tβ

β + (3−ρ)t2β

2β2 + d3t3β

6β3

)
− ρ + 3

)
= d3 − (3− ρ)− d3tβ

2β . Thus, by using the

fact that C2βRes3
ρ
(0) = 0 and C2βRes3

ρ(0) = 0, it yields that c3 = ρ + 1 and d3 = 3− ρ.

Continuing in this procedure, based upon the fact C(j−1)βResj
ρ
(0) = 0 and C(j−1)βResj

ρ(0)

= 0, for j = 4, 5, 6, . . ., it can be concluded that cj = ρ + 1 and dj = 3− ρ. Therefore, the
j-th fractional PS expansions of the fractional IVPs (17) could be expressed as:

ω
j
ρ(t) =

(ρ+1)tβ

β + (ρ+1)t2β

β22! + (ρ+1)t3β

β33! + · · ·+ (ρ+1)tjβ

βj j!
,

ω
j
ρ(t) =

(3−ρ)tβ

β + (3−ρ)t2β

β22! + (3−ρ)t3β

β33! + · · ·+ (3−ρ)tjβ

βj j!
.

(20)

Moreover, the fractional PS approximate solutions of the fractional IVPs (17) have the
general form in terms of the infinite series

ωρ(t) =
(ρ+1)tβ

β + (ρ+1)t2β

β22! + (ρ+1)t3β

β33! + · · · = (ρ + 1)
∞
∑

k=0

tkβ

βkk!
,

ωρ(t) =
(3−ρ)tβ

β + (3−ρ)t2β

β22! + (3−ρ)t3β

β33! + · · · = (3− ρ)
∞
∑

k=0

tkβ

βkk!
.

(21)

In particular, for β = 1 in (21), we have

ωρ(t) = (ρ + 1)
(

t + t2

2! +
t3

3! + · · ·
)
= (ρ + 1)

∞
∑

k=0

tk

k! ,

ωρ(t) = (3− ρ)
(

t + t2

2! +
t3

3! + · · ·
)
= (3− ρ)

∞
∑

k=0

tk

k! ,
(22)

which are compatible with the McLaurin series of the fuzzy exact solution [ω(t)]ρ
= [ρ + 1, 3− ρ]

(
et − 1

)
.

Case II: If ω(t) is (2; β)-fuzzy conformable differentiable, then the corresponding crisp
system of fuzzy fractional IVPs (15) and (16) will be written in the form of the following

Cβωρ(t) = (3− ρ) + ωρ(t),
Cβωρ(t) = (ρ + 1) + ωρ(t),

ωρ(0) = 0, ωρ(0) = 0.
(23)

For the standard case β = 1, the fuzzy exact solution in term of ρ-cut representation
has the form [ω(t)]ρ = 2et + [1− ρ, ρ− 1]

(
1− e−t).

According to RPS procedure, the j-th fractional residual functions Resj
ρ
(t) and Resj

ρ(t)

of the fractional IVPs (23) could be written as:

Resj
ρ
(t) = Cβ

(
ω

j
ρ(t)

)
−ω

j
ρ(t)− (3− ρ),

Resj
ρ(t) = Cβ

(
ω

j
ρ(t)

)
−ω

j
ρ(t)− (ρ + 1),

(24)

where ω
j
ρ(t) and ω

j
ρ(t) represent to the j-th fractional PS approximate solutions of (23)

such that

ω
j
ρ(t) =

j

∑
k=1

cktβk

βkk!
, ω

j
ρ(t) =

j

∑
k=1

dktβk

βkk!
. (25)
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Following the process of Algorithm 1, the values of ck and dk, k = 1, 2, 3, . . . , j, in
fractional expansions (25) can be reached as follows,

c1 = 3− ρ, d1 = ρ + 1,

c2 = ρ + 1, d2 = 3− ρ,

c3 = 3− ρ, d3 = ρ + 1,

c4 = ρ + 1, d4 = 3− ρ,

c5 = 3− ρ, d5 = ρ + 1,

c6 = ρ + 1, d6 = 3− ρ,

...
...

cj−1 = 3− ρ, dj−1 = ρ + 1,

cj = ρ + 1, dj = 3− ρ.

Thus, the j-th fractional PS approximate solutions of fractional IVPs (23) have the
expansions form

ω
j
ρ(t) =

(3−ρ)tβ

β + (ρ+1)t2β

β22! + (3−ρ)t3β

β33! + · · ·+ (3−ρ)t(j−1)β

β(j−1)(j−1)!
+ (ρ+1)tjβ

βj j!
,

ω
j
ρ(t) =

(ρ+1)tβ

β + (3−ρ)t2β

β22! + (ρ+1)t3β

β33! + · · ·+ (ρ+1)t(j−1)β

β(j−1)(j−1)!
+ (3−ρ)tjβ

βj j!
.

(26)

Correspondingly, the general forms of fractional PS approximate solutions of fractional
IVPs (23) could be reformulated as

ωρ(t) = (3− ρ)
∞
∑

k=1

t(2k−1)β

β(2k−1)(2k−1)!
+ (ρ + 1)

∞
∑

k=1

t2kβ

β2k(2k)!
,

ωρ(t) = (ρ + 1)
∞
∑

k=1

t(2k−1)β

β(2k−1)(2k−1)!
+ (3− ρ)

∞
∑

k=1

t2kβ

β2k(2k)!
,

(27)

which agrees with the McLaurin series of the fuzzy exact solutions [ω(t)]ρ = 2et

+ [1− ρ, ρ− 1]
(
1− e−t).

The accuracy and efficiency of the RPS method are validated by calculating the
absolute errors E8

(
ωρ

)
=
∣∣∣ωρ(t)−ω8

ρ(t)
∣∣∣ and E8

(
ωρ

)
=
∣∣∣ωρ(t)−ω8

ρ(t)
∣∣∣ for β = 1 and

different values of ρ, with some selected grid points of 0 ≤ t ≤ 1 as shown in Tables 1 and 2.
Graphically, to illustrate the effects of the parameter ρ on the behaviour of the fuzzy
solutions, the exact and eighth fractional PS approximate solutions are plotted in Figure 1
at various values of ρ, where ρ ∈ {0, 0.25, 0.5, 0.75, 1}.

Table 1. Absolute errors for Application 1, case I.

ti
E8

(
ωρ

)
=
∣∣∣ωρ(t)−ω8

ρ(t)
∣∣∣

ρ = 0 ρ = 0.5 ρ = 1

0.16 0.0 0.0 0.0
0.32 1.00× 10−10 0.0 3.0× 10−10

0.48 4.000× 10−9 6.000× 10−9 8.00× 10−9

0.64 5.300× 10−8 7.900× 10−8 1.06× 10−7

0.80 4.020× 10−7 6.030× 10−7 8.04× 10−7

0.96 2.109× 10−6 3.164× 10−6 4.21× 10−6
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Table 1. Cont.

ti
E8
(
ωρ
)
=
∣∣∣ωρ(t)− ω8

ρ(t)
∣∣∣

ρ = 0 ρ = 0.5 ρ = 1

0.16 0.0 0.0 0.0
0.32 4.00× 10−10 0.0 3.00× 10−10

0.48 1.20× 10−8 1.00× 10−8 8.00× 10−9

0.64 1.59× 10−7 1.33× 10−7 1.06× 10−7

0.80 1.20× 10−6 1.00× 10−6 8.04× 10−7

0.96 6.32× 10−6 5.27× 10−6 4.21× 10−6

Table 2. Absolute errors for Application 1, case II.

ti
E8

(
ωρ

)
=
∣∣∣ωρ(t)−ω8

ρ(t)
∣∣∣

ρ = 0 ρ = 0.5 ρ = 1

0.16 0.0 0.0 0.0
0.32 4.00× 10−10 0.0 0.0
0.48 1.10× 10−8 1.00× 10−8 8.00× 10−9

0.64 1.53× 10−7 1.29× 10−7 1.06× 10−7

0.80 1.15× 10−7 9.75× 10−7 8.04× 10−7

0.96 5.96× 10−6 5.09× 10−6 4.22× 10−6

ti
E8
(
ωρ
)
=
∣∣∣ωρ(t)− ω8

ρ(t)
∣∣∣

ρ = 0 ρ = 0.5 ρ = 1

0.16 0.0 0.0 0.0
0.32 0.0 0.0 0.0
0.48 4.00× 10−9 6.00× 10−9 8.00× 10−9

0.64 5.90× 10−8 8.30× 10−8 1.06× 10−7

0.80 4.61× 10−7 6.32× 10−7 8.04× 10−7

0.96 2.48× 10−6 3.35× 10−6 4.22× 10−6
 

 

 (a) 

 

(b)  

Figure 1 (a) Plots of 𝜌-cut representations of fuzzy exact solution  [𝜔𝜌(𝑡), 𝜔̅𝜌(𝑡)],  

and fuzzy approximate solution  [𝜔𝜌
8(𝑡), 𝜔̅𝜌

8(𝑡)], case I, (b) Plots of 𝜌-cut 

representations fuzzy exact solution [𝜔𝜌(𝑡), 𝜔̅𝜌(𝑡)], and fuzzy approximate 

solution [𝜔𝜌
8(𝑡), 𝜔̅𝜌

8(𝑡)], case II, for Application 1, at 𝛽 = 1, 𝑡 ∈ [0,1]. 
 

𝜌 = 0    

 

 

𝜌 = 0.25   **** 

 

 

𝜌 = 0.5   **** 

 

 

𝜌 = 0.75   **** 

 

 

𝜌 = 1    

 

 

Figure 1. (a) Plots of ρ-cut representations of fuzzy exact solution
[
ωρ(t), ωρ(t)

]
and fuzzy approximate solution[

ω8
ρ(t), ω8

ρ(t)
]
, case I. (b) Plots of ρ-cut representations of fuzzy exact solution

[
ωρ(t), ωρ(t)

]
and fuzzy approximate

solution
[
ω8

ρ(t), ω8
ρ(t)

]
, case II, for Application 1 at β = 1, t ∈ [0, 1].

Application 2. Consider the following fuzzy fractional IVPs

Cβω(t) = 2tβω(t) + [ρ− 1, 1− ρ]tβ, t ∈ [0, 1] (28)
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with the fuzzy initial condition

ω(0) = [ρ− 1, 1− ρ], (29)

where 0 < β ≤ 1 and ρ ∈ [0, 1].
Using Theorem 3 based on the type of conformable differentiability, we have the

following cases.
Case I: If ω(t) is (1; β)-fuzzy conformable differentiable, then the corresponding crisp

system of the fuzzy fractional IVPs (28) and (29) can be written in the following form:
Cβωρ(t) = 2tβωρ(t) + (ρ− 1)tβ,
Cβωρ(t) = 2tβωρ(t) + (1− ρ)tβ,
ωρ(0) = ρ− 1, ωρ(0) = 1− ρ.

(30)

For the standard case β = 1, the fuzzy exact solution in the ρ-cut representation has
the form [ω(t)]ρ = 1

2 [ρ− 1, 1− ρ]
(

3et2 − 1
)

.
As we mentioned earlier, set the zeroth approximate solutions of ωρ(t), ωρ(t), respec-

tively, where ω0
ρ(t) = ρ− 1 and ω0

ρ(t) = 1− ρ, then the j-th fractional PS approximate
solutions of the fractional IVPs (30) have the forms

ω
j
ρ(t) = (ρ− 1) +

j
∑

k=1

cktβk

βkk!
,

ω
j
ρ(t) = (1− ρ) +

j
∑

k=0

dktβk

βkk!
.

(31)

To determine the values of the components ck and dk, for k = 1, 2, 3, . . . , j, solve the
systems C(j−1)βResj

ρ
(t) = 0 and C(j−1)βResj

ρ(t) = 0 at t = 0 in which Resj
ρ
(t) and Resj

ρ(t)

are identified as:

Resj
ρ
(t) = Cβ

(
(ρ− 1) +

j
∑

k=1

cktβk

βkk!

)
− 2tβ

(
(ρ− 1) +

j
∑

k=1

cktβk

βkk!

)
− (ρ− 1)tβ,

Resj
ρ(t) = Cβ

(
(1− ρ) +

j
∑

k=0

dktβk

βkk!

)
− 2tβ

(
(1− ρ) +

j
∑

k=0

dktβk

βkk!

)
− (1− ρ)tβ.

(32)

For j = 1, the first fractional residual functions Res1
ρ
(t) and Res1

ρ(t) could be ex-

pressed as:

Res1
ρ
(t) = Cβ

(
(ρ− 1) + c1tβ

β

)
−
(

3tβ(ρ− 1) + 2c1t2β

β

)
= c1 − 3tβ(ρ− 1)− 2c1t2β

β ,

Res1
ρ(t) = Cβ

(
(1− ρ) + d1tβ

β

)
−
(

3tβ(1− ρ) + 2d1t2β

β

)
= d1 − 3tβ(1− ρ)− 2d1t2β

β .
(33)

Solving the systems Res1
ρ
(0) = 0 and Res1

ρ(0) = 0 gives c1 = d1 = 0.

Again, to determine c2 and d2 set j = 2 in (32), then taking into account the values of
the obtained coefficients, yields

Res2
ρ
(t) = Cβ

(
(ρ− 1) + c2t2β

2β2

)
−
(

3tβ(ρ− 1) + c2t3β

β2

)
= c2tβ

β − 3tβ(ρ− 1)− c2t3β

β2 ,

Res2
ρ(t) = Cβ

(
(1− ρ) + d2t2β

2β2

)
−
(

3tβ(1− ρ) + d2t3β

β2

)
= d2tβ

β − 3tβ(1− ρ)− d2t3β

β2 .
(34)
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Applying the operator Cβ to both sides of (34) gives

Cβ

(
Res2

ρ
(t)
)
= Cβ

(
c2tβ

β − 3tβ(ρ− 1)− c2t3β

β2

)
= c2 − 3(ρ− 1)β− 3c2t2β

β ,

Cβ
(

Res2
ρ(t)

)
= Cβ

(
d2tβ

β − 3tβ(ρ− 1)− d2t3β

β2

)
= d2 − 3(1− ρ)β− 3d2t2β

β .
(35)

According to CβRes2
ρ
(0) = 0 and CβRes2

ρ(0) = 0, we have c2 = 3(ρ− 1)β and

d2 = 3(1− ρ)β. By taking into account the obtained coefficients, for j = 3, we have

C2β

(
Res3

ρ
(t)
)
= C2β

(
Cβ
(
(ρ− 1) + 3(ρ−1)βt2β

2β2 + c3t3β

6β3

)
−
(

3tβ(ρ− 1) + 6(ρ−1)βt3β

2β2 + 2c3t4β

6β3

))
= c3 − 18(ρ− 1)βtβ − 4c3t2β

β ,

C2β
(

Res3
ρ(t)

)
= C2β

(
Cβ
(
(1− ρ) +

3(1−ρ)βt2β

2β2 + d3t3β

6β3

)
−
(

3tβ(1− ρ) +
6(1−ρ)βt3β

2β2 + 2d3t4β

6β3

))
= d3 − 18(1− ρ)βtβ − 4d3t2β

β .

(36)

Using the fact C2βRes3
ρ
(0) = 0 and CβRes3

ρ(0) = 0 we have c3 = 0 and d3 = 0.

By the MATHEMATICA Software Package 12 and employing the process of Algorithm 1
for our present method, we deduced that

c4 = 18(ρ− 1)β2, d4 = 18(1− ρ)β2,
c5 = 0, d5 = 0,
c6 = 180(ρ− 1)β3, d6 = 180(1− ρ)β3,
c7 = 0, d7 = 0,
...

...
Therefore, when j→ ∞ the fractional PS approximate solutions of (30) could be

written as

ωρ(t) = (ρ− 1) + 3(ρ−1)t2β

2!β + 18(ρ−1)t4β

4!β2 + 180(ρ−1)t6β

6!β3 + · · · ,

ωρ(t) = (1− ρ) +
3(1−ρ)t2β

2!β + 18(1−ρ)t4β

4!β2 + 180(1−ρ)t6β

6!β3 + · · · .
(37)

In case β = 1, the fractional expansions (37) reduced to the following classical expansions

ωρ(t) = (ρ− 1) + 3(ρ−1)t2

2 + 3(ρ−1)t4

4β2 + 3(ρ−1)t6

12 + · · · ,

ωρ(t) = (1− ρ) +
3(1−ρ)t2

2 + 3(1−ρ)t4

4 + 3(1−ρ)t6

12 + · · · .
(38)

which converges to the exact solutions ωρ(t) =
1
2 (ρ− 1)

(
3et2 − 1

)
and ωρ(t) = 1

2 (1− ρ)(
3et2 − 1

)
.

Case II: If ω(t) is (2; β)-fuzzy conformable differentiable, then the corresponding crisp
system of fuzzy fractional IVPs (28) and (29) will be written in the following form

Cβωρ(t) = 2tβωρ(t) + (1− ρ)tβ,
Cβωρ(t) = 2tβωρ(t) + (ρ− 1)tβ,
ωρ(0) = ρ− 1, ωρ(0) = 1− ρ.

(39)

The fuzzy exact solution at β = 1 in the ρ-cut representation is [ω(t)]ρ = 1
2 [1− ρ, ρ− 1](

1− 3e−t2
)

. By applying the RPS method, and using the j-th fractional residual functions

Resj
ρ
(t) and Resj

ρ(t) of the fractional IVPs, (39) could be expressed as
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Resj
ρ
(t) = Cβ

(
(1− ρ) +

j
∑

k=1

cktβk

βkk!

)
− 3tβ(1− ρ)−

j
∑

k=1

dktβ(k+1)

βkk!
,

Resj
ρ(t) = Cβ

(
(ρ− 1) +

j
∑

k=0

dktβk

βkk!

)
− 3tβ(ρ− 1)−

j
∑

k=1

cktβ(k+1)

βkk!
.

(40)

Following the same procedure as mentioned above, the first six coefficients ck and dk,
for k = 1, 2, 3, 4, 5, 6, are listed below. More coefficients can be computed in the same manner.

c1 = 0, d1 = 0,
c2 = 3β(1− ρ), d2 = 3β(ρ− 1),
c3 = 0, d3 = 0,
c4 = 18(ρ− 1)β2, d4 = 18(1− ρ)β2,
c5 = 0, d5 = 0,
c6 = 180(1− ρ)β3, d6 = 180(ρ− 1)β3,
...

...
Consequently, the sixth fractional PS approximate solutions for fractional IVPs sys-

tem (39) have the forms

ω6
ρ(t) = (ρ− 1) + 3(1−ρ)t2β

2!β + 18(ρ−1)t4β

4!β2 + 180(1−ρ)t6β

6!β3 ,

ω6
ρ(t) = (1− ρ) +

3(ρ−1)t2β

2!β + 18(1−ρ)t4β

4!β2 + 180(ρ−1)t6β

6!β3 .
(41)

In particular, when β = 1, the fractional expansions (37) reduce to following finite
series expansions

ω6
ρ(t) = (ρ− 1)− 3(ρ−1)t2

2 + 3(ρ−1)t4

4 − (ρ−1)t6

4 ,

ω6
ρ(t) = (1− ρ)− 3(1−ρ)t2

2 + 3(1−ρ)t4

4 − (1−ρ)t6

4 ,
(42)

which agree with the first six terms of the McLaurin series of the exact solutions, ωρ(t)

= 1
2 (1− ρ)

(
1− 3e−t2

)
and ωρ(t) = 1

2 (ρ− 1)
(

1− 3e−t2
)

. Numerical simulation of the
sixth fractional PS approximate solutions is performed for Application 2, case I at different
values of β and ρ with some selected grid points with step size 0.2 on the interval [0, 1] as
shown in Table 3.

Table 3. Numerical results of
[
ω6

ρ(t), ω6
ρ(t)

]
for Application 2, case II.

ti

[
ω6

0.5(t), ω6
0.5(t)

]
β = 1 β = 0.95 β = 0.85 β = 0.75

0.2 −0.470592000 −0.463808920 −0.444926104 −0.415678602
0.4 −0.389088000 −0.373553570 −0.335280912 −0.284887162
0.6 −0.272767991 −0.252608283 −0.206098948 −0.149497486
0.8 −0.140831991 −0.120431908 −0.074024317 −0.017241246

0.2 0.470592000 0.463808920 0.444926104 0.415678602
0.4 0.389088000 0.373553570 0.335280912 0.284887162
0.6 0.272767991 0.252608283 0.206098948 0.149497486
0.8 0.140831991 0.120431908 0.074024317 0.017241246
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Table 3. Cont.

ti

[
ω6

0.75(t), ω6
0.75(t)

]
β = 1 β = 0.95 β = 0.85 β = 0.75

0.2 −0.235296 −0.231904460 −0.222463052 −0.207839301
0.4 −0.194544 −0.186776785 −0.167640456 −0.142443581
0.6 −0.136384 −0.126304141 −0.103049474 −0.074748743
0.8 −0.070416 −0.060215954 −0.037012158 −0.008620623

0.2 0.235296 0.231904460 0.222463052 0.207839301
0.4 0.194544 0.186776785 0.167640456 0.142443581
0.6 0.136384 0.126304141 0.103049474 0.074748743
0.8 0.070416 0.060215954 0.037012158 0.008620623

Table 4. Numerical comparison of absolute errors of Application 2 case II.

ti
ρ = 0.25 ρ = 0.75

RPSM RKHSM RPSM RKHSM

ω
ρ
( t)

0 0 0 0 0
0.2 3.63043× 10−14 7.02959× 10−6 1.21292× 10−14 2.34320× 10−6

0.4 5.87412× 10−10 7.48175× 10−6 1.95804× 10−10 2.49392× 10−6

0.6 1.67352× 10−7 8.64832× 10−6 5.57842× 10−8 2.88277× 10−6

0.8 9.08417× 10−6 1.10884× 10−5 3.02806× 10−6 3.69612× 10−6

1 1.98129× 10−5 1.57693× 10−5 6.60429× 10−6 5.25645× 10−6

ti
ρ = 0.25 ρ = 0.75

RPSM RKHSM RPSM RKHSM

ω
ρ
( t)

0 0 0 0 0
0.2 3.63043× 10−14 7.02959× 10−6 1.21292× 10−14 2.34320× 10−6

0.4 5.87412× 10−10 7.48175× 10−6 1.95804× 10−10 2.49392× 10−6

0.6 1.67352× 10−7 8.64832× 10−6 5.57842× 10−8 2.88277× 10−6

0.8 9.08417× 10−6 1.10884× 10−5 3.02806× 10−6 3.69612× 10−6

1 1.98129× 10−5 1.57693× 10−5 6.68949× 10−6 5.25645× 10−6

For the purpose of numerical comparisons, the absolute errors were calculated for
Application 2, case I using the RPS method with the reproducing kernel Hilbert space
method (RKHSM) method [53], for fixed value of ρ, and different values of t, where
t ∈ {0, 0.2, 0.4, 0.6, 0.8, 1} as shown in Table 4.

It’s clear that from this table our method in comparison with the mentioned method is
much better with a view to accuracy and applicability.

Graphically, to demonstrate the impact of parameters β and ρ on the behavior solu-
tions, we plot the fuzzy exact and fuzzy sixth approximate solutions for Application 2, as
shown in Figures 2–4
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Figure 2. (a) 3D-Surfaces Plot of
[
ωρ(t), ωρ(t)

]
at β = 1, case I. (b) 3D-Surfaces Plot of

[
ω8

ρ(t), ω8
ρ(t)

]
at β = 1, case I.

(c) 3D-Surfaces Plot of
[
ωρ(t), ωρ(t)

]
at β = 1, case II. (d) 3D-Surfaces Plot of

[
ω8

ρ(t), ω8
ρ(t)

]
at β = 1, case II; for

Application 1.

Figure 3. (a) Plots of 0.5-cut representations of the fuzzy exact solution [ω0.5(t), ω0.5(t)] and the fuzzy approximate solution[
ω6

0.5(t), ω6
0.5(t)

]
, case I. (b) Plots of 0.5-cut representations of the fuzzy exact solution [ω0.5(t), ω0.5(t)] and the fuzzy

approximate solution
[
ω6

0.5(t), ω6
0.5(t)

]
, case II, for Application 2, at different values of β.
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Figure 4. (a) Plots of ρ-cut representations of the fuzzy exact solution
[
ωρ(t), ωρ(t)

]
and the fuzzy approximate solution[

ω8
ρ(t), ω8

ρ(t)
]
, case I. (b) Plots of ρ-cut representations of the fuzzy exact solution

[
ωρ(t), ωρ(t)

]
and fuzzy approximate

solution
[
ω8

ρ(t), ω8
ρ(t)

]
, case II, for Application 2, at β = 1..

6. Conclusions

In this analysis, fuzzy approximate solutions were created and studied for a certain
class of FFDEs with fuzzy initial data by means of RPS approach under fuzzy conformable
differentiability. The methodology for solving the target problem was based on converting
it into two crisp systems of ordinary IVPs. Using the proposed approach, the fractional
PS solutions were given in the parametric forms for fuzzy fractional IVPs. The benefit of
employing the present approach is that it provides a rapidly convergent fractional PS with
easily computable components using symbolic computation software without avoiding
round-off errors and sometimes could be expressed in closed form. Two different fuzzy
initial data are solved to show the applicability of the proposed approach and to test the
accuracy of the RPS approach. The obtained results are compared with other existing ap-
proaches. Simulations of the obtained results are discussed quantitatively and graphically
and shown that the behavior of the approximate solutions for different values of β and ρ
continuously tends to the exact solutions. Therefore, the RPS approach is straightforward
without using mathematical conditions in obtaining solutions of conformable FFDEs.
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