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Abstract: Thanks to technological advances leading to near-continuous time observations, emerging
multivariate point process data offer new opportunities for causal discovery. However, a key
obstacle in achieving this goal is that many relevant processes may not be observed in practice.
Naïve estimation approaches that ignore these hidden variables can generate misleading results
because of the unadjusted confounding. To plug this gap, we propose a deconfounding procedure to
estimate high-dimensional point process networks with only a subset of the nodes being observed.
Our method allows flexible connections between the observed and unobserved processes. It also
allows the number of unobserved processes to be unknown and potentially larger than the number of
observed nodes. Theoretical analyses and numerical studies highlight the advantages of the proposed
method in identifying causal interactions among the observed processes.
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1. Introduction

Learning causal interactions from observational multivariate time series is generally
impossible [1,2]. Among many challenges, two of the most important ones are that (i) the
data acquisition rate may be much slower than the underlying rate of changes; and (ii) there
may be unmeasured confounders [1,3]. First, due to the cost or technological constraints,
the data acquisition rate may be much slower than the underlying rate of changes. In such
settings, the most commonly used procedure for inferring interactions among time series,
Granger causality, may both miss true interactions and identify spurious ones [4–6]. Second,
the available data may only include a small fraction of potentially relevant variables,
leading to unmeasured confounders. Naïve connectivity estimators that ignore these
confounding effects can produce highly biased results [7]. Therefore, reliably distinguishing
causal connections between pairs of observed processes from correlations induced by
common inputs from unobserved confounders remains a key challenge.

Learning causal interactions between neurons is critical to understanding the neural
basis of cognitive functions [8,9]. Many existing neuroscience data, such as data collected
using functional magnetic resonance imaging (fMRI), have relatively low temporal res-
olutions, and are thus of limited utility for causal discovery [10]. This is because many
important neuronal processes and interactions happen at finer time scales [11]. New tech-
nologies, such as calcium florescent imaging that generate spike train data, make it possible
to collect ‘live’ data at high temporal resolutions [12]. The spike train data, which are multi-
variate point processes containing spiking times of a collection of neurons, are increasingly
used to learn the latent brain connectivity networks and to glean insight into how neurons
respond to external stimuli [13]. For example, Bolding and Franks [14] collected spike train
data on neurons in mouse olfactory bulb region at 30 kHz under multiple laser intensity
levels to study the odor identification mechanism. Despite progress in recording the activity
of massive populations of neurons [15], simultaneously monitoring a complete network
of spiking neurons at high temporal resolutions is still beyond the reach of the current
technology. In fact, most experiments only collect data on a small fraction of neurons,
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leaving many unobserved neurons [16–18]. These hidden neurons may potentially interact
with the neurons inside the observed set and cannot be ignored. Nevertheless, given its
high temporal resolution, spike train data provide an opportunity for causal discovery if
we can account for the unmeasured confounders.

When unobserved confounders are a concern, causal effects among the observed
variables can be learned using causal structural learning approaches, such as the Fast
Causal Inference (FCI) algorithm and its variants [1,19]. However, these algorithms may
not identify all causal edges. Specifically, instead of learning the directed acyclic graph
(DAG) of causal interactions, FCI learns the maximally ancestral graph (MAG). This
graph includes causal interactions between variables that are connected by directed edges,
but also bi-directed edges among some other variables, leaving the corresponding causal
relationships undetermined. As a result, causality discovery using these algorithms is
not always satisfactory. For example, Malinsky and Spirtes [20] recently applied FCI to
infer causal network of time series and found a low recall for identifying the true casual
relationships. Additionally, despite recent efforts [21], causal structure learning remains
computationally intensive, because the space of candidate causal graphs grows super-
exponentially with the number of network nodes [22].

The Hawkes process [23] is a popular model for analyzing multivariate point process
data. In this model, the probability of future events for each component can depend
on the entire history of events of other components. Under straightforward conditions,
the multivariate Hawkes process reveals Granger causal interactions among multivariate
point processes [24]. Moreover, assuming that all relevant processes are observed in a linear
Hawkes process, causal interactions among components can also be inferred [25]. The
Hawkes process thus provides a flexible and interpretable framework for investigating the
latent network of point processes and is widely used in neuroscience applications [26–32].

In modern applications, it is common for the number of measured components,
e.g., the number of neurons, to be large compared to the observed period, e.g., the duration
of neuroscience experiments. The high-dimensional nature of data in such applications
poses challenges to learning the connectivity network of a multivariate Hawkes process.
To address this challenge, Hansen et al. [33] and Chen et al. [34] proposed `1-regularized
estimation procedures and Wang et al. [35] recently developed a high-dimensional infer-
ence procedure to characterize the uncertainty of these regularized estimators. However,
due to the confounding from unobserved neurons in practice, existing estimation and in-
ference procedures assuming complete observation from all components, may not provide
reliable estimates.

Accounting for unobserved confounders in high-dimensional regression has been
the subject of recent research. Two such examples are HIVE [36] and trim regression [37],
which facilitate causal discovery using high-dimensional regression with unobserved
confounders. However, these methods are designed for linear regression with independent
observations and do not apply to the long-history temporal dependency setting of Hawkes
processes. Moreover, they rely on specific assumptions on observed and unobsvered causal
effects, which are not clear to hold in neuronal network settings.

In this paper, we consider learning causal interactions among high-dimensional point
processes with (potentially many) hidden confounders. Considering the generalization
of the above two approaches to the setting of Hawkes processes, we show that the as-
sumption required by trim regression is more likely to hold in a stable point process
network, especially when the confounders affect many observed nodes. Motivated by
this finding, we propose a generalization of the trim regression, termed hp-trim, for causal
discovery from high-dimensional point processes in the presence of (potentially many)
hidden confounders. We establish a non-asymptotic convergence rate in estimating the
network edges using this procedure. Unlike the previous result for independent data [37],
our result considers both the temporal dependence of the Hawkes processes as well as the
network sparsity. Using simulated and real data, we also show that hp-trim has superior
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finite-sample performance compared to the corresponding generalization of HIVE for point
processes and/or the naïve approach that ignores the unobserved confounders.

2. The Hawkes Processes with Unobserved Components
2.1. The Hawkes Process

Let {tk}k∈Z be a sequence of real-valued random variables, taking values in [0, T],
with tk+1 > tk and t1 ≥ 0 almost surely. Here, time t = 0 is a reference point in time,
e.g., the start of an experiment, and T is the duration of the experiment. A simple point
process N on R is defined as a family {N(A)}A∈B(R), where B(R) denotes the Borel σ-field
of the real line and N(A) = ∑k 1{tk∈A}. The process N is essentially a simple counting
process with isolated jumps of unit height that occur at {tk}k∈Z. We write N([t, t + dt)) as
dN(t), where dt denotes an arbitrarily small increment of t.

Let N be a p-variate counting process N ≡ {Ni}i∈{1,...,p}, where, as above, Ni satisfies
Ni(A) = ∑k 1{tik∈A} for A ∈ B(R) with {ti1, ti2, . . . } denoting the event times of Ni. Let
Ht be the history of N prior to time t. The intensity process {λ1(t), . . . , λp(t)} is a p-variate
Ht-predictable process, defined as

λi(t)dt = P(dNi(t) = 1 | Ht). (1)

Hawkes [23] proposed a class of point process models in which past events can affect
the probability of future events. The process N is a linear Hawkes process if the intensity
function for each unit i ∈ {1, . . . , p} takes the form

λi(t) = µi +
p

∑
j=1

(
ωij ∗ dNj

)
(t), (2)

where (
ωij ∗ dNj

)
(t) =

∫ t−

0
ωij(t− s)dNj(s) = ∑

k:tjk<t
ωij(t− tjk). (3)

Here, µi is the background intensity of unit i and ωij(·) : R+ → R is the transfer
function. In particular, ωij(t− tjk) represents the influence from the kth event of unit j on
the intensity of unit i at time t.

Motivated by neuroscience applications [38,39], we consider a parametric transfer
function ωij(·) of the form

ωij(t) = βijκj(t) (4)

with a transition kernel κj(·) : R+ → R that captures the decay of the dependence on past
events. This leads to

(
ωij ∗ dNj

)
(t) = βijxj(t), where the integrated stochastic process

xj(t) =
∫ t−

0
κj(t− s)dNj(s) (5)

summarizes the entire history of unit j of the multivariate Hawkes processes. A commonly
used example is the exponential transition kernel, κj(t) = e−t [40].

Assuming that the model holds and all relevant processes are observed, it follows
from [40] that the connectivity coefficient βij represents the strength of the causal dependence
of unit i’s intensity on unit j’s past events. A positive βij implies that past events of unit
j excite future events of unit i and is often considered in the literature (see, e.g., [40,41]).
However, we might also wish to allow for negative βij values to represent inhibitory
effects [34,42], which are expected in neuroscience applications [43].

Denoting x(t) = (x1(t), . . . , xp(t))> ∈ Rp and βi = (βi1, . . . , βip)
> ∈ Rp, we can

write

λi(t) = µi + x>(t)βi. (6)
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Furthermore, let Yi(t) = dNi(t)/dt and εi(t) = Yi(t) − λi(t). Then the linear Hawkes
process can be written compactly as

Yi(t) = µi + x>(t)βi + εi(t). (7)

2.2. The Confounded Hawkes Process

Because of technology constraints, neuroscience experiments usually collect data from
only a small portion of neurons. As a result, many other neurons that potentially interact
with the observed neurons will be unobserved. Consider a network of p + q counting
processes, where we only observe the first p components. The number of unobserved
neurons, q, is usually unknown and likely much greater than p. Extending (7) to include
the unobserved components, we obtain the confounded Hawkes model,

Yi(t) = µi + x>(t)βi + z>(t)δi + εi(t), (8)

in which z(t) = (xp+1(t), . . . , xp+q(t))> ∈ Rq denotes the integrated processes of the
hidden components, and δi ∈ Rq denotes the connectivity coefficients from the unobserved
components to unit i.

Unless the observed and unobserved processes are independent, the naïve estimator
that ignores the unobserved components will produce misleading conclusion about the
causal relationship among the observed components. This is illustrated in the simple linear
vector autoregressive process of Figure 1. This example includes three continuous random
variables generated according to the following set of equations

Y1(t) = Y1(t− 1) + Y2(t− 1) + ε1(t− 1)

Y2(t) = Y3(t− 1) + ε2(t− 1)

Y3(t) = Y3(t− 1) + ε2(t− 1),

where εi are mean zero innovation or error terms. The Granger causal network correspond-
ing to the above process is shown in Figure 1A. Figure 1B shows that if Y3 is not observed,
the conditional means of the observed variables Y1 and Y2, namely,

E{Y1(t) | Y1(t− 1), Y2(t− 1)} = Y1(t− 1) + Y2(t− 1)

E{Y2(t) | Y1(t− 1), Y2(t− 1)} = Y2(t− 1),

leads to incorrect Granger causal conclusions—in this case, a spurious autoregressive
effect from the past values of Y2. The same phenomenon occurs in Hawkes processes with
unobserved components.

Throughout this paper, we assume that the confounded linear Hawkes model in (8) is
stationary, meaning that for all units i = 1, . . . , p, the spontaneous rates µi and strengths of
transition (βi, δi) are constant over the time range [0, T] [44,45].
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Figure 1. Illustration of the effect of hidden confounders on inferred causal interactions among
the observed variables. (A) The true causal diagram for the complete processes. (B) The causal
structure of the observed process when the hidden component, Y3, is ignored, including a spurious
autoregressive effect of Y2 on its future values.

3. Estimating Causal Effects in Confounded Hawkes Processes
3.1. Extending Trim Regression to Hawkes Processes

Let bi ∈ Rp be the projection coefficient of z>(t)δi onto x(t) such that

Cov
(

x(t), z>(t)δi − x>(t)bi

)
= 0. (9)

We can write the confounded linear Hawkes model in (8) in the form of the perturbed
linear model [37]:

Yi(t) = µi + x>(t)(βi + bi) + νi(t), (10)

where νi(t) =
(
z>(t)δi − x>(t)bi

)
+ εi(t). By the construction of bi, ν(t) is uncorrelated

with the observed processes x(t) and bi represents the bias, or the perturbation, due to the
confounding from z>(t)δi. In general, bi 6= 0 unless Cov(x(t), z(t)) = 0.

The perturbed model in (10) is generally unidentifiable because we can only estimate
βi + bi from the observed data, e.g., by regressing Yi(t) on x(t). The trim regression [37]
is a two-step deconfounding procedure to estimate βi for independent and Gaussian-
distributed data. The method first applies a simple spectral transformation, called trim
transformation (described below), to the observed data. It then estimates βi, using pe-
nalized regression. When bi is sufficiently small, the method consistently estimates βi.
Although this condition is generally not valid for Gaussian-distributed data, previous
work on Hawkes processes [34] implies that the confounding magnitude cannot be large
when the underlying network is stable, particularly when the confounders affect many
observed components (see the discussion following Corollary 1 in Section 4). This allows
us to generalize the trim regression to learn the network of multivariate Hawkes processes.

Assume, without loss of generality, that the first p components are observed at times
indexed from 1 to T. Let X ∈ RT×p be the design matrix of the observed integrated
process and Yi = (Yi(1), . . . , Yi(T))

> ∈ RT be the vector of observed outcomes. Further, let
X = UDV> be the singular value decomposition on X, where U ∈ RT×r, D ∈ Rr×r and
V ∈ Rp×r; here, r = min(T, p) is the rank of X. Denoting the non-zero diagonal entries of
D by d1, . . . , dr, the spectral transformation F : RT×p → RT×p is given by

F = U


d̃1/d1 0 . . . 0

0 d̃2/d2 . . . 0
...

...
. . .

...
0 0 . . . d̃r/dr

U>. (11)
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Denoting by D̃ a diagonal matrix with entries d̃1, . . . , d̃r, the first step of hp-trim
involves applying the spectral transformation to the observed data to obtain

X̃ = FX = UD̃V>, (12)

Ỹ = FY. (13)

The spectral transformation is designed to reduce the magnitude of confounding.
In particular, when bi aligns with the top eigen-vectors of X, for an appropriate F, e.g., d̃k =
min(τ, dk) as used in previous work [37], the magnitude of X̃bi is small compared with Xbi.
Here, τ is a threshold parameter and the trim transformation is a special case of the spectral
transformation when τ = median(d1, . . . , dr). See Ćevid et al. [37] for additional details.

In the second step, we then estimate the network connectivities using the transformed
data by solving the following optimization problem

arg min
µi∈R,βi∈Rp

1≤i≤p

p

∑
i=1

{
1
T

∥∥∥Ỹi − µi − X̃βi

∥∥∥2

2
+ λ‖βi‖1

}
, (14)

which is an instance of lasso regression [46] and can be solved separately for each i ∈
{1, . . . , p}.

3.2. An Alternative Approach

HIdden Variable adjustment Estimation (HIVE) [36] is an alternative method for
estimating coefficients of a linear model with independent and Gaussian-distributed data
in the presence of latent variables. Adapted to the network of multivariate point processes,
HIVE first estimates the latent column space of the unobserved connectivity matrix, ∆ =(
δ1 . . . δp

)> ∈ Rp×q , with δi defined in (8). It then projects the outcome vector, Y(t) =(
Y1(t), . . . , Yp(t)

)>, onto the space orthogonal to the column space of ∆. Assuming that

the column space of the observed connectivity matrix, Θ =
(

β1 . . . βp
)> ∈ Rp×p is

orthogonal to that of ∆, HIVE consistently estimates Θ using the transformed data. While
the orthogonality assumption might be satisfied when the hidden processes are external,
such as experimental perturbations in genetic studies [47], it might be too stringent in
a network setting. However, when the orthogonality assumption fails, HIVE may lead
to poor edge selection performance, and potentially worse than the naïve method that
ignores the hidden processes. HIVE also requires the number of hidden variables to
be known. Although methods in selecting the number of hidden variables have been
proposed, the resulting theoretical guarantees would only be asymptotic. An over- or
under-estimated number can either miss the true edges or generate false ones. Given these
limitations, we outline the extension of HIVE for Hawkes processes in Appendix A and
refer the interested reader to Bing et al. [36] for details.

4. Theoretical Properties

In this section we establish the recovery of the network connectivity in the presence of
hidden processes. Technical proofs for the results in this section are given in Appendix B.

We start by stating our assumptions. For a square matrix A, let Λmax(A) and Λmin(A)
be its maximum and minimum eigenvalues, respectively.

Assumption 1. Let Ω = {Ωij}1≤i,j≤p+q ∈ R(p+q)×(p+q) with entries Ωij =
∫ ∞

0 |ωij(∆)|d∆.
There exists a constant γΩ such that Λmax(ΩTΩ) ≤ γ2

Ω < 1.

Assumption 1 is necessary for stationarity of a Hawkes process [34]. The constant γΩ does
not depend on the dimension p + q. For any fixed dimension, Brémaud and Massoulié [44]
show that given this assumption the intensity process of the form (6) is stable in distribu-
tion and, thus, a stationary process exists. Since our connectivity coefficients of interest are
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ill-defined without stationarity, this assumption provides the necessary context for our estima-
tion framework.

Assumption 2. There exists λmin and λmax such that

0 < λmin ≤ λi(t) ≤ λmax < ∞, t ∈ [0, T]

for all i = 1, . . . , p + q.

Assumption 2 requires that the intensity rate is strictly bounded, which prevents degen-
erate processes for all components of the multivariate Hawkes processes. This assumption
has been considered in the previous analysis of Hawkes processes [33–35,42,48].

Assumption 3. The transition kernel κj(t) is bounded and integrable over [0, T], for 1 ≤ j ≤
p + q.

Assumption 4. There exists constants ρr ∈ (0, 1) and 0 < ρc < ∞ such that

max
1≤i≤p+q

p+q

∑
j=1

Ωij ≤ ρr and max
1≤j≤p+q

p+q

∑
i=1

Ωij ≤ ρc.

Assumption 3 implies that the integrated process xj(t) in (5) is bounded. Assumption 4
requires maximum in- and out- intensity flows to be bounded, which provides a sufficient
condition for bounding the eigenvalues of the cross-covariance of x(t) [35]. A similar
assumption is considered by Basu and Michailidis [49] in the context of VAR models. To-
gether, Assumptions 3 and 4 imply that the model parameters are bounded, which is often
required in time-series analysis [50]. Specifically, these assumptions restrict the influence
of the hidden processes from being too large.

Define the set of active indices among the observed components, Si = {j : βij 6=
0, 1 ≤ j ≤ p}, and si = |Si| and s∗ ≡ max1≤i≤p si. Let Q = 1

T ∑T
t=1

(
1

x(t)

)(
1 x>(t)

)
,

and γmin ≡ Λmin(Q) and γmax ≡ Λmax(Q). Our first result provides a fixed sample bound
on the error of estimating the connectivity coefficients.

Theorem 1. Suppose each of the p-variate Hawkes processes with intensity function defined
in (8) satisfies Assumptions 1–4. Assume (log p) ∨ (s∗)1/2 = o(T1/5). Then, taking λ =
O(Λ2

max(F)T−2/5),∥∥∥βi − β̂i

∥∥∥
1
≤ C1Λ2

max(F)
s∗

γ2
min

T−2/5 + C2Λ−2
max(F)T−3/5

∥∥∥X̃bi

∥∥∥2

2
, 1 ≤ i ≤ p,

with probability at least 1− c1 p2T exp(−c2T1/5), where C1, C2, c1, c2 > 0 depend on the model
parameters and the transition kernel.

Compared to the case with independent and Gaussian-distributed data ([37], Theo-
rem 2), we obtain a slower convergence rate because of the complex dependency of the
Hawkes processes. Our rate takes into account the network sparsity among the observed
components. It also does not depend on the size of unobserved components, q, which is
critical in neuroscience experiments because q is often unknown and potentially very large.

The result in Theorem 1 is different from the corresponding result obtained when all
processes are observed ([35], Lemma 10). More specifically, our result includes an extra
error term, ‖X̃bi‖2

2, which captures the effect of unobserved processes. Next, we show
that when ‖bi‖2

2 is sufficiently small, we obtain a similar rate of convergence as the one
obtained when all processes are observed.
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Corollary 1. Under the same assumptions in Theorem 1, suppose, in addition,

‖bi‖2
2 = O

(
s∗

γ2
minγmax

T−4/5Λ2
max(F)

)
,

∥∥∥βi − β̂i

∥∥∥
1
= O

(
s∗

γ2
min

Λ2
max(F)T−2/5

)
, 1 ≤ i ≤ p,

with probability at least 1 − c1 p2T exp(−c2T1/5), where c1, c2 > 0 depending on the model
parameters and the transition kernel.

The spectral transformation empirically reduces the magnitude of 1
T ‖X̃bi‖2

2, especially
when the confounding vector, bi, stays in the sub-space spanned by top right singular
vectors of X; however, this is not guaranteed to hold for arbitrary bi. Corollary 1 specifies a
condition on bi that leads to consistent estimation of βi, regardless of the empirical perfor-
mance of the spectral transformation. While the condition does not always hold for arbi-
trary stochastic process, it is satisfied for a stable network of high-dimensional multivariate
Hawkes processes when the confounding is dense. Specifically, by the construction of bi in
(9), Assumption 4 implies that ‖bi‖1 = O(‖δi‖1) = O(1). When the confounding effects are
relatively dense—i.e., ‖bi‖0 = O(p), meaning that there are large number of interactions
from unobserved nodes to the observed ones—we obtain ‖bi‖2

2 = O(1/p). Therefore,
the constraint on ‖bi‖2

2 is likely satisfied under a high-dimensional network, when p� T.
The high-dimensional network setting is common in modern neuroscience experiments
where the number of neurons is often large compared to the duration of experiments.

Next we introduce an additional assumption to establish the edge selection consistency.
To this end, we consider the thresholded connectivity estimator,

β̃ij = β̂ij1
(∣∣∣β̂ij

∣∣∣ > τ
)

, 1 ≤ i, j ≤ p.

Thresholded estimators are used for variable selections in high-dimensional network
estimation [51] as they alleviate the need for restrictive irrepresentability assumptions [52].

Assumption 5. There exists τ > 0 such that

min
1≤i,j≤p

βij ≥ βmin > 2τ.

Assumption 5 is called the β-min condition [53] and requires sufficient signal strength
for the true edges in order to distinguish them from 0. Let the estimated edge set Ŝ ={
(i, j) : β̃ij 6= 0, 1 ≤ i, j ≤ p

}
and the true edge set S =

{
(i, j) : βij 6= 0, 1 ≤ i, j ≤ p

}
. The

next result shows that the estimated edge set consistently recovers the true edge set.

Theorem 2. Under the same conditions in Theorem 1, assume Assumption 5 is satisfied with

τ = O
(

s∗
γ2

min
Λ2

max(F)T−2/5
)

. Then,

P
(

Ŝ = S
)
≥ 1− c1 p2T exp

(
−c2T1/5

)
,

where c1, c2 > 0 depending on the model parameters and the transition kernel.

Theorem 2 guarantees the recovery of causal interactions among the observed compo-
nents. As before, the result is valid irrespsective of the number of unobserved components,
which is important in neuroscience applications.
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5. Simulation Studies

We compare our proposed method, hp-trim, with two alternatives, HIVE and the naïve
approach that ignores the unobserved nodes. To this end, we compare the methods in terms
of their abilities to identify the correct causal interactions among the observed components.

We consider a point process network consisting of 200 nodes with half of the nodes
being observed; that is p = q = 100. The observed nodes are connected in blocks of five
nodes, and half of the blocks are connected with the unobserved nodes (see Figure 2a). This
setting exemplifies neuroscience applications, where the orthogonality assumption of HIVE
is violated. As a sensitivity analysis, we also consider a second setting similar to the first,
in which we remove the connections of the blocks that are not connected with the unob-
served nodes This setting, shown in Figure 3a, satisfies HIVE’s orthogonality assumption.
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Figure 2. Edge selection performance of the proposed hp-trim approach compared with estimators
based on HIVE (run with the known (oracle) number of latent features) and the naïve approach. Here,
p = q = 100. (a) Visualization of the connectivity matrix, with unobserved connecitivies colored in
gray and entries corresponding to edges shown in black. This setting violates the orthogonality con-
dition of HIVE because of the connections between the observed and the hidden nodes (represented
by the non-zero coefficients colored in red). (b) Average number of true positive and false positive
edges detected using each method over 100 simulation runs.

To generate point process data, we consider βij = 0.12 and δij = 0.10 in the setting of
Figure 2a, and βij = 0.2 and δij = 0.18 in the setting of Figure 3b. The background intensity,
µi, is set to 0.05 in both settings. The transfer kernel function is chosen to be exp(−t). These
settings satisfy the assumptions of stationary Hawkes processes. In both settings, we set
the length of the time series to T ∈ {1000, 5000} .
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Figure 2. Edge selection performance of the proposed hp-trim approach compared with estimators
based on HIVE (run with the known (oracle) number of latent features) and the naïve approach. Here,
p = q = 100. (a) Visualization of the connectivity matrix, with unobserved connecitivies colored in
gray and entries corresponding to edges shown in black. This setting violates the orthogonality con-
dition of HIVE because of the connections between the observed and the hidden nodes (represented
by the non-zero coefficients colored in red). (b) Average number of true positive and false positive
edges detected using each method over 100 simulation runs.

To generate point process data, we consider βij = 0.12 and δij = 0.10 in the setting of
Figure 2a, and βij = 0.2 and δij = 0.18 in the setting of Figure 3b. The background intensity,
µi, is set to 0.05 in both settings. The transfer kernel function is chosen to be exp(−t). These
settings satisfy the assumptions of stationary Hawkes processes. In both settings, we set
the length of the time series to T ∈ {1000, 5000} .
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Figure 3. Edge selection performance of the proposed hp-trim approach compared with estimators
based on HIVE and the naïve approach. Here, p = q = 100. (a) Visualization of the connectivity
matrix, with unobserved connecitivies colored in gray and entries corresponding to edges shown in
black. This setting satisfies the orthogonality condition of HIVE, which is run both with and without
assuming known number of latent features. These two versions are denoted HIVE-oracle and HIVE-
empirical, respectively. In HIVE-empirical the number of latent factors is estimated based on the
estimate with highest frequency over the 100 simulation runs (estimated q̂ = 79). (b) Average number
of true positive and false positive edges detected using each method over 100 simulation runs.

The results in Figure 2b shown that hp-trim offers superior performance for both small
and large sample sizes in the first setting. For example, with large sample size, T = 5000,
hp-trim is able to detect almost all 200 true edges at the expense of about 50 falsely detected
edges; this is almost twice as large as the number of true edges detected by HIVE and the
naïve method, which only detect half of the true edges at the same level of falsely detected
edges. The naïve method eventually detects all true edges but at much bigger cost of about
400 falsely detected edges. In this case, HIVE performs poorly and detects at most half
of the true edges, no matter the tolerance level of the number of falsely detected edges.
The poor performance of HIVE is because its stringent orthogonality condition is violated
in this simulation setting. When the orthogonality condition is satisfied (Figure 3a), HIVE
shows the best performance. Specifically, with large sample size, T = 5000, HIVE detects
all true edges almost without identifying any falsely detected edges (the red solid line in
Figure 3b). However, this advantage requires knowledge of the correct number of latent
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Figure 3. Edge selection performance of the proposed hp-trim approach compared with estimators
based on HIVE and the naïve approach. Here, p = q = 100. (a) Visualization of the connectivity
matrix, with unobserved connecitivies colored in gray and entries corresponding to edges shown in
black. This setting satisfies the orthogonality condition of HIVE, which is run both with and without
assuming known number of latent features. These two versions are denoted HIVE-oracle and HIVE-
empirical, respectively. In HIVE-empirical the number of latent factors is estimated based on the
estimate with highest frequency over the 100 simulation runs (estimated q̂ = 79). (b) Average number
of true positive and false positive edges detected using each method over 100 simulation runs.

The results in Figure 2b shown that hp-trim offers superior performance for both small
and large sample sizes in the first setting. For example, with large sample size, T = 5000,
hp-trim is able to detect almost all 200 true edges at the expense of about 50 falsely detected
edges; this is almost twice as large as the number of true edges detected by HIVE and the
naïve method, which only detect half of the true edges at the same level of falsely detected
edges. The naïve method eventually detects all true edges but at much bigger cost of about
400 falsely detected edges. In this case, HIVE performs poorly and detects at most half
of the true edges, no matter the tolerance level of the number of falsely detected edges.
The poor performance of HIVE is because its stringent orthogonality condition is violated
in this simulation setting. When the orthogonality condition is satisfied (Figure 3a), HIVE
shows the best performance. Specifically, with large sample size, T = 5000, HIVE detects
all true edges almost without identifying any falsely detected edges (the red solid line in
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Figure 3b). However, this advantage requires knowledge of the correct number of latent
features. When the number of latent features is unknown and estimated from data, HIVE’s
performance deteriorates, especially with an insufficient sample size. For example, HIVE
with empirically estimated number of latent features only detect about 40 true edges (out
of a total of 100) at the expense of 100 falsely detected edges (pink lines in Figure 3b). In
contrast, hp-trim’s performance with both moderate and large sample sizes is close to the
oracle version of HIVE (HIVE-oracle). Specifically, with a large sample size, T = 5000,
hp-trim captures all 100 true edges at the expense of 50 falsely detected edges, again than
twice as many true edges as HIVE-empirical.

Although our main focus is on the edge selection relevant for causal discovery, in
Appendix C we also examine the estimation performance of our algorithm on the connec-
tivity coefficients associated with the observed processes. Not surprisingly, the results
indicate that hp-trim can also offer advantages in estimating the parameters, especially in
settings where it offers improved edge selection.

6. Analysis of Mouse Spike Train Data

We consider the task of learning causal interactions among the observed population of
neurons, using the spike train data from Bolding and Franks [14]. In this experiment, spike
times are recorded at 30 kHz on a region of the mice olfactory bulb (OB), while a laser pulse
is applied directly on the OB cells of the subject mouse. The laser pulse has been applied at
increasing intensities from 0 to 50 (mW/mm2). The laser pulse at each intensity level lasts
10 seconds and is repeated 10 times on the same set of neuron cells of the subject mouse.

The experiment consists of spike train data multiple mice and we consider data from
the subject mouse with the most detected neurons (25) under laser (20 mW/mm2) and no
laser conditions. In particular, we use the spike train data from one laser pulse at each
intensity level. Since one laser pulse spans 10 seconds and the spike train data is recorded
at 30 kHz, there are 300,000 time points per experimental replicate.

The population of observed neurons is a small subset of all the neurons in mouse’s
brain. Therefore, to discover causal interactions among the p = 25 observed neurons, we
apply our estimation procedure, hp-trim, along with HIVE and naïve approaches, separately
for each intensity level, and obtain the estimated connectivity coefficients for the observed
neurons. For ease of comparison, the tuning parameters for both methods are chosen to
have about 30 estimated edges; moreover, for HIVE, q is estimated following the procedure
in Bing et al. [36], which is based on the maximum decrease in eigenvalue of the covariance
matrix of the errors, Ẽ(t) in (A1).

Figure 4 shows the estimated connectivity coefficients specific to each laser condition
in a graph representation. In this representation, each node represents a neuron, and a
directed edge indicates a non-zero estimated connectivity coefficient. We see different
network connectivity structures when laser stimulus is applied, which agrees with the
observation by neuroscientists that the OB response is sensitive to the external stimuli [14].

Compared to our proposed method, the naïve approach generates a more similar
network than HIVE under both laser and no-laser conditions, which is likely an indication
that the naïve estimate is incorrect in this application.

As discussed in Section 4, our inference procedure is asymptotically valid. In other
words, with large enough sample size, if the other assumptions in Section 4 are satisfied,
the estimated edges should represent the true edges. Assessing the validity of the assump-
tions and selecting the true edges in real data applications is challenging. However, we can
assess the sample size requirement and the validity of assumptions by estimating the edges
over a subset of neurons as if the other removed neurons are unobserved. If the sample size
is sufficient and the other assumptions are satisfied, we should obtain similar connectivities
among the observed subset of neurons, even when some neurons are hidden. Figure 5
shows the result of such a stability analysis for the laser condition using hp-trim. Comparing
the connectivities in this graph with those in Figure 4 indicates that the estimated edges
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using the subsets of neurons are all consistent with those estimated using all neurons. Thus,
the assumptions are likely satisfied in this application.
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Figure 4. Estimated functional connectivities among neurons using mouse spike train data from
laser and no-laser conditions [14]. Common edges estimated by the three methods are in red and
the method-specific edges are in blue. Thicker edges indicate estimated connectivity coefficients of
larger magnitudes.
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Figure 5. Estimated functional connectivities using hp-trim among multiple subset of neurons. Here,
data is the same as that used in Figure 4 under the laser condition, except that 5, 10 and 15 neurons
(shown in gray) are considered hidden. Thicker edges indicate estimated connectivity coefficients of
larger magnitudes. All estimated edges using the subsets of neurons are also found in the estimated
network using all neurons (a–c).

7. Conclusions and Future Work

We proposed a causal-estimation procedure with theoretical guarantees for high-
dimensional network of multivariate Hawkes processes in the presence of hidden con-
founders. Our method extends the trim regression [37] to the setting of point process
data. The choice of trim regression as the starting point was motivated by the fact that its
assumptions are less stringent than conditions required for the alternative HIVE procedure,
especially for a stable point process network with dense confounding effects. Empirically,
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our procedure, hp-trim, shows superior performance in identifying edges in the causal
network compared with HIVE and a naïve method that ignores the unobserved nodes.

Causal discovery from observational time series is a challenging problem and the
success of our method is not without limitations. First, the theoretical guarantees for hp-trim
require the magnitude of the hidden confounding to be bounded. As we discussed in the
paper, this condition is likely met for a stable network of high-dimensional multivariate
Hawkes processes when the confounding is dense. Nonetheless a careful examination
of this condition is required when applying the method in other settings. When certain
structure exists between the observed and hidden network connectivities, more structure-
specific methods, such as HIVE, may be able to better utilize the structural property of the
network for improved performance in identifying the causal effects. Second, our estimates
assume a linear Hawkes process with a particular parametric form of the transition func-
tion. We also assume the underlying Hawkes process is stationary, where certain structural
requirements of the process (specified as assumptions in Section 4) must be satisfied. The
proposed method is guaranteed to identify causal effects only if these modeling assump-
tions are valid. When the modeling assumptions are violated, the estimated effects may not
be causal. In other words, the method is primarily designed to generate causal hypotheses—
or facilitate causal discovery—and the results should be interpreted with caution. Extending
the proposed approach to model the transition function nonparametrically, learning its
form adaptively from data and capturing time-varying processes would be important
future research directions. Finally, given that non-linear link functions are often used when
analyzing spike train data [54,55], it would also be of interest to develop causal-estimation
procedure for non-linear Hawkes processes.
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Appendix A. Additional Details on HIVE

We introduce additional notations before illustrating the method.
Let Y(t) =

(
Y1(t), . . . , Yp(t)

)>, X(t) =
(
x1(t), . . . , xp(t)

)>, Z(t) =
(
z1(t), . . . , zq(t)

)>
and E(t) =

(
ε1(t), . . . , εp(t)

)>. Then, we rewrite (8) simultaneously for all components:

Y(t) = µ + ΘX(t) + ∆Z(t) + E(t), (A1)

where Θ =

β>1
. . .
β>p

 ∈ Rp×p and ∆ =

δ>1
. . .
δ>p

 ∈ Rp×q are connectivity matrix between the

observed and unobserved components, respectively. µ =
(
µ1, . . . , µp

)> ∈ Rp is the vector
of spontaneous rate.

To illustrate the confounding induced by the hidden process, we project Z(t) onto the
space spanned by X(t) as

Z(t) = ν + AX(t) + W(t), (A2)

https://crcns.org
https://crcns.org
https://doi.org/10.6080/K00C4SZB
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where A is the projection matrix, representing the cross-sectional correlation between Z
and X. Then, (A1) becomes

Y(t) = µ̃ + Θ̃X(t) + Ẽ(t), (A3)

where

µ̃ = µ + ∆ν,

Θ̃ = Θ + ∆A,

Ẽ(t) = E(t) + ∆W(t).

From the above, it is easy to see that the correlations between the observed and
unobserved processes determine the strength the confounding. Specifically, unless A = 0—
i.e., when the observed and unobserved processes are independent, directly regressing Y(t)
on X(t) produces biased estimates on Θ. Under the condition that Θ ⊥ ∆—i.e., the column
space of Θ is orthogonal to the column space of ∆, HIVE gets around this issue by finding a
projection matrix, P∆⊥ , that projects ∆ onto its orthogonal space—i.e., P∆⊥∆ = 0. Moreover,
because of the orthogonality assumption, P∆⊥Θ = Θ. Therefore, when multiplying both
sides in (A1) by P∆⊥ , the unobserved term disappears. Specifically, letting Ỹ(t) = P∆⊥Y(t),
(A1) becomes

Ỹ(t) = P∆⊥µ + ΘX(t) + P∆⊥E(t). (A4)

Consequently, regressing Ỹ(t) on X(t) produces unbiased estimates on Θ (using
penalized regression with `1-penalty on Θ under the high-dimensional setting when p
is allowed to grow with the sample size T). In order to obtain P∆⊥ , HIVE first calculates
Ẽ(t) in (A3) and then implement heteroPCA algorithm [56] to estimate the latent column
space of ∆ thus to obtain P∆. Then, the method obtains the corresponding orthogonal
project as P∆⊥ = I − P∆. We refer the interested readers to Bing et al. [36] for details about
the method.

Appendix B. Proof of Main Results

Since our focus is on the estimation error for βi, we consider the perturbation model
in (10) in the following.

Let θi =
(
µi βi

)> be the true model parameter and θ̂i =
(

µ̂i β̂i

)>
be the optimizer

for (14). Recall that the set of active indices, Si = {j : βij 6= 0, 1 ≤ j ≤ p}, and si = |Si|
and s∗ ≡ max1≤i≤p si. Because optimization problem (14) can be solved separately for
each component process, in the follows we focus on the estimation consistency for one
component process. For ease of notation, we drop the subscript i; that is, we use x(t) for
xi(t), θ for θi, dN(t) for dNi(t), λ(t) for λi(t), b for bi, S for Si and S̃ for S̃i.

Next, we state two lemmas that will be used in the proof of main results.

Lemma A1 (van de Geer [57]). Suppose there exists λmax such that λ(t) ≤ λmax where λ(t)
is the intensity function of Hawkes process defined in (2). Let H(t) be a bounded function that is
Ht-predictable. Then, for any ε > 0,

1
T

∫ T

0
H(t)

{
λ(t)dt− dN(t)

}
≤ 4

{
λmax

2T

∫ T

0
H2(t)dt

}1/2

ε1/2,

with probability at least 1− C exp(−εT), for some constant C.
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Lemma A2 (Wang et al. [35]). Suppose the Hawkes process defined in (2) satisfies Assumptions

1–4. Let Q = 1
T
∫ T

0

(
1

x(t)

)(
1 x>(t)

)
dt, where x(t) is defined in (5). Then, there exists γmax ≥

γmin > 0 such that

γmax ≥ Λmax(Q) ≥ Λmin(Q) ≥ γmin > 0,

with probability at least 1− c1 p2T exp(−c2T1/5), where constants c1, c2 depending on the model
parameters and the transition kernel.

Proof of Theorem 1. While the skeleton of the proof follows from (Ćevid et al. [37], The-
orem 2), the following two conditions are needed because of the Hawkes process data’s
unique dependency structure.

Condition 1. There exist constants γmin, c, C > 0 such that

P
(

min
∆∈C(L,S)

1
T

∥∥∥X̃∆
∥∥∥2

2
≥ γmin‖∆‖2

2

)
≥ 1− cp2T exp(−CT1/5),

where C(L, S) = {α : ‖αSc‖1 ≤ L‖αS‖1}.

Condition 1 is referred as the restrict strong convexity (RSC) [58]. Lemma A2 by Wang
et al. [35] has shown Condition 1 holds when X̃ = X under Assumptions 1–4. Since the
min eigenvalue of X̃ stays the same with our choice of F, Condition 1 holds for X̃ = FX.

Condition 2. There exist c, C > 0 such that

P
(

1
T

∥∥∥X̃ν
∥∥∥

∞
≤ CΛ2

max(F)T−2/5
)
≥ 1− cp exp(−T1/5),

where ν is defined in (10).

Condition 2 holds as a result of Lemma A1 by van de Geer [57].
Under the two conditions, we achieve the conclusion as follows.
Because θ̂ is the optimizer for (14),

1
T
‖Ỹ− X̃θ̂‖2

2 + λ‖β̂‖1 ≤
1
T
‖Ỹ− X̃θ‖2

2 + λ‖β‖1

1
T

∥∥∥X̃
(

θ̂− θ− b
)∥∥∥2

2
+ λ‖β̂‖1 ≤

2
T

∫ T

t=0
ν(t)X̃(t)

(
θ̂− θ

)
+

1
T
‖X̃b‖2

2 + λ‖β‖1

Under Condition 2,

2
T

∫ T

t=0
ν(t)X̃(t)

(
θ̂− θ

)
≤ 2

T

∥∥∥∥∫ T

t=0
ν(t)X̃(t)

∥∥∥∥
∞

∥∥∥θ̂− θ
∥∥∥

1
≤ ψ

∥∥∥θ̂− θ
∥∥∥

1
,

with probability at least 1− c1 p exp(−T1/5), where ψ = C1Λ2
max(F)T−2/5.

Letting θS =
(
u βS

)> and θSc =
(
u βSc

)>,

1
T

∥∥∥X̃
(

θ̂− θ− b
)∥∥∥2

2
+ λ‖β̂‖1 ≤ ψ

∥∥∥θ̂− θ
∥∥∥

1
+

1
T
‖X̃b‖2

2 + λ‖β‖1

1
T

∥∥∥X̃
(

θ̂− θ− b
)∥∥∥2

2
+ (λ− ψ)‖θ̂Sc − θSc‖1 ≤ (λ + ψ)

∥∥∥θ̂S − θS

∥∥∥
1
+

1
T
‖X̃b‖2

2

Next, we discuss in two conditions: i) 1
T ‖X̃b‖2

2 ≤ λ
∥∥∥θ̂S − θS

∥∥∥
1

and ii) 1
T ‖X̃b‖2

2 ≥
λ
∥∥∥θ̂S − θS

∥∥∥
1
.
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First, when 1
T ‖X̃b‖2

2 ≤ λ
∥∥∥θ̂S − θS

∥∥∥
1
,

1
T

∥∥∥X̃
(

θ̂− θ− b
)∥∥∥2

2
+ (λ− ψ)‖θ̂Sc − θSc‖1 ≤ (2λ + ψ)

∥∥∥θ̂S − θS

∥∥∥
1
.

The above implies

(λ− ψ)‖θ̂Sc − θSc‖1 ≤ (2λ + ψ)
∥∥∥θ̂S − θS

∥∥∥
1
,

which means α̂Sc − αSc ∈ C(L, S) = {α : ‖αSc‖1 ≤ L‖αS‖1} for L = 2λ+ψ
λ−ψ .

Taking λ = 2ψ,

1
T

∥∥∥X̃
(

θ̂− θ− b
)∥∥∥2

2
+ (λ− ψ)

∥∥∥θ̂− θ
∥∥∥

1

≤3λ
√

s∗‖θ̂S − θS‖2

≤3λ
√

s∗
1

γmin
√

T

∥∥∥X̃
(

θ̂− θ
)∥∥∥

2

≤3λ
√

s∗
1

γmin
√

T

{∥∥∥X̃
(

θ̂− θ− b
)∥∥∥

2
+
∥∥∥X̃b

∥∥∥
2

}
≤3λ
√

s∗
1

γmin
√

T

∥∥∥X̃
(

θ̂− θ− b
)∥∥∥

2
+ 3λ

√
s∗

1
γmin
√

T

∥∥∥X̃b
∥∥∥

2

≤9
2

λ2s∗
1

γ2
min

+
1
T

∥∥∥X̃
(

θ̂− θ− b
)∥∥∥2

2
+

1
T

∥∥∥X̃b
∥∥∥2

2
,

where the second inequality is by Condition 1 and the last step is by using xy ≤ 1
4 x2 + y2

twice. Therefore, we get

(λ− ψ)
∥∥∥θ̂− θ

∥∥∥
1
≤9

2
λ2s∗

1
γ2

min
+

1
T

∥∥∥X̃b
∥∥∥2

2
.

When 1
T ‖X̃b‖2

2 ≥ λ
∥∥∥θ̂S − θS

∥∥∥
1
,

1
T

∥∥∥X̃
(

θ̂− θ− b
)∥∥∥2

2
+ (λ− ψ)

∥∥∥θ̂− θ
∥∥∥

1
≤ 3

T

∥∥∥X̃b
∥∥∥2

2
.

Combining the two cases, we always have

(λ− ψ)
∥∥∥θ̂− θ

∥∥∥
1
≤9

2
λ2s∗

1
γ2

min
+

3
T

∥∥∥X̃b
∥∥∥2

2
.

Thus, taking λ = 2ψ = O(Λ2
max(F)T−2/5) and dividing both sides by 1

2 λ, we achieve
the conclusion that∥∥∥θ̂− θ

∥∥∥
1
≤C1Λ2

max(F)
s∗

γ2
min

T−2/5 + C2T−3/5Λ−2
max(F)

∥∥∥X̃b
∥∥∥2

2
.

Proof of Corollary 1. Notice that

1
T
‖X̃b‖2

2 ≤ Λ2
max(F)

1
T
‖Xb‖2

2 ≤ Λ2
max(F)γmax‖b‖2

2,

with probability at least 1− c1 p2T exp(−c2T1/5), where the second inequality is by Lemma A2.
Then, Corollary 1 is a direct result from Theorem 1 by plugging in ‖b‖2

2.

Proof of Theorem 2. Recall S = {βij : βij 6= 0, 1 ≤ i, j ≤ p} and SC = {βij : βij =
0, 1 ≤ i, j ≤ p} . To establish selection consistency, we need two parts. First, we show
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that our estimates on the true zero and non-zero coefficients can be separated with high
probability; that is, there exists some constant ∆ > 0 such that for βS ∈ S and βSC ∈ SC,
|β̂S − β̂SC | ≥ ∆ with high probability. By the β-min condition specified in Assumption 5,
we have βij ∈ S ≥ 2τ. Theorem 1 shows that for 1 ≤ i, j ≤ p, |β̂ij − βij| ≤ τ with
probability at least 1− c1 p2T exp(−c2T1/5). Then, for any βS ∈ S and βSC ∈ SC,

|β̂S − β̂SC | = |β̂S − βS − (β̂SC − βSC ) + βS − βSC |
≥ |βS − βSC | − |β̂S − βS| − |β̂SC − βSC |
≥ βmin − 2τ.

This means the estimates on zero and non-zero coefficients can be separated with
high probability.

Next, we show there exists a post-selection threshold that allows to correctly identify
S and SC based on the estimates. In fact, the post-selection estimator is

β̃ = β̂1(|β̂| > τ).

By Theorem 1, we have |β̂SC | ≤ τ, with probability 1− c1 p2T exp(−c2T1/5). Then,

β̃SC = β̂SC 1(β̂SC > τS) = 0,

which means β̃ selects βSC into SC with high probability. In addition, since |β̂S − βS| ≤ τ,

|β̂S| ≥ |βS| − τ ≥ βmin − τ > τ > 0.

Therefore,
β̃S = β̂S1(|β̂S| > τ) = β̂S 6= 0,

which means β̃S selects βS into S with high probability.
Combining the two sides, the post-selection estimator β̃ identifies S and SC with

high probability.

Appendix C. Parameter Estimation Performance

In this section we examine estimation performance of our algorithm on the connec-
tivity coefficients associated with the observed processes. To this end, we compare the
optimal root-mean squared error (RMSE) of the various methods (hp-trim, HIVE and Naïve)
over all connectivity coefficients for the observed processes. Here, the optimal RMSE is the
minimum RMSE for each estimation method over the range of tuning parameters in each
simulation run.

We find that in the case when hp-trim performs the best in terms of edge selection (i.e.,
under the setting by Figure 2a), the method also gives the lowest RMSE (see Unorthogonal
(T = 5000 and T = 1000) in Figure A1). In contrast, when the orthogonality condition is
met for HIVE (i.e., under the setting by Figure 3a), HIVE-oracle gives the best RMSE (see
Orthogonal (T = 5000 and T = 1000) in Figure A1). However, HIVE-oracle is not available
in practice, and even when the orthogonality assumption is satisfied, the empirical version
of HIVE (HIVE-empirical) performs worse than hp-trim.
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Figure A1. Boxplot of optimal RMSE over all connectivity coefficients for hp-trim, HIVE and Naïve.
Unorthogonal (T = 5000 and T = 1000) conditions refer to the setting in Figure 2a in the main text;
Orthogonal (T = 5000 and T = 1000) conditions refer to the setting in Figure 3a in the main text.

RMSE over all connectivity coefficients is calculated as
√

1
p2 ∑1≤i,j,≤p(β̂

(k)
ij − βij)2, where β̂

(k)
ij is the

estimate of the true parameter value, βij, from the kth simulation run (k = 1, . . . , 100) and p = 100
observed processes are considered as in the simulation study in the main text.
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