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Abstract: Neural networks play a growing role in many scientific disciplines, including physics.
Variational autoencoders (VAEs) are neural networks that are able to represent the essential infor-
mation of a high dimensional data set in a low dimensional latent space, which have a probabilistic
interpretation. In particular, the so-called encoder network, the first part of the VAE, which maps
its input onto a position in latent space, additionally provides uncertainty information in terms
of variance around this position. In this work, an extension to the autoencoder architecture is in-
troduced, the FisherNet. In this architecture, the latent space uncertainty is not generated using
an additional information channel in the encoder but derived from the decoder by means of the
Fisher information metric. This architecture has advantages from a theoretical point of view as it
provides a direct uncertainty quantification derived from the model and also accounts for uncertainty
cross-correlations. We can show experimentally that the FisherNet produces more accurate data
reconstructions than a comparable VAE and its learning performance also apparently scales better
with the number of latent space dimensions.

Keywords: machine learning; Fisher information metric; variational methods; variational autoen-
coder; deep generative network

1. Introduction

Machine learning has become a key method for data analysis [1]. Many machine
learning methods can be classified as supervised or unsupervised learning. In supervised
learning, the machine learning model is trained to output a specific feature of the data, for
example, to classify the data into some predetermined categories. To train a supervised
model, we rely on training data, which are labeled with the features we want to learn.
The labels need to be attached to the data manually, and therefore, the number of labeled
data sets is limited. In contrast, in unsupervised learning, the machine learning model
is trained to learn patterns from the data directly, without any predetermined features.
Thus for many problems without labeled data available, we rely on unsupervised learning
techniques to learn a structure underlying our data.

One important unsupervised learning strategy is generative modeling [2]. Generative
models learn an underlying probability distribution of the data by simulating the data gen-
erating process that is seeded with an input drawn from a simple, unstructured probability
distribution. In this way, the generative model learns to represent and sample from the
complex, underlying distribution. Generative models allow us to encode and use prior
expert knowledge of a given problem [3]. A number of neural networks are generative
models, and we discuss in the following autoencoders (AE) [4], variational autoencoders
(VAE) [5,6], and generative adversarial networks (GANs) [7].

All mentioned models share the concept of a latent space, which often is a lower-
dimensional space than the data space, the space on which the data vectors are defined.
A simple prior probability distribution is postulated for the latent variables. The data
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distribution is reproduced by means of a transformation function from the latent space to
the data space. This transformation is usually represented in terms of a trainable neural
network and thus, after training, provides a generative model.

In an AE, the latent space is the central layer of the network. AEs take vectors in
the input data space, translate these into the latent space, and then back into the output
space, which is isomorphic to the initial data space. Thereby, the latent space is usually of a
lower dimension than the input data space to enforce the network to encode only essential
information. AEs become optimized to reproduce the input data in the output layer and
work without any stochasticity.

The VAE is a deep generative model that expands the idea of an AE with probabilistic
methods using latent space inference techniques. In particular, encoding a data point in
latent space can be regarded as an inference problem given the data generating process
described by the decoder. The encoder’s goal is to infer that latent space point that—
if passed through the decoder—would regenerate the original data point. In contrast
to the AE, a VAE solves this inference problem probabilistically, i.e., via a variational
approximation of the latent space posterior distribution with a Gaussian distribution. This
latent space distribution is parameterized via a mean and a (assumed to be) diagonal
covariance, which both are outputs of the encoder, given a specific input data point. The
encoder and decoder networks are trained jointly.

This training is undertaken by learning the generative function the decoder represents
in the form of a transformation from the latent space to the data space and additionally
using Bayesian inference to find the latent space representation of the data. To do this, the
simple Gaussian prior distribution for the latent space is updated using Bayes’ Theorem
with the data in order to find the posterior latent space distribution. This calculation is
often intractable, so one needs to rely on approximations to access the posterior.

VAEs use variational inference (VI) for this approximation. In VI, the posterior is
approximated by choosing a parametrized probability distribution and fitting it to the
true posterior via the variational parameters. VI-based methods are relatively efficient
and provide good approximations for cases where the true posterior distribution can be
approximated well by the parametrized distribution. Since the parametrized distribution
is usually chosen ad hoc, it is not necessarily known whether it is actually capable of
providing a good approximation to the true posterior [8]. For a detailed discussion of VI
techniques in generative models, we refer the reader to [9].

To perform variational inference via the encoder, the VAE usually relies on the so-
called mean-field approach, which assumes statistical independence between the different
dimensions of the latent space. Typically the parametrized distribution is chosen as
a multivariate Gaussian with a diagonal covariance matrix. Therefore, the variational
parameters the encoder network has to provide are the mean and the diagonal of the
covariance. The decoder then reconstructs the data from a sample from the approximate
latent space distribution.

The VAE typically covers the data distribution fully but is lacking in the quality of
generated samples. Therefore, other models such as GANs [7] have become more popular
for data generation in recent years. GANs train a generative neural network by producing
data that is then judged by a discriminator network on whether it is a real or generated
sample. This way, the GAN becomes trained to generate new samples of the given data set,
indistinguishable from the real data. While GANs can produce very high-quality samples,
they are prone to mode collapse and hence fail to cover the full data distribution [10,11].

Due to these limitations of GANs, the VAE remains an interesting model, and a
number of approaches have been proposed to improve on its weaknesses. One example is
the β-VAE [12]. Here, a prefactor β is introduced in the loss function of the VAE in order to
balance the regularizing terms. A drawback to this method is that it requires expensive
hyperparameter tuning for the introduced β factor.

Other attempts of expanding the VAE framework in different directions include an
expansion to dynamical models [13] and the use of auxiliary latent variables [14–16].
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The idea behind inference with auxiliary latent variables is to define and infer a joint
distribution over the latent and the auxiliary latent variables, which implies a potentially
potent marginal distribution for the latent variables. This provides access to a more flexible
class of inference distributions.

A different approach towards more flexible VI is the normalizing flow [17], where
the posterior distribution is built via an iterative procedure. Normalizing flows describe
the data distribution in terms of a simple (usually Gaussian) latent space distribution and
apply a series of invertible parametrized transformations to it, which results in an invertible
generative network. The requirement of invertibility typically implies that the approach
does not scale well to high dimensional latent spaces and many different transformations
and flows have been proposed to overcome this issue [18–21].

In order to make the inference process more robust, attempts have been made using
different measures than the KL-divergence to perform inference. To this end, the Wasser-
stein autoencoder [22] used the Wasserstein metric, and the Fisher autoencoder [23] relied
on the Fisher divergence [24]. Hybrid models between VAE and GAN have also been
proposed to try and obtain the best from both models [10,25,26].

In this work, we expand the VI approach of a VAE to make it more flexible in a
different way to the approaches discussed above. We use a different inference approach
by formulating an approximate joint posterior distribution for the latent space variables,
the model parameters of the generative model, and a noise parameter and minimizing
the Kullback–Leibler (KL) [27] divergence to the true posterior. Additionally, we adapt
the inference approach of metric Gaussian variational inference (MGVI) [28], where the
approximate distribution for the latent variables is a multivariate Gaussian, which uses
a metric based on the Fisher information metric as the covariance. Due to its use of the
Fisher metric, we call the proposed VAE variant FisherNet. This approach allows us to
account for correlations in latent space in an efficient manner and reduces the number
of variational parameters by using the Fisher information metric calculated from the
generative process. This allows us to improve on some aspects of the standard VAE without
requiring additional hyper parameter tuning. During the derivation of the FisherNet, we
make a number of simplifying assumptions and approximations. At the end of the paper,
we provide a list of the assumptions made. This list is informative of the possible limitations
of the derived method and may provide hints for future improvements.

2. Materials and Methods

In this section, we first derive the Bayesian interpretation of a VAE and afterward
introduce the modifications we made to arrive at the FisherNet. The derivation of the
Bayesian VAE interpretation is analogous to [29].

2.1. Data Generating Process

Generative models are mappings of parameters that have a simple probability dis-
tribution that is thereby mapped to a more complex one. Essentially, they are models for
a process that takes a random variable and generates a different, more complex random
variable. Generative models are useful since we can use them for mapping spaces where
the priors needed for Bayesian inference techniques are simple, as well as spaces where
the priors are more complex. This mapping provides a convenient way to encode prior
knowledge we have about the system into the generative model [3].

In order to design our generative model, we will start by introducing a noisy data
model D = D̃ + Ñ and a generating function fθ(zi), which maps from an abstract latent
Z space to the data space D. Here, D = (di)

p
i=1 is the collection of data vectors di = D·i,

where i ∈ {1, . . . , p} and p are the number of data vectors. Each data vector has a generated
vector d̃i = fθ(zi) and a noise vector ñi associated to it, which is analogously combined into
the sets D̃ = (d̃i)

p
i=1 and Ñ = (ñi)

p
i=1. The generative process is a complex but analytical,

nonlinear function parameterized by a set of parameters θ, which are the same for all
i. Specifically,
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f : Z → D
zi 7→ fθ(zi) = d̃i (1)

where fθ(zi) generates a k-dimensional data vector from a lower-dimensional latent space
vector zi = Z·i. The latent space vectors are combined in the set Z = (zi)

p
i=1. The data are

given by the result of the generating function plus noise

di = fθ(zi) + ni, (2)

where the latent space vectors zi and the noise ni are independent. The goal of our approach
will be to find the parameters for this process as well as the target distribution of the data for
a given data set. To this end, we will work within the framework of Bayesian inference. This
means we set priors for the desired parameters and then look for the posterior distribution
of those parameters, given the data set D.

2.2. Priors and Likelihood

The prior distributions for the different variables and model parameters are the
starting point for finding a posterior via Bayesian inference. For the latent space, we choose
a standard Gaussian distribution

P(Z) =
p

∏
i=1

P(zi) =
p

∏
i=1

1√
|2π1|

exp
(
−1

2
z†

i 1zi

)
=

p

∏
i=1
G(zi,1), (3)

where † indicates the adjoint of a vector, 1 is the unit matrix, and | . . . | is a determinant.
We can choose this prior without loss of generality since for every set of latent space
vectors we can find a transformation into a coordinate system where they are distributed
according to a standard Gaussian distribution. This transformation is also known as
random variable generation with inverse transform sampling [30] and is the basis for the
reparametrization trick [5,6,31]. It allows us to solely use the standard Gaussian distribution
for our calculations, which significantly simplifies them.

At this point, we have to set one more prior as well as to decide on a model for the
noise distribution. The prior we have to set is the one for the model parameters θ that
parametrizes the generating function fθ(z). For those parameters, we select a uniform
distribution. For the noise, we use a Gaussian distribution

P
(

Ñ
)
=

p

∏
i=1
G(ni, N), (4)

where we assume directional independence, i.e., N = σ2
n 1. From Equation (2), we can see

that the level of noise tells us how accurately we can reconstruct the data with the generative
process. Since the appropriate noise level σ2

n is not necessarily known beforehand, we
make it a learnable parameter of the model. To implement this, we can introduce a single
standard Gaussian parameter ξN and use a log-normal mapping t(ξN) to map it onto the
noise covariance,

N = t(ξN) = 1 exp(ξN). (5)

This noise model is a simplification, as the noise distribution does not need to be the same
everywhere in data space, nor isotropic, nor Gaussian.

Now that we have introduced all the priors, the last remaining element we need is the
likelihood. We start with a general likelihood P(di, ni|zi, θ, ξN), which describes how likely
the generating process’ output is, given all relevant parameters. To find the likelihood of
the data, we marginalize this distribution over the noise:
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P(di|zi, θ, ξN) =
∫

dniP(di, ni|zi, θ, ξN) (6)

=
∫

dniP(di|zi, θ, ni)P(ni|ξN) (7)

=
∫

dniδ(di − fθ(zi)− ni)G(ni, t(ξN)) (8)

= G(di − fθ(zi), t(ξN)). (9)

With the priors set and the likelihood calculated, we can write down an expression for the
posterior distribution, using Bayes’ theorem and assuming a priori independence between
Z, θ, and ξN :

P(Z, θ, ξN |D) = P(D|Z, θ, ξN)
P(θ)P(ξN)P(Z)

P(D)
. (10)

This posterior is the distribution we are interested in. The datum D is the known pa-
rameter for our problem. We want to find the parameters Z, θ, and ξN that specify the
generating process.

2.3. Approximating the Posterior

Since it is generally not possible to calculate the distribution in Equation (10) analyti-
cally, we will approximate it with a second distribution Qφ(Z, θ, ξN |D) with variational
parameters φ. For the approximation, we also assume a posteriori independence between
the parameters θ and ξN , in addition to their prior independence. The approximate latent
space distribution depends on both θ and ξN via the Fisher metric, which we introduce in
the next section. This allows us to write the approximate posterior as

Qφ(Z, θ, ξN |D) = Qφ(Z|D, θ, ξN)Qφ(θ|D)Qφ(ξN |D). (11)

Assuming independence allows us to choose different strategies for the approximations
of the posteriors of the various parameters. For the model parameters and the noise, we
choose a Maximum a posteriori (MAP) solution. This allows us to write those estimate
distributions as delta functions Qφ(θ|D) = δ(θ − θ̂) and Qφ(ξN |D) = δ(ξN − ξ̂N), where
θ̂ and ξ̂N are the respective MAP estimates.

For the latent space variable zi, we want to find a more expressive distribution than a
delta distribution. Therefore, we will perform variational inference for Qφ(Z|D, θ, ξN). We
model this distribution with a Gaussian

Qφ(Z|D, θ, ξN) = ∏
i
G(zi − µi, M−1(µi)), (12)

where the dependence on θ and ξN are via M−1(µi). We only use the mean µ as a variational
parameter, which is inferred from the data via the encoder µi = gφ(di). As the covariance
matrix, we use M−1(µi), a metric based on the Fisher Information metric. Putting the three
distributions together, the approximate distribution we use for the inference is

Qφ(Z, θ, ξN |D) = ∏
i
G(zi − µi, M−1(µi))δ(θ − θ̂)δ(ξN − ˆξN). (13)

2.4. A Metric as Covariance

A VAE approximates the local distribution of the latent space variables for a single
data point using a Gaussian distribution with variational paramaters, namely the mean µi
and a diagonal covariance. We change this approach to the inference of the latent space
distribution by dropping the covariance as a variational parameter and using M−1, a metric
based on the Fisher metric that is calculated directly from the generative model instead.
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The concept of using this metric to approximate the uncertainty stems from the MGVI
algorithm [28]. As it was shown and becomes clear below, this metric is a strictly positive
definite matrix. Using it as a proxy for the posterior covariance brings about two theoretical
advantages. First, it is a full matrix, i.e., in general non-diagonal, which allows us to
consider correlations in latent space and not impose local independence on the latent space
variables. Second, we can calculate it directly from the generative process modeled by
the decoder of the FisherNet. Therefore, we reduce the number of variational parameters
and instead utilize the information from the generative part of the model. For a thorough
discussion of the merits of this approximation, we refer the reader to [8,28].

Our approximation metric consists of two additive components M = Id + Mz, which
we can calculate. The first, Id, is the Fisher metric of the likelihood

Id(d̃i) =

〈
∂H(di|d̃i)

∂d̃i

∂H(di|d̃i)

∂d̃i
†

〉
P(di |d̃i)

. (14)

Expectation values are written as 〈. . . 〉P(... ). This form ensures that Id(d̃i) is positive definite.
When inverted, this term corresponds to the Cramér–Rao bound [32,33], which is a lower
bound of the uncertainty of an estimator in frequentist statistics and estimation theory:

Id(d̃i)
−1 ≤

〈(
d̃i −

〈
d̃i
〉)(

d̃i −
〈
d̃i
〉)†
〉

P(di |d̃i)
, (15)

where the inequality indicates that subtracting the left from the right side of the equation
yields a positive semi-definite matrix.

To rewrite the Fisher metric in the coordinates of the generative model, we write
it as the push forward of the metric in the original parametrization via the generative
transformation d̃i = fθ(z).

Id(zi)

∣∣∣∣
zi=µi

=

〈
∂H(di|zi)

∂zi

∂H(di|zi)

∂z†
i

〉
P(di |zi)

∣∣∣∣∣∣
zi=µi

(16)

=

(
∂ f (µi)

∂µi

)†
〈

∂H(di|d̃i)

∂d̃i

∂H(di|d̃i)

∂d̃i
†

〉
P(di |d̃i)

(
∂ f (µi)

∂µi

)
(17)

= J(µi)
† Id( f (µi))J(µi), (18)

where J(µi) is the Jacobian of the generating function. Furthermore, Id(zi) is positive
definite as a consequence of Id(d̃i) being positive definite.

The likelihood we found in Equation (9) is a Gaussian distribution. Therefore, the
Fisher metric of the likelihood is the inverse covariance of the likelihood, which we found
to be the noise covariance Id( f (µi)) = N−1 = t(ξN)

−1.
The second component Mz is the Hessian of the prior distribution, which is the identity

matrix for the standard Gaussian prior, we defined in Equation (3).

whereMz =
∂H(zi)

∂zi∂z†
i
= 1. (19)

Mz is strictly positive definite. In the case we consider here, the inverse Hessian is equiva-
lent to the uncertainty of the prior distribution.

Combining the two components, we arrive at the metric

Mi = M(µi) = J(µi)
†t(ξN)

−1 J(µi) + 1, (20)

which is strictly positive definite and therefore invertible. The inverse of this metric is what
we use as the approximation for the latent space posterior distribution’s covariance. It is a
lower bound to the actual posterior uncertainty.
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2.5. Kullback–Leibler Divergence

Since we want our approximate posterior to be as close as possible to the actual
posterior, we fit it via variational inference. Seeing that the true posterior is not available
to us, we need to calculate the inference KL between the two distributions P(Z, θ, ξN |D)
and Qφ(Z, θ, ξN |D). Performing variational inference, the training goal of our model is to
minimize this KL divergence. This means we optimize the variational parameters in order
to obtain the approximate distribution as close as possible to the true posterior.

A straightforward calculation of this KL divergence can be found in [29] and provides:

DKL[Q‖P] =
1
2

p

∑
i=1

[
− ln

(
|M−1

i |
)
+
∫

dziG
(

zi − µi, M−1
i

)
tr
(

ziz†
i

)
+
∫

dziG(zi − µi, M−1
i )tr

(
t(ξ̂N)

−1(di − fθ̂(zi))(di − fθ̂(zi))
T
)

+ tr
(
ln
(
t(ξ̂N)

))
+

1
p

ξ̂2
N

]
+ H0. (21)

All constant terms are absorbed into H0. While it is possible to calculate the first of the
remaining integrals in terms of the moments of the posterior distribution µi and M−1

i ,
the same is not true for the second integral. Since we want to treat the terms equally, we
approximate those integrals via

∫
dziG

(
zi − µi, M−1

i

)
tr
(

ziz†
i

)
≈ 1

S

S

∑
m=1

tr
(

z∗i z∗†i

)
, (22)

and

∫
dziG(zi − µi, M−1

i )tr
(

t(ξ̂N)
−1(di − fθ̂(zi))(di − fθ̂(zi))

T
)

≈ 1
S

S

∑
m=1

tr
(

t(ξ̂N)
−1(di − fθ̂(z

∗
i ))(di − fθ̂(z

∗
i ))

T
)

, (23)

where z∗i denotes a sample drawn from the approximative distribution G(zi − µi, M−1
i )

and S is the number of samples used to approximate the result. We sample once for each
input vector, so S = 1. This lets us simplify the result of the KL to

DKL[Q‖P] ≈
1
2

p

∑
i=1

[
− ln

(
|M−1

i |
)
+ tr

(
z∗i z∗Ti

)
+ tr

(
t(ξ̂N)

−1(di − fθ̂(z
∗
i ))(di − fθ̂(z

∗
i ))

T
)

+ tr
(
ln
(
t(ξ̂N)

))
+

1
p

ξ̂2
N

]
+ H0. (24)

Assuming Mi to be sufficiently constant around the mean allows us to put the respec-
tive term into H0. This yields

DKL[Q‖P] ≈
1
2

p

∑
i=1

[
tr
(

z∗i z∗Ti

)
+

1
p

ξ̂2
N + tr

(
ln
(
t(ξ̂N)

))
+ tr

(
t(ξ̂N)

−1(di − fθ̂(z
∗
i ))(di − fθ̂(z

∗
i ))

T
)]

+ H0. (25)

This result is the loss function that we minimize in the training process of the FisherNet.
(The loss function of the VAE, the so-called evidence lower bound (ELBO) [5], can be
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derived the same way from the DKL, with the difference being the inclusion of the noise ξN
as a parameter in the FisherNet’s derivation. In the end result, this leads to the prefactor
t(ξ̂N)

−1 in the term responsible for minimizing the reconstruction loss as well as the two
additional terms ξ̂2

Nand tr
(
ln
(
t(ξ̂N)

))
, which are not included in the ELBO.)

2.6. Sampling from the Inverse Metric

In the latent space of the FisherNet, we need to sample the latent space variables from
the approximate posterior distribution Q(zi|di) = G(zi − µi, M(µi)

−1), with the inverse
metric as the covariance. The covariance always has the form

M(µi)
−1 =

(
J(µi)

† Id( f (µi))J(µi) + 1
)−1

(26)

=
(

J(µi)
†N−1 J(µi) + 1

)−1
. (27)

In order to draw samples from this, we start by drawing samples from the parts of M(µi)

n∗ ∼ G
(

n, N−1
)

(28)

η∗ ∼ G(η,1). (29)

We can combine the two partial samples via

ϑ∗ = J(µi)
†n∗ + η∗ (30)

to obtain samples from the distribution given the inverse covariance.
The next step is to apply the covariance to the sample of the inverse we have just

drawn. We can achieve this without explicitly calculating and inverting the metric by using
the conjugate gradient algorithm [34] to solve

ϑ∗ = M(µi)z∗ (31)

for z∗. It can be verified by direct calculation that z∗ generated this way is drawn from a
Gaussian with mean µi and covariance M−1

i . More details on the sampling process are
provided in [28].

This sampling equation from two simple random variables to the latent space samples
is still differentiable for the variational parameters—in our case, the mean µi. This access to
the gradients of the variational parameters allows us to use the reparametrization trick [5]
to train the FisherNet.

3. Results

In order to evaluate the performance of the FisherNet, we used the Fashion-MNIST
dataset [35]. The data set consists of 28 by 28 greyscale images of clothing items categorized
into ten classes with 60,000 training samples and 10,000 test samples. For comparison
purposes, we also trained a VAE and a convolutional VAE (CVAE). We chose the hyper-
parameter configurations of the models to make a direct comparison, by using the same
parameters whenever possible and using the same number of neurons in the hidden layers.
We did not perform extensive hyperparameter tuning to obtain optimal results with the
data set. The exact hyperparameter configurations can be found in Appendix A.

3.1. Reconstruction Error

An intuitive point to start the evaluation of an autoencoder model is the reconstruction
error. Architecturally, the models are trained on reconstructing data that they are fed as
inputs. Furthermore, both the ELBO and the KL divergence in Equation (25) include a term
that we can interpret as the reconstruction loss and which stems from the likelihood.
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3.1.1. Loss Function Behavior Versus Reconstruction Loss

The reconstruction loss is just one term in the loss function of the FisherNet. Therefore,
we first want to check how the reconstruction loss behaves compared to the actual loss
function. The loss function of the FisherNet is given by the KL divergence in Equation (25).
To see how well a FisherNet trained with this loss function delivers good reconstructions,
we evaluated the loss function and the reconstruction loss for different latent dimensions
on test data.

To compare the models, we define the mean squared error (MSE) as a measure of the
reconstruction error,

MSEi =
1
k

k

∑
j=1

(
(dj)i − (d̃j)i

)2 (32)

MSE =
1
p

p

∑
i=1

MSEi , (33)

where the index i identifies the data vector and j specifies the vector component (or image
pixel). We average over the square of the difference between the k-dimensional data vector
di and the reconstructed data vector d̃i. To obtain a single value per model and training
iteration, we then averaged this MSEi over all p data points.

In Figure 1, we show both the loss function and the reconstruction error on test data
against the number of latent dimensions.
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Figure 1. Variation of the loss function of the FisherNet and the reconstruction loss for different latent
dimensions calculated for the Fashion-MNIST test data set. We did not include the constant terms
of the KL divergence since they have no effect on the minimization. This explains why we obtain
negative KL values.

We can see that training the FisherNet by minimizing the KL simultaneously mini-
mizes the reconstruction loss by an amount roughly proportional to the KL decrement for
the different number of latent dimensions.

In addition, as can be seen in Figure 2, the reconstruction loss and KL divergence im-
prove rapidly with additional latent space dimensions for smaller numbers of dimensions,
but this trend slows down without stalling for all 20 latent dimensions we displayed here.
We expect the loss function to stagnate at a fixed value.
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Figure 2. Comparison of the MSE on test data of the Fashion-MNIST data set for different number of
latent dimensions.

Our interpretation of the stagnating loss function and reconstruction loss is that the
model architecture can only gain a certain amount of non-redundant information from
the data. Therefore, the loss function improves very rapidly in the beginning, when the
FisherNet can use each additional latent dimension to encode important, non-redundant
information. When most of this information is used by the FisherNet, the improvement
slows down. The FisherNet can only use the additional latent space dimensions for largely
redundant information.

3.1.2. Model Comparison

We have now seen that the FisherNet is well trained to minimize the reconstruction
loss, so we want to compare it to the performance of the VAE and the CVAE. To best com-
pare the different architectures, we gave the FisherNet and the VAE equivalent architecture
layouts. The CVAE’s number of weights differs from the other two networks as it is a
convolutional network, and the VAE and FisherNet are fully connected networks.

We repeatedly trained all three models on the Fashion-MNIST data set, starting with a
latent space with two dimensions, which we subsequently increase. Figure 2 displays the
MSE on the test data as a function of the number of latent dimensions for all three networks.

The number of layers and nodes of the CVAE and the VAE agree, but their connections
differ. A VAE is fully connected and therefore has all the local connections of the CVAE
and additionally all non-local connections. In principle, the VAE architecture allows to
fully emulate a CVAE, as a convolutional network can completely be represented by a fully
connected network. Since the VAE has more freedom than the CVAE, it should in principle
always perform better than the latter, if perfectly trained.

However, in practice, training a VAE can be more difficult than training a CVAE. This
is because if translational invariance of the features is a principle that is supported by the
data, the VAE itself has to discover this during training, whereas this information is already
coded into the architecture of the CVAE.

Thus, under limited training, limited either because of finite training time or fi-
nite training data, the CVAE can be more efficient than the VAE. This is reflected in
Figure 2, where the CVAE’s reconstruction loss starts much higher than the VAE’s for
low-dimensional latent spaces, where the VAE can be optimized fully. For the larger latent
spaces, however, the VAE is clearly not fully optimized. It saturates early and fluctuates
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around an MSE value of approximately 0.0175. The CVAE, on the other hand, outperforms
the VAE for the higher-dimensional latent spaces, showing how the constraints on the
convolutional layers lead to an advantage when it comes to training efficiency.

The FisherNet is a fully connected network that agrees with the VAE in the number of
layers and nodes. It differs from the VAE by the approach to the inference of the latent space
variables. For the FisherNet, we reduced the number of variational parameters to only the
mean and approximate the uncertainty with the metric in Equation (20). This allows the
FisherNet to use correlations in latent space. This change affects the reconstruction loss in
two ways. First, the FisherNet gains an advantage through the exploitation of the latent
space correlations. This advantage is relatively small but scales with the number of latent
dimensions. The second effect is that the need to learn variances is alleviated, which leads
to a more straightforward training process, because inferring them jointly with the means
is known to be more difficult than learning the means alone [36].

The first of those effects can be seen for the two and three-dimensional latent spaces
in Figure 2. The FisherNet’s reconstruction error starts slightly below the VAE’s at two
latent dimensions. This difference in the MSE value increases in the step to three latent
dimensions from an MSE value of 2× 10−4 to 7.5× 10−4 at three latent dimensions. For
larger latent spaces, this effect is no longer visible since the VAE’s reconstruction error
starts to fluctuate when the VAE is no longer fully optimized.

This leads us to the second effect. The FisherNet is more straightforward to train,
which means it can utilize the theoretical advantage it has over the CVAE. The FisherNet
keeps steadily improving its reconstruction error. Unlike the VAE, the FisherNet avoids
the training issues of not fully converging, and gains a significant advantage, which grows
with the number of latent dimensions.

3.1.3. Training Performance

Analyzing the reconstruction error for different latent dimensions shows that the
FisherNet avoids optimization problems the VAE runs into for a high number of latent
dimensions. To gain more insight into this, we now look at the behavior of the reconstruc-
tion loss during training. Figure 3 displays the behavior of the reconstruction loss during
optimization for the three models using 2, 5, and 10-dimensional latent spaces.

As we have seen before, the FisherNet has fewer variational parameters than the VAE
since we eliminated the latent space covariance as a variational parameter. Instead, we
approximate it with a metric that is informed directly by the generative process. Therefore,
the initial optimization of the FisherNet is slower than for the other two models. These
effects are clearly shown in Figure 3. The FisherNet’s reconstruction loss starts higher than
the other two models after the first training epoch. This behavior is reproduced by all of
the evaluated latent space dimensionalities. During the next few epochs, the improvements
are also slower than for the other models.

However, the reduction in variational parameters and the fact that the FisherNet’s
latent space distribution is informed directly from the generative process leads to a more
steady optimization. Therefore, while the FisherNet’s optimization starts slow, it outper-
forms the other two models given a long enough training time. This is visible in Figure 3,
where the reconstruction loss of the FisherNet using a two-dimensional latent space is
lower than both the corresponding losses of the other two models after twelve epochs. If we
look at the higher dimensional models, this becomes even more apparent. The FisherNet
using a five-dimensional latent space outperforms both of the other models with ten latent
dimensions after forty epochs.
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Figure 3. Comparison of the MSE on test data of the Fashion-MNIST data set after each of the first
50 epochs. This comparison is shown for the FisherNet, the VAE, and the CVAE for 2, 5, and 10 latent
dimensions (LD).

3.2. Analyzing the Latent Space

To perform variational inference for the latent space variables, we demanded the
latent space distribution to be continuous. A result of this continuous distribution is
that the encoder infers nearby mean positions for similar data points. This property
of the latent space opens the door for methods such as representation learning [37,38].
Representation learning attempts to find useful information about a data set in the latent
space representation. This can be useful for many different problems since its latent space
usually has much lower dimensionality than the input data. Representation learning is
often used as a preprocessing step before further analyzing a data set.

We showed above that the FisherNet has an improved reconstruction accuracy com-
pared to the standard VAE and converges better for high dimensional latent spaces. Next,
we look at the latent space representations to see if the FisherNet preserves the beneficial
latent space qualities VAE’s bring. To start the analysis of the latent space, we use two-
dimensional latent spaces. For this purpose, we calculated all mean positions µi for the
images in the test data using the encoders of the respective models. We made a scatter
plot of all these means µi in Figure 4, where we color-coded the means by the classes
of the images, from which these encoders inferred the mean positions. This reduces the
dimensionality of the data from 784, the number of pixels in the input images, to 2.

Since all three of the models we analyze here rely on variational inference for the
latent space variables, the general structure of how the means of the different classes are
ordered is similar. The latent space positions, as inferred from the data, are close to each
other for similar images. This leads to a clustering, with the images belonging to a class
grouped together. Since the similarity is given at the edges of a cluster as well, similar
classes are grouped together as well, while classes that are visually distinct from each other
are separated.
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Figure 4. Two-dimensional latent space means µi for all 103 images in the Fashion-MNIST test data
set. The top left shows the inferred means for the FisherNet, the top right for the VAE, and the bottom
left for the CVAE. The means µi are color-coded by their category provided with the Fashion-MNIST
data set. For improving the visual similarity of these distributions, the VAE distribution was mirrored
at the x-axis and the CVAE at the x- and y-axis.

Figure 4 displays these effects for the latent spaces of the three models we are analyzing.
For example, we can see that the FisherNet and the CVAE group together the three classes
representing shoes. In contrast, they group the clothing articles flanked by trousers on
one side and bags on the other. These groupings line up with a human evaluation of
the similarity between the images. The VAE generally shows similar groupings but puts
the mean positions of some of the bags into the shoe cluster. As we expected, this result
shows us that the FisherNet preserves the grouping tendencies of the VAE models in latent
space. We analyzed the grouping tendencies further in Appendix B with the use of the
k-means algorithm.

3.2.1. Uncertainties

Since we are approximating the distribution for a point in latent space corresponding
to a data point with a Gaussian, we have the mean µi and the covariance M(µi)

−1 from
Equation (20). To analyze the uncertainties around a mean, we can perform an eigenvalue
decomposition of the covariance matrix or, equivalently, of its inverse M(µi). This provides
us with the directions and magnitudes of the uncertainties in terms of the eigendirections
and the inverse square roots of the eigenvalues of M, respectively. The VAE’s encoder infers
the uncertainty directly from the data. Since this happens utilizing a diagonal covariance,
the uncertainty direction of the inferred standard deviation corresponds to the axis of the
latent space.

Since the FisherNet’s inference allows correlations and the uncertainty can have any
direction in the latent space, the FisherNet can approximate the local latent space posterior
more closely. This combined with the uncertainty metric being a lower bound to the true
posterior uncertainty leads to a smaller uncertainty area than the one inferred by the VAE.
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This is illustrated in Figure 5a, which shows the one and two-σ uncertainties around
the mean of a sample image from the Fashion-MNIST data set. For comparison, the uncer-
tainty area for the same sample as inferred by the VAE is displayed in Figure 5b. We see
that the off-kilter orientation of the largest uncertainty leads to a narrower uncertainty area.
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(b)
Figure 5. (a) FisherNet. (b) VAE. The top shows the one-σ and two-σ uncertainty areas around the
latent space mean inferred from a data point for (a) the FisherNet (left) and (b) the VAE (right), both
using two-dimensional latent spaces. For the FisherNet, we calculated σ from the eigenvalues of the
uncertainty metric. Below the uncertainty plot, the very left image in the top row shows the original
image. The very left picture in the bottom row shows the reconstruction from the mean position. The
following four images are reconstructions from points at a distance of one-σ in the directions of the
uncertainty metrics eigenvectors in the top row. The four images in the bottom row are reconstructed
from the points in 2-σ distance from the mean. On the right, we applied the same method for the
VAE using the inferred σ.

Both models infer a continuous distribution over the whole latent space, where the
mean positions of similar data points are close to each other. Therefore, sampling around
the mean inside the area provided by the uncertainty gives similar reconstructions to
the reconstruction at the mean position. To illustrate this, Figure 5a also displayed the
reconstructions by the FisherNet from the mean position as well as from points in one
and two-σ distance from the mean in both the positive and negative direction of the
eigenvectors. Figure 5b displays the mean and uncertainty for the same sample inferred by
the VAE, as well as its corresponding reconstructions.

If we zoom out a little from a single point in latent space and instead focus on the
cluster of the images representing different types of shoes, we can analyze more broad
trends. In representation learning, the independence of the latent space dimensions is often
used as a way to force the model to use them to encode independent features of the data.
This can be a very useful preprocessing step before the data are analyzed further.

The FisherNet, in contrast to this, allows for correlations between the latent space
dimensions. It, therefore, does not infer independent features. Since the FisherNet’s un-
certainty approximation is based on the Fisher metric, which measures the effect of small
variations, the direction of largest uncertainty should be towards the region least well deter-
mined by the data. This allows the FisherNet to distinguish more clearly between different
data points and leads to less overlap between the uncertainty areas of different points.

Figure 6 shows the mean positions and the two-σ uncertainty areas around them,
within two-dimensional latent spaces, for these data points as found by the FisherNet and
the VAE. It illustrates how the need for independent features affects the inference of mean
and uncertainty in the VAE. The clustering of the means and the uncertainty areas occur in
alignment with the latent space axis.



Entropy 2021, 23, 1640 15 of 23

−2.0 −1.5 −1.0 −0.5 0.0 0.5
−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5
FisherNet latent space

0123

0

1

2

3

4
VAE latent space

Sandal

Sneaker

Boot

Figure 6. The latent space means µi and their two-σ uncertainty areas for the images belonging to
the “shoe” classes of the Fashion-MNIST test data set. The left plot shows this for the FisherNet, and
the plot on the right for the VAE. The legend shows the color-coding of the means and their two-σ
uncertainty areas for both plots. The VAE distribution was mirrored at the x-axis.

The figure also illustrates that the uncertainty of the FisherNet is affected by how
well the latent space locations are determined by data. The uncertainties are very small
in the region close to the origin, which is the most densely populated region. The same
goes for the region where the shoe cluster neighbors the bags as we saw in Figure 4. The
uncertainties become larger for more peripheral points in the less dense regions. The
direction of the biggest uncertainty of the FisherNet is generally roughly orthogonal to the
larger structure determined by the mean positions and therefore towards the less densely
populated part of the latent space.

We saw before that the latent space uncertainties are smaller and more narrow for the
FisherNet than for the VAE. This leads to less overlap between the uncertainty areas of the
FisherNet’s latent space, especially in less populated regions.

3.2.2. Using the Metric

We have seen that the FisherNet is not suited for finding independent features of the
data in the latent space representation. However, the FisherNet architecture gives us a local
metric in the latent space that provides us with the approximate uncertainty covariance.
We anticipate that this metric can be used for analysis of the latent space representation.
We will, however, leave the exact uses of the metric up for future research.

3.3. Generating Samples

The next thing we want to look at, when it comes to evaluating the performance of
the FisherNet compared to the more traditional VAE, is the quality of newly generated
samples. We use the Fréchet inception distance (FID) [39] as the measure of sample quality.
The FID is a heuristic measure to evaluate the quality of generated images. It is calculated
as the Wasserstein metric between two multivariate Gaussian distributions parametrized
by features, which are found via an Inception v3 network [40] trained on ImageNet [41]. A
small FID indicates that the generated images are similar to the real images.

3.3.1. Generating Samples from a Unit Gaussian Distribution

The most common way to generate new latent space samples of a VAE model is from
a standard Gaussian distribution.

Deriving the loss function via the KL results in a regularizing term, which constrains
the latent space posterior to stay close to the prior distribution in both the VAE’s loss
function, the ELBO [5], and the FisherNets loss function. Since this prior is usually chosen
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to be a standard Gaussian distribution, this is an intuitive approach to take and for the VAE
a sensible approach. However, a known issue of this approach is that the distribution of
the latent space data representation chosen by VAEs does not always stay close to that of
the assumed prior [42].

We also chose a standard Gausssian prior for the latent space variables when we
derived the FisherNet. Therefore, with perfect training of the network, we should be able to
find the generating function from this distribution to the data distribution. Perfect training,
however, is not achieved with the current training methods and the FisherNet’s latent space
distribution, especially in higher dimensions, does not stay close to the postulated prior.
The very same problem is faced by VAE as well, just slightly less severe there. Therefore,
drawing standard Gaussian samples in the latent space is not generally a viable strategy to
generate new images with the FisherNet.

To demonstrate this, we drew 104 samples from a unit Gaussian distribution and
reconstructed the samples with the decoders of the three models we have been analyzing.
Figures 7 and 8 display a few of those newly generated images for 2- and 15-dimensional
latent spaces, respectively. Then we calculated the FID between the 104 newly generated
images and the images in the Fashion-MNIST test data set. We show the resulting FIDs
along with the FID scores of the reconstructed test data in Table 1. The FIDs of the
reconstructions are included as a floor value for the model. The reconstruction FIDs
confirm our findings for the reconstruction error.

Table 1. FIDs for the test data reconstructions of the three models (rec) and newly generated images
from standard Gaussian latent space samples (sample). For the FisherNet, the FIDs for samples
generated using Matérn kernel density estimation (MKDE) are included.

Latent Dimension 2 5 10 15 20

FIDrec 116 80 68 61 57

FisherNet FIDsample 116 110 124 135 148

FIDMKDE 116 85

FIDrec 125 97 98 97 97

VAE FIDsample 125 99 100 102 100

FIDMKDE 124 97

FIDrec 151 95 86 87 90

CVAE FIDsample 152 95 89 92 100

FIDMKDE 151 95

(a) (b) (c)
Figure 7. (a) FisherNet. (b) VAE. (c) CVAE. Newly generated samples of the Fashion-MNIST
data set. Left using the FisherNet, middle the VAE, and right the CVAE. All three models used a
two-dimensional latent space.
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(a) (b) (c)
Figure 8. (a) FisherNet. (b) VAE. (c) CVAE. Same as Figure 7, but using a 15-dimensional latent space.

The FIDs calculated for the newly generated samples start favorably for the FisherNet.
At a two-dimensional latent space, the FID for the FisherNet’s generated samples are
close to the reconstruction FID and therefore better than the new samples of the other
two models. Looking at the higher-dimensional latent spaces, however, the FID of the
FisherNet’s samples does not improve much and falls behind its reconstructions. The
sample FIDs of the other two models stay relatively close to their reconstruction FID,
illustrating how the ELBO’s regularization keeps their latent space distributions close to
the prior.

3.3.2. Generating Samples Using Density Estimation

The FisherNet does not reach its reconstruction FIDs for the higher number of la-
tent dimensions. We can trace this to a generative function in Equation (1), which we
implemented with the decoder network. Perfectly trained, we would be able to find a
representation of this function for which the latent space posterior would be the same as
the prior. Since training the network perfectly is not possible with the current methods, we
have to find a different way to sample using the FisherNet. This problem is not unique to
the FisherNet but common in all kinds of VAE models.

A promising approach is to use a secondary density estimation in the latent space that
allows us to introduce a new transformation f ′ from a standard Gaussian distribution to
the posterior distribution we found when training the network. This lets us generate new
data samples according to:

d∗i = fθ(z∗i ) = fθ

(
f ′(η∗)

)
, (34)

starting from a standard Gaussian sample η∗. This method has been utilized in [17]
using normalizing flows as the secondary density estimator. To showcase this method
combined with the FisherNet, and for comparison the VAE and CVAE, we used Matérn
Kernel Density Estimation (MKDE) [43] as the latent space density estimator, to generate
the latent space samples. MKDE is a fully Bayesian approach to reconstruct a smooth
probability density from discrete data. We performed MKDE on the FisherNet latent space
distributions for latent spaces with two and five dimensions. The samples drawn using
the density estimation for the FisherNet latent space in two dimensions are displayed in
Figure 9 alongside the latent space mean positions corresponding to the test data.

Using the density estimator to draw samples from the posterior latent space distri-
bution improves the quality of the samples we can generate with the FisherNet. For a
two-dimensional latent space, the samples we generate this way match the FID score of
116 that we also found using standard Gaussian samples in Table 1. For a five-dimensional
latent space, the FID score is 85, which indicates a significant improvement over the results
using standard Gaussian latent space samples and comes closer to the reconstruction score.
Using this method for the VAE and CVAE also slightly improves the sample quality, but
since the reachable limit for sample quality is the reconstruction FID, this improvement is
less notable. Therefore, we conclude that the FisherNet combined with a secondary density



Entropy 2021, 23, 1640 18 of 23

estimator for the latent space outperforms the VAE as a generative model. Some sample
images generated with this method can be seen in Figure 10.
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Figure 9. Inferred mean positions of the test data in the two-dimensional latent space (left) and
samples generated using MKDE (right).

Figure 10. Images generated by the FisherNet from a five-dimensional latent space using Gaussian
samples (left) and samples generated via the density estimator (right).

This method of generating images is limited by the density estimation used in the
latent space, since the common methods, including the one we used here, scale badly with
the number of dimensions. It also requires the training of a density estimator in addition to
the FisherNet.

4. Conclusions

We derived a new variant of VAEs by expanding the scope of the variational infer-
ence beyond the mean-field approach. We used the state-of-the-art inference technique of
MGVI [28] and adapted its approach to the framework of deep generative models. Analo-
gous to [29], we derived the theoretical framework of the FisherNet as a modified VAE.

While deriving the FisherNet, we made a number of simplifying assumptions: The
first simplification we made was assuming the noise to be Gaussian, isotropic, and the same
everywhere in data space. Next, we assumed a priori independence for the parameters θ,
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ξN , and Z. A priori independence is a prevalent assumption in Gaussian problems. More
drastically, we next assumed a posteriori independence for θ and ξN in the approximating
distribution Qφ. This simplifying assumption allowed us to use MAP estimates for θ
and ξN . We made our final assumption in the calculation of the KL divergence when we
assumed the metric approximating the covariance to be constant near the mean, at which
we calculated it. We list these simplifications here since they are informative about the
limitations of our model and provide good starting points for possible improvements in
further research.

We evaluated the FisherNet on the Fashion-MNIST data set and compared its per-
formance to a fully connected and a convolutional VAE. We showed that the FisherNet’s
loss function correlates well with the reconstruction improvement of the input data. We
showed that the FisherNet outperforms the VAE in terms of reconstruction quality and
scales better with a higher dimensionality of the space. We showed that the reduction in
variational parameters, when going from VAEs to FisherNets, by using an uncertainty
approximation informed by the generative process in the latter models, leads to an initially
slower but later saturated and improved optimization process.

Our experiments showed that the FisherNet preserves the grouping tendencies of
VAEs in the latent space distribution. We showed how the FisherNet uses latent space
correlations to achieve smaller uncertainties in the local posterior, allowing for a finer
resolution between the different data points. This is aided by the covariance approximation
being a lower bound to the posterior uncertainty. The correlations may make the FisherNet
harder to use for some representation learning tasks such as component separation, since
we do not impose a local posterior independence on the latent space variables. This should,
however, only have a small impact on the overall latent space distribution, since the
VAE’s independence constraints are also only local and both models start from a standard
Gaussian prior for the latent space. The availability of a local metric might open up new
ways for latent space analysis. We leave this option open for future research.

Finally, we evaluated the FisherNet’s performance on generating new artificial sam-
ples for the data set. To this end, we first used standard Gaussian latent space samples
to generate new images of the Fashion-MNIST data set and evaluated their quality by
calculating the FID of the test data. This experiment showed that the FisherNet’s latent
space distribution does not generally stay similar to the standard Gaussian prior. Therefore,
we concluded that drawing standard Gaussian samples is not viable for generating new
data samples with the FisherNet. However, we could demonstrate that the FisherNet can be
a good model for generating new data samples when combined with an additional density
estimator in latent space, such as an MKDE. Using this approach, the higher reconstruction
quality we achieved leads to a higher sample quality than we can achieve using the compa-
rable VAE. This approach is, however, limited since many density estimators, including
MKDE, scale badly with the number of dimensions. Overcoming these limitations is a
challenge we hope will be solved by future research.

The FisherNet’s current implementation is only a prototype and is unfortunately
limited to small latent spaces. Therefore, we can not yet validate these promising results
we achieved on Fashion-MNIST on more complex data. We present the FisherNet archi-
tecture as a proof of concept for utilizing the generator model structure of the decoder for
improving the variational inference of the posterior distribution.
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Abbreviations
The following abbreviations are used in this manuscript:

AE autoencoder
VAE variational autoencoder
GAN generative adversarial network
VI variational inference
KL Kullback–Leibler
MGVI metric Gaussian variational inference
MAP maximum a posteriori
ELBO evidence lower bound
CVAE convolutional variational autoencoder
MSE mean squared error
FID Fréchet inception distance

Appendix A

We provide the full list of hyperparameters used to produce the results discussed
in this paper in Table A1. Please note that the implemented models include additional
reshaping layers, as well as additional dense layers to go from the described network to
the actual latent space representation and in the case of the CVAE from the latent space to
the transposed convolutional decoder network.

Table A1. Hyperparameters.

Hyperparameter FisherNet VAE CVAE

Number of layers in de- and encoder 3 3 3
Neurons per layer 448 448 448
Layer type encoder Dense Dense convolutional
Layer type decoder Dense Dense transposed convolutional
Filters for convolutional layers - - [32, 32, 64]
Filters for transposed convolutional layers - - [64, 32, 32]
Kernel size - - 3
Strides - - [2, 1, 2]
Activation function ReLU ReLU ReLU
Optimizer Adam Adam Adam
Learning rate 10−4 10−4 10−4

Batchsize 64 64 64

Appendix B

To analyze how well the latent space data representations belonging to a certain input
data category are grouped together in the latent space, we apply the k-means algorithm to
the latent space means of the test data as found by the encoders of the FisherNet, the VAE,
and the CVAE. We then calculate for each data category the percentage of mean positions
belonging to each cluster as found by the k-means clustering. We then arrange this into a
matrix in a way that maximizes the matrix trace by exchange of matrix columns. Figure A1
shows a visualization of such matrices for the three architectures for a five-dimensional latent
space. The traces of these matrices are a measure of how well the k-means clusters fit the data
labels and are provided in Table A2. These results show that there is no significant difference
between the way the three models group the data representations in latent space.

Table A2. Cluster trace.

Latent Dimension 2 5 10 15 20

VAE 4.849 4.395 4.088 5.075 5.622
CVAE 6.114 5.752 4.876 4.516 5.909
FisherNet 5.504 5.99 6.08 5.08 5.319
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Figure A1. (a) FisherNet. (b) VAE. (c) CVAE. Percentage overlap between the data labels and the
clusters found by the K-means algorithm in a five-dimensional latent space.
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