
entropy

Article

Efficient Proximal Gradient Algorithms for Joint
Graphical Lasso

Jie Chen * , Ryosuke Shimmura and Joe Suzuki

����������
�������

Citation: Chen, J.; Shimmura, R.;

Suzuki, J. Efficient Proximal Gradient

Algorithms for Joint Graphical Lasso.

Entropy 2021, 23, 1623. https://

doi.org/10.3390/e23121623

Academic Editor: Mohamed Medhat

Gaber

Received: 4 November 2021

Accepted: 27 November 2021

Published: 2 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Graduate School of Engineering Science, Osaka University, Osaka 560-0043, Japan;
shimmura@sigmath.es.osaka-u.ac.jp (R.S.); j-suzuki@sigmath.es.osaka-u.ac.jp (J.S.)
* Correspondence: chen@sigmath.es.osaka-u.ac.jp

Abstract: We consider learning as an undirected graphical model from sparse data. While several
efficient algorithms have been proposed for graphical lasso (GL), the alternating direction method of
multipliers (ADMM) is the main approach taken concerning joint graphical lasso (JGL). We propose
proximal gradient procedures with and without a backtracking option for the JGL. These procedures
are first-order methods and relatively simple, and the subproblems are solved efficiently in closed
form. We further show the boundedness for the solution of the JGL problem and the iterates in the
algorithms. The numerical results indicate that the proposed algorithms can achieve high accuracy
and precision, and their efficiency is competitive with state-of-the-art algorithms.

Keywords: Gaussian graphical model; joint graphical lasso; proximal gradient descent method

1. Introduction

Graphical models are widely used to describe the relationships among interacting
objects [1]. Such models have been extensively used in various domains, such as bioinfor-
matics, text mining, and social networks. The graph provides a visual way to understand
the joint distribution of an entire set of variables.

In this paper, we consider learning Gaussian graphical models that are expressed
by undirected graphs, which represent the relationship among continuous variables that
follow a joint Gaussian distribution. In an undirected graph, G = (V, E), and edge set E
represents the conditional dependencies among the variables in vertex set V.

Let X1, . . . , Xp (p ≥ 1) be Gaussian variables with covariance matrix Σ ∈ Rp×p,
and Θ := Σ−1 be the precision matrix, if it exists. We remove the edges so that the variables
Xi, Xj are conditionally independent given the other variables if and only if the (i, j)-th
element θi,j in Θ is 0:

{i, j} 6∈ E ⇐⇒ θi,j = 0 ⇐⇒ Xi ⊥⊥ Xj|XV\{i,j},

where each edge is expressed as a set of two elements in {1, . . . , p}. In this sense, construct-
ing a Gaussian graphical model is equivalent to estimating a precision matrix.

Suppose that we estimate the undirected graph from data consisting of n tuples of
p variables and that dimension p is much higher than sample size n. For example, if we
have expression data of p = 20, 000 genes for n = 100 case/control patients, how can we
construct a gene regulatory network structure from the data? It is almost impossible to
estimate the locations of the nonzero elements in Θ by obtaining the inverse of sample
covariance matrix S ∈ Rp×p, which is the unbiased estimator of Σ. In fact, if p > n, then no
inverse S−1 exists because the rank of S ∈ Rp×p is, at most, n.

In order to address this situation, two directions are suggested:

1. Sequentially find the variables on which each variable depends via regression so that
the quasilikelihood is maximized [2].

Entropy 2021, 23, 1623. https://doi.org/10.3390/e23121623 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-4036-2829
https://orcid.org/0000-0002-3195-9922
https://doi.org/10.3390/e23121623
https://doi.org/10.3390/e23121623
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23121623
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23121623?type=check_update&version=1

Entropy 2021, 23, 1623 2 of 24

2. Find the locations in Θ, the values of which are zeros, so that the `1 regularized
log-likelihood is maximized [3–6].

We follow the second approach because we assume Gaussian variables, also known
as graphical lasso (GL). The `1 regularized log-likelihood is defined by:

maximize
Θ

{log det Θ− trace(SΘ)− λ||Θ||1}, (1)

where tuning parameter λ controls the amount of sparsity, and ||Θ||1 denotes the sum of the
absolute value of the off-diagonal elements in Θ. Several optimization techniques [4,7–12] have
been studied for the optimization problem of (1).

In particular, we consider a generalized version of the abovementioned GL. For
example, suppose that the gene regulatory networks of thirty case and seventy control
patients are different. One might construct a gene regulatory network separately for each
of the two categories. However, estimating each on its own does not provide an advantage
if a common structure is shared. Instead, we use 100 samples to construct two networks
simultaneously. Intuitively speaking, using both types of data improves the reliability
of the estimation by increasing the sample size for the genes that show similar values
between case and control patients, while using only one type of data leads to a more
accurate estimate for genes that show significantly different values. Ref. [13] proposed
a joint graphical lasso (JGL) model by including an additional convex penalty (fused or
group lasso penalty) to the graphical lasso objective function for K classes. For example, K
is equal to two for the case/control patients in the example. JGL includes fused graphical
lasso with fused lasso penalty, which encourages sparsity and the similarity of the value
of edges across K classes, and group graphical lasso with group lasso penalty, which
promotes similar sparsity structure across K graphs. Although there are several approaches
to handling the multiple graphical models, such as those of [14–17], the JGL is considered
the most promising.

The main topic of this paper is efficiency improvement in terms of solving the JGL
problem. For the GL, relatively efficient solving procedures exist. If we differentiate the
`1 regularized log-likelihood (1) by Θ, then we have an equation to solve [4]. Moreover,
several improvements have been considered for the GL, such as proximal Newton [12]
and proximal gradient [10] procedures. However, for the JGL, even if we derive such an
equation, we have no efficient way of handling it.

Instead, the alternating direction method of multipliers (ADMM) [18], which is a
procedure for solving convex optimization problems for general purposes, has been the
main approach taken [13,19–21]. However, ADMM does not scale well concerning the
feature dimension p and number of classes K. It usually takes time to converge to a
high-accuracy solution [22].

For efficient procedures to solve the JGL problem, ref. [23] proposed a method based
on the proximal Newton method only when the penalty term is expressed by fused lasso.
The existing method requires expensive computations for the Hessian matrix and Newton
directions, which means that it would be expensive to use for high-dimensional problems.

In this paper, we propose efficient proximal-gradient-based algorithms to solve the
JGL problem by extending the procedure in [10] and employing the step-size selection
strategy proposed in [24]. Moreover, we provide the theoretical analysis of both methods
for the JGL problem.

In our proximal gradient methods for the JGL problem, the proximal operator in each
iteration is quite simple, which eases the implementation process and requires very little
computation and memory at each step. Simulation experiments are used to justify our
proposed methods over the existing ones.

Our main contributions are as follows:

• We propose efficient algorithms based on the proximal gradient method to solve
the JGL problem. The algorithms are first-order methods and quite simple, and the
subproblems can be solved efficiently with a closed-form solution. The numerical

Entropy 2021, 23, 1623 3 of 24

results indicate that the methods can achieve high accuracy and precision, and the
computational time is competitive with state-of-art algorithms.

• We provide the boundedness for the solution to the JGL problem and the iterates
in algorithms, which is related to the convergence rate of the algorithms. With the
boundedness, we can guarantee that our proposed method converges linearly.

Table 1 summarizes the relationship between the proposed and existing methods.

Table 1. Efficient JGL procedures.

Model ADMM Proximal Newton Proximal Gradient

GL [4] [8] [12] [10]

JGL [13] [13] [23] Current Paper
(for fused penalty) (for fused and group penalties)

The remaining parts of this paper are as follows. In Section 2, we first provide the
background of our proposed methods and introduce the joint graphical lasso problem.
In Section 3, we illustrate the detailed content of the proposed algorithms and provide
a theoretical analysis. In Section 4, we report some numerical results of the proposed
approaches, including comparisons with efficient methods and performance evaluations.
Finally, we draw some conclusions in Section 5.

Notation: In this paper, ||x||p denotes the `p norm of a vector x ∈ Rd, ||x||p :=

(∑d
i=1 |xi|p)

1
p for p ∈ [1, ∞), and ||x||∞ := maxi |xi|. For a matrix X ∈ Rp×q, ||X||F denotes

the Frobenius norm, ||X||2 denotes the spectral norm, ||X||∞ := maxi,j |xi,j|, and ||X||1 :=
∑

p
i=1 ∑

q
j=1 |xi,j| if not specified. The inner product is defined by 〈X, X〉 := trace(XTX).

2. Preliminaries

This section first reviews the graphical lasso (GL) problem and introduces the graphical
iterative shrinkage-thresholding algorithm (G-ISTA) [10] to solve it. Then, we introduce the
step-size selection strategy that we apply to the joint graphical lasso (JGL) in Section 3.2.

2.1. Graphical Lasso

Let x1, . . . , xn ∈ Rp be n ≥ 1 observations of dimension p ≥ 1 that follow the
Gaussian distribution with mean µ ∈ Rp and covariance matrix Σ ∈ Rp×p, where without
loss of generality, we assume µ = 0. Let Θ := Σ−1, and the empirical covariance matrix
S := 1

n ∑n
i=1 xT

i xi. Given penalty parameter λ > 0, the graphical lasso (GL) is the procedure
to find the positive definite Θ ∈ Rp×p such that:

minimize
Θ

{− log det Θ + trace(SΘ) + λ‖Θ‖1 }, (2)

where ||Θ||1 = ∑j 6=k |θj,k|. If we regard V := {1, . . . , p} as a vertex set, then we can
construct an undirected graph with edge set {{j, k}|θj,k 6= 0}, where set {j, k} denotes an
undirected edge that connects the nodes j, k ∈ V.

If we take the subgradient of (2), then we find that the optimal solution Θ∗ satisfies
the condition:

−Θ−1
∗ + S + λΦ 3 0, (3)

where Φ = (Φj,k) is

Φj,k =

1, θ∗j,k > 0
[−1, 1], θ∗j,k = 0
−1, θ∗j,k < 0

.

Entropy 2021, 23, 1623 4 of 24

2.2. ISTA for Graphical Lasso

In this subsection, we introduce the method for solving the GL problem (2) by the
iterative shrinkage-thresholding algorithm (ISTA) proposed by [10], which is a proximal
gradient method usually employed in dealing with nondifferentiable composite optimiza-
tion problems.

Specifically, the general ISTA solves the following composite optimization problem:

minimize
x

F(x) := f (x) + g(x), (4)

where f and g are convex, with f differentiable and g possibly being nondifferentiable.
For the GL problem (2), we denote f , g : Rp×p → R as

f (Θ) := − log det Θ + trace(SΘ),

and

g(Θ) := λ‖Θ‖1.

If we define the quadratic approximation Qη : Rp×p × Rp×p → R w.r.t. f (Θ) and
η > 0 by

Qη(Θ
′, Θ) := f (Θ) + 〈Θ′ −Θ,∇ f (Θ)〉+ 1

2η
||Θ′ −Θ||2F, (5)

then we can describe the ISTA as a procedure that iterates

Θt+1 = arg min
Θ
{Qηt(Θ, Θt) + g(Θ)} (6)

= proxηtg(Θt − ηt∇ f (Θt)), (7)

given initial value Θ0, where the value of step size ηt > 0 may change at each iteration
t = 1, 2, . . . , for efficient convergence purpose, and we use the proximal operator:

proxg(z) := arg min
θ
{1

2
‖z− θ‖2

2 + g(θ)}. (8)

Note that the proximal operator of function g = λ||Θ||1 is the soft-thresholding
operator: the absolute value |θi,j| of each off-diagonal element θi,j with i 6= j becoming
either θi,j − sgn(θi,j)λ or zero (if |θi,j| < λ). We use the following function for the operator
in Section 3:

[Sλ(Θ)]i,j = sgn(θi,j)(|θi,j| − λ)+ (9)

where (x)+ := max(x, 0).

Definition 1. A differentiable function f : Rn×p → R is said to have a Lipschitz-continuous
gradient if there exists L > 0 (Lipschitz constant) such that

||∇ f (X)−∇ f (Y)||F ≤ L||X − Y ||F, ∀X, Y ∈ Rn×p. (10)

It is known that if we choose ηt =
1
L for each step in the ISTA that minimizes F(·) ,

then the convergence rate is, at most, as follows [25]:

F(Θt)− F(Θ∗) = O(
1
t
) (11)

However, for the GL problem (2), we know neither the exact value of the Lipschitz
constant L nor any nontrivial upper bound. [10] implement a backtracking line search
option in Step 1 of Algorithm 1 below to handle this issue.

Entropy 2021, 23, 1623 5 of 24

The backtracking line search enables us to compute the ηt value for each time
t = 1, 2, . . . by repeatedly multiplying ηt by a constant c ∈ (0, 1) until Θt+1 � 0 (Θ is
positive definite) and

f (Θt+1) ≤ Qηt(Θt+1, Θt), (12)

for the Θt+1 in (7). Additionally, (12) is a sufficient condition for (11), which was derived
in [25] (see the relationship between Lemma 2.3 and Theorem 3.1 in [25]).

The whole procedure is given in Algorithm 1.

Algorithm 1 G-ISTA for problem (2).
Input: S, tolerance ε > 0, backtracking constant 0 < c < 1, initial value η0, Θ0, t = 0.
While t < tmax (until convergence) do

1: Backtracking line search: Continue to multiply ηt by c until

Θt+1 � 0 and f (Θt+1) ≤ Qηt(Θt+1, Θt)

for Θt+1 := proxηtg(Θt − ηt∇ f (Θt)).
2: Update iterate: Θt+1 ← proxηtg(Θt − ηt∇ f (Θt)).
3: Set next initial step size ηt+1 by the Barzilai—Borwein method.
4: t← t + 1

end
Output: ε-optimal solution to problem (2), Θ∗ = Θt+1.

2.3. Composite Self-Concordant Minimization

The notion of the self-concordant function was proposed in [26–28]. In the following,
we say a convex function f is self-concordant with parameter M ≥ 0 if

| f ′′′(x)| ≤ M f ′′(x)3/2, for all x ∈ dom f .

where dom f is the domain of f .
Reference [24] considered a composite version of self-concordant function minimiza-

tion and provided a way to efficiently calculate the step size for the proximal gradient
method for the GL problem without relying on the Lipschitz gradient assumption in (10).
They proved that

f (Θ) := − log det Θ + trace(SΘ)

in (2) is self-concordant and considers the following minimization:

F∗ := minimize
x

{F(x) := f (x) + g(x)},

where f is convex, differentiable, and self-concordant, and g is convex and possibly non-
differentiable. As for Algorithm 1, without using the backtracking line search, we can
compute direction dt with initial step size ηt as follows:

dt := proxηtg(Θt − ηt∇ f (Θt))−Θt, (13)

where the operator prox is defined by (8). Then, we use the modified step size αt to
update Θt+1 := Θt + αtdt, which can be determined by the direction dt. After defining
two parameters related to the direction: βt := η−1

t ||dt||2F and λt :=
(
〈∇2 f (Θt)dt, dt〉

)1/2,
the modified step size can be obtained by

αt :=
βt

λt(λt + βt)
. (14)

By Lemma 12 in [24], if the modified step size αt ∈ (0, 1], then it can ensure a decrease
in the objective function and guarantee convergence in the proximal gradient scheme.

Entropy 2021, 23, 1623 6 of 24

From (14), if λt ≥ 1, then the condition αt ∈ (0, 1] is satisfied. Therefore, we only need to
check the case when λt < 1. If the condition αt ∈ (0, 1] does not hold, we can change the
value of the initial ηt (such as the bisection method) to influence the value of dt in (13) until
the condition is satisfied.

2.4. Joint Graphical Lasso

Let N ≥ 1, p ≥ 1, K ≥ 2, and (x1, y1), . . . , (xN , yN) ∈ Rp × {1, . . . , K}, where each xi
is a row vector. Let nk be the number of occurrences in y1, . . . , yN such that yi = k, so that
∑K

k=1 nk = N.
For each k = 1, . . . , K, we define the empirical covariance matrix S(k) ∈ Rp×p of the

data xi as follows:

S(k) :=
1
nk

∑
i:yi=k

xT
i xi.

Given the penalty parameters λ1 > 0 and λ2 > 0, the joint graphical lasso (JGL) is the
procedure to find the positive definite matrix Θ(k) ∈ Rp×p for k = 1, . . . , K, such that:

minimize
Θ

{
−

K

∑
k=1

nk{log det Θ(k) − trace(S(k)Θ(k))}+ λ1

K

∑
k=1

∑
i 6=j
|θk,i,j|+ P(Θ)

}
, (15)

where P(Θ) penalizes Θ := [Θ(1), . . . , Θ(K)]T . For example, ref. [13] suggested the follow-
ing fused and group lasso penalties:

PF(Θ) := λ2 ∑
k<l

∑
i,j
|θk,i,j − θl,i,j|

and

PG(Θ) := λ2 ∑
i 6=j

{
K

∑
k=1

θ2
k,i,j

}1/2

,

where θk,i,j is the (i, j)-th element of Θ(k) ∈ Rp×p for k = 1, . . . , K.
Unfortunately, there is no equation like (3) for the JGL to find the optimum Θ∗. [13]

considered the ADMM to solve the JGL problem. However, ADMM is quite time consum-
ing for large-scale problems.

3. The Proposed Methods

In this section, we propose two efficient algorithms for solving the JGL problem. One
is an extended ISTA based on the G-ISTA in Section 2.2, and the other is based on the
step-size selection strategy introduced in Section 2.3.

3.1. ISTA for the JGL Problem

To describe the JGL problem, we define f , g : RK×p×p → R by

f (Θ) := −
K

∑
k=1

nk

{
log det Θ(k) − trace(S(k)Θ(k))

}
, (16)

g(Θ) := λ1

K

∑
k=1

∑
i 6=j
|θk,i,j|+ P(Θ). (17)

Then, the problem (15) reduces to:

minimize
Θ

F(Θ) := f (Θ) + g(Θ) ,

Entropy 2021, 23, 1623 7 of 24

where the function f is convex and differentiable, and g is convex and nondifferentiable.
Therefore, the ISTA is available for solving the JGL problem (15).

The main difference between the G-ISTA and the proposed method is that the latter
needs to simultaneously consider K categories of graphical models in the JGL problem (15).
What is more, there are two combined penalties in g(Θ), which complicate the proximal
operator in the ISTA procedure. Consequently, the operator for the proposed method is not
a simple soft thresholding operator, as it is for the G-ISTA method.

If we define the quadratic approximation Qηt : RK×p×p → R of f (Θt) by:

Qηt(Θ, Θt) := f (Θt) +
K

∑
k=1

〈
Θ(k) −Θ

(k)
t ,∇ f (Θ(k)

t)
〉
+

1
2ηt

K

∑
k=1
||Θ(k) −Θ

(k)
t ||

2
F,

then the update iteration is simplified as:

Θt+1 = argmin
Θ

{
Qηt(Θ, Θt) + g(Θ)

}
= proxηtg(Θt − ηt∇ f (Θt)).

Nevertheless, the Lipschitz gradient constant of f (Θ) is unknown over the whole
domain in the JGL problem. Therefore, our approach needs a backtracking line search to
calculate step size ηt. We show the details in Algorithm 2.

Algorithm 2 ISTA for problem (15).
Input: S, tolerance ε > 0, backtracking constant 0 < c < 1, initial step size η0, initial
iterate Θ0.
For t = 0, 1, · · · , (until convergence) do

1: Backtracking line search: Continue to multiply ηt by c until

f (Θt+1) ≤ Qηt(Θt+1, Θt) and Θ
(k)
t+1 � 0 for k = 1, · · · , K.

for Θt+1 := proxηtg(Θt − ηt∇ f (Θt)).
2: Update iterate: Θt+1 ← proxηtg(Θt − ηt∇ f (Θt)).
3: Set next initial step size ηt+1. See details in Section 3.3.

end
Output: optimal solution to problem (15), Θ∗ = Θt+1.

In the update of Θt+1, we need to compute the proximal operators for the fused and
group lasso penalties. In the following, for each of them, the problem can be divided into
the fused lasso problems [29] and group lasso problems [30,31] for θi,j ∈ RK, i, j = 1, . . . , p.
We apply the solutions given by (20) and (21) below.

3.1.1. Fused Lasso Penalty PF

By the definition of the proximal operator in the update step, we have:

Θt+1 = arg min
Θ

{
1
2

K

∑
k=1
||Θ(k) −Θ

(k)
t + ηt∇ f (Θ(k)

t)||2F + ηtλ1

K

∑
k=1

∑
i 6=j
|θk,i,j|

+ηtλ2 ∑
k<l

∑
i,j
|θk,i,j − θl,i,j|

}
.

(18)

Entropy 2021, 23, 1623 8 of 24

Problem (18) is separable with respect to the elements θk,i,j in Θ(k) ∈ Rp×p; hence,
the proximal operator can be computed in a componentwise manner: Let A = Θt −
ηt∇ f (Θt); then, problem (18) reduces to the following for i = 1, · · · , p, j = 1, · · · , p :

argmin
θ1,i,j ,··· ,θK,i,j

{
1
2

K

∑
k=1

(θk,i,j − ak,i,j)
2 + ηtλ11i 6=j

K

∑
k=1
|θk,i,j|+ ηtλ2 ∑

k<l
|θk,i,j − θl,i,j|}

}
, (19)

where 1i 6=j is an indicator function, the value of which is 1 only when i 6= j.
The problem (19) is known as the fused lasso problem [29,32] given ak,i,j for k =

1, . . . , K. In particular, let α := ηtλ11i 6=j and β := ηtλ2. When i 6= j, α 6= 0 and β > 0,
the solution to (19) can be obtained through the soft thresholding operator based on the
solution when α = 0 by the following Lemma.

Lemma 1. ([33]) Denote the solution to parameters α and β as θi(α, β), and then the solution
θi(α, β) of the fused lasso problem:

1
2

n

∑
i=1

(yi − θi)
2 + α

n

∑
i=1
|θi|+ β

n−1

∑
i=1
|θi − θi+1| (20)

is given by [Sα(θ(0, β))]i when y1, · · · , yn ∈ R are given for n ≥ 1.

Additionally, rather efficient algorithms are available for solving the fused lasso
problem (20) when α = 0 (i.e., θ(0, β)) such as [32,34,35].

3.1.2. Group Lasso Penalty PG

By definition, the update of Θt+1 for the group lasso penalty PG(Θ) is as follows:

Θt+1 = arg min
Θ

{
1
2

K

∑
k=1
||Θ(k) −Θ

(k)
t + ηt∇ f (Θ(k)

t)||2F + ηtλ1

K

∑
k=1

∑
i 6=j
|θk,i,j|

+ηtλ2 ∑
i 6=j

(
K

∑
k=1

θ2
k,i,j)

1/2

}
.

Similarly, let A = Θt − ηt∇ f (Θt); then, the problem becomes the following for
i = 1, · · · , p, j = 1, · · · , p:

argmin
θ1,i,j ,··· ,θK,i,j

{
1
2

K

∑
k=1

(θk,i,j − ak,i,j)
2 + ηtλ11i 6=j

K

∑
k=1
|θk,i,j|+ ηtλ21i 6=j(

K

∑
k=1

θ2
k,i,j)

1/2

}
.

We have θk,i,j = ak,i,j for i = j. In addition, for i 6= j, the solution [31,36,37] is given by

θk,i,j = Sηtλ1(ak,i,j)

1− ηtλ2√
∑K

k=1 Sηtλ1(ak,i,j)2

+

. (21)

3.2. Modified ISTA for JGL

Thus far, we have seen that f (Θ) in the JGL problem (15) is not globally Lipschitz
gradient continuous. The ISTA may not be efficient enough for the JGL case because it
includes the backtracking line search procedure for this case, which needs to evaluate the
objective function and the positive definiteness of Θt+1 in Step 1 of Algorithm 2 and is
inefficient when the evaluation is expensive.

In this section, we modify Algorithm 2 to Algorithm 3 based on the step-size selection
strategy in Section 2.3, which takes advantage of the properties of the self-concordant

Entropy 2021, 23, 1623 9 of 24

function. The self-concordant function does not rely on the Lipschitz gradient assumption
on the function f (Θ) [24], and we can eliminate the need for the backtracking line search.

Lemma 2. ([38]) Self-concordance is preserved by scaling and addition: if f is a self-concordant
function and a constant a ≤ 1, then a f is self-concordant. If f1, f2 are self-concordant, then f1 + f2
is self-concordant.

By Lemma 2, the function f (Θ) in (16) is self-concordant. In Algorithm 3, for the
initial step size of ηt in each iteration, we use the Barzilai–Borwein method [39]. We apply
the step-size mechanism in Section 2.3, which is employed in Steps 3–5 of Algorithm 3.

Algorithm 3 Modified ISTA (M-ISTA).
Input: S, tolerance ε > 0, initial step size η0, initial iterate Θ0.
For t = 0, 1, · · · , (until convergence) do

1: Initialize ηt.
2: Compute

dt := proxηtg(Θt − ηt∇ f (Θt))−Θt.

3: Compute

βt := η−1
t ||dt||2F

and

λt :=
K

∑
k=1

√
nk||(Θ

(k)
t)−1d(k)

t ||F.

4: Determine the step size αt := βt
λt(λt+βt)

.
5: If αt > 1, then set ηt := ηt/2 and go back to Step 2.
6: Update Θt+1 := Θt + αtdt.

end
Output: optimal solution to problem (15), Θ∗ = Θt+1.

There is no backtracking procedure in this algorithm that guarantees the positive
definiteness of Θt+1, as in Step 1 of Algorithm 2. We next show how to ensure the positive
definiteness of Θt+1 in the iterations of Algorithm 3.

Lemma 3. ([40], Theorem 2.1.1) Let f be a self-concordant function, and let x ∈ dom f . Addi-
tionally, if

W(x) = {y|
(
〈∇2 f (x)(y− x), y− x〉

)1/2
≤ 1},

then W(x) ⊂ dom f .

In Algorithm 3, because we know αt := βt
λt(λt+βt)

< 1 with βt > 0 and λt > 0 by Steps
3–5. Thus, we have αtλt < 1:

αtλt := αt

(
〈∇2 f (Θt)dt, dt〉

)1/2
< 1,

which implies, (
〈∇2 f (Θt)(Θt+1 −Θt), Θt+1 −Θt〉

)1/2
< 1.

Hence, from Lemma 3, we see that Θt+1 stays in the domain and maintains positive definiteness.

Entropy 2021, 23, 1623 10 of 24

3.3. Theoretical Analysis

For multiple Gaussian graphical models, Honorio and Samaras [14] and Hara and
Washio [17] provided lower and upper bounds for the optimal solution Θ∗. However,
the models they considered are different than the JGL. To the best of our knowledge,
no related research has provided the bounds of the optimal solution Θ∗ for the JGL
problem (15).

In the following section, we show the bounds of the optimal solution Θ∗ for the JGL
and the iterates Θt generated by Algorithms 2 and 3, which are applied to both fused and
group lasso-type penalties.

Proposition 1. The optimal solution Θ∗ of the problem (15) satisfies

max
1≤k≤K

nk

pλc + nk||S(k)||2
≤ ||Θ(k)

∗ ||2 ≤
Np
λ1

+
K

∑
k=1

p

∑
i=1

(sk,i,i)
−1,

where λc :=
√

Kλ2
1 + 2Kλ1λ2 + λ2

2, and sk,i,i is the i-th diagonal element of S(k).

For the proof, see Appendix A.1.
Note that the objective function value F(Θ) always decreases with the increase in

iteration in both algorithms due to [25] (Remark 3.1) and Lemma 12 in [24]. Therefore,
the following inequality holds for Algorithms 2 and 3:

F(Θt+1) ≤ F(Θt) for t = 0, 1, (22)

Then, based on the condition (22), we provide the explicit bounds of iterates {Θt}t=0,1...
in Algorithms 2 and 3 for the JGL problem (15).

Proposition 2. Sequence {Θt}t=0,1,··· , generated by Algorithms 2 and 3 can be bounded:

m ≤ ||Θt||2 ≤ M,

where M := ||Θ0||F + 2Np
λ1

+ 2
K
∑

k=1

p
∑

i=1
sk,i,i

−1, m := e−
C1
nm M(1−Kp), nm = max

k
nk, and constant

C1 := F(Θ0).

For the proof, see Appendix A.2.
With the help of Propositions 1 and 2, and the following Lemma, we can obtain the

range of the step size that ensures the linear convergence rate of Algorithm 2.

Lemma 4. Let Θt be t-th iterate in Algorithm 2. Denote λmin and λmax as the minimum and
maximum eigenvalues of the corresponding matrix, respectively. Define

ak := min{λmin(Θ
(k)
t), λmin(Θ

(k)
∗)}, bk := max{λmax(Θ

(k)
t), λmax(Θ

(k)
∗)}

and nl = mink=1...,K nk, nm = maxk=1...,K nk, al = mink=1...,K a(k), and bm = maxk=1...,K b(k).
The sequence {Θt}t=0,1,··· generated by Algorithm 2 satisfies

||Θt+1 −Θ∗||F ≤ γt||Θt −Θ∗||F
with the convergence rate γt := max{ ηtnm

a2
l
− 1, 1− ηtnl

b2
m
}.

Proof. It can be easily extended by Lemma 3 in [10].

Entropy 2021, 23, 1623 11 of 24

Lemma 4 implies that to obtain the convergence rate γt < 1, we require:

0 < ηt <
2a2

l
nm

. (23)

After using Propositions 1 and 2, we can obtain the bounds of al . Further, we can
obtain the step size ηt that satisfies (23) and guarantee s the linear convergence rate (γt < 1).
However, the step size is quite conservative in practice. Hence, we consider the Barzilai–
Borwein method for implementation and regard the step size ηt that satisfies (23) as a safe
choice. When the number of backtracking iterations in Step 1 of Algorithm 2 exceeds the
given maximum number to fulfill the backtracking line search condition, we can use the
safe step size ηt for the subsequent calculations. In Section 4.2.3, we confirm the linear
convergence rate of the proposed ISTA by experiment.

4. Experiments

In this section, we evaluate the performance of the proposed methods on both synthetic
and real datasets, and we compare the following algorithms:

• ADMM: the general ADMM method proposed by [13].
• FMGL: the proximal Newton-type method proposed by [23].
• ISTA: the proposed method in Algorithm 2.
• M-ISTA: the proposed method in Algorithm 3.

We perform all the tests in R Studio on a Macbook Air with 1.6 GHz Intel Core i5 and
8 GB memory. The wall times are recorded as the run times for the four algorithms.

4.1. Stopping Criteria and Model Selection

In the experiments, we consider two stopping criteria for the algorithms.
1. Relative error stopping criterion:

∑K
k=1 ||Θ

(k)
t+1 −Θ

(k)
t ||F

max{∑K
k=1 ||Θ

(k)
t ||F, 1}

≤ ε.

2. Objective error stopping criterion:

F(Θt)− F(Θ∗) ≤ ε.

ε is a given accuracy tolerance; we terminate the algorithm if the above error is smaller
than ε or the maximum number of iterations exceeds 1000. We use the objective error for
convergence rate analysis and the relative error for the time comparison.

The JGL model is affected by regularized parameters λ1 and λ2. For selecting the
parameters, we use the V-fold crossvalidation method. First, the dataset is randomly split
into V segments of equal size, a single subset (test data), estimated by the other V − 1
subsets (training data), is evaluated, and the subset is changed for the test to repeat V times
so that each subset is used.

Let S(k)
v be the sample covariance matrix of the v-th (v = 1, . . . , V) segment for class

k = 1, . . . , K. We estimate the inverse covariance matrix by the remaining V − 1 subsets
Θ̂

(k)
λ,−v and choose λ1 and λ2, which minimize the average predictive negative log-likelihood

as follows:

CV(λ1, λ2) =
V

∑
v=1

K

∑
k=1

{
nktrace(S(k)

v Θ̂
(k)
λ,−v)− logdetΘ̂(k)

λ,−v

}
4.2. Synthetic Data

The performance of the proposed methods was assessed on synthetic data in terms of
the number of iterations, the execution time, the squared error, and the receiver operating

Entropy 2021, 23, 1623 12 of 24

characteristic (ROC) curve. We follow the data generation mechanism described in [41]
with some modifications for the JGL model. We put the details in Appendix B.

4.2.1. Time Comparison Experiments

We vary p, N, K and λ1 to compare the execution time of our proposed methods with
that of the existing methods. We consider only the fused penalty in our proposed method
for a fair comparison in the experiments because the FMGL algorithm applies only to
the fused penalty. First, we compare the performance among different algorithms under
various dimensions p, which are shown in Figure 1.

0

250

500

750

100 200 300 400
p

tim
e(

se
co

nd
s)

type

ADMM

ISTA

M−ISTA

FMGL

Figure 1. Plot of time comparison under different p. Setting λ1 = 0.1, λ2 = 0.05, K = 2, and N = 200.

Figure 1 shows that the execution time of the FMGL and ADMM increases rapidly as
p increases. In particular, we observe that the M-ISTA significantly outperforms when p
exceeds 200. The ISTA shows better performance than the three methods when p is less
than 200, but it requires more time as p grows, compared to the M-ISTA. It is reasonable
to consider that evaluating the objective function in the backtracking line search at every
iteration increases the computational burden, especially when p increases, which means
that the M-ISTA is a good choice for these cases. Furthermore, the ISTA can be a good
candidate when the evaluation is inexpensive.

Table 2 summarizes the performance of the four algorithms under different parameter
settings to achieve a given precision, ε, of the relative error. The results presented in Table 2
reveal that when we increase the number of classes K, all the algorithms require more time
than usual. Moreover, the execution time of ADMM becomes huge among them. When we
vary λ1, the algorithms become more efficient as the value increases. For most instances,
the M-ISTA and ISTA outperform the existing methods, such as ADMM and FMGL. For the
exceptional cases (p = 20, k = 2, N = 60, λ1 = 0.1 and λ2 = 0.05), the M-ISTA and ISTA
are still comparable with the FMGL and faster than ADMM.

Entropy 2021, 23, 1623 13 of 24

Table 2. Computational time under different settings.

Parameters Setting Computational Time

p K N λ1 λ2 precision ε ADMM FMGL ISTA M-ISTA

20
2

60 0.1 0.05 0.00001
10.506 s 1.158 s 2.174 s 1.742 s

3 1.879 min 4.267 s 3.357 s 3.668 s
5 1 0.5 1.123 min 10.556 s 4.216 s 2.874 s

30
2

120 0.1 0.05 0.0001
10.095 s 5.259 s 2.690 s 4.857 s

3 2.014 min 38.562 s 14.722 s 31.870 s
5 1 0.5 2.447 min 15.819 s 22.431 s 12.113 s

50 2 600
0.02

0.005 0.0001
6.427 s 10.228 s 7.213 s 4.625 s

0.03 6.240 s 8.925 s 6.645 s 4.023 s
0.04 7.025 s 9.381 s 6.144 s 3.993 s

200 2 400
0.09

0.05 0.0001
4.050 min 1.874 min 2.289 min 35.038 s

0.1 4.569 min 1.137 min 1.340 min 24.852 s
0.12 3.848 min 1.881 min 1.443 min 18.367 s

4.2.2. Algorithm Assessment

We generate the simulation data as described in Appendix B and regard the synthetic
inverse covariance matrices Θ(k) as the true values for our assessment experiments.

First, we assessed our proposed method by drawing an ROC curve, which displays
the number of true positive edges (i.e., TP edges) selected compared to the number of false
positive edges (i.e., FP edges) selected. We say that an edge (i, j) in the k-th class is selected
in estimate Θ̂(k) if element θ̂k,i,j 6= 0, and the edges are true positive edges selected if the
precision matrix element θk,i,j 6= 0 and false positive edges selected if the precision matrix
element θk,i,j = 0, where the two quantities are defined by

TP =
K

∑
k=1

∑
i,j

1(θk,i,j 6= 0) · 1(θ̂k,i,j 6= 0)

and

FP =
K

∑
k=1

∑
i,j

1(θk,i,j = 0) · 1(θ̂k,i,j 6= 0) ,

where 1(·) is the indicator function.
To confirm the validity of the proposed methods, we compare the ROC figures of the

fused penalty and group penalty. We fix the parameters λ2 for each curve and change
the λ1 value to obtain various numbers of selected edges because the sparsity penalty
parameter λ1 can control the number of selected total edges.

We show the ROC curves for fused and group lasso penalties in Figure 2a,b respec-
tively. From the figures, we observe that both penalties show highly accurate predictions
for the edge selections. The result of λ2 = 0.0166 in the fused penalty case is better than
that in λ2 = 0.05. Additionally, the result of λ2 = 0.0966 in the group penalty case is better
than that in λ2 = 0.09, which means that if we select the tuning parameters properly, then
we can obtain precise results while simultaneously meeting our different model demands.

Entropy 2021, 23, 1623 14 of 24

1000

2000

3000

4000

0 250 500 750
FP edges

T
P

 e
dg

es λ2

0.0166

0.05

(a)

0

1000

2000

3000

4000

0 250 500 750
FP edges

T
P

 e
dg

es λ2

0.0966

0.09

(b)
Figure 2. Plot of true positive edges vs. false positive edges selected. Setting p = 50, K = 2. (a) The fused penalty; (b) The
group penalty.

Then, Figure 3a,b display the mean squared error (MSE) between the estimated values
and true values.

MSE =
2

Kp(p− 1)

K

∑
k=1

∑
i<j

(θ̂k,i,j − θk,i,j)
2,

where θ̂k,i,j is the value estimated by the proposed method, and θk,i,j is the true precision
matrix value we used in the data generation.

0.0005

0.0010

0.0015

0.0020

0 1000 2000 3000 4000
Total Edges Selected

S
um

 o
f S

qu
ar

ed
 E

rr
or

s

 λ2

0.0166

0.05

(a)

0.0005

0.0010

0.0015

0.0020

0 1000 2000 3000 4000
Total Edges Selected

S
um

 o
f S

qu
ar

ed
 E

rr
or

s

 λ2

0.0966

0.09

(b)
Figure 3. Plot of the mean squared errors vs. total edges selected. Setting p = 50, K = 2. (a) The fused penalty; (b) The
group penalty.

The figures illustrate that when the total number of edges selected increases, the errors
decrease and finally achieve relatively low values.

Overall, the proposed method shows competitive efficiency not only in computational
time but also in accuracy.

Entropy 2021, 23, 1623 15 of 24

4.2.3. Convergence Rate

This section shows the convergence rate of the ISTA for solving the JGL problem (15)
in practice, with λ1 = 0.1, 0.09 and 0.08. We recorded the number of iterations to achieve
the different tolerance of F(Θt) − F(Θ∗) in Figure 4 and ran it on a synthetic dataset,
with p = 200, K = 2, λ2 = 0.05, and N = 400. The figure reveals that as λ1 decreases, more
iterations are needed to converge to the specified tolerance. Moreover, the figure shows the
linear convergence rate of the proposed ISTA method, which corroborate the theoretical
analysis in Section 3.3.

0.0001

 0.01

 1

0 50 100
Iteration

 λ1

0.1

0.09

0.08

F
(Θ

t)
−
F
(Θ

∗)

Figure 4. Plot of log(F(Θt)− F(Θ∗)) vs. the number of iterations with different λ1 values. Setting
p = 200, N = 400, K = 2 and λ2 = 0.05.

4.3. Real Data

In this section, we use two different real datasets to demonstrate the performance of
our proposed method and visualize the result.

Firstly, we used the presidential speeches dataset in [42] for the experiment to jointly
estimate common links across graphs and show the common structure. The dataset contains
75 most-used words (features) from several big speeches of the 44 US presidents (samples).
In addition, we used the clustering result in [42], where the authors split the 44 samples into
two groups with similar features, and then we obtained two classes of samples (K = 2).

We used Cytoscape [43] to visualize the results when λ1 = 1.9 and λ2 = 0.16. We
chose these relatively large tuning parameters for better interpretation of the network figure.
Figure 5 shows the relationship network graph of the high-frequency words identified by
the JGL model with the proposed method. As shown in the figure, each node represents a
word, and the edges demonstrate the relationships between words.

Entropy 2021, 23, 1623 16 of 24

appropri

treati

expenditur

amount

soviet

inflat

technology basic

percent

area

challeng

weapon

unemploy

income

need

worker

today

nuclear

spend

educ

program

achieve

level

cut

job

america

goal

develop budget

subject

problem

vessel

bil l ion

indian

get

consider

treasuri

womenhelp

econom

shall

feder

provis

Figure 5. Network figure of the words in president speeches dataset.

We use different colors to show various structures. The black edges are a common
structure between the two classes, the red edges are the specific structures for the first class
(k = 1), and the green edges are for the second class (k = 2). Figure 5 shows a subnetwork
on the top with red edges, meaning there are relationships among those words, and the
connections only exist in the first group.

We compared the time cost among four algorithms and show the results in Table 3.
We used the crossvalidation method (V = 6) described in Section 4.1 to select the optimal
tuning parameters (λ1 = 0.1, λ2 = 0.05). In addition, we manually chose the other two
pairs of parameters for more comparisons.

Table 3. Time comparison result of two real datasets.

Dataset Parameters Setting Computational Time
λ1 λ2 Precision ε ADMM FMGL ISTA M-ISTA

Speeches
0.1 0.05

0.0001
19.969 s 4.977 min 11.829 s 12.867 s

0.2 0.1 4.661 min 3.209 min 11.560 s 12.682 s
0.5 0.25 5.669 min 1.490 min 11.043 s 12.788 s

Breast cancer
0.1 0.0166

0.0001
3.809 min 7.937 min 1.305 min 1.158 min

0.2 0.02 6.031 min 5.198 min 1.503 min 1.230 min
0.3 0.03 5.499 min 2.265 min 1.188 min 1.061 min

Table 3 shows that ISTA outperforms the other three algorithms, and our proposed
methods offer stable performance when varying the parameters, while ADMM is the
slowest in most cases.

Secondly, we use a breast cancer dataset [44] for time comparison. There are 250 sam-
ples and 1000 genes in the dataset, with 192 control samples and 58 case samples (K = 2).
Furthermore, we extract 200 genes with the highest variances among the original genes.
The tuning parameter pair (λ1 = 0.01, λ2 = 0.0166) was chosen by the crossvalidation

Entropy 2021, 23, 1623 17 of 24

method. Table 3 exhibits that our proposed methods (ISTA and M-ISTA) outperform
ADMM and FMGL, and M-ISTA shows the best performance in the breast cancer dataset.

5. Discussion

We propose two efficient proximal gradient descent procedures with and without the
backtracking line search option for the joint graphical lasso. The first (Algorithm 2) does
not require extra variables, unlike ADMM, which needs manual tuning the Lagrangian
penalty parameters ρ in [13] and storing and calculating dual variables. Moreover, we
reduce the update iterate step to subproblems that can be solved efficiently and precisely
by lasso-type problems. Based on Algorithm 2, we modified the step-size selection by
extending the strategy in [24] to the second one (Algorithm 3), which does not rely on the
Lipschitz assumption. Additionally, the second does not require a backtracking line search,
significantly reducing the computation time needed to evaluate objective functions.

From the theoretical perspective, we reach the linear convergence rate for the ISTA.
Furthermore, we derive the lower and upper bounds of the solution to the JGL problem and
the iterates in the algorithms, guaranteeing that the ISTA converges linearly. Numerically,
the methods are demonstrated on simulated and real datasets to illustrate their robust and
efficient performance over state-of-the-art algorithms.

For further computational improvement, the most expensive step in the algorithms is
to calculate the inversion of matrices required by the gradient of f (Θ). Both algorithms
have a complexity of O(Kp3) per iteration. Moreover, we can solve the matrix inversion
problem with more efficient algorithms with lower complexity. In addition, we can also
use the faster computation procedure in [13] to decompose the optimization problem for
the proposed methods and regard it as preprocessing. Overall, the proposed methods are
highly efficient for the joint graphical lasso problem.

Author Contributions: Conceptualization, J.C., R.S. and J.S.; methodology, J.C., R.S. and J.S.; software,
J.C. and R.S.; validation, J.C., R.S. and J.S.; formal analysis, J.C., R.S. and J.S.; writing—original
draft preparation, J.C. and J.S.; writing—review and editing, J.C., R.S. and J.S.; visualization, J.C.;
supervision, J.S.; project administration, J.S.; funding acquisition, J.S. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by Grant-in-Aid for Scientific Research (KAKENHI) C, Grant
number: 18K11192.

Data Availability Statement: Publicly available datasets were analyzed in this paper. Presidential
speeches dataset: https://www.presidency.ucsb.edu, accessed on 5 November 2021; Breast cancer
dataset: https://www.rdocumentation.org/packages/doBy/versions/4.5-15/topics/breastcancer,
accessed on 5 November 2021.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ADMM alternating direction method of multipliers
FMGL fused multiple graphical lasso algorithm
FP false positive
G-ISTA graphical iterative shrinkage-thresholding algorithm
GL graphical lasso
ISTA iterative shrinkage-thresholding algorithm
JGL joint graphical lasso
M-ISTA modified iterative shrinkage-thresholding algorithm
MSE mean squared error
ROC receiver operating characteristic
TP true positive

https://www.presidency.ucsb.edu
https://www.rdocumentation.org/packages/doBy/versions/4.5-15/topics/breastcancer

Entropy 2021, 23, 1623 18 of 24

Appendix A. Proofs of Propositions

Appendix A.1. Proof of Proposition 1

We first introduce the Lagrange dual problem of (15). By introducing the auxiliary
variables Z = {Z(1), . . . , Z(K)}, we can rewrite the problem as follows:

min
Θ

f (Θ) + g(Θ)

subject to Z = Θ

Then, the Lagrange function of the above is given by:

L(Θ, Z, Λ) = f (Θ) + g(Z) +
K

∑
k=1
〈Λ(k), Θ(k) − Z(k)〉,

where Λ = {Λ(1), . . . , Λ(K)}, Λ(k) ∈ Rp×p are dual variables. To obtain the dual problem,
we minimize the primal variables as follows:

min
Λ,Z

L(Θ, Z, Λ) = min
Θ
{ f (Θ) +

K

∑
k=1
〈Λ(k), Θ(k)〉} −max

Z
{−g(Z)−

K

∑
k=1
〈Λ(k),−Z(k)〉}

= min
Θ
{ f (Θ) +

K

∑
k=1
〈Λ(k), Θ(k)〉} − g∗(Λ)

= min
Θ

{
K

∑
k=1
〈Λ(k) + nkS(k), Θ(k)〉 −

K

∑
k=1

nklogdetΘ(k)

}
− g∗(Λ).

Taking derivative of the function:

L1 :=
K

∑
k=1
〈Λ(k) + nkS(k), Θ(k)〉 −

K

∑
k=1

nklogdetΘ(k),

∇Θ(k) L1 = 0,

We obtain
nkS(k) + Λ(k) = nk(Θ

(k))−1 (A1)

for k = 1, · · · , K. Substitute the Equation (A1) into the dual problem minΘ,Z L(Θ, Z, Λ),
then it becomes:

min
Θ,Z

L(Θ, Z, Λ) =
K

∑
k=1

nk p +
K

∑
k=1

nklogdet(S(k) +
1
nk

Λ(k))− g∗(Λ).

Hence, we can obtain the duality gap [38] (the primal problem minus the dual problem)
as follows:

f (Θ) + g(Z)−
K

∑
k=1

nk p−
K

∑
k=1

nk{logdetΘ(k)}+ g∗(Λ)

=
K

∑
k=1

nktrace(S(k)Θ(k)) + g(Z)−
K

∑
k=1

nk p + g∗(Λ),

when the gap value is 0, the optimal solution is found. Because the conjugate function
g∗(Λ) is the indicator function, the value is hence 0 for the optimal solution.

Firstly, for the group penalty PG(Θ), the duality gap is

K

∑
k=1

[nktrace(S(k)Θ
(k)
∗)− nk p] + λ1

K

∑
k=1

∑
i 6=j
|θ∗k,i,j|+ λ2 ∑

i 6=j

√√√√ K

∑
k=1

θ∗k,i,j
2 = 0. (A2)

Entropy 2021, 23, 1623 19 of 24

From Equation (A2), we obtain

λ1||Θ∗||1 = −
K

∑
k=1

nktrace(S(k)Θ
(k)
∗)− λ2 ∑

i 6=j

√√√√ K

∑
k=1

θ∗k,i,j
2 +

K

∑
k=1

nk p +
K

∑
k=1

p

∑
i=1

λ1|θ∗k,i,i|

≤
K

∑
k=1

nk p +
K

∑
k=1

p

∑
i=1

λ1|θ∗k,i,i|.

From Equation (A1), we have the following relationship of diagonal elements,

θk,i,i
∗ = diag

(
S(k) +

1
nk

Λ
(k)
∗

)−1
,

and due to dual variable Λ∗k,i,i > 0, for k = 1, . . . , K. Hence,

||Θ∗||1 ≤
1

λ1

K

∑
k=1

nk p +
K

∑
k=1

p

∑
i=1

diag
(

S(k) +
1
nk

Λ
(k)
∗

)−1

≤ 1
λ1

K

∑
k=1

nk p +
K

∑
k=1

p

∑
i=1

diag
(

S(k)
)−1

.

By ||Θ∗||2 ≤ ||Θ∗||F ≤ ||Θ∗||1, we obtain the upper bound:

||Θ∗||2 ≤ ||Θ∗||F ≤
1

λ1

K

∑
k=1

nk p +
K

∑
k=1

p

∑
i=1

sk,i,i
−1. (A3)

The proof is similar for the fused penalty PF(Θ); therefore, we omit it here. Next, we
continue to prove the lower bound of Θ∗.

Firstly, for the group penalty PG(Θ). Let E(k) be non-negative p× p matrix satisfying
−Ek,i,j ≤ θk,i,j ≤ Ek,i,j. Introducing the Lagrange multipliers Γ(k) and Γ(k)

0 for k = 1, . . . , K.
This procedure is similar to the way in [17].

Then, the new Lagrange problem becomes,

max
Θ,E

min
Γ,Γ0

 f (Θ)−
K

∑
k=1

∑
i 6=j

λ1Ek,i,j − λ2 ∑
i 6=j

√√√√ K

∑
k=1

E2
k,i,j

−
K

∑
k=1

tr(Γ(k)Θ(k))− tr(abs(Γ(k))E(k))− tr(Γ(k)
0 E(k))

}
,

Taking derivative w.r.t Θ(k) and Ek,i,j, we obtain the following equations:

nkΘ(k)−1
− nkS(k) − Γ(k) = 0, (A4)

−λ1 − λ2
Ek,i,j√
K
∑

k=1
E2

k,i,j

+ |Γk,i,j|+ Γ(k)
0 = 0, for i 6= j, (A5)

|Γk,i,j|+ Γ(k)
0 = 0, for i = j. (A6)

Entropy 2021, 23, 1623 20 of 24

When i 6= j, from Equation (A5),

|Γk,i,j| ≤ λ1 + λ2
Ek,i,j√
K
∑

k=1
E2

k,i,j

|Γk,i,j|2 ≤

λ1 + λ2
Ek,i,j√
K
∑

k=1
E2

k,i,j

2

= λ2
1 + 2λ1λ2

Ek,i,j√
K
∑

k=1
E2

k,i,j

+ λ2
2

E2
k,i,j

K
∑

k=1
E2

k,i,j

≤ λ2
1 + 2λ1λ2 + λ2

2

E2
k,i,j

K
∑

k=1
E2

k,i,j

.

Taking summation of each k,

K

∑
k=1
|Γk,i,j|2 ≤ Kλ2

1 + 2Kλ1λ2 + λ2
2.

Then, √√√√ K

∑
k=1
|Γk,i,j|2 ≤

√
Kλ2

1 + 2Kλ1λ2 + λ2
2. (A7)

From (A4) and (A7), we have the following relationship

||Θ(k)−1
|| ≤ || 1

nk
Γ(k) + S(k)||2 ≤

1
nk
||Γ(k)||2 + ||S(k)||2

≤ p
nk

max
i,j
|Γk,i,j|+ ||S(k)||2

≤ p
nk

max
k

max
i,j
|Γk,i,j|+ ||S(k)||2

≤
p(
√

Kλ2
1 + 2Kλ1λ2 + λ2

2)

nk
+ ||S(k)||2.

The last equation holds because

max
k

max
i,j
|Γk,i,j| ≤

√√√√ K

∑
k=1
|Γk,i,j|2.

We only consider the case when i 6= j for maxi,j|Γ
(k)
ij |, because from Equations (A5)

and (A6), we know |Γ(k)
ij | > |Γ

(k)
ii |. Overall, the lower bound is

nk

p
√

Kλ2
1 + 2Kλ1λ2 + λ2

2 + nk||S(k)||2
.

The lower bound of fused penalty can be derived in similar way.

Entropy 2021, 23, 1623 21 of 24

Appendix A.2. Proof of Proposition 2

By Equation (22) and convexity of F(Θ), it is easy to obtain

||Θt −Θ∗||F ≤ ||Θ0 −Θ∗||F.

Since || · ||2 ≤ || · ||F, then

||Θt||2 − ||Θ∗||2 ≤ ||Θt −Θ∗||2
≤ ||Θt −Θ∗||F
≤ ||Θ0 −Θ∗||F.

Hence,

||Θt||2 ≤ ||Θ0 −Θ∗||F + ||Θ∗||2
≤ ||Θ0||F + 2||Θ∗||F.

Then, by Equation (A3), we can complete the proof of the upper bound.
To prove the lower bound, denote

a(k)t = λmin(Θ
(k)
t)

(at)l = min
k=1,··· ,K

a(k)t .

By the definition of the matrix norm, we have

||Θ(k)
t ||2 ≥ a(k)t ≥ (at)l .

Denote the upper bound of ||Θt||2 as M, and that of ||Θt||2 as M(k), for k = 1, . . . , K.
By definition of tensor norm, we have M ≥ ||Θt||2 ≥ ||Θ

(k)
t ||2 ≥ (at)l .

Let constant C1 := f (Θ0) + g(Θ0). By the Equation (22), we have

C1 ≥ f (Θt) + g(Θt).

Note that S � 0, Θt � 0 implies tr(SΘt) ≥ 0 and because g(Θt) ≥ 0

C1 ≥ −
K

∑
k=1

nklogdetΘ(k)
t

= −
K

∑
k=1

nklog(Πp
i=1λi).

Let the eigenvalues of Θ
(k)
t as λ1 ≤ λ2 ≤ · · · ≤ λp. Then a(k)t = λ1 ≤ λp ≤ M(k), hence,

Πp
i=1(λi) = a(k)t · λ2 · · · · λp ≤ a(k)t ·M

(k)(p−1)
.

Then,
K

∑
k=1

nklog(Πp
i=1λi) ≤

K

∑
k=1

nk

[
loga(k)t + (p− 1)logM(k)

]
.

Let the coefficient nk of the term which contains (at)l in −∑K
k=1 nkloga(k)t as nx, then

K

∑
k=1

nkloga(k)t = nxlog(at)l + ∑
k 6=x

nkloga(k)t .

Entropy 2021, 23, 1623 22 of 24

Because
M(k) ≤ M,

denote nm = max
i=1··· ,K

nk, then,

K

∑
k=1

nkloga(k)t ≤ nmlog(at)l + nm(K− 1)logM.

Hence,

C1 ≥ −
K

∑
k=1

nklog(Πp
i=1(λi))

≥ −
K

∑
k=1

nk

[
loga(k)t + (p− 1)logM(k)

]
≥ −nmlog(at)l − nm(K− 1)log M

− Knm(p− 1)logM.

Then, we can obtain

log(at)l ≥ −K(p− 1)logM− (K− 1)logM− C1

nm

(at)l ≥ e(1−Kp)logM− C1
nm .

Hence, the lower bound is proved:

||Θt||2 ≥ ||Θ
(k)
t ||2 ≥ (at)l ≥ e−

C1
nm M(1−Kp).

Appendix B. Data Generation

We generate nk samples independently and identically distributed observations from
a multivariate normal distribution N{0, (Θ̂(k))−1}, where Θ(k) is the inverse covariance
matrix of the k-th category. Specifically, we generate p points randomly on a unit space
and calculate their pairwise distances. Then, we find the m-nearest neighbors point by
this distance. We connect any two points that are m-nearest neighbors of each other. The
integer m determines for the degree of sparsity of the data, and m values range from 4 to 9
in our experiments.

Additionally, we add heterogeneity to the common structure by building extra indi-
vidual connections in the following way: we randomly choose a pair of symmetric zero
elements, θk,i,j = θk,j,i = 0, and replace them with a value uniformly generated from the
[−1,−0, 5]∪ [0.5, 1] interval. This operation is repeated M/2 times, where M is the number
of off-diagonal nonzero elements in Θ(k).

References
1. Lauritzen, S.L. Graphical Models; Clarendon Press: Oxford, UK, 1996; Volume 17.
2. Meinshausen, N.; Bühlmann, P. High-dimensional graphs and variable selection with the lasso. Ann. Stat. 2006, 34, 1436–1462.

[CrossRef]
3. Yuan, M.; Lin, Y. Model selection and estimation in the Gaussian graphical model. Biometrika 2007, 94, 19–35. [CrossRef]
4. Friedman, J.; Hastie, T.; Tibshirani, R. Sparse inverse covariance estimation with the graphical lasso. Biostatistics 2008, 9, 432–441.

[CrossRef]
5. Banerjee, O.; El Ghaoui, L.; d’Aspremont, A. Model selection through sparse maximum likelihood estimation for multivariate

Gaussian or binary data. J. Mach. Learn. Res. 2008, 9, 485–516.
6. Rothman, A.J.; Bickel, P.J.; Levina, E.; Zhu, J. Sparse permutation invariant covariance estimation. Electron. J. Stat. 2008, 2, 494–515.

[CrossRef]

http://doi.org/10.1214/009053606000000281
http://dx.doi.org/10.1093/biomet/asm018
http://dx.doi.org/10.1093/biostatistics/kxm045
http://dx.doi.org/10.1214/08-EJS176

Entropy 2021, 23, 1623 23 of 24

7. Banerjee, O.; Ghaoui, L.E.; d’Aspremont, A.; Natsoulis, G. Convex optimization techniques for fitting sparse Gaussian graphical
models. In Proceedings of the 23rd International Conference on Machine Learning, Pittsburgh, PA, USA, 25–29 June 2006;
pp. 89–96.

8. Xue, L.; Ma, S.; Zou, H. Positive-definite l1-penalized estimation of large covariance matrices. J. Am. Stat. Assoc. 2012,
107, 1480–1491. [CrossRef]

9. Mazumder, R.; Hastie, T. The graphical lasso: New insights and alternatives. Electron. J. Stat. 2012, 6, 2125. [CrossRef]
10. Guillot, D.; Rajaratnam, B.; Rolfs, B.T.; Maleki, A.; Wong, I. Iterative thresholding algorithm for sparse inverse covariance

estimation. arXiv 2012, arXiv:1211.2532.
11. d’Aspremont, A.; Banerjee, O.; El Ghaoui, L. First-order methods for sparse covariance selection. SIAM J. Matrix Anal. Appl. 2008,

30, 56–66. [CrossRef]
12. Hsieh, C.J.; Sustik, M.A.; Dhillon, I.S.; Ravikumar, P. QUIC: Quadratic approximation for sparse inverse covariance estimation. J.

Mach. Learn. Res. 2014, 15, 2911–2947.
13. Danaher, P.; Wang, P.; Witten, D.M. The joint graphical lasso for inverse covariance estimation across multiple classes. J. R. Stat.

Soc. Ser. B Stat. Methodol. 2014, 76, 373. [CrossRef]
14. Honorio, J.; Samaras, D. Multi-Task Learning of Gaussian Graphical Models; ICML: Baltimore, MA, USA, 2010.
15. Guo, J.; Levina, E.; Michailidis, G.; Zhu, J. Joint estimation of multiple graphical models. Biometrika 2011, 98, 1–15. [CrossRef]

[PubMed]
16. Zhang, B.; Wang, Y. Learning structural changes of Gaussian graphical models in controlled experiments. arXiv 2012, arXiv:1203.3532.
17. Hara, S.; Washio, T. Learning a common substructure of multiple graphical Gaussian models. Neural Netw. 2013, 38, 23–38.

[CrossRef]
18. Glowinski, R.; Marroco, A. Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité d’une

classe de problèmes de Dirichlet non linéaires. ESAIM: Math. Model. Numer. Anal.-Modél. Math. Et Anal. Numér. 1975, 9, 41–76.
[CrossRef]

19. Tang, Q.; Yang, C.; Peng, J.; Xu, J. Exact hybrid covariance thresholding for joint graphical lasso. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases; Springer: Berlin/Heidelberg, Germany, 2015; pp. 593–607.

20. Hallac, D.; Park, Y.; Boyd, S.; Leskovec, J. Network inference via the time-varying graphical lasso. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, 13–17 August 2017;
pp. 205–213.

21. Gibberd, A.J.; Nelson, J.D. Regularized estimation of piecewise constant gaussian graphical models: The group-fused graphical
lasso. J. Comput. Graph. Stat. 2017, 26, 623–634. [CrossRef]

22. Boyd, S.; Parikh, N.; Chu, E. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers; Now
Publishers Inc.: Norwell, MA, USA, 2011.

23. Yang, S.; Lu, Z.; Shen, X.; Wonka, P.; Ye, J. Fused multiple graphical lasso. SIAM J. Optim. 2015, 25, 916–943. [CrossRef]
24. Tran-Dinh, Q.; Kyrillidis, A.; Cevher, V. Composite self-concordant minimization. J. Mach. Learn. Res. 2015, 16, 371–416.
25. Beck, A.; Teboulle, M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2009,

2, 183–202. [CrossRef]
26. Nesterov, Y.; Nemirovskii, A. Interior-Point Polynomial Algorithms in Convex Programming; SIAM: Philadelphia, PA, USA, 1994.
27. Renegar, J. A Mathematical View of Interior-Point Methods in Convex Optimization; SIAM: Philadelphia, PA, USA, 2001.
28. Nesterov, Y. Introductory Lectures on Convex Optimization: A Basic Course; Springer Science & Business Media: New York, NY, USA,

2003; Volume 87.
29. Tibshirani, R.; Saunders, M.; Rosset, S.; Zhu, J.; Knight, K. Sparsity and smoothness via the fused lasso. J. R. Stat. Soc. Ser. B 2005,

67, 91–108. [CrossRef]
30. Simon, N.; Friedman, J.; Hastie, T.; Tibshirani, R. A sparse-group lasso. J. Comput. Graph. Stat. 2013, 22, 231–245. [CrossRef]
31. Friedman, J.; Hastie, T.; Tibshirani, R. A note on the group lasso and a sparse group lasso. arXiv 2010, arXiv:1001.0736.
32. Hoefling, H. A path algorithm for the fused lasso signal approximator. J. Comput. Graph. Stat. 2010, 19, 984–1006. [CrossRef]
33. Friedman, J.; Hastie, T.; Höfling, H.; Tibshirani, R. Pathwise coordinate optimization. Ann. Appl. Stat. 2007, 1, 302–332. [CrossRef]
34. Tibshirani, R.J.; Taylor, J. The solution path of the generalized lasso. Ann. Stat. 2011, 39, 1335–1371. [CrossRef]
35. Johnson, N.A. A dynamic programming algorithm for the fused lasso and l 0-segmentation. J. Comput. Graph. Stat. 2013,

22, 246–260. [CrossRef]
36. Yuan, M.; Lin, Y. Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B 2006, 68, 49–67.

[CrossRef]
37. Suzuki, J. Sparse Estimation with Math and R: 100 Exercises for Building Logic; Springer Nature: Berlin/Heidelberg, Germany 2021.
38. Boyd, S.; Boyd, S.P.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004.
39. Barzilai, J.; Borwein, J.M. Two-point step size gradient methods. IMA J. Numer. Anal. 1988, 8, 141–148. [CrossRef]
40. Nemirovski, A. Interior point polynomial time methods in convex programming. Lect. Notes 2004, 42, 3215–3224.
41. Li, H.; Gui, J. Gradient directed regularization for sparse Gaussian concentration graphs, with applications to inference of genetic

networks. Biostatistics 2006, 7, 302–317. [CrossRef]
42. Weylandt, M.; Nagorski, J.; Allen, G.I. Dynamic visualization and fast computation for convex clustering via algorithmic

regularization. J. Comput. Graph. Stat. 2020, 29, 87–96. [CrossRef] [PubMed]

http://dx.doi.org/10.1080/01621459.2012.725386
http://dx.doi.org/10.1214/12-EJS740
http://dx.doi.org/10.1137/060670985
http://dx.doi.org/10.1111/rssb.12033
http://dx.doi.org/10.1093/biomet/asq060
http://www.ncbi.nlm.nih.gov/pubmed/23049124
http://dx.doi.org/10.1016/j.neunet.2012.11.004
http://dx.doi.org/10.1051/m2an/197509R200411
http://dx.doi.org/10.1080/10618600.2017.1302340
http://dx.doi.org/10.1137/130936397
http://dx.doi.org/10.1137/080716542
http://dx.doi.org/10.1111/j.1467-9868.2005.00490.x
http://dx.doi.org/10.1080/10618600.2012.681250
http://dx.doi.org/10.1198/jcgs.2010.09208
http://dx.doi.org/10.1214/07-AOAS131
http://dx.doi.org/10.1214/11-AOS878
http://dx.doi.org/10.1080/10618600.2012.681238
http://dx.doi.org/10.1111/j.1467-9868.2005.00532.x
http://dx.doi.org/10.1093/imanum/8.1.141
http://dx.doi.org/10.1093/biostatistics/kxj008
http://dx.doi.org/10.1080/10618600.2019.1629943
http://www.ncbi.nlm.nih.gov/pubmed/32982130

Entropy 2021, 23, 1623 24 of 24

43. Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A
software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [CrossRef]
[PubMed]

44. Miller, L.D.; Smeds, J.; George, J.; Vega, V.B.; Vergara, L.; Ploner, A.; Pawitan, Y.; Hall, P.; Klaar, S.; Liu, E.T.; et al. An expression
signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proc. Natl.
Acad. Sci. USA 2005, 102, 13550–13555. [CrossRef] [PubMed]

http://dx.doi.org/10.1101/gr.1239303
http://www.ncbi.nlm.nih.gov/pubmed/14597658
http://dx.doi.org/10.1073/pnas.0506230102
http://www.ncbi.nlm.nih.gov/pubmed/16141321

	Introduction
	Preliminaries
	Graphical Lasso
	ISTA for Graphical Lasso
	Composite Self-Concordant Minimization
	Joint Graphical Lasso

	The Proposed Methods
	ISTA for the JGL Problem
	Fused Lasso Penalty PF
	Group Lasso Penalty PG

	Modified ISTA for JGL
	Theoretical Analysis

	Experiments
	Stopping Criteria and Model Selection
	Synthetic Data
	Time Comparison Experiments
	Algorithm Assessment
	Convergence Rate

	Real Data

	Discussion
	Proofs of Propositions
	Proof of Proposition 1
	Proof of Proposition 2

	Data Generation
	References

