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Abstract: In this paper we study an impulsive delayed reaction-diffusion model applied in biology.
The introduced model generalizes existing reaction-diffusion delayed epidemic models to the impul-
sive case. The integral manifolds notion has been introduced to the model under consideration. This
notion extends the single state notion and has important applications in the study of multi-stable
systems. By means of an extension of the Lyapunov method integral manifolds’ existence, results are
established. Based on the Lyapunov functions technique combined with a Poincarè-type inequality
qualitative criteria related to boundedness, permanence, and stability of the integral manifolds are
also presented. The application of the proposed impulsive control model is closely related to a
most important problems in the mathematical biology—the problem of optimal control of epidemic
models. The considered impulsive effects can be used by epidemiologists as a very effective therapy
control strategy. In addition, since the integral manifolds approach is relevant in various contexts,
our results can be applied in the qualitative investigations of many problems in the epidemiology of
diverse interest.

Keywords: reaction-diffusion equations; delays; impulses; integral manifolds; stability

1. Introduction

The dynamics of reaction-diffusion and related equations are traditionally applied to
problems in biology, population dynamics, ecology, and neurosciences [1–4]. Numerous
reaction-diffusion models have also been proposed in epidemiology and virology [5–10].
In fact, reaction-diffusion terms in a model can adequately describe the time and spatial
evolution, which is why reaction-diffusion epidemic models are still a very active area of
research [11–13].

In addition, the effects of time delays on the dynamical properties of reaction-diffusion
epidemic and virus dynamic models are well investigated [14–17]. It is well known
that models that include delays have been introduced to account for the time between
viral entry into a target cell and the production of new virus particles. For example, the
work [18] studied the effect of the intracellular delay and the spatial diffusion of free
virus on the global dynamics of a virus dynamics model using the following delayed
reaction–diffusion system:
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

∂T(x, t)
∂t

= −dT(x, t)− βV(x, t)T(x, t)
1 + α1T(x, t) + α2V(x, t)

+ λ,

∂I(x, t)
∂t

= −aI(x, t) + e−aτ βV(x, t− τ)T(x, t− τ)

1 + α1T(x, t− τ) + α2V(x, t− τ)
,

∂V(x, t)
∂t

= dV∆V −mV(x, t) + kI(x, t),

(1)

where t ≥ 0, x ∈ R3, T, I and V represent the susceptible cells, infected cells, and free
viruses, respectively, λ, dT and βVT are the production rate, the death rate, and the
infection by the virus rate of the susceptible cells, respectively, aI is the death rate of the
infected cells, kI and mV are, respectively, the production from the infected cells and the
decay rates, ∆V is the Laplace operator for V, dV is the diffusion coefficient, the ratio

βV(x, t)T(x, t)
1 + α1T(x, t) + α2V(x, t)

,

where α1 and α2 are constant represents Beddington–DeAngelis functional response of in-
fection rate, e−aτ denotes the surviving rate of infected cells before it becomes productively
infected, τ is a positive constant that represents the delay.

The model (1) is a generalization of the delayed virus dynamics model with the
Beddington–DeAngelis functional response proposed in [19], where the authors assumed
that the generation of virus producing cells at time t is due to the infection of target cells
at time t− τ without considering diffusion effects. However, the spatial effects cannot
be neglected in studying the spread of epidemics. When consider the reaction-diffusion
case [18], the delay τ has an intracellular origin. In fact, the necessity of considering delays
in epidemiology models is biologically reasonable since the infectious processes are not
instantaneous. For example, for α1 = 0 the model (1) is reduced to the HBV model with the
diffusion and time delay that has been investigated in [9], where time delay representing
the intracellular incubation period, i.e., the lag between the time a cell becomes infected
and when it begins to infect other cells on the global dynamics of an HBV model with
saturation response of the infection rate. The paper [9] also proposes a very good overview
of some delayed models in epidemiology and the origin of the delay terms in such models..
Note that the dynamic behaviors of such models have important relationships with the
entropy phenomena in biological and virology systems [20,21].

In their efforts to propose effective drug therapies, many authors considered impulsive
vaccination and active impulsive drug-treatment strategies [22–26]. Such therapies can be
regarded as impulsive effects and can be accurately described by impulsive differential
equations. Indeed, mathematical models using impulsive differential equations have got a
lot of attention in the treatment policies of many diseases. For some excellent fundamental
and qualitative results on impulsive differential systems, we refer to [27–31].

In addition, the specific control strategy, called "impulsive control" also plays a major
role in many applied problems. The main advantages of such a strategy lie in the fact that
it is applied just in some discrete times and can reduce the control cost and the amount of
transmitted information drastically [32–38].

Impulsive control therapeutic strategy has been proposed to some very recent epi-
demic models of great importance for modern society. For example, in [39] the authors
applied impulsive controls to a SQEIAR model to reduce the size of susceptible, infected,
exposed, and asymptomatic groups to consequently eradicate the infection. A special
attention is devoted to the COVID-19 pandemic case. An impulsive control approach has
been proposed in [40] to determine the effect of DAA therapy in hepatitis C treatment.
The effectiveness of impulse control, which has a certain enlightening effect on the actual
epidemic prevention work for reaction-diffusion ecosystems has been demonstrated in [41].
The topology of stable periodic solutions of an SIR epidemic dynamics model with im-



Entropy 2021, 23, 1631 3 of 16

pulsive vaccination control has been reported in [42]. In [43] an impulsive vaccination
strategy is proposed in the study of the global dynamics and bifurcation phenomena of
state-dependent impulsive SIR models. Hence, impulsive control methodology is very
effective and impulsive mathematical models may offer a convenient method for rationally
designing therapy based on the properties of single agents [40]. However, to the best of our
knowledge, an impulsive control approach has not been applied to the model (1) proposed
in [18], and one of the main aims of this research is to fill the gap.

Most of the reported results for impulsive epidemic models are related to stability
results [22,23,25,26,41–43]. Indeed, stability of the states is a qualitative property of a
crucial importance for the systems. However, in the existing results for impulsive models
in biology and epidemiology, the authors investigated the qualitative behavior of a single
state of interest: unique stationary state (unique equilibrium point), periodic state, and
semi-trivial periodic state.

In the proposed paper, the application of the impulsive control approach to the
model (1) considered in [18] is applied. The purpose of the paper and one of the main
research questions is to investigate the effect of the impulses on the qualitative behavior
of the states and to show how by means of appropriate impulsive perturbations we can
control the stability behavior of the system.

We also introduce the concept of integral manifolds to the extended impulsive model.
The existence and stability of integral manifolds notions are more general than the cor-
responding notions applied to single states. The method of integral manifolds is widely
accepted as a useful tool in the qualitative analysis of systems with piece-wise constant
arguments [44], impulsive systems [45], numerous systems in nonlinear mechanics [46],
partial differential equations [47], impulsive differential systems defined on torus [48],
systems with nonlinear oscillations [49], uncertain systems with variable impulsive per-
turbations [50], and fractional models [51]. Therefore, the connection of this method to
models in science, engineering, and biology is highly important in terms of theoretical
developments and practical applications. However, the method of integral manifolds is
not yet applied to reaction-diffusion models in epidemiology, which is the main goal and
contribution of the present research.

The main novelty of the paper is in five points:

(1) An impulsive control strategy is considered for a class of delayed reaction-diffusion
models in biology, which arises naturally in a wide variety of biological applications
and allows for synchronization of a complex system by using only small control
impulses, even though the system’s behavior may follow unpredictable patterns;

(2) The integral manifold notion is introduced for the first time for the model under
consideration, which generalizes the single state concepts and is very effective in
systems with several equilibria;

(3) New existence, boundedness, and permanence results are established with respect to
integral manifolds;

(4) Criteria for asymptotic stability of an integral manifold related to the impulsive model
under consideration are also proved;

(5) We apply a Poincarè-type integral inequality, which allows for more accurate es-
timation of the reaction diffusion terms, and leads to a better exploration of the
diffusion effect.

Since delayed reaction-diffusion models remain very popular in science, biology,
engineering, neurocomputing, etc., analyzing their qualitative behavior would have diverse
applications. Hence, the developed extended integral manifolds qualitative results will be
of a great importance not only for researchers in applied mathematics and mathematical
biology, but also for a wide audience of professionals all over the world.

The construction of the rest of the manuscript is as follows. In Section 2 we propose
the class of impulsive delayed reaction-diffusion epidemic models. The concept of integral
manifolds is also introduced for the model under consideration. In addition, notations,
definitions, and preliminary results are presented. Section 3 is devoted to existence, bound-
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edness, and permanence results for integral manifolds associated with those introduced
in the Section 2 model. In Section 4, new sufficient conditions for the uniform global
asymptotic stability of integral manifolds are established. Finally, some conclusions and
directions for future research are stated in Section 5.

2. Model Description and Preliminaries

In this section, we extend and improve some recent results in the existing literature [9,18,19]
and propose an impulsive generalization of the model (1). To this end, we will use the following
notations: ||x|| = |x1|+ |x2|+ |x3| will be the norm of x = (x1, x2, x3) ∈ R3, R+ = [0, ∞).
Additionally, in R3 we will consider an open and bounded set Ω that has smooth boundary
∂Ω and the measure is denoted by mes Ω > 0. Let the zero 0 = (0, 0, 0) ∈ Ω.

We introduce, in this paper, an impulsive delayed reaction-diffusion epidemic model
in the following form:

∂T(x, t)
∂t

= −dT(x, t)− βV(x, t)T(x, t)
1 + α1T(x, t) + α2V(x, t)

+ λ, t 6= ti,

∂I(x, t)
∂t

= −aI(x, t) + e−aτ βV(x, t− τ)T(x, t− τ)

1 + α1T(x, t− τ) + α2V(x, t− τ)
, t 6= ti,

∂V(x, t)
∂t

= dV∆V −mV(x, t) + kI(x, t), t 6= ti,

T(x, t+i ) = T(x, ti) + P1i(T(x, ti)),

I(x, t+i ) = I(x, ti) + P2i(I(x, ti)),

V(x, t+i ) = V(x, ti) + P3i(V(x, ti)), i = 1, 2, . . . ,

(2)

where x ∈ Ω, t ≥ t0, t0 ∈ R+:

(i) The impulsive instants ti are such that 0 < t1 < t2 < · · · < ti < ti+1 < and
limi→∞ ti = ∞;

(ii) All parameters in the first three equations have the same meaning as in (1) for t 6= ti,
i = 1, 2, . . . ;

(iii) Functions Pji, j = 1, 2, 3, i = 1, 2, . . . are real and determine the controlled outputs
T(., t+), I(., t+), V(., t+) at times ti, i = 1, 2, . . . .

The model (2) generalizes and extends some existing models investigated in [9,18,19]
to the impulsive case. Adding the impulsive control equations from fourth to sixth to the
model (1) allows the application of the impulsive control approach to models of type (1).
In fact, the impulsive functions Pji, j = 1, 2, 3, i = 1, 2, . . . can be designed as efficient
impulsive controllers.

Note that, the function

f (T, V) =
V T

1 + α1T + α2V

is Lipschitz [18], and let L > 0 denotes the Lipschitz constant for this function.
The initial and boundary values for the model (2) are set as

T(x, t) = 0, I(x, t) = 0, V(x, t) = 0, t ∈ [t0 − τ, ∞), x ∈ ∂Ω, (3)
T(x, t− t0) = φ0T(x, t− t0) ≥ 0,
I(x, t− t0) = φ0I(x, t− t0) ≥ 0,
V(x, t− t0) = φ0V(x, t− t0) ≥ 0, x ∈ Ω, t ∈ [t0 − τ, t0],

(4)
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where φ0T(x, ξ), φ0I(x, ξ), φ0V(x, ξ) are nonnegative real-valued functions well defined
on Ω × [−τ, 0], bounded and piecewise continuous with respect to ξ with a possibly
finite number of discontinuity points of the first kind ξ ∈ [−τ, 0] such that φ0T(x, ξ+),
φ0T(x, ξ−), φ0I(x, ξ+), φ0I(x, ξ−), φ0V(x, ξ+), φ0V(x, ξ−) exist and are nonnegative, and
φ0T(x, ξ−) = φ0T(x, ξ), φ0I(x, ξ−) = φ0I(x, ξ), φ0V(x, ξ−) = φ0V(x, ξ). The class of all
functions φ0 = (φ0T(x, ξ), φ0I(x, ξ), φ0V(x, ξ)) with such components will be denoted by
PC, and by PCB we will denote the class of all bounded functions φ0 ∈ PC.

It is assumed that d, β, a, k, m are positive constant and the motion of virus follows
the Fickan diffusion [52,53].

To simplify the notations, we will denote by U(x, t) = U(x, t; φ0), U = (T, I, V) any so-
lution of (2) with initial function φ0 = (φ0T(x, ξ), φ0I(x, ξ), φ0V(x, ξ)) = (T0(x, ξ), I0(x, ξ),
V0(x, ξ)) ∈ PC. The norm of U = (T, I, V) for t ≥ t0 will be defined as

||U(x, t)||2 =

[ ∫
Ω

(
T2(x, t) + I2(x, t) + V2(x, t)

)
dx

]1/2

and the norm of the function φ ∈ PC is denoted as ||.||τ and is defined by ||φ||τ =
sup−τ≤ξ≤0 ||φ(x, ξ)||2.

It is well known [27–31] that the solutions of the impulsive initial-value boundary
problems (2)–(4)

U(x, t; φ0) =
(
T(x, t; φ0), I(x, t; φ0), V(x, t; φ0)

)
are piecewise continuous functions with first kind points of discontinuity at which they are
continuous from the left.

For more results on the corresponding fundamental and qualitative dynamical behav-
iors of impulsive reaction-diffusion systems, we refer to [36,54–57]. The consideration of
impulsive conditions allows us to take into account short-term effects on susceptible cells,
infected cells, and free viruses.

The paper [18] discussed the global asymptotic stability of an infected equilibrium of
the model (1), which generalizes several important models in biology. In this paper, we
will develop these results further, and we will introduce the integral manifolds approach
to the impulsive model (2) [44–51]. Let Θ = {U ∈ R3 : T ≥ 0, I ≥ 0, V ≥ 0} and we
assume that T(x, t+i ) ≥ 0, I(x, t+i ) ≥ 0, V(x, t+i ) ≥ 0 for any x ∈ Ω and i = 1, 2, . . . . In
what follows, we restrict our attention only to those solutions U which evolve in the space
Θ which is natural from a biological perspective [58].

Definition 1. An arbitrary manifoldM in the space Ω× [t0 − τ, ∞)×Θ is called an integral
manifold of the model (2), if for any state U(x, t) = U(x, t; φ0) of (2) such that (x, ξ, φ0(x, ξ)) ∈ M,
(x, ξ) ∈ Ω× [−τ, 0] we have (x, t, U(x, t)) ∈ M, x ∈ Ω and t ≥ t0.

We will also introduce the following notations related to a manifoldM⊂ Ω× [−τ, ∞)×Θ:
M(x, t) = {U ∈ Θ : (x, t, U) ∈ M, (x, t) ∈ Ω× [t0, ∞)};
M0(x, t) = {Z ∈ Θ : (x, t,Z) ∈ M, (x, t) ∈ Ω× [t0 − τ, t0]};
D(U,M(x, t)) = inf

Ũ∈M(x,t)
||U − Ũ||2 is the distance between U ∈ Θ andM(x, t);

M(x, t)(ε) = {U ∈ Θ : D(U,M(x, t)) < ε} (ε > 0) is an ε- neighborhood ofM(x, t);
D0(φ,M0(x, t)) = sup

ξ∈[−τ,0]
D(φ(x, ξ),M0(x, ξ)), φ ∈ PC;

M0(x, t)(ε) = {φ ∈ PC : D0(φ,M0(x, t)) < ε} is an ε- neighborhood ofM0(x, t);
M(x, t)(ε) = {U ∈ Θ : D(U,M(x, t)) ≤ ε};
M0(x, t)(ε) = {φ ∈ PC : D0(φ,M0(x, t)) ≤ ε};
Sα = {U ∈ Θ : ||U||2 ≤ α}, α > 0;
Sα(PC) = {φ ∈ PC : ||φ||τ ≤ α}.
Throughout this paper, we will also assume that the next assumptions hold:
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A1. The impulsive functions Pji are continuous and Pji(0) = 0 for all j = 1, 2, 3 and
i = 1, 2, . . . .

A2. The setM(x, t) is nonempty for (x, t) ∈ Ω× [t0, ∞).
A3. The setM0(x, t) is nonempty for (x, t) ∈ Ω× [t0 − τ, t0].
It is well known that boundedness and permanence are two qualitative properties of

a significant importance for models in biology [58–60]. In this paper, the concepts will be
generalized to the integral manifolds method as follows.

Definition 2. An integral manifoldM⊂ Ω× [t0 − τ, ∞)×Θ of system (2) is:

(a) Equi-M-bounded, if for any η > 0, α > 0, t0 ∈ R+ there exists a constant
b = b(η, α, t0) > 0 such that for each φ0 ∈ Sα(PC) ∩M0(x, ξ)(η), we have U(x, t; φ0) ∈
M(x, t)(b) for x ∈ Ω, t ≥ t0;

(b) Uniformly-M-bounded, if b in (a) is independent of t0 ∈ R+;
(c) Quasi-ultimately-M-bounded, if there exists B > 0 such that for any η > 0, α > 0, t0 ∈ R+

there exists a constant T = T (η, α, t0) > 0 such that for each φ0 ∈ Sα(PC)∩M0(x, ξ)(η),
we have U(x, t; φ0) ∈ M(x, t)(B) for x ∈ Ω, t ≥ t0 + T ;

(d) Quasi-uniformly-ultimately-M-bounded, if T in (c) is independent of t0 ∈ R+;
(e) Ultimately-M-bounded, if both (a) and (c) hold;
(f) Uniformly-ultimately-M-bounded, if both (b) and (d) hold.

Definition 3. An integral manifoldM⊂ Ω× [t0 − τ, ∞)×Θ of system (2) is:

(a) Quasi-M-permanent, if for each φ0 ∈ PC and any t0 ∈ R+ there exist constants b1 =
b1(φ0, t0) > 0 and b2 = b2(φ0, t0) > 0 such that b1 ≤ T(x, t) ≤ b2, b1 ≤ I(x, t) ≤ b2,
b1 ≤ V(x, t) ≤ b2 for x ∈ Ω, t ≥ t0, where U = (T, I, V) ∈ M(x, t);

(b) Uniformly quasi-M-permanent, if the constants b1 and b2 in (a) are independent of t0 ∈ R+;
(c) M-permanent if it is quasi-M-permanent and if there exist constants B ≥ b > 0 such

that for each φ0 ∈ PC and any t0 ∈ R+ there exists a constant T = T (φ0, t0) > 0 such
that b ≤ T(x, t) ≤ B, b ≤ I(x, t) ≤ B, b ≤ V(x, t) ≤ B for x ∈ Ω, t ≥ t0 + T , where
U = (T, I, V) ∈ M(x, t);

(d) UniformlyM-permanent if it is uniformly quasi-M-permanent and there exist constants
B ≥ b > 0 such that for each φ0 ∈ PC there exists a constant T = T (φ0) > 0 such that if
t0 ∈ R+, then b ≤ T(x, t) ≤ B, b ≤ I(x, t) ≤ B, b ≤ V(x, t) ≤ B for x ∈ Ω, t ≥ t0 + T ,
where U = (T, I, V) ∈ M(x, t).

The extensions of some stability concepts [18] to the integral manifolds case are
as follows.

Definition 4. An integral manifoldM of system (2) is:

(a) Stable, if for any ε > 0, α > 0, t0 ∈ R+ there exists a δ = δ(α, t0, ε) > 0 such that for each
φ0 ∈ Sα(PC) ∩M0(x, ξ)(δ), we have U(x, t; φ0) ∈ M(x, t)(ε) for x ∈ Ω and t ≥ t0;

(b) Uniformly stable, if the number δ from (a) depends only on ε > 0;
(c) Uniformly globally asymptotically stable, if it is a uniformly stable, uniformly-M-bounded,

and for any ε > 0 and η > 0 there exists a T = T (η, ε) > 0 such that for any t0 ∈ R+,
α > 0 and each φ0 ∈ Sα(PC)∩M0(x, ξ)(η), we have U(x, t; φ0) ∈ M(x, t)(ε) for x ∈ Ω,
t ≥ t0 + T .

Next, we will define the class of Lyapunov-like functions [31,36,55,56] that will be used
in the study of the qualitative properties of integral manifolds, related to the model (2).

Denote t0 = 0 and consider the sets:

Gi = {(U, t) : ti−1 < t < ti, U = (T, I, V) ∈ Θ}, i = 1, 2, . . . , G =
∞⋃

i=1

Gi.
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Definition 5. A Lyapunov-type function W : Θ×R+ → R+ belongs to the class WM if:

1. W(U, t) is continuous in G, locally Lipschitz continuous with respect to its first argument on
each of the sets Gi, and W(U(x, t), t) = 0 for (x, t, U) ∈ M, t ≥ 0, W(U(x, t), t) > 0 for
(x, t, U) ∈ {Ω×R+ ×Θ} \M.

2. W(U, t−i ) and W(U, t+i ) exist for each i = 1, 2, . . . , and W(U, t−i ) = W(U, ti).

Let t ∈ R+, t 6= ti, i = 1, 2, . . . , φ̄ ∈ PC, and the function W ∈ WM. Then by
D+W(φ̄(., 0), t) we will denote the upper right derivative of W ∈WM defined as

D+W(φ̄(., 0), t) = lim
χ→0+

sup
1
χ

[
W(U(., t + χ; φ̄(., 0), t + χ)−W(φ̄(., 0), t)

]
.

The proof of the next Lyapunov-Razumikhin-type result is similar to those of Theorem
1.21 in [31], and we will omit it.

Lemma 1. Assume that A1–A3 hold, and for W ∈WM, φ ∈ PC, Pi = (P1i, P2i, P3i) and t ∈ R+

W(φ(., 0) + Pi(φ, .), t+) ≤W(φ(., 0), t), t = ti, i = 1, 2, . . . ,

the inequality
D+W(φ(., 0), t) ≤ µW(φ(., 0), t), t 6= ti, µ ∈ R

is valid whenever
W(φ(., ξ), t + ξ) ≤W(φ(., 0), t), −τ ≤ ξ ≤ 0.

Then
W(U(., t), t) ≤ sup

−τ≤ξ≤0
W(φ0(., ξ), 0)eµt, t ≥ 0.

For µ = 0, we have the following comparison result.

Corollary 1. Assume that A1–A3 hold, and for W ∈ WM, φ ∈ PC, Pi = (P1i, P2i, P3i) and
t ∈ R+

W(φ(., 0) + Pi(φ, .), t+) ≤W(φ(., 0), t), t = ti, i = 1, 2, . . . ,

the inequality
D+W(φ(., 0), t) ≤ 0, t 6= ti, µ ∈ R

is valid whenever
W(., ξ), t + ξ) ≤W(φ(., 0), t), −τ ≤ ξ ≤ 0.

Then
W(U(., t), t) ≤ sup

−τ≤ξ≤0
W(φ0(., ξ), 0), t ≥ 0.

Remark 1. For more results on the Lyapunov–Razumikhin approach applied to different models
represented as classes of differential equations, we refer the reader to [29–31,36,55,56,61].

Remark 2. Note that, the Lyapunov function method is also widely used in the standard energy
method. In addition, the entropy can be considered as a Lyapunov function for isolated systems [62].

Finally, the following Poincarè-type integral inequality [63] will be used in our qualita-
tive analysis. Let Ω = ∏n

q=1[aj, bj], aj, bj = const ∈ R, j = 1, 2, 3 and Λ = max{bj − aj, j = 1, 2, 3}.

Lemma 2. [63,64] For any real-valued function w(x) that belongs to C1(Ω) the following relation
is valid ∫

Ω
w2(x)dx ≤ Λ2

12

∫
Ω
|∇w(x)|2dx.
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3. Existence, Boundedness, and Permanence of Integral Manifolds

We will consider the set Ω of points x, x = (x1, x2, x3) defined as aj ≤ |xj| ≤ bj, where
aj, bj = const > 0, or Ω = ∏3

j=1[aj, bj].

Theorem 1. Assume that:

1. Assumptions A1–A3 are satisfied.
2. M⊂ Ω× [t0 − τ, ∞)×Θ is a manifold in the extended phase space of the model (2).
3. The functions Pji are such that

P1i(T(x, ti)) = −γ1iT(x, ti), P2i(I(x, ti)) = −γ2i I(x, ti), P3i(V(x, ti)) = −γ3iV(x, ti),

0 < γji < 2, j = 1, 2, 3, i = 1, 2, . . . .

4. For the model’s parameters the following conditions hold

3Lβe−aτ

2
< d, Lβe−aτ +

1
2

k < a,
1
2

(
Lβe−aτ + k

)
< m +

12dV

Λ2 ,

µ = max
{3

2
Lβe−aτ − d, Lβe−aτ − a +

1
2

k,
1
2

(
Lβe−aτ + k

)
−m− 12dV

Λ2

}
+

1
2

Lβe−aτ ≤ 0.

ThenM is an integral manifold of the model (2).

Proof. Let U(x, t) = U(x, t; φ0), U = (T, I, V) be a solution of the initial value boundary
problems (2)–(4) for x ∈ Ω, φ0 ∈ PCB. According to A2, there exists at least one solution
of (2) Ũ(x, t) = (T̃(x, t), Ĩ(x, t), Ṽ(x, t)) ∈ M(x, t).

We will use a Lyapunov function W ∈WM defined as

W(U, t) =
1
2
D2(U,M(x, t)) =

1
2

(
inf

Ũ∈M(x,t)
||U − Ũ||2

)2

= inf
Ũ∈M(x,t)

1
2

∫
Ω

((
T(x, t)− T̃(x, t)

)2
+
(

I(x, t)− Ĩ(x, t)
)2

+
(
V(x, t)− Ṽ(x, t)

)2
)

dx. (5)

For any t = ti, i = 1, 2, . . . , condition 3 of Theorem 1 implies

1
2

∫
Ω
(1− γ1i)

2(T(x, t)− T̃(x, t)
)2dx <

1
2

∫
Ω

(
T(x, t)− T̃(x, t)

)2dx,

1
2

∫
Ω
(1− γ2i)

2(I(x, t)− Ĩ(x, t)
)2dx <

1
2

∫
Ω

(
I(x, t)− Ĩ(x, t)

)2dx,

1
2

∫
Ω
(1− γ3i)

2(V(x, t)− Ṽ(x, t)
)2dx <

1
2

∫
Ω

(
V(x, t)− Ṽ(x, t)

)2dx,

and, hence, for any φ ∈ PC

W(φ(., 0) + Pi(φ, .), t+) < W(φ(., 0), t), t = ti, i = 1, 2, . . . . (6)

Then, for the derivative of the function W(U(., t), t), for any t 6= ti, i = 1, 2, . . . ,
it follows

dW(U(., t), .)
dt

≤ 1
2

∫
Ω

d
dt

((
T(x, t)− T̃(x, t)

)2
+
(

I(x, t)− Ĩ(x, t)
)2

+
(
V(x, t)− Ṽ(x, t)

)2
)

dx
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=
∫

Ω

(
T(x, t)− T̃(x, t)

)∂
(
T(x, t)− T̃(x, t)

)
∂t

dx

+
∫

Ω

(
I(x, t)− Ĩ(x, t)

)∂
(

I(x, t)− Ĩ(x, t)
)

∂t
dx

+
∫

Ω

(
V(x, t)− Ṽ(x, t)

)∂
(
V(x, t)− Ṽ(x, t)

)
∂t

dx.

The fact that Ũ = (T̃, Ĩ, Ṽ) ∈ M(x, t) implies the following estimates:

∫
Ω

(
T(x, t)− T̃(x, t)

)∂
(
T(x, t)− T̃(x, t)

)
∂t

dx

=
∫

Ω

(
T(x, t)− T̃(x, t)

)(
− d
(
T(x, t)− T̃(x, t))− βV(x, t)T(x, t)

1 + α1T(x, t) + α2V(x, t)

+
βṼ(x, t)T̃(x, t)

1 + α1T̃(x, t) + α2Ṽ(x, t)

)
dx

≤
(3Lβe−a

2
− d
) ∫

Ω

(
T(x, t)− T̃(x, t)

)2dx +
1
2

Lβe−a
∫

Ω

(
V(x, t)− Ṽ(x, t)

)2dx; (7)

∫
Ω

(
I(x, t)− Ĩ(x, t)

)∂
(

I(x, t)− Ĩ(x, t)
)

∂t
dx

=
∫

Ω

(
I(x, t)− Ĩ(x, t)

)(
− a
(

I(x, t)− Ĩ(x, t))− e−aτ βV(x, t− τ)T(x, t− τ)

1 + α1T(x, t− τ) + α2V(x, t− τ)

+e−aτ βṼ(x, t− τ)T̃(x, t− τ)

1 + α1T̃(x, t− τ) + α2Ṽ(x, t− τ)

)
dx

≤ (Lβ−aτe− a)
∫

Ω

(
I(x, t)− Ĩ(x, t)

)2dx +
1
2

Lβe−aτ
∫

Ω
sup
−τ≤ξ≤0

(
V(x, ξ)− Ṽ(x, ξ)

)2dx

+
1
2

Lβe−aτ
∫

Ω
sup
−τ≤ξ≤0

(
T(x, ξ)− T̃(x, ξ)

)2dx. (8)

From the conditions of Theorem 1 and Lemma 2, by the Green’s theorem, we have

∫
Ω

(
V(x, t)− Ṽ(x, t)

)∂
(
V(x, t)− Ṽ(x, t)

)
∂t

dx

=
∫

Ω

(
V(x, t)− Ṽ(x, t)

)(
dV∆(V − Ṽ) + k(V(x, t)− Ṽ(x, t))−m

(
V(x, t)− Ṽ(x, t)

))
dx

=
∫

Ω

((
V(x, t)− Ṽ(x, t)

)
dv

3

∑
j=1

∂

∂xj

( ∂(V(x, t)− Ṽ(x, t))
∂xj

)
+ (k−m)

(
V(x, t)− Ṽ(x, t)

)2
)

dx

≤ −
3

∑
j=1

∫
Ω

dV

(∂(V(x, t)− Ṽ(x, t))
∂xj

)2
dx +

(1
2

k−m
) ∫

Ω

(
V(x, t)− Ṽ(x, t)

)2dx

+
1
2

k
∫

Ω

(
I(x, t)− Ĩ(x, t)

)2dx

≤
(
− 12 dV

Λ2 +
1
2

k−m
) ∫

Ω

(
V(x, t)− Ṽ(x, t)

)2dx +
1
2

k
∫

Ω

(
I(x, t)− Ĩ(x, t)

)2dx, (9)

where Λ = max{bj − aj, j = 1, 2, 3}.
Now, from (7)–(9), we get

dW(U(., t), t)
dt

≤
(3Lβe−a

2
− d
) ∫

Ω

(
T(x, t)− T̃(x, t)

)2dx
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+
1
2

Lβe−a
∫

Ω
sup
−τ≤ξ≤0

(
T(x, ξ)− T̃(x, ξ)

)2dx

+
(

Lβe−a − a +
1
2

k
) ∫

Ω

(
I(x, t)− Ĩ(x, t)

)2dx

+
(
− 12 dV

B2 +
1
2

k−m
) ∫

Ω

(
V(x, t)− Ṽ(x, t)

)2dx

+
1
2

Lβe−a
∫

Ω
sup
−τ≤ξ≤0

(
V(x, ξ)− Ṽ(x, ξ)

)2dx.

Let

µ = max
{3

2
Lβe−aτ − d, Lβe−aτ − a +

1
2

k,
1
2
(Lβe−aτ + k)−m− 12dV

B2

}
+

1
2

Lβe−aτ .

Then, from condition 4 of Theorem 1 it follows that µ ≤ 0, and the inequality

D+W(φ(., 0), t) ≤ 0, t 6= ti (10)

is valid whenever W(φ(., ξ), t + ξ) ≤W(φ(., 0), t), −τ ≤ ξ ≤ 0 for a function φ ∈ PC.
From (6) and (10), using Corollary 1, we obtain

W(U(., t), t) ≤ sup
−τ≤ξ≤0

W(φ0(., ξ), 0), t ≥ 0. (11)

Finally, we will show that if (x, ξ, φ0(x, ξ)) ∈ M for x ∈ Ω and ξ ∈ [−τ, 0], then

(x, t, U(x, t)) ∈ M, x ∈ Ω, t ≥ 0. (12)

Suppose that (12) is not true. Then there exists a t∗, t∗ > 0 such that (x, t, U(x, t; φ0)) ∈ M
for x ∈ Ω and 0 < t ≤ t∗ and (x, t, U(x, t; φ0)) /∈ M for x ∈ Ω, t > t∗.

If t∗ 6= ti for i = 1, 2, . . . , then there exists t∗∗, ti < t∗∗ < ti+1 such that (x, t∗∗, U(x, t∗∗; φ0))
6∈ M and W(U(x, t∗∗; φ0), t∗∗) > 0. Then, from (11), we have W(U(., t∗∗), t∗∗) ≤ sup−τ≤ξ≤0
W(φ0(., ξ), 0) = 0, t ∈ [0, ∞) which contradicts the fact that W(U(x, t∗∗; φ0), t∗∗) > 0.

If t∗ = ti for some i = q, q + 1, . . . , q ≥ 1, then by (6) and since (x, t∗, U(x, t∗; φ0)) ∈ M,
we get

0 ≤W(U(., t∗+), t∗+) < W(U(., t∗), t∗) = 0,

which is again a contradiction.
Therefore, if (x, ξ, φ0(x, ξ)) ∈ M for x ∈ Ω and ξ ∈ [−τ, 0], then (x, t, U(x, t)) ∈ M,

x ∈ Ω, t ≥ 0, which shows thatM is an integral manifold for the model (2). Theorem 1 is
proved.

The proof of the following boundedness criteria for the integral manifoldM repeats
the steps in the proofs of the corresponding boundedness results in [31,36,56,58]. The
Lyapunov function W(U, t) defined in (5) is used, as well as the fact, that for the function
W ∈WM there exist functions w1 ∈ KR and w2 ∈ K that satisfy

w1(D(U,M(x, t)) ≤W(U, t) ≤ w2(D(U,M(x, t)), (13)

where (U, t) ∈ Θ× ∈ R+, x ∈ Ω, K is the K-class of functions defined by K = {w ∈
C[R+,R+] : w is strictly increasing, w(0) = 0} andKR = {w ∈ K : w(r)→ ∞ as r → ∞}.

Theorem 2. If the conditions of Theorem 1 are satisfied, then the integral manifoldM of model (2)
is uniformlyM-bounded.
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Theorem 3. Assume that in addition to the conditions of Theorem 1, there exists a function w3 ∈ K
such that

µ ≤ −w3(r), r ∈ R+ (14)

then the integral manifoldM of model (2) is uniformly-ultimately-M-bounded.

The next boundedness notions extend the boundedness concepts in [58] to the integral
manifold case.

Definition 6. The integral manifoldM⊂ Ω× [t0 − τ, ∞)×Θ of system (2) is:

(a) Uniformly-M-bounded with respect to a function W ∈WM, if for any η > 0, α > 0 there
exists b = b(η, α) > 0 such that if φ0 ∈ M0(x, ξ)(η), sup−τ≤ξ≤0 W(φ0(., ξ), 0) < α, and
t0 ∈ R, then W(U(., t), t) < b, t ≥ t0, where U(x, t) = U(x, t; φ0), U = (T, I, V) is a
solution of (2);

(b) Uniformly-ultimately-M-bounded with respect to W ∈ WM, if it is uniformly-M-bounded
with respect to W ∈WM and if there exists a constant B > 0 such that for any η > 0, α > 0
there exists T = T (η, α) > 0 such that if φ0 ∈ M0(x, ξ)(η), sup−τ≤ξ≤0 W(φ0(., ξ), 0) < α,
and t0 ∈ R, then W(U(., t), t) < B, t ≥ t0 + T , where U(x, t) = U(x, t; φ0), U = (T, I, V) is
a solution of (2).

Now we will state the main permanence results.

Theorem 4. If the integral manifold M is uniformly-M-bounded with respect to a function
W ∈WM, then it is uniformly quasi-M-permanent.

Proof. Let the integral manifoldM is uniformly-M-bounded with respect to a function
W ∈WM. Let η > 0, α > 0 be chosen and φ0 ∈ M0(x, ξ)(η), sup−τ≤ξ≤0 W(φ0(., ξ), 0) < α.

Then, for any t0 ∈ R, we have W(U(., t), t) < b, t ≥ t0, where U(x, t) = U(x, t; φ0),
U = (T, I, V) is a solution of (2) corresponding to the initial function φ0.

From the boundedness of W(U(., t), t) and the fact that W ∈ WM, we have that the
integral manifold M is bounded everywhere except for x ∈ ∂Ω. Hence, there exists
b̄1 = b̄1(φ0) > 0 and b̄2 = b̄2(φ0) > 0 such that

b̄1 ≤ D(U,M(x, t)) ≤ b̄2, x ∈ Ω, t ≥ t0.

Therefore, there exists b1 = b1(φ0) > 0 and b2 = b2(φ0) > 0 such that b1 ≤ T̃(x, t) ≤
b2, b1 ≤ Ĩ(x, t) ≤ b2, b1 ≤ Ṽ(x, t) ≤ b2 for x ∈ Ω, t ≥ t0, where (T̃(x, t), Ĩ(x, t), Ṽ(x, t)) ∈
M(x, t), which shows that the integral manifoldM is uniformly quasi-M-permanent.

The proof of the next permanent result is similar.

Theorem 5. If the integral manifoldM is uniformly-ultimately-M-bounded with respect to a
function W ∈WM, then it is uniformlyM-permanent.

Remark 3. Numerous excellent boundedness and permanence results for different models in biology
have been presented in the existing literature. See, for example, [58–60]. The results in Theorems
2 and 3 generalize such results using the integral manifold approach, and apply to the impulsive
epidemic model (2). Such generalization includes many particular cases of the integral manifoldM,
including steady states of the system.

Remark 4. In [58] the notion of a bounded solution of a system with respect to a Lyapunov-type
function has been introduced. In our paper we apply the notion to integral manifolds. Theorems 4
and 5 extend the results in [58] to integral manifolds related to the model (2).

Remark 5. The obtained results in Theorems 4 and 5 confirms the known conclusion that ultimate
boundedness implies permanence of the solutions of biological models [60].
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4. Asymptotic Stability of Integral Manifolds

We will present the main asymptotic stability result for the integral manifoldM of
the model (2).

Theorem 6. If the conditions of Theorem 1 hold, and in addition:

(i) For the function W ∈ WM in (5) there exist functions σ : R+ → (0, ∞) and w3 ∈ K
such that

2µW(U, t) ≤ −σ(t)w3(D(U,M(x, t)), t 6= ti, U ∈ Θ, x ∈ Ω, (15)

(ii)
∫ ∞

0
σ(s)w3[w−1

2 (η)]ds = ∞ for each sufficiently small value of η > 0.

Then the integral manifold M of the impulsive epidemic model (2) is uniformly globally
asymptotically stable.

Proof. First, we will prove that the integral manifold M is uniformly stable. We will
again use the Lyapunov function W ∈WM defined by (5), for which the inequalities (13)
are satisfied.

Let ε > 0. Choose δ = δ(ε) > 0, δ < ε so that w2(δ) < w1(ε).
Let α > 0 be arbitrary, φ0 ∈ Sα(PC) ∩M0(x, ξ)(δ) and U(x, t) = U(x, t; φ0), U = (T, I, V)

be a solution of the initial value boundary problem (2), (3), (4) for x ∈ Ω and t ≥ 0.
From (13), (6), (10), and Corollary 1, it follows that for t ≥ 0 the following inequalities

are valid

w1(D(U(., t),M(x, t))) ≤W(U(., t), , t) ≤ sup
−τ≤ξ≤0

W(φ0(., ξ), 0)

≤ w2(D0(φ,M0(x, t))) < w2(δ) < w1(ε).

Hence, U(x, t; φ0) ∈ M(x, t)(ε) for x ∈ Ω and t ≥ 0. Thus, it is proved that the
integral manifoldM of system (2) is uniformly stable.

Second, since all conditions of Theorem 2 are satisfied, then the integral manifoldM
of model (2) is uniformlyM-bounded.

Finally, we will prove that for any η > 0 there exists a T = T (η, ε) > 0 such that
for any α > 0 and each φ0 ∈ Sα(PC) ∩M0(x, ξ)(η), we have U(x, t; φ0) ∈ M(x, t)(ε) for
x ∈ Ω, t ≥ T .

In view of condition (ii) of Theorem 6, we can choose the number T = T (η, ε) > 0
so that ∫ T

0
σ(s)w3

[
w−1

2

(
w1(ε)

2

)]
ds > w2(η). (16)

Also, from the choice of µ in Theorem 1, (7)–(9) and (15), we have that the inequalities

D+W(φ(., 0), t) ≤ 2µW(φ(., 0), t) ≤ −σ(t)w3

(
2
√

W(φ(., 0), t))
)

t 6= ti (17)

are valid whenever W(φ(., ξ), t + ξ) ≤W(φ(., 0), t), −τ ≤ ξ ≤ 0 for a function φ ∈ PC.
Assume that there exists t∗ ∈ [0, T ], such that

sup
t∗−τ≤t≤t∗

D(U(., t),M(x, t)) < w−1
2

(
w1(ε)

2

)
. (18)

If the above assumption is not true, then for any x ∈ Ω and any t ∈ [0, T ] the following
inequality

D(U(., t),M(x, t)) ≥ w−1
2

(
w1(ε)

2

)
(19)
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holds, and from (17), (6), (19), and (16), it follows that

W(U(., T ), T ) ≤ sup
−τ≤ξ≤0

W(φ0(., ξ), 0)−
∫ T

0
σ(s)w3

[
w−1

2

(
w1(ε)

2

)]
ds

< sup
−τ≤ξ≤0

W(φ0(., ξ), 0)− w2(η) < 0 (20)

which is a contradiction.
The above contradiction shows that our assumption (18) is true, and then for t ≥ t∗

(and for any t ≥ T as well) from the properties of the function W ∈WM, we have

w1(D(U,M(x, t)) ≤W(U, t) ≤ sup
t∗−τ≤t≤t∗

W(U, t)

≤ w2( sup
t∗−τ≤t≤t∗

D(U,M(x, t))) <
w1(ε)

2
< w1(ε).

Hence, U(x, t; φ0) ∈ M(x, t)(ε) for x ∈ Ω, t ≥ T , which proves the uniform global
asymptotic stability of the integral manifoldM of (2).

Remark 6. Theorem 6 offers sufficient conditions for uniform global asymptotic stability of the
integral manifoldM of (2). For P1i(T(x, t)) = P2i(I(x, t)) = P3i(V(x, t)) = 0, i = 1, 2, . . .
the impulsive model (2) is reduced to an epidemic model studied in [18]. In this case, when
M(x, t) = {E f = (T0, 0, 0)}, T0 = λ

d , x ∈ Ω, t ∈ R+, our stability results extend the results
in [18] for the global asymptotic stability of the disease-free equilibrium E f . The authors in [18] also
investigated the global asymptotic stability of an infected equilibrium E∗ = (T∗, I∗, V∗), which can
be obtained from Theorem 6 for P1i(T(x, t)) = P2i(I(x, t)) = P3i(V(x, t)) = 0, i = 1, 2, . . . and
M(x, t) = {E f = (T∗, I∗, V∗)} for x ∈ Ω, t ∈ R+, by relaxing the requirements for uniform
stability. For α1 = 0 the model (1) is reduced to the HBV model with diffusion and time delay that
has been investigated in [9]. Thus, our criteria extend and generalize some existent global asymptotic
stability results for the epidemic model (1) to the impulsive case, considering integral manifolds.

Remark 7. The impulsive controllers Pji, j = 1, 2, 3, i = 1, 2, . . . in model (2) are designed to
satisfy condition 3 of Theorem 1. The key idea motivating the work on this direction is to exploit
the impulsive control strategy to preserve the stability properties of the system (1). The explicit
structure imposed by the model (2) can help researchers to overcome a major difficulty in estimating
the model’s stability from experiments: the fact that only a small subset of data related to (T, I, V)
can be measured simultaneously. The established result can be used by epidemiologists to determine
the effects of unmeasured (T, I, V) and what kind of perturbations will help to stabilize the model.
Thus, our results offer an insight on the impulsive effects on the stability of the states.

Remark 8. The presented asymptotic stability result can also be applied as an impulsive syn-
chronization strategy to many epidemic models. An effective impulsive synchronization schemes
requires an appropriate choice of impulsive controllers to adjust the state of the response system
using synchronizing impulses at discrete instants such that the state of the response system ap-
proaches the state of the drive system. The proposed Theorem 6 result guarantees that the controlled
system (2) can be uniformly globally asymptotically synchronized onto the system (1) via the
impulsive controller.

5. Conclusions

In this paper, after considering an impulsive control approach to existing delayed
systems with reaction-diffusion terms applied in epidemiology, we introduce the concept of
integral manifolds to the model under consideration. New sufficient conditions for existence,
boundedness, permanence, and uniform global asymptotic stability of integral manifolds
related to the introduced model are established. The results are obtained by means of a
suitable generalization of the Lyapunov approach together with a Poincarè-type inequality.
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The proposed criteria generalize and extend some existing results on the dynamical properties
of reaction-diffusion epidemic and virus dynamic models [9,14–19,58–60] to the impulsive
case considering integral manifolds instead of single steady state. The presented results allow
for the application of an impulsive control therapeutic strategy to the considered epidemic
model. Additionally, the method of integral manifolds offers a flexible mechanism that is of
importance in the study of models in epidemiology, biology, population dynamics, ecology,
and neurosciences that have numerous equilibria. In addition, the proposed results in this
paper can be further developed. The main focus of our future research is the consideration
of models with distributed delays and non-instantaneous impulses based on this study.
Considering the case of anti-diffusion is also an important and interesting direction for
future investigations.
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63. Cheung, W.-S. Some new Poincarè-type inequalities. Bull. Austral. Math. Soc. 2001, 63, 321–327. [CrossRef]
64. Lai, X.; Yao, T. Exponential stability of impulsive delayed reaction-diffusion cellular neural networks via Poincarè integral
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