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Abstract: The randomness of some irreversible quantum phenomena is a central question because
irreversible phenomena break quantum coherence and thus yield an irreversible loss of information.
The case of quantum jumps observed in the fluorescence of a single two-level atom illuminated
by a quasi-resonant laser beam is a worked example where statistical interpretations of quantum
mechanics still meet some difficulties because the basic equations are fully deterministic and unitary.
In such a problem with two different time scales, the atom makes coherent optical Rabi oscillations
between the two states, interrupted by random emissions (quasi-instantaneous) of photons where
coherence is lost. To describe this system, we already proposed a novel approach, which is completed
here. It amounts to putting a probability on the density matrix of the atom and deducing a general
“kinetic Kolmogorov-like” equation for the evolution of the probability. In the simple case considered
here, the probability only depends on a single variable θ describing the state of the atom, and p(θ, t)
yields the statistical properties of the atom under the joint effects of coherent pumping and random
emission of photons. We emphasize that p(θ, t) allows the description of all possible histories of
the atom, as in Everett’s many-worlds interpretation of quantum mechanics. This yields solvable
equations in the two-level atom case.

Keywords: quantum jumps; irreversibility; fluorescence; Kolmogorov-like model; Everett’s interpretation

1. Introduction

The transition from Newtonian mechanics to quantum mechanics in the early years
of the twentieth century has been a major step in the progress of our understanding of
the world. This transition was more than a change in equations because it also involved
a deep change in our understanding of the limits of human knowledge. It included,
from the very beginning, a statistical interpretation of the theory. In other words, quantum
mechanics is not fully predictive and cannot be so. The introduction of statistical methods
to describe nature was not new, of course. Statistical concepts were introduced in physics
to interpret classical (non-quantum) laws as a way to describe complex systems with many
degrees of freedom, such as assemblies of many atoms in a macroscopic volume of fluid.
The mathematical theory behind the statistical approach in classical physics is ergodic
theory because no human being has enough computational power to solve Newton’s
equations [1] with the initial data (position and velocity) of too many particles. Nowadays,
one cannot solve the classical equations of motion of more than a few thousand particles.
In classical mechanics, a slightly more subtle point makes it difficult to predict the future
from the initial data in the long run. This is related to the ergodic (Ergodic is the term used
by Kolmogorov, although the common word is now chaotic or Anosovian if the trajectories
are Lyapunov unstable [2]) properties of classical dynamics: a flow is ergodic, chaotic,
or Anosovian if a small disturbance or inaccuracy in the initial conditions is amplified in
the course of time. This property of ergodicity is very hard to prove for given systems.
As far we are aware, this has been proven to be true [3] only for systems of hard spheres

Entropy 2021, 23, 1643. https://doi.org/10.3390/e23121643 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0001-5522-7489
https://doi.org/10.3390/e23121643
https://doi.org/10.3390/e23121643
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23121643
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23121643?type=check_update&version=2


Entropy 2021, 23, 1643 2 of 10

making elastic collisions, and the proof is highly non-trivial. In the two examples (many
particles and/or ergodicity of classical dynamics), the statistical method of analysis is just
a way to describe systems given the imperfect knowledge of the initial conditions and
their overwhelming abundance. On the contrary, quantum mechanics needs, from the very
beginning, a statistical interpretation, a point that has raised controversies. To many, it
seemed strange to postulate (see later for the precise meaning of this word in this context)
a statistical interpretation of a theory that looks to be “deterministic” in the sense that
the dynamical equations (Schrödinger or Dirac equations, including the interaction with
the electromagnetic (EM) field) look well posed with a unique solution for given initial
data. What is called “determinism” is, however, not as well defined as one could believe at
first. There is a clearly defined mathematical meaning of the concept based on the notion
(seemingly first understood by Newton) that, for given initial data (position and velocities
of particles moving in vacuo), there is a well-defined future for a dynamical system obeying
differential equations of a finite order in time. A superficial view could be that because the
equations of non-relativistic quantum mechanics are mathematically “deterministic” and
of the first order in time, a complete understanding of the initial data is enough to predict
the future. The fallacy of this concept is in the word “complete”. Because measurements of
the initial conditions are made with quantum devices, there is a fundamental uncertainty in
the initial conditions due to the limited accuracy of those measurements, a point made by
Heisenberg [4]. This is central to our discussion: In the case of the emission of photons by an
atom in an excited state, the instant of the emission cannot be predicted from measurements
of the initial state of the atom. This fundamental question of the determination of the time
of decay of an atom by emission of a photon was answered by Dirac [5] in a masterpiece of
science in the context of black-body radiation, which is different from the one devoted to
quantum jump statistics for a two-level atom pumped by a laser field treated here.

Note that the word “quantum jump”, which is currently used for a single atom that
emits photons when submitted to an EM field, may be ambiguous, particularly because
the interaction between the atom and the emitted photon has a typical intrinsic time and
period of the EM wave involved; therefore, it does not make sense to make statements for
times shorter than this “intrinsic” time scale. The wave function of the full system—atom
plus photons outside—changes continuously in time because when an atom initially in the
excited state emits a photon, the resulting state is made of the atom in its ground state, plus
an outgoing photon added to the EM field, and the amplitude of this new state (emitted
photon, EM field, plus atom in the ground state) grows continuously from zero. When
the initial state of the atom is a superposition of the ground state and of the excited state,
it may go through the excited state under the effect of the Rabi oscillations and can then
jump back to the ground state by emitting a photon, or the atomic state may follow Rabi
oscillations without emitting any photons, with the atomic state evolving as a superposition
of the ground and excited states until the next emission of a photon (which could occur
only when the atomic state goes through the excited state). In summary, both possibilities
(emission of a photon or no emission) exist in different universes in the Everett sense,
as explained below.

After the early days of this grand history of the birth of quantum mechanics, a some-
what arcane field of knowledge had to ask whether such a theory with seemingly well-
posed dynamical equations (Schrödinger and Dirac equations) has a kind of fundamental
statistical interpretation. This is the aim of the present paper, which focuses on a worked
problem, the fluorescence of a single atom. In the list of obscure concepts introduced to
make the quantum description match the real data, let us quote what is often called the
“reduction (or collapse) of the wave packet (or wave function)”. Our aim is not to decide
on the measure problem in quantum mechanics, which was the object of many debates
and is still a controversial topic. However, let us note that the difficulties related to the
conservation of the total probability are removed in Everett’s theory.

In 1957, Everett introduced [6] a convincing explanation compatible both the idea
of reduction of the wave packet and the constraint of unitarity of the evolution, or of
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conservation of the probability in the statistical interpretation. Everett’s idea is that each
outcome of a measurement creates a new universe with a subsequent history consistent
with the result of this measurement but disconnected from other universes corresponding
each to another outcome of the measurement. This profound idea makes everything
consistent at the price of introducing a direction of time. This direction of time plays the
same role as the one introduced to explain the arrow of time of thermodynamics; namely,
it represents the physical impossibility of reversing the history of a peculiar system. Said
otherwise, the statistics introduced by quantum mechanics are there, in principle, to make
averages over all universes corresponding to various outcomes of a measurement. As said
above, because we are discussing something related to physics and not philosophy, there
are consequences of this line of reasoning in the physical and mathematical picture of
processes. This relies on definite equations for probability distributions, of which we shall
give an example below.

In the case of the fluorescent light emitted by a single atom, the characteristic time
associated with a quantum jump is very short, of the order of the laser period [5] and much
smaller than the Rabi period. This property allows us to make the Markov approximation
leading to our Kolmogorov-like equation for the evolution of the probability distribution
of a single variable θ describing the trajectory of the atom.

In Section 2, we present our model equation for the evolution of the single param-
eter θ controlling the atomic state and derive the statistics of the emission times ti with
and without the pump field. In Section 3, we explain why Everett’s theory is useful in
interpreting our statistical description of the fluorescence of a single atom.

2. A Model Physical Problem

The spontaneous emission of photons by an assembly of atoms in thermal equilibrium
was considered by Einstein [7] and by Dirac [5] as fundamentally random. Einstein used
statistics to describe an atom interacting with black-body radiation. In this case, there
is a continuous process of excitation of the ground state by the black-body radiation,
but practically, this is not a very efficient process compared to the excitation by a resonant
monochromatic beam, which we shall consider. Thanks to the progress of experimental
atomic physics, in 1986, Hans Dehmelt [8–10] observed the leaping of electrons from one
atomic state to another in individual atoms. This sudden transition of a tiny object (such as
an electron, ion, molecule, or atom) from one of its discrete energy states to another has been
called a quantum jump since Niels Bohr, who put this concept forward for discontinuous
events, although Schrödinger (and others) strongly objected to their existence, postulating
instead that they are not instantaneous.

Here, we study a simpler case, the emission of light by a two-level atom, an interesting
worked example from the point of view of the statistical interpretation of quantum mechanics.

2.1. Towards a Full Statistical Theory of the Emission Process

We shall outline the principles of a statistical treatment that is able to describe both
the emission of photons and the optical Rabi oscillations in the case of a single pumped
two-level atom, detailed in [11]; then, we shall explain how to derive the probability
distribution of the time intervals between two successive photon-emission events. This
was based upon the property that, in such an interval, the atom does make unhindered
Rabi oscillations, and that the emission of a photon is a phenomenon seen as instantaneous.
This is, of course, one basic feature of a Markov process because we consider quick jumps
occurring at random with a probability depending on the state of the system and, possibly,
on the absolute time. For such a phenomenon, the Kolmogorov equation seems to be
the right tool to describe the state of an atom because this kind of equation describes the
evolution of the probability distribution of a system under the effects of two processes, one
leading to a deterministic dynamics, the other to random quasi-instantaneous events, as just
written. Let Θ(t) be the set of time-dependent parameters changing with time, with the
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time derivative ∂tΘ = v(Θ), a function of Θ. In the deterministic phase, the conservative
and normalized probability p(Θ, t) obeys the equation

∂t p(Θ, t) + ∂Θ(v(Θ)p(Θ, t)) = 0, (1)

where ∂t is here and elsewhere for the derivative with respect to time, and ∂Θ for the
derivative with respect to Θ (This is actually a gradient in general because Θ has more than
one component, but this only complicates the writing in an unessential way).

Kolmogorov equations add a right-hand side representing instantaneous transitions
(or jumps) occurring at random instants of time to this equation, represented by a positive-
valued function Γ(Θ′|Θ). During a small interval of time dt, if the system is in state Θ,
it quickly jumps to state Θ′ with probability Γ(Θ′|Θ)dt so that the Kolmogorov equation
describes both the deterministic dynamics and the jump process and reads [12]:

∂t p(Θ, t) + ∂θ(v(Θ)p(Θ, t)) =
∫

dΘ1Γ(Θ|Θ1)p(Θ1, t)− p(Θ, t)
∫

dΘ′Γ(Θ′|Θ). (2)

In the right-hand side, the first positive term describes the increase in probability of
the Θ-state due to jumps from other states to Θ. The second term represents the loss of
probability because of jumps from Θ to any other state Θ′. By integration over Θ, one finds
that the L1-norm

∫
dΘ p(Θ, t) is constant (if it converges, as we assume).

Let us now consider a two-level atom whose wave function is of the form

Ψat(t) =
(

cos(θ(t))|g > +ieiωt sin(θ(t))|e >
)

eiϕ, (3)

where θ̇, the time derivative of θ(t), is equal to Ω/2 between two jumps, Ω being the Rabi
frequency. The Kolmogorov equation deals explicitly with the probability distribution
p(θ, t) for the atomic state, here indexed by a single variable θ.

In the right-hand side of Equation (2), the probability Γ(θ; θ′) for the atom to make a
quantum jump from the state θ towards the state θ′ is proportional to δ(sin θ′) (where δ(.)
is the Dirac distribution) because any jump lands on θ′ = 0 in the interval [−π/2, π/2],
and this probability is proportional to γ sin2 θ because it comes from the state a1 with
the squared amplitude sin2 θ, and γ is the emission rate of the atom in the excited state
calculated by Dirac [5]. Therefore,

Γ(θ|θ′) = γ sin2 θ δ(sin θ′). (4)

Thus, the Kolmogorov equation for the two-level atom illuminated by a resonant
pump field is

∂p
∂t

+
Ω
2

∂p
∂θ

= γ

(
δ(sin θ)

∫ π/2

−π/2
dθ′ p(θ′, t) sin2 θ′ − p(θ, t) sin2 θ

)
, (5)

Introducing a probability distribution depending on a continuous variable, θ here,
which amounts to putting a probability on the elements of the atomic density matrix, is a
way to take into account all possible trajectories emanating from the emission of a single
photon, with a new value of the number of photons radiated in any direction at each
quantum jump. Average values of a time-dependent quantity that depends on θ can be
calculated via the probability distribution p(θ, t), which is a π-periodic function with a
finite jump at θ = 0, but smooth elsewhere. This procedure allows us to deal correctly
with the infinite number of possible trajectories, since Boltzmann’s genius lies precisely
in transforming the classical statistical theory based on unknown initial conditions into
statistics for an ensemble of indeterminate trajectories.

We insist that our description of the fluorescence of a single two-level atom goes
beyond solving Heisenberg equations (which is impossible anyway without making a
strong hypothesis because of the infinite number of degrees of freedom of the EM field).
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Here, as in the quantum mechanical frame, the infinite number of degrees of freedom are
taken care of because they represent the fast phenomena, which are well approximated in
Dirac’s calculation of the coefficient γ for the black-body radiation calculus. Moreover, the
whole story before and after each rapid event is told here through the balance terms written
in the right-hand side of the Kolmogorov equation, which has a built-in conservation
law of the total probability at any time, a serious advantage with respect to the quantum
treatments using a Lindblad equation [13], which is difficult to handle [14].

Because it is linear, Equation (5) can be solved in a Laplace transform, but the general
solution in time requires the inversion of a Laplace transform, which can be done only
formally. There are two constraints: (i) The probability p(θ, t) is positive or zero and (ii) the
total probability

∫ π/2
−π/2 dθ p(θ, t) is unity at any time, which reflects the unitary evolution

of the atomic state (the integral of the square modulus of the wave function is constant and
equal to one). It is relatively easy to check that they are fulfilled, since

∫ π/2
−π/2 dθ p(θ, t) is

constant and p(θ, t) ≥ 0 at any positive time if p(θ, 0) ≥ 0. Solutions in various limits are
derived in [11]. The factors sin2 θ on the right-hand side are there to take into account that
a quantum jump occurs only if the atom is in the excited state, which has probability sin2 θ.
The negative term on the right-hand side is the loss term representing the decrease in the
amplitude of the excited state by jumps to the ground state, whereas the positive one is for
the increase in the amplitude of the ground state when a jump takes place.

The populations of the two levels, or probabilities for the atom to be in the excited or
in the ground state at time t, are, respectively,

ρ1(t) =
∫ π/2

−π/2
dθ′ p(θ′, t) sin2 θ′. (6)

and

ρ0(t) =
∫ π/2

−π/2
dθ′ p(θ′, t) cos2 θ′. (7)

Their sum is one, as it should be, if p(θ, t) is normalized to one.
From (5), one can derive an equation for the time derivative of ρ1(t) and ρ0(t) by

multiplying (5) by sin2 θ and by cos2 θ and integrating the result over θ. This gives

ρ̇1 = −Ω
2

∫ π/2

−π/2
dθ′ sin2 θ′

∂p
∂θ
− γ

(∫ π/2

−π/2
dθ′ p(θ′, t) sin4 θ′

)
, (8)

and

ρ̇0 = −Ω
2

∫ π/2

−π/2
dθ′ cos2 θ′

∂p
∂θ

+ γ

(∫ π/2

−π/2
dθ′ p(θ′, t) sin4 θ′

)
. (9)

On the r.h.s of the rate Equations (8) and (9), the first term, proportional to the
Rabi frequency Ω, describes the effect of the Rabi oscillations, whereas the second term,
proportional to γ, displays the effect of the quantum jumps responsible for the photo-
emission. Because p(θ, t) includes both the fluctuations due to the quantum jumps and
the streaming term, the right-hand side of (8) and (9) represents the new history beginning
at each step. After integration by parts, (8) and (9) become

ρ̇1(t) = −ρ̇0(t) =
∫ π/2

−π/2
dθ p(θ, t) (

Ω
2

sin 2θ − γ sin4 θ). (10)

Note that the set of Equations (8) and (9), or (10), is not closed. It cannot be mapped
into equations for ρ1(t) and ρ0(t) only because their right-hand sides depend on higher
momenta of the probability distribution p(θ, t), momenta that cannot be derived from
the knowledge of ρ1(t) and ρ0(t). The unclosed form of (8) and (9) is a rather common
situation. To name a few cases, the BBGKY hierarchy of non-equilibrium statistical physics
makes an infinite set of coupled equations for the distribution functions of systems of
interacting (classical) particles [15], where the evolution of the one-body distribution
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depends explicitly on the two-body distribution, which depends itself on the three-body
distribution, etc. In the theory of fully developed turbulence, for instance, the average
value of the velocity depends on the average value of the two-point correlation of the
velocity fluctuations, depending itself on the three-point correlations, etc. Fortunately, one
can solve the Kolmogorov Equation (5) via an implicit integral equation [11]; then, there is
generally no need to manipulate an infinite hierarchy of equations as in those examples.

In the present case, one can say, following Everett, that the probability distribution
p(θ, t) allows one to make averages over the states of the atom in different universes, each
being labeled by a value of θ at a given time t. As written above, physical phenomena such
as the observation of a quantum state decay measured by emission of a photon are relative
to the measurement apparatus that takes place in the universe associated with the observer.
At every emission of a photon, a new history begins, represented by the right-hand side
of (9). In summary, the creation of new universes at each step defines a Markov process,
which can be described by a Kolmogorov statistical picture, and cannot be considered
as a deterministic process depending in a simple way on averaged quantities, such as
population values.

2.2. Quantum Jump Statistics

To illustrate how one can use the Kolmogorov equation, we derive the time-dependent
probability of photo-emission by a single atom, first without any pump field, then in the
presence of a resonant laser.

We consider first an isolated atom initially in pure state Ψat(0) given by (3) with
θ(0) = θ0. The solution of (5) with Ω = 0 (no pump) and p(θ, 0) = δ(θ − θ0) is

p(θ, t) = (1− q(t))δ(θ) + q(t)δ(θ − θ0) with q(t) = e−(γ sin2 θ0)t. (11)

The evolution of the probability that the atom is in the excited state at time t is given
by (6), and the emission of a photon occurs randomly in time with a rate:

ρ̇1 = −γ sin2 θ(t)ρ1(t). (12)

Once the atom “jumps” to its ground state, it cannot emit another photon; then, the
emission of a photon, if recorded, is a way to measure the state of the atom. The solution
of (12) leads to the population of the excited state

ρ1(t) = sin2 θ0e−(γ sin2 θ0)t (13)

when taking into account the initial condition, and the photo-emission rate is

ρ̇1(t) = −γ sin4 θ0e−(γ sin2 θ0)t. (14)

The probability of photo-emission in the interval (0, ∞) is the integral of ρ̇1:∫ ∞

0
γ sin4 θ0 e−(γ sin2 θ0)tdt = sin2 θ0, (15)

which means that the final state of the coupled system of the atom plus the emitted photon
field is

Ψ(∞) = sin θ0|g, 1 > +eiφ′ cos θ0|g, 0 > (16)

where the indices (1, 0) correspond to the one and zero photon states, respectively. The re-
lation (15) means that if we consider N atoms initially prepared in a given pure state with
θ(0) = θ0, namely, with total energy N sin2 θ0 h̄ω, we get, at infinite time, N atoms in
the ground state and N sin2 θ0 photons of individual energy h̄ω. In the final state, only
a fraction of them, N sin2 θ0, jump from the excited state to the ground state with the
emission of a photon; the others, N cos2 θ0, simply stay in the ground state [16].
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In the case of an atom submitted to a resonant pump field, the atom will emit photons
at random times, forming a point process. Here, we assume that the process is Markovian,
but more generally, any process with time-dependent history is completely characterized
by its conditional intensity function λ(t|Ht), the density of points at time t, whereHt is the
history of the emission activity up to time t, and the time interval probability distribution
is given by the relation `(τ) = λ(τ|Hτ)e−

∫ τ
0 λ(t|Ht)dt. In the present Markovian case,

the conditional intensity of the point process, which is the probability of emission of a
photon at time t, only depends on the value of θ at this time; therefore, one simply has
`(τ) = λ(τ)e−

∫ τ
0 λ(t)dt. From (8), we deduce

λ(t) = γ sin4 θ(t). (17)

In this relation, the exponent 4 comes from two conditions: One in which the atom is
in the excited state, and the other in which it emits a photon, as in (14), which describes an
emission without any pump field. With a pump field, in between two successive emission
times, the atom undergoes Rabi oscillations with θ(t) = Ωt/2, assuming that a photon is
emitted at time t = 0. Therefore, the inter-emission time distribution for an atom driven by
a resonant pump is given by the expression [17]:

`(τ) = γ sin4(
Ω
2

τ) e−γ
∫ τ

0 sin4(Ω
2 t), (18)

which gives
∫ ∞

0 `(τ)dτ = 1, as expected. The result is shown in Figure 1 in the two opposite
limits of large and small values of the ratio Ω/γ and is compared to the delay function
derived in [18,19] (which does not have the standard form expected for a Markovian pro-
cess). For the case of a strong input field, Ω > γ, the two methods approximately agree; see
Figure 1a. However, they differ noticeably in the opposite case, which is shown in Figure 1b.
For weak laser intensity (or strong damping), the Kolmogorov derivation gives a mean
delay between successive photons of order τK = (Ω4γ)−1/5, which decreases slowly as the
damping rate γ increases, which seems reasonable. In the same limit, the dressed atom
method leads to τQ = γ/Ω2, a time scale much longer than the inverse of γ, and increasing
with the damping rate, a result that seems to go against intuition [20].

10 20 30 40 t

0.05

0.10

0.15

0.20

K Q

(a)

2 4 6 8 t

0.2

0.4

0.6

0.8

K Q

(b)

Figure 1. Inter-emission time distribution `(t) in two opposite cases: (a) for weak and (b) for
strong dissipative rates (with the respect to the Rabi frequency). The solid red curves are for our
Kolmogorov statistical theory (Equation (18)). The dashed blue curves display the delay function
deduced in [18,19] for the same values of Ω/γ, which are equal to 3.33 in (a) and 1/6 in (b).

2.3. Relationship with Planck-Einstein Theory

The above analysis of the spontaneous emission was devoted to an atom (or an
ensemble of independent atoms) initially prepared in the pure state

Ψat(t) = cos(θ0)|g > +i sin(θ0)|e > . (19)



Entropy 2021, 23, 1643 8 of 10

In this case, the non-diagonal component of the atomic density matrix evolves as

ρ01(t) = i sin(θ0) cos(θ0)e−γ sin2 θ0 t. (20)

This case—the so-called “coherent case”—displays a rate of emission of photons that
is not equal to γ, the line-width of the excited state, but is equal to γ sin2 θ0. Then, ρ̇1(t)
depends in a non-trivial way on the atomic state. This points to a potentially interesting
feature because the rate decreases when θ decreases; therefore, the atom is maintained in
the excited state longer than in the case of black-body radiation, where the decay rate is
γ, as was deduced by Planck and Einstein. In the latter case, the atoms are in thermal
equilibrium (an incoherent state with ρ10 = 0), with a probability (1− p) of being in the
ground state or p of being in the excited state. At equilibrium, the probability peq(θ) is

peq(θ, 0) = (1− p)δ(θ) + pδ(θ − π/2). (21)

Taking expression (21) as an initial condition, the problem reduces to the one treated
in Section 2.2 with Ω = 0 and θ0 = π/2. The solution of the Kolmogorov equation is
then given by (11), and the non-diagonal component of the atomic density matrix is given
by (20). The important point is that the decay rate is equal to the constant γ without the
factor sin θ2

0 (when taking θ0 = π/2 in these equations), and the non-diagonal components
of the density matrix vanish at any time, as expected for an incoherent state.

This permits to understand where the sin2 θ0 factor in the decay constant comes from.
Let us associate this result with the Dirac expression for γ. In Dirac’s calculation, γ is
proportional to the square modulus of the excited-state amplitude of the wave function
because he considered a problem of evolution in general. From the point of view of
Everett’s multiple worlds, this amplitude depends on the universe in which the atom
evolves. If ρ01 = 0, one knows that the atom may belong to the set of atoms that are in the
excited state with a probability of one, and no reduction factor has to be associated with
the decay rate γ. However, if ρ01 6= 0, one cannot assume that the atom is in the excited
state with a probability of one. Therefore, there is, a priori, a reduction factor (less than 1)
to be included in Dirac’s formula for the rate γ.

3. Statistical Picture of the Emission of Photons and Everett’s Theory

Let us return to the connection of our model with Everett’s theory that was presented in
the 1950s for quantum physics, which is sometimes considered as philosophical speculation
without a connection with real physics. As already mentioned in the introduction, Everett’s
ideas are useful in understanding the statistical effects observed in fluorescence. One
fundamental idea of Everett when applied to the problem of emission of photons by a
single atom is that, after each the emission time ti the trajectory (or universe in Everett’s
notation) of the system of an atom plus photons splits into two separate trajectories (or
universes). One corresponds to the atom plus an emitted photon, which is the universe
of the observer; the other one is the trajectory without an emitted photon, with the atom
pursuing the Rabi cycles until a photon emission occurs in this universe. Each couple of
universes {Ui,1ph, Ui,0ph} is indexed by the emitted photon {i}, which moves away from
the atom at a given time ti, so that the ensemble of all universes is nothing but an outflow
of photons emitted at different instants. The important point is that all of these universes
ignore each other, which implies no interference among them, a property justified because
the characteristic time associated with a quantum jump is very short, of the order of the
period of the atomic motion, which is also the period of the EM waves emitted by the atom
in its excited state. This property allows us to make the Markov approximation leading
to the Kolmogorov-like Equation (5) presented above and studied in [11]. A 3D schema
illustrating a possible set of trajectories coming from successive ti is drawn in Figure 2 (see
the captions) with the aim of illustrating that the various universes do not overlap.
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Figure 2. Schema of the possible trajectories of the atom emitting photons at times ti, {i, 1, 5} in the
universe of the observer. The vertical red line with the arrow is the trajectory seen by the observer,
where the atom makes Rabi oscillations between ti and ti+1. The solid blue lines stemming from each
ti illustrate the successive splitting of the observer trajectory (universe) into two parts. On the blue
trajectory (virtual for the observer), no photon is emitted at ti, but Rabi oscillations go along until
a photon is emitted in this universe. This occurs at the crossing points of the blue curves with the
purple dotted–dashed curves. At these crossing points, a virtual “blue trajectory” splits into two
parts, one (blue) with an emitted photon and another one (purple) with no photon emitted.

By different universes, one implies two related things. First, the histories of the two
universes are a priori different after the emission event. This does not imply a big difference,
of course, between the two universes because their initial conditions at the instant of the
emission are almost the same but for the absence or presence of a single photon. Secondly,
the two universes are separated “mathematically” because their density matrices have
no overlap. Therefore, one can define in each universe a density matrix that will evolve
in the future without any relationship with the density matrix of the other universe. In
the case of fluorescence, what happens in all universes can be described only statistically,
the statistics being carried over all universes existing at a given time. This defines a kind
of super-statistics because probability distributions are themselves defined over an object
with a statistical meaning, namely, the density matrix for the quantum state in the universe
under consideration. In the case of a pumped two-level atom, this density matrix depends
on the angle θ so that the probability distribution is a probability depending on this single
variable only.

Contrary to other theories of fluorescence of a single atom, such a statistical theory has
a built-in statistical structure that is, we believe, necessary for describing the randomness of
the emission process. Such a randomness is intrinsic to the emission process, represented as
successive splitting of one trajectory into two every time a photon is emitted. By attempting
to write a dynamical equation for the density matrix describing the emission process, one
has to make a kind of average of this density matrix over all possible universes, something
that is not physically possible because of the lack of overlap of the density matrices attached
to the different universes.

4. Summary and Conclusions

The purpose of this paper was to show first how the view of quantum mechanics as a
statistical theory grew from the very beginning of this theory and how things were clarified
by Everett’s bold idea of multiple universes. We also felt that it was not sufficient to discuss
these questions abstractly as points of metaphysics, but as those of physics (although the
word “metaphysics” is not from Aristotle, it is here understood in its original meaning
by Aristotle, as “just after physics”). This was demonstrated on a model problem with a
non-trivial “solution”, namely, a model where the statistical analysis needs to be done very
carefully even though its mathematics are actually fairly simple. This model also has the
interest of being connected with the problems raised first by the founding fathers focused
on the interaction of matter and light. We thought that it was instructive to show how
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the general concepts of quantum mechanics as a statistical theory work “concretely” in a
given case. By “concretely”, we mean in a probabilistic mathematical framework using
probability distributions and their evolution equation. We hope that this discussion of a
specific model brings more light on this difficult subject than a more abstract discussion.
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