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Abstract: We constructed a collision model where measurements in the system, together with a
Bayesian decision rule, are used to classify the incoming ancillas as having either high or low
ergotropy (maximum extractable work). The former are allowed to leave, while the latter are
redirected for further processing, aimed at increasing their ergotropy further. The ancillas play the
role of a quantum battery, and the collision model, therefore, implements a Maxwell demon. To make
the process autonomous and with a well-defined limit cycle, the information collected by the demon
is reset after each collision by means of a cold heat bath.
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1. Introduction

Collision models, first studied in the seminal paper by Rau [1], have seen a revival
of interest in recent years [2–4]. They replace the complex system-bath dynamics by a
series of sequential collisions between a system of interest and a continuous stream of
small units, called ancillas. This not only makes the dynamics simpler but also more
controllable. For example, collisional models have proven to be crucial in developing the
basic laws of thermodynamics in the quantum regime [5–8] or to further our understanding
of non-Markovianity [9–28]. For a recent review, see [29].

A particularly nice feature of these models is that they allow for a clean implemen-
tation of autonomous processes: Ancillas arrive, undergo some physical process, and
then leave. Different implementations can be used to perform different tasks, which are
gauged by the changes in the ancilla’s state. Moreover, the process is allowed to continue
indefinitely, as long as new ancillas continue to arrive. Indeed, there have already been
several proposals that employ collision models, e.g., quantum heat engines [30–38] or
quantum thermometers [39–41].

In this paper, we discuss the implementation of an autonomous collision model engine
aimed at charging quantum batteries. Battery charging in the quantum domain is an active
field of study [42–49]. The present framework aims to produce a model in which this
charging occurs autonomously, for an arbitrary number of charging units, and in a way
that works for arbitrary initial battery states.

The input of the engine is a stream of ancillas, drawn randomly from some ensemble
of states. The thermodynamic “usefulness” of each ancilla will be characterized by its
ergotropy [50], which quantifies the maximum amount of work that can be extracted
from it by means of a unitary interaction. The goal of the engine is then to increase the
average ergotropy of the outgoing ancillas. This is accomplished by using information
extracted from measurements in the system, as depicted in Figure 1 (the ancillas are never
measured). This setup was inspired by Ref. [51], which studied the ergotropy that could be
extracted from quantum correlations between a system and a single ancilla. Furthermore,
it is opposite in spirit to, e.g., continuously monitored systems [52,53], where one uses
measurements in the ancillas to learn something about the system [54–57]; here we instead
use information about the system to learn about the ancillas.
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The present study is also closely related to Ref. [58], which studied the flows of
information through a Maxwell demon in a sequential collision scheme. In contrast, the
new feature of the present study is in the description of the actual decision process of the
demon. That is, while Ref. [58] is concerned with the overall flow of information, this does
not specify what are the optimal strategies the demon should adopt in order to act upon
that information since this is task-dependent. The present manuscript provides a concrete
example of tge said decision process, where the focus is on the ergotropy.

The measurement outcomes are used to classify the ancillas as having either high
or low ergotropy, which we model using Bayesian decision theory [59]. This, therefore,
implements a Maxwell demon [60], which autonomously decides what to do with each
ancilla. High ergotropy ancillas (defined according to some threshold) are allowed to leave,
while low ergotropy ones are flagged for further processing. That is, they are redirected to
go through another quantum channel aimed at increasing their ergotropy further (Figure 1).
In our case, we will model this in terms of an additional unitary pulse, but more general
quantum channels can also be used.

The system, in this case, plays the role of a memory. As is well known, the process of
acquiring information can, in principle, be done without any energetic cost. However, there
is a fundamental cost in erasing the information [61,62], given by Landauer’s principle [63].
We model this by assuming that the system is coupled to a cold heat bath that acts for
a finite time in between collisions. As we show, this is crucial for the engine to operate
autonomously.

S measurement

cold bath

interaction

unitary pulse

Figure 1. Autonomous collision model for enhancing the ergotropy in an ensemble of ancillas. A stream of ancillas, drawn
from random states, interact with a system S. Measurements in S are then used to distinguish whether the ancillas have
low or high ergotropy. This information is used by a (space invader) demon, operating under the paradigm of Bayesian
Decision Theory, to decide whether or not the ancillas should be further processed or not, with the goal of increasing their
ergotropy even further.

2. Basic Model

We consider a stream of ancillas, each prepared in a state |ψA〉 drawn from an ensemble
of d possible states {|ψi〉} (not necessarily orthogonal), with probability qi. Often, in the
collision model literature, one assumes that the ancillas are in mixed states. This is a natural
choice if one is interested in the steady-state properties of the system. However, here, for
the task at hand, it is much more natural to assume that the ancillas are in pure states.
Notwithstanding, all results below also hold for ensembles of mixed states. The notations
ψA = |ψA〉〈ψA| will be used whenever the ancilla state is pure.

The thermodynamic utility of each ancilla can be quantified by its ergotropy [50],
which, for a generic ancilla state ρA, is defined as

W(ρA) = tr(ρAHA)−min
V

tr(ρAV† HAV), (1)
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where HA is the ancilla Hamiltonian, and the minimization is over all unitaries V. When
the state is pure, this reduces to the more intuitive result

W(ψA) = 〈ψA|HA|ψA〉 − EA
gs, (2)

where EA
gs is the ground state of HA.

The stream of ancillas is first put to interact with a system S, one at a time, for a fixed
duration τSA, according to some Hamiltonian HSA. If the system is in ρS and the ancilla is
in ψA, this produces the map

ρSA|ψA
= e−iHSAτSA(ρS ⊗ ψA)eiHSAτSA . (3)

Immediately afterwards, the system is measured, which we describe by a set of Kraus
operators {Mx}, with m possible outcomes, x = 1, . . . , m, and satisfying ∑x M†

x Mx = 1.
The probability of outcome x, conditioned on the initial ancilla state, is

P(x|ψA) = tr
{
(M†

x Mx ⊗ IA)ρSA|ψA

}
, (4)

where IA is the identity acting on the ancilla. Moreover, if outcome x is observed, the
reduced state of SA should be updated to

ρSA|x,ψA
= (Mx ⊗ IA)ρSA|ψA

(M†
x ⊗ IA). (5)

From this, the reduced states of system and ancilla, ρS|x,ψA
and ρA|x,ψA

, can be obtained
by taking the partial trace.

In between collisions, the state of the system is allowed to relax in contact with a heat
bath, which we describe by a Lindblad master equation acting for a fixed time τSE. It is
assumed for simplicity that τSA � τSE so that, during the system-ancilla interaction, the
system is approximately uncoupled from the bath.

Based on the outcome x, a demon tries to classify whether an ancilla has a high or a
low ergotropyW (according to some model-specific threshold). The former can leave the
process, while the latter are redirected for additional processing, aimed at increasing their
ergotropy further. We describe this in terms of a unitary pulse O, so that the final state of
the ancilla will be

ρ′A =

ρA|x,ψA
high ergotropy in ψA,

OρA|x,ψA
O†, low ergotropy in ψA.

(6)

The meaning of low or high ergotropy is model specific and will be discussed further
below. The ultimate goal of the engine is thus to produce an ensemble with average
ergotropy higher than that of the initial ensemble {qi, |ψi〉}

Wraw = ∑
i

qiW(ψi), (7)

where the subscript “raw” will always refer to the ancillas before entering the engine.

3. Bayesian Risk Analysis

Before discussing an actual implementation, we must first discuss the type of rationale
that will be used by the demon in deciding whether the ergotropy is high or low. We do
this using the concept of Bayesian risk analysis, as a general tool for implementing the
decision process.

There are d possible preparations ψi, and m possible outcomes x, each pair associated
with a certain quantum state ρA|x,ψi

Equation (5). It is assumed that the demon knows the
possible set of states {ψi}, but does not know the current ancilla state, nor the probabilities
qi with which they were sampled (the latter restriction could be lifted without significantly
altering the problem). At each collision, all the demon knows is, therefore, the outcome x.



Entropy 2021, 23, 1627 4 of 10

Based on this, it may take one of a set of a actions αk, k = 1, . . . , a. Generally speaking, we
could associate each action with a quantum channel Ek, which will process the quantum
state of the ancilla further. For example, in the case of Equation (6), action α1 stands for
“do nothing,” while α2 stands for the unitary channel O •O†. However, more generally, all
kinds of channels can, in principle, be used.

In Bayesian risk analysis, we quantify each action by a certain gain, described by a
non-negative function λ(αk|x, ψi) determining how much is gained from using action αk
when the outcome is x and the state is ψi (one could equivalently frame the problem in
terms of risks, instead of gains). This set of functions determines the type of strategy the
demon will use, and different functions will lead to different engine performances. An
example could be the ergotropy (1) of Ek(ρAx ,ψi ); that is

λ(αk|x, ψi) =W
(
Ek(ρAx ,ψi )

)
(8)

However, as we will show below, in specific models, simpler functions can often
be employed.

For each outcome x, the demon’s decision will then be to choose the action αk, which
maximizes the Bayesian gain

G(αk|x) = ∑
i

λ(αk|x, ψi)P(ψi|x), (9)

where P(ψi|x) is the probability that the initial state was |ψi〉 given that the outcome in the
system was x. According to Bayes’s rule, this is further given by

P(ψi|x) =
P(x|ψi)P(ψi)

∑
i

P(x|ψi)P(ψi)
, (10)

where P(x|ψi) is the likelihood function, given in Equation (4), and P(ψi) is the prior
probability the demon associates to the ancilla being in |ψi〉.

If the demon does not know in advance how the ancillas are sampled, the priors P(ψi)
will, in general, differ from the qi. In fact, at the beginning of the process, a natural choice
of prior would be P(ψi) = 1/d. After each collision, however, the demon updates P(ψi) to
the posterior P(ψi|x), which can then be used as the prior for the next step. Under mild
conditions, it is expected that in the steady-state this should converge to the true sampling
probabilities qi.

We also mention that, in general, the state of the system is constantly changing. As a
consequence, when the above procedure is used sequentially, it may cause P(ψi|x) at the
n-th step to depend on the outcomes of all past collisions, thus making the process highly
non-Markovian. In fact, even in the limiting case of projective measurements, P(ψi|x)
would still depend on the previous outcome. This is directly associated with Benett’s
exorcism of Maxwell’s demon [61]: while there is no minimum cost to acquire information,
there is always a fundamental heat cost for erasing it (see also [62]). If the engine is to
operate autonomously, the memory (which is, in this case, the system) must be reset at each
step. In practice, the demon may continue to employ the same gain function (9), which
would happen when it is unaware of whether the system has been fully reset or not. The
only problem is that this may cause it to make wrong decisions. The better the memory is
reset, the more accurate the demon’s decision is.

4. Qubit–Qubit Model

We now consider a concrete implementation of this approach, where we assume that
the system and ancillas are all made of qubits. The ancilla Hamiltonian is taken to be
HA = −ωσA

z /2, where σz is a Pauli matrix. The ground-state is thus the computational
basis state |0〉; i.e., σz|0〉 = |0〉. The ergotropy (1) is then bounded betweenW ∈ [0, ω],
with the maximum being for the excited state |1〉.
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The system-ancilla interaction is taken as

HSA = gσS
y ⊗ σA

z . (11)

This is a typical pointer-basis type of measurement [64], with information on the ancilla’s
population being directly encoded in the system while at the same time causing the
coherence’s to dephase. The ergotropy (1) has contributions from both the populations and
coherences [65]. The interaction with the system will keep the former intact but disturb
the latter (measurement backaction). The goal, therefore, is to see if one can increase the
ergotropy from the populations while, at the same time, not excessively harming that from
the coherences.

The system is measured after each step in the eigenbasis |±〉 = (|0〉 ± |1〉)/
√

2 of the
σx operator. To understand why this is a good measurement strategy, suppose that the
system is initially prepared in ρS = |0〉〈0|, while the ancilla is in |ψA〉 = cos(θ/2)|0〉+
eiφ sin(θ/2)|1〉. Then Equation (4) will produce the likelihoods

P(x|ψA) =
1
2

[
1 + x sin(2gτSA) cos θ

]
. (12)

For θ ∈ [0, π/2] (northern hemisphere in Bloch’s sphere), the outcome x = +1 is more
likely, while for θ ∈ [π/2, π] (southern hemisphere) it is actually x = −1. However, the
ergotropy is directly related to the position in Bloch’s sphere, being low in the former and
high in the latter. This means that if x = +1 is observed, it is more likely that the ancilla
has a low ergotropy. A very simple Bayesian strategy is thus to take the gain of no action
(α1) as λ(α1|x, ψi) = 1 when x = −1, and zero otherwise; and similarly λ(α2|x, ψi) = 1
when x = 1, and zero otherwise.

When the ancilla is flagged, it is more likely to be in the northern hemisphere. In this
case, we can then apply an additional unitary pulse O = σA

x , which flips the ancilla’s state
to the southern hemisphere. Note that if the ergotropy is already high, this will generally
spoil it. That is to say, whenever the demon makes a mistake, it will actually be degrading
the ancilla’s ergotropy. However, since correct decisions are more likely, it will, on average,
increase it.

Finally, between measurements, the system is taken to interact with a zero temperature
heat bath for a time τSE, described by the master equation

dρS
dt

= −i[HS, ρS] + γD[σS
+]ρS, (13)

where γ is the coupling strength and D[L]ρ = LρL† − 1
2{L†L, ρ}. Moreover, we assume

HS = −ωSσS
z /2, with ωS is not necessarily resonant with the ancilla frequency ω.

5. Results

In what follows, the ancillas are all uniformly sampled from generic states |ψi〉 within
the Bloch sphere, using the appropriate Haar measure. We start by assuming that γτSE
is sufficiently large so that, after each step, the state of the system is fully reset back to
ρS = |0〉〈0|. Illustrative results are shown in Figure 2. The histogram in Figure 2a compares
the raw ergotropy with that obtained at the output of the engine for fixed gτSA = π/8. As
is evident, the engine charges the ancillas, leading to a final ensemble with clearly larger
ergotropy.

In Figure 2b, we show the average ergotropy as a function of gτSA, where it is evident
that stronger interactions lead to monotonic improvements in the charging process. This is
expected since higher gτSA implies more information is available to the demon to make the
decision. We also show, for comparison, the ergotropy that would be obtained if all ancillas
were to be processed by the engine, irrespective of the measurement outcomes (labeled
“engine”). In this case, the interaction with the system causes an overall degradation ofW .
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This happens because the interaction in Equation (11) dephases the ancillas. Hence, the
coherent part of the ergotropy tends to be lost (while the population part is unaffected).

Figure 2. Battery charging in a qubit–qubit collisional model. (a) Histogram of the ergotropies obtained from randomly
sampled ancilla states (red), as compared with the final ergotropies after they are passed through the engine. The data
was sampled from N = 104 simulations, with the system–ancilla interaction strength fixed at gτSA = π/8. (b) Average
ergotropy as a function of gτSA. Raw values (which are independent of gτSA) and processed values are shown in the same
color code as in (a). The points marked as “engine” refer to the ergotropy when all ancillas are passed through the engine,
irrespective of the outcome x.

Next, we investigate what happens when the state of the ancilla is not fully reset after
each step. Due to the projective nature of the measurement, after each collision, the system
will either be in |+〉 or in |−〉. The state, after a time γτSE, under the action of Equation (13),
will thus be

ρS|±(t) =

(
1− e−γτSE /2 ±e−γτSE/2+iωSτSE /2

±e−γτSE/2−iωSτSE /2 e−γτSE /2

)
, (14)

which are thus taken as the initial states of the next collision. Results for the average
ergotropy are shown in Figure 3. As can be seen, when γτSE is finite, the ergotropy is
gradually reduced. This happens because when the system is not properly erased, it affects
the demon’s ability to make proper decisions. In fact, if γτSE is very small, one can even
obtain an average ergotropy that is worse than that of a fully random ensemble.

Figure 3. The curve marked “finite reset” depicts the dependence of the average ergotropy on
the system relaxation time γτSE. The data was sampled from N = 104 simulations, with the
system–ancilla interaction strength fixed at gτSA = π/8. The other two curves, marked “raw” and
“processed,” are shown for comparison and are similar to those from Figure 2b.
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6. Energetics

We now discuss in further detail the energetics of the problem. A closely related
discussion can also be found in [66]. We divide the problem into three steps: interaction,
measurement, and conditional unitary pulse. For simplicity, we focus on full system resets
(γτSE → ∞). The interaction in Equation (11) does not affect the energy of the ancillas since
[HSA, HA] = 0. However, it does affect the energy of the system. The net change in energy
of system plus ancilla, in one collision, assuming the ancilla is in ψA, is thus given by

∆Ecol = tr
{
(ρS|ψA

− ρS)HS

}
. (15)

This change reflects the inherent work cost associated with the interaction HSA, known
as on/off work [5,56]. Notice, however, that this will depend on the Hamiltonian in the
system, which has a generic gap ωS (not necessarily resonant with the ancilla’s gap ω). The
on/off work can thus be made arbitrarily small by choosing ωS to be small. This means
that it is possible to operate the engine in a regime where the energy cost of the collision
is negligible.

Next, we turn to the effects of the measurement. We assume that the ancilla’s initial
state has the generic form |ψA〉 = cos(θ/2)|0〉+ eiφ sin(θ/2)|1〉. The average energy of the
ancillas after the measurement, given outcomes x = ±1, will then be

EA|x = −ω

2
cos θ + x sin(2gτSA)

1 + x cos θ sin(2gτSA)
. (16)

Averaging this over the probabilities from Equation (12) recovers the initial aver-
age energy 〈ψA|HA|ψA〉. Thus, up to this point, no work is performed in the ancillas
(on average).

The actual work comes from the controlled unitary pulse, which is applied only when
x = +1. This causes the energy of the ancillas to change to

ẼA|+1 = tr
{

σxρA|+1σx HA

}
= −EA|+1. (17)

The net work is therefore

W+ = ẼA|+1 − EA|+1 = ω
cos θ + sin(2gτSA)

1 + cos θ sin(2gτSA)
, (18)

in which W− = 0 when x = −1. The average work is thus

W = P(+1|ψA)W+ + P(−1|ψA)W− =
ω

2
(cos θ + sin(2gτSA)). (19)

Notice how work is still performed even if the system and ancilla do not interact
(gτSA = 0). This happens because, even though they do not interact, we assume that the
system is nonetheless still measured, thus yielding equally likely outcomes x = ±1. That is
to say, half of the time, the pulse is applied.

We now analyze this from the perspective of the ergotropy. The initial ergotropy
is W0 = ω sin2(θ/2). After the measurements (but before the pulse), the ergotropies
conditioned on each outcome are

Wx =W(ρA|x,ψA
) = ω sin2(θ/2)

1− x sin(2gτSA)

1 + x cos θ sin(2gτSA)
. (20)

Since the measurement does not perform any work, on average, we simply have
∑x P(x|ψA)Wx =W0 = ω sin2(θ/2), as it must be.
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When the pulse is performed, however, the ergotropy changes to

W̃+ = ω cos2(θ/2)
1 + sin(2gτSA)

1 + cos θ sin(2gτSA)
. (21)

The net change in ergotropy is, of course, the work injected

W̃+ −W+ = W+. (22)

The final average ergotropy is then

rClWprocessed = P(+1|ψA)W̃+ + P(−1|ψA)W−

=
ω

2

[
1 + sin(2gτSA)

]
. (23)

If gτSA, this reduces to ω/2, which is half the maximum value it may have. Thus,
if the machine is applied under no information about the ancillas whatsoever, it would
result in an average ergotropy of ω/2. Furthermore, if gτSA = π/4, the average ergotropy
achieves its maximum value ω. This, therefore, fully accounts for the behavior observed
in Figure 2.

7. Discussion

In this paper, we put forth the idea of an autonomous engine, which processes random
incoming ancillas with the goal of increasing their ergotropy. There are endless possible
variations of such an engine that one might construct. The goal of the present proposal
was to build a minimal engine where the basic effects could be made evident. In particular,
they are the following. First, the idea that, in reality, ancillas are usually sampled from an
ensemble of pure states. Collision models often assume that the ancillas arrive in mixed
states ρA, which could be viewed as the ensemble average. However, for the present
purposes, it is much more realistic to assume that in each collision, the state of the ancilla is
pure but not necessarily known. In fact, for the example in Figure 2, the ensemble average
would be simply the identity ρA = IA/2. Sampling over pure states, therefore, naturally
accounts for mixed states as well.

The second relevant aspect of this construction is the need for the state of the system
to be properly reset after each step, as it plays the role of a memory. If this is not done, the
ability of the demon in making a decision based on the measurement outcomes is severely
degraded, as Figure 3 illustrates very clearly.

Finally, the third relevant point is the energetic balance of the problem. This has long
been a major advantage of collisional models, as it enables for precise accounting of all
possible energy sources and sinks. The analysis in Section 6 showed how this can be used to
pinpoint, at the level of each possible measurement outcome, whether or not work is being
performed, and how this affects the ergotropy at each step. Of course, the process also
does not violate the second law of thermodynamics, provided one includes the information
about the demon within the entropic balance.
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3. Scarani, V.; Ziman, M.; Štelmachovič, P.; Gisin, N.; Bužek, V. Thermalizing Quantum Machines: Dissipation and Entanglement.

Phys. Rev. Lett. 2002, 88, 097905, [CrossRef] [PubMed]
4. Englert, B.G.; Morigi, G. Five Lectures On Dissipative Master Equations. In Coherent Evolution in Noisy Environments—Lecture

Notes in Physics; Buchleitner, A., Hornberger, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; p. 611,
5. De Chiara, G.; Landi, G.; Hewgill, A.; Reid, B.; Ferraro, A.; Roncaglia, A.J.; Antezza, M. Reconciliation of quantum local master

equations with thermodynamics. New J. Phys. 2018, 20, 113024, [CrossRef]
6. Landi, G.T.; Paternostro, M. Irreversible entropy production: From classical to quantum. Rev. Mod. Phys. 2021, 93, 035008,

[CrossRef]
7. Barra, F. The thermodynamic cost of driving quantum systems by their boundaries. Sci. Rep. 2015, 5, 14873. [CrossRef]
8. Strasberg, P.; Schaller, G.; Brandes, T.; Esposito, M. Quantum and Information Thermodynamics: A Unifying Framework based

on Repeated Interactions. Phys. Rev. X 2017, 7, 021003, [CrossRef]
9. Campbell, S.; Popovic, M.; Tamascielli, D.; Vacchini, B. Precursors Non-Markovianity. New J. Phys. 2019, 21, 053036.
10. Man, Z.X.; Xia, Y.J.; Lo Franco, R. Temperature effects on quantum non-Markovianity via collision models. Phys. Rev. A 2018,

97, 062104, [CrossRef]
11. Lorenzo, S.; Ciccarello, F.; Palma, G.M. Composite quantum collision models. Phys. Rev. A 2017, 96, 032107, [CrossRef]
12. Donvil, B.; Muratore-Ginanneschi, P. Interf. Quantum Trajectories arXiv 2021, arXiv:2102.10355.
13. Mascarenhas, E.; de Vega, I. Quantum critical probing and simulation of colored quantum noise. Phys. Rev. A 2017, 96, 062117,

[CrossRef]
14. McCloskey, R.; Paternostro, M. Non-Markovianity and system-environment correlations in a microscopic collision model. Phys.

Rev. A 2014, 89, 052120, [CrossRef]
15. Campbell, S.; Ciccarello, F.; Palma, G.M.; Vacchini, B. System-environment correlations and Markovian embedding of quantum

non-Markovian dynamics. Phys. Rev. A 2018, 98, 012142, [CrossRef]
16. Rybár, T.; Filippov, S.N.; Ziman, M.; Bužek, V. Simulation of indivisible qubit channels in collision models. J. Phys. At. Mol. Opt.

Phys. 2012, 45, 154006. [CrossRef]
17. Cilluffo, D.; Ciccarello, F. Quantum non-Markovian collision models from colored-noise baths. In Advances in Open Systems and

Fundamental Tests of Quantum Mechanics; Springer: Cham, Switzerland, 2019; pp. 29–40.
18. Ciccarello, F.; Palma, G.M.; Giovannetti, V. Collision-model-based approach to non-Markovian quantum dynamics. Phys. Rev. A

2013, 87, 040103, [CrossRef]
19. Bernardes, N.K.; Carvalho, A.R.; Monken, C.H.; Santos, M.F. Coarse graining a non-Markovian collisional model. Phys. Rev. A

2017, 95, 032117. [CrossRef]
20. Taranto, P.; Milz, S.; Pollock, F.A.; Modi, K. The Structure of Quantum Stochastic Processes with Finite Markov Order. Phys. Rev.

A 2019, 99, 042108. [CrossRef]
21. Filippov, S.N.; Piilo, J.; Maniscalco, S.; Ziman, M. Divisibility of quantum dynamical maps and collision models. Phys. Rev. A

2017, 96, 032111, [CrossRef]
22. Kretschmer, S.; Luoma, K.; Strunz, W.T. Collision model for non-Markovian quantum dynamics. Phys. Rev. A 2016, 94, 012106.

[CrossRef]
23. Jin, J.; Yu, C.S. Non-Markovianity in the collision model with environmental block. New J. Phys. 2018, 20, 053026. [CrossRef]
24. Ciccarello, F.; Giovannetti, V. A quantum non-Markovian collision model: Incoherent swap case. Phys. Scr. 2013, 87, 014010.

[CrossRef]
25. Bernardes, N.K.; Carvalho, A.R.; Monken, C.H.; Santos, M.F. Environmental correlations and Markovian to non-Markovian

transitions in collisional models. Phys. Rev. A 2014, 90, 032111. [CrossRef]
26. Çakmak, B.; Pezzutto, M.; Paternostro, M.; Müstecaplloglu, E. Non-Markovianity, coherence, and system-environment correla-

tions in a long-range collision model. Phys. Rev. A 2017, 96, 022109. [CrossRef]
27. Daryanoosh, S.; Baragiola, B.Q.; Guff, T.; Gilchrist, A. Quantum master equations for entangled qubit environments. Phys. Rev. A

2018, 98, 062104. [CrossRef]
28. De Chiara, G.; Antezza, M. Quantum machines powered by correlated baths. Phys. Rev. Res. 2020, 2, 033315. [CrossRef]
29. Ciccarello, F.; Lorenzo, S.; Giovannetti, V.; Palma, G.M. Quantum collision models : Open system dynamics from repeated

interactions. arXiv 2021, arXiv:2106.11974.
30. Quan, H.T.; Liu, Y.x.; Sun, C.P.; Nori, F. Quantum thermodynamic cycles and quantum heat engines. Phys. Rev. E 2007, 76, 031105.

[CrossRef]
31. Allahverdyan, A.E.; Hovhannisyan, K.; Mahler, G. Optimal refrigerator. Phys. Rev. E 2010, 81, 051129. [CrossRef]
32. Uzdin, R.; Kosloff, R. The multilevel four-stroke swap engine and its environment. New J. Phys. 2014, 16, 095003. [CrossRef]
33. Campisi, M. Fluctuation relation for quantum heat engines and refrigerators. J. Phys. A Math. Theor. 2014, 47, 245001. [CrossRef]
34. Campisi, M.; Pekola, J.P.; Fazio, R. Nonequilibrium fluctuations in quantum heat engines: Theory, example, and possible solid

state experiments. New J. Phys. 2015, 17, 035012. [CrossRef]

http://doi.org/10.1103/PhysRev.129.1880
http://dx.doi.org/10.1103/PhysRevA.65.042105
http://dx.doi.org/10.1103/PhysRevLett.88.097905
http://www.ncbi.nlm.nih.gov/pubmed/11864058
http://dx.doi.org/10.1088/1367-2630/aaecee
http://dx.doi.org/10.1103/RevModPhys.93.035008
http://dx.doi.org/10.1038/srep14873
http://dx.doi.org/10.1103/PhysRevX.7.021003
http://dx.doi.org/10.1103/PhysRevA.97.062104
http://dx.doi.org/10.1103/PhysRevA.96.032107
http://dx.doi.org/10.1103/PhysRevA.96.062117
http://dx.doi.org/10.1103/PhysRevA.89.052120
http://dx.doi.org/10.1103/PhysRevA.98.012142
http://dx.doi.org/10.1088/0953-4075/45/15/154006
http://dx.doi.org/10.1103/PhysRevA.87.040103
http://dx.doi.org/10.1103/PhysRevA.95.032117
http://dx.doi.org/10.1103/PhysRevA.99.042108
http://dx.doi.org/10.1103/PhysRevA.96.032111
http://dx.doi.org/10.1103/PhysRevA.94.012106
http://dx.doi.org/10.1088/1367-2630/aac0cb
http://dx.doi.org/10.1088/0031-8949/2013/T153/014010
http://dx.doi.org/10.1103/PhysRevA.90.032111
http://dx.doi.org/10.1103/PhysRevA.96.022109
http://dx.doi.org/10.1103/PhysRevA.98.062104
http://dx.doi.org/10.1103/PhysRevResearch.2.033315
http://dx.doi.org/10.1103/PhysRevE.76.031105
http://dx.doi.org/10.1103/PhysRevE.81.051129
http://dx.doi.org/10.1088/1367-2630/16/9/095003
http://dx.doi.org/10.1088/1751-8113/47/24/245001
http://dx.doi.org/10.1088/1367-2630/17/3/035012


Entropy 2021, 23, 1627 10 of 10

35. Denzler, T.; Lutz, E. Efficiency fluctuations of a quantum heat engine. Phys. Rev. Res. 2020, 2, 032062. [CrossRef]
36. Pezzutto, M.; Paternostro, M.; Omar, Y. An out-of-equilibrium non-Markovian Quantum Heat Engine. Quantum Sci. Technol.

2019, 4, 025002. [CrossRef]
37. Mohammady, M.H.; Romito, A. Efficiency of a cyclic quantum heat engine with finite-size baths. Phys. Rev. E 2019, 100, 012122.

[CrossRef] [PubMed]
38. Molitor, O.A.D.; Landi, G.T. Stroboscopic two-stroke quantum heat engines. Phys. Rev. A 2020, 102, 2020. [CrossRef]
39. Seah, S.; Nimmrichter, S.; Grimmer, D.; Santos, J.P.; Shu, A.; Scarani, V.; Landi, G.T. Collisional quantum thermometry. Phys. Rev.

Lett. 2019, 123, 180602. [CrossRef] [PubMed]
40. Shu, A.; Seah, S.; Scarani, V. Surpassing the thermal Cramér-Rao bound with collisional thermometry. Phys. Rev. A 2020,

102, 042417. [CrossRef]
41. Alves, G.O.; Landi, G.T. Bayesian estimation for collisional thermometry. arXiv 2021, arXiv:2106.12072.
42. Skrzypczyk, P.; Short, A.J.; Popescu, S. Extracting work from quantum systems. arXiv 2013, arXiv:1302.2811.
43. Campaioli, F.; Pollock, F.A.; Binder, F.C.; Céleri, L.; Goold, J.; Vinjanampathy, S.; Modi, K. Enhancing the Charging Power of

Quantum Batteries. Phys. Rev. Lett. 2017, 118, 150601. [CrossRef] [PubMed]
44. Teo, C.; Bissbort, U.; Poletti, D. Converting heat into directed transport on a tilted lattice. Phys. Rev. E 2017, 95, 030102. [CrossRef]

[PubMed]
45. Andolina, G.M.; Keck, M.; Mari, A.; Campisi, M.; Giovannetti, V.; Polini, M. Extractable Work, the Role of Correlations, and

Asymptotic Freedom in Quantum Batteries. Phys. Rev. Lett. 2019, 122, 047702. [CrossRef] [PubMed]
46. Mitchison, M.T.; Goold, J.; Prior, J. Charging a quantum battery with linear feedback control. Quantum 2021, 5, 500. [CrossRef]
47. Andolina, G.M.; Farina, D.; Mari, A.; Pellegrini, V.; Giovannetti, V.; Polini, M. Charger-mediated energy transfer in exactly

solvable models for quantum batteries. Phys. Rev. B 2018, 98, 205423. [CrossRef]
48. Ferraro, D.; Campisi, M.; Andolina, G.M.; Pellegrini, V.; Polini, M. High-Power Collective Charging of a Solid-State Quantum

Battery. Phys. Rev. Lett. 2018, 120, 117702. [CrossRef]
49. Rossini, D.; Andolina, G.M.; Rosa, D.; Carrega, M.; Polini, M. Quantum Advantage in the Charging Process of Sachdev-Ye-Kitaev

Batteries. Phys. Rev. Lett. 2020, 125, 236402. [CrossRef] [PubMed]
50. Allahverdyan, A.E.; Balian, R.; Nieuwenhuizen, T.M. Maximal work extraction from finite quantum systems. Europhys. Lett.

2004, 67, 565–571. [CrossRef].
51. Francica, G.; Goold, J.; Plastina, F.; Paternostro, M. Daemonic ergotropy: Enhanced work extraction from quantum correlations.

NPJ Quantum Inf. 2017, 3, 12. [CrossRef]
52. Wiseman, H.M.; Milburn, G.J. Quantum Measurement and Control; Cambridge University Press: New York, NY, USA, 2009.
53. Jacobs, K. Quantum Measurement Theory and Its Applications; Cambridge University Press: Cambridge, UK, 2014.
54. Gross, J.A.; Caves, C.M.; Milburn, G.J.; Combes, J. Qubit models of weak continuous measurements: Markovian conditional and

open-system dynamics. Quantum Sci. Technol. 2018, 3, 024005. [CrossRef]
55. Rossi, M.; Mancino, L.; Landi, G.T.; Paternostro, M.; Schliesser, A.; Belenchia, A. Experimental assessment of entropy production

in a continuously measured mechanical resonator. Phys. Rev. Lett. 2020, 125, 080601. [CrossRef] [PubMed]
56. Landi, G.T.; Paternostro, M.; Belenchia, A. Informational steady-states and conditional entropy production in continuously

monitored systems. arXiv 2021, arXiv:2103.06247.
57. Belenchia, A.; Mancino, L.; Landi, G.T.; Paternostro, M. Entropy production in continuously measured Gaussian quantum

systems. NPJ Quantum Inf. 2020, 6, 97. [CrossRef]
58. Deffner, S. Information-driven current in a quantum Maxwell demon. Phys. Rev. E 2013, 88, 062128. [CrossRef]
59. Duda, R.O.; Hart, P.E.; Stork, D.G. Pattern Classification, 2nd ed.; Wiley: New York, NY, USA, 2001; p. 688.
60. Maxwell, J.C. The Theory of Heat; Longmans, Green, and Company: New York, NY, USA, 1888; p. 400.
61. Bennett, C.H. Logical Reversibility of Computation. IBM J. Res. Dev. 1973, 17, 525–532. [CrossRef]
62. Plenio, M.B.; Vitelli, V. The physics of forgetting: Landauer’s erasure principle and information theory. Contemp. Phys. 2001,

42, 25–60. [CrossRef]
63. Landauer, R. Irreversibility and Heat Generation in the Computational Process. IBM J. Res. Dev. 1961, 5, 183–191. [CrossRef]
64. Zurek, W.H. Pointer basis of the quantum apparatus, Into what mixture does the wave packet collapse? Phys. Rev. D 1981,

24, 1516. [CrossRef]
65. Francica, G.; Binder, F.C.; Guarnieri, G.; Mitchison, M.T.; Goold, J.; Plastina, F. Quantum Coherence and Ergotropy. Phys. Rev.

Lett. 2020, 125, 180603. [CrossRef]
66. Barra, F. Dissipative Charging of a Quantum Battery. Phys. Rev. Lett. 2019, 122, 210601. [CrossRef]

http://dx.doi.org/10.1103/PhysRevResearch.2.032062
http://dx.doi.org/10.1088/2058-9565/aaf5b4
http://dx.doi.org/10.1103/PhysRevE.100.012122
http://www.ncbi.nlm.nih.gov/pubmed/31499920
http://dx.doi.org/10.1103/PhysRevA.102.042217
http://dx.doi.org/10.1103/PhysRevLett.123.180602
http://www.ncbi.nlm.nih.gov/pubmed/31763916
http://dx.doi.org/10.1103/PhysRevA.102.042417
http://dx.doi.org/10.1103/PhysRevLett.118.150601
http://www.ncbi.nlm.nih.gov/pubmed/28452497
http://dx.doi.org/10.1103/PhysRevE.95.030102
http://www.ncbi.nlm.nih.gov/pubmed/28415245
http://dx.doi.org/10.1103/PhysRevLett.122.047702
http://www.ncbi.nlm.nih.gov/pubmed/30768349
http://dx.doi.org/10.22331/q-2021-07-13-500
http://dx.doi.org/10.1103/PhysRevB.98.205423
http://dx.doi.org/10.1103/PhysRevLett.120.117702
http://dx.doi.org/10.1103/PhysRevLett.125.236402
http://www.ncbi.nlm.nih.gov/pubmed/33337187
http://dx.doi.org/10.1209/epl/i2004-10101-2
http://dx.doi.org/10.1038/s41534-017-0012-8
http://dx.doi.org/10.1088/2058-9565/aaa39f
http://dx.doi.org/10.1103/PhysRevLett.125.080601
http://www.ncbi.nlm.nih.gov/pubmed/32909766
http://dx.doi.org/10.1038/s41534-020-00334-6
http://dx.doi.org/10.1103/PhysRevE.88.062128
http://dx.doi.org/10.1147/rd.176.0525
http://dx.doi.org/10.1080/00107510010018916
http://dx.doi.org/10.1147/rd.53.0183
http://dx.doi.org/10.1103/PhysRevD.24.1516
http://dx.doi.org/10.1103/PhysRevLett.125.180603
http://dx.doi.org/10.1103/PhysRevLett.122.210601

	Introduction
	Basic Model
	Bayesian Risk Analysis
	Qubit–Qubit Model
	Results
	Energetics
	Discussion
	References

