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Abstract: The accurate description of a complex process should take into account not only the inter-
acting elements involved but also the scale of the description. Therefore, there can not be a single
measure for describing the associated complexity of a process nor a single metric applicable in all
scenarios. This article introduces a framework based on multiscale entropy to characterize the com-
plexity associated with the most identifiable characteristic of songs: the melody. We are particularly
interested in measuring the complexity of popular songs and identifying levels of complexity that
statistically explain the listeners’ preferences. We analyze the relationship between complexity and
popularity using a database of popular songs and their relative position in a preferences ranking.
There is a tendency toward a positive association between complexity and acceptance (success) of a
song that is, however, not significant after adjusting for multiple testing.

Keywords: multiscale complexity; entropy; information content; auditory encoding; music

1. Introduction

Despite sound’s intrinsic complexity, the human brain can decode and process it
to extract valuable information from its environment. The brain can estimate distances,
roughly identify the materials producing a specific sound, and even estimate the number of
objects producing the sound [1,2]. The brain also assesses the different sounds it perceives
and orders them according to our preferences. When hearing a sound, it is easy to classify
it as pleasant or unpleasant. Even when the precise elements and processes involved in
this decision are not clear, we are perfectly conscious of the final result of this evaluation.

In particular, when our brain listens to music, it performs a classification process, and
this classification is made based on the intrinsic properties associated with music. We
can say that these intrinsic properties conform to music’s informational content. Some
authors [3] support the idea that sound preferences are dominated by a trade-off between
the simple and the complicated (the expected and the unexpected elements, regular or
random). When a song is too simple, it does not generate the necessary stimuli to maintain
the listener’s attention. On the other hand, if the song is too complicated, in the sense that it
does not offer recognizable patterns and too dense information is required to describe it, just
as noise is, it is not attractive either. This suggests the existence of an intermediate, “optimal”
balance between these two extremes. There have been several proposals to measure and
characterize the informational content of a musical segment. These approaches range

Entropy 2021, 23, 1613. https://doi.org/10.3390/e23121613 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-3507-1821
https://orcid.org/0000-0003-0193-3067
https://doi.org/10.3390/e23121613
https://doi.org/10.3390/e23121613
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23121613
https://www.mdpi.com/journal/entropy
http://www.mdpi.com/1099-4300/23/12/1613?type=check_update&version=2


Entropy 2021, 23, 1613 2 of 22

from analyzing the motifs of the network associated with the transition between notes in
a song [4], to the analysis of the underlying language in digital format [5]. Nevertheless,
there is no clear definition to capture the complexity and informational content of a song.

The present article explores the relationship between complexity and preferences
using music as our object of study. To achieve this, we define a metric to characterize the
complexity of a musical segment. Then we explore to what extent the complexity of a song
affects the degree of acceptance. We evaluate the multiscale entropy as a candidate to char-
acterize the complexity associated with the melody of a musical segment. Specifically, we
study the correlation between multiscale entropy and the listener’s preferences considering
pitch intervals (in the musical sense) at different periods of a song.

The paper is structured as follows. In Section 2, we survey the most relevant literature
on the relationship between music and complexity and describe the different approxima-
tions to the problem. Section 3 describes the complexity metrics we use, the data, and also
the processing transformations involved. Section 4 presents the most important findings
derived from our analysis. Finally, Section 5 provides a summary of the contributions and
limitations of our work. We end with some proposals for future work.

2. Background and Related Work

In 2015, Febres et al. [6] computed the informational entropy of languages applying
Shanon’s proposed information metrics: entropy [7]. This assessment of language’s in-
formation used words as the symbols making up languages. Later, Febres and Jaffe [5]
applied similar ideas to determine the information content of the songs. Since there were
no words, in this case, the authors analyzed the information content of music by using
the language associated with the Music Instrument Digital Interface (MIDI) format. This
language contains all the necessary instructions to generate and reproduce the specified
song. With this language, it was possible to estimate the informational entropy, among
other useful metrics, and characterize the associated information content of the songs. This
characterization makes it possible to identify the musical genre and analyze changes in
music’s complexity over time.

In the work of Perez-Verdejo et al. [8], they analyze music consumption patterns in
Mexico using streaming statistics and audio features from the music streaming platform
Spotify. The authors investigate how music features correlate with the streaming metric
and compare the regional (Mexican) patterns with global (worldwide) counterparts. The
authors identify the features that clearly distinguish or characterize the most popular songs
in Mexico.

In 2014, Gamaliel et al. [9] introduced the concept of instrumentational complexity and
showed that there exists a relationship between instrumentational complexity and album
sales. They found a negative association between complexity and sales. The conclusion is
that the simpler albums (measured by their metric) tend to be associated with higher sales:
simplicity sells. This measure of instrumentational complexity is based only on the number
and the uniqueness of the instruments used in the song. From an information-theoretical
point of view, this metric is not genuinely associated with the informational content of a
musical segment. In our opinion, a measure for musical complexity must consider the
intrinsic elements of the music.

In their work, Parmer et al. [10] analyze popular songs and classify them by their
associated complexity. By transforming each song into a sequence of tokens, they generate a
language. Then, the authors use a conditional version of Shannon’s entropy [7] to measure
the complexity of a song expressed as a sequence of tokens. They found an inverted-
U-shaped relationship between popularity and entropy. With this characterization, they
identify the musical genre of the songs based on their entropy profile.

In Overath et al. [11] they show that brain activity in the Planum Temporale (a brain
region typically associated with audio processing) when measured via functional Magnetic
Resonance Imaging (fMRI) is positively associated with the complexity of the incoming
auditory stimulus. The authors generate a series of pitch sequences with a pre-specified
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entropy and analyze the exhibited level of activity in the brain’s response. They show that
when the entropy of the audio signal is high, so is the activity in the Planum Temporale, so
there is a positive relation between signal complexity and brain activity.

In the present study, we follow the work of Carpentier et al. [12]. In this article,
the authors explore the relationship between the complexity of the environment (input)
and the complexity in the associated brain response (processing/decoding). A group of
participants is exposed to a series of auditory stimuli while asked to perform a perceptual
or emotional task. The activity in the brain response for each task is measured via fMRI.
The aim is to evaluate whether the association between the stimulus’s complexity and the
response’s complexity (complexity matching) explains the listener preferences. The authors
found higher complexity matching during perceptual music listening tasks compared to
emotional music listening tasks. This analysis is, to some extent, related to Ashby’s law of
required variety [13,14] in the sense that, in order to process a complex signal, the brain
must be able to use an at least equally complex decoding process. To characterize these
complexities, both of the input and the brain activity, the authors use multiscale entropy.

3. Materials and Methods

It is generally understood that a complex phenomenon lives in an intermediate point
between chaos and regularity [15]. However, none of these perfectly describes a complex
process. Intuitively, complexity is associated with structural richness and the meaning of
the underlying process.

As an example of how the complexity of the process is related to its regularity patterns,
we analyze three signals: sinusoidal, pink noise (1/ f noise) and white noise. Each of these
processes has different structural properties and consequently different levels of complexity
(Figure 1).

Figure 1. Three signals with different structural properties: sinusoidal, pink noise (1/ f noise) and white noise.
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We use multiscale entropy (MSE) as our measure of complexity. Before applying MSE
to music analysis, we investigate some of its properties on the three signals described above.
MSE is a measure designed for the analysis of time series and one of its most important
features is that it allows for evaluation across many different process scales. As described
in the works of Siegenfeld et al. [16], Allen et al. [17], Bar-Yam [18] and Febres [19], the
complexity depends on the scale at which the observer interprets the system. For a process
to be complex, the interdependence between its elements must hold over the different
scales of observation, not only at the extreme detailed system’s description. MSE allows
this inter-scale analysis.

In addition to its mathematical properties, the other important motivation for selecting
MSE as our complexity metric is that it has been applied to describe and characterize
cognitive processes in experimental settings [20–23].

Based on the current literature and data availability, MSE is promising for exploring
the relationship between complexity and preferences when applied to audio or musical
analysis in particular. MSE is itself based on sample entropy (SE), which is a measure
of the degree of compressibility of a signal [24,25]. The more compressible a signal is
(fewer bits needed to represent it), the less its measure of SE. The intuitive definition of
SE is clearly related to Siegenfeld et al.’s [16] definition of complexity and the notion of
Kolmogorov Complexity [26]. SE is defined in the following terms for a series S consisting
of N elements:

SE = −log
(

Sr(m + 1)
Sr(m)

)
, (1)

where Sr(m + 1) is the number of pairs of subsequences of size m + 1 with distance less
than r, and Sr(m) is the number of subsequences of size m with distance less than r. The
distance parameter r is set to 20% (following [24,27] ) of the standard deviation of the full
series S, and we use Euclidian distance.

SE algorithmically computes the conditional probability that, given a sequence of
length N, any pair of subsequences with m similar consecutive points will also be similar in
the m + 1 point. SE is therefore a measure of self-similarity. The more self-similar the series
is, the more redundancy it contains and the less its SE value. Note that, by construction,
Sr(m + 1) will always be smaller than or equal to Sr(m) (as adding a restriction can only
reduce the number of coincidences), and therefore, SE will be greater or equal than zero
(zero when the series is absolutely redundant).

However, SE does not fully capture the concept of complexity. It does not take
into account the different scales involved in the process and it assigns high values (high
complexity) to random processes. A white noise, while being not compressible, will obtain
a high value of SE. For this reason, MSE should be introduced.

To calculate MSE from SE, it is necessary to apply a reduction process where the
elements of the original series S = {s1, ..., sn} are aggregated to create a unique element of
the reduced series Yτ = {yτ

1 , ..., yτ
n}.

yτ
i =

1
τ

i+τ

∑
i

si , (2)

where τ ∈ {1, 2, 3, ...} represents the scale of aggregation (number of aggregated elements).
SEτis calculated for each new series Yτ while varying the parameter τ. These multiple

SEτ calculations, when taken altogether, represent the MSE metric.
If we now calculate MSE and SE for two known signals, white noise and pink noise,

we observe that these measures attain different results for the same pair of signals.
Table 1 shows values of SE for a sinusoid, white noise, and pink noise. Even though

pink noise has a richer structural complexity [15,28,29], white noise shows a higher SE
value complexity.



Entropy 2021, 23, 1613 5 of 22

Table 1. SE for a sinusoid signal and pink and white noises.

Signal Sample Entropy (SE)

Sinusoid 0.4675
Pink noise 1.7735

White noise 2.1752

If we calculate MSE for the signals mentioned above, we obtain not a scalar but a
profile (the complexity profile) that represents the associated complexity. This profile spans
through each of the considered scales (20 in our case), as shown in Figure 2.

Figure 2. MSE for a sinusioidal signal, pink noise, and white noise.

Now it becomes clear that the estimated complexity for white noise is not consistent
among all aggregation scales [17]. When the scale of aggregation augments, the white
noise process reveals a simple structure that is not easily observed in the original scale.
Instead, pink noise maintains an almost constant complexity among all scales and therefore
is more complex than white noise. Based on its underlying properties, MSE offers a good
approximation to the intrinsic complexity of a time series. We propose to use MSE in our
analysis of the relation between complexity and preferences based on the following:

1. This metric is used to measure the complexity associated with brain processes. In
particular, it is used to analyze the temporal activation patterns in specific brain
regions. [20–23]

2. It allows the analysis of time series, such as music, over different observation scales.

Based on these considerations, MSE can provide useful insights in analyzing the rela-
tion between the informational content of a musical stimulus and the cognitive processes
involved in the determination of musical preferences.
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3.1. Data
3.1.1. Music

The data sample used is part of the Million Song Dataset (MSD) [30], consisting of
one million annotated songs (http://millionsongdataset.com/ (accessed on 30 September
2021)). Some of the included tags are year of release, genre, album, artist and a set of technical
features per song. It is worth mentioning that the songs are already processed, there is no
audio for the songs in the database, and only the extracted features are available. Table 2
shows some of the technical features included in the database.

Table 2. MSD database technical components.

Component Description

Key Estimation of the key the song is in
Loudness General loudness of the track

Segment_pitches Chroma features for each segment
Segments_timbre MFCC-like features for each segment

Segments_loudness_max Max loudness during each segment

Following the work of Overath et al. [11], we use the pitch component as the fun-
damental element of our analysis. It is also important to remark that the pitch is one of
the perceptual components of music. Therefore, there is no strict relation between the
physical properties of sound and our perception of pitch [2,31] (although it is related to the
frequency component). The brain determines our perception of this component, which is
why it is considered a relevant element for our analysis of musical preferences.

For each song, we use the component denominated segment_pitches. This component
is a matrix of shape (chroma_feature, time_segments) that determines the relative presence of
each pitch class in the corresponding time interval. This matrix is called the chromatogram
of the song and represents the basic melody of the song.

3.1.2. Music Preferences

To analyze the listener’s preferences we use the year-end HOT 100 charts Billboards https:
//www.billboard.com/charts/year-end/2020/hot-100-songs (accessed on 30 September
2021). These are a compendium of the most popular songs for each year in the United
States and this ranking serves as a proxy for musical preferences. The basic idea is that
these top songs have specific characteristics that make them different from the other songs
and separate them into two sets: high popularity and low popularity.

3.2. Data Processing

MSE is meant to be used for time series, but our data are in matrix form. For that
reason, we need to apply specific data processing steps to transform the matrix data into
time series. The data processing steps are:

1. For each time segment, the most representative pitches are identified.
2. The original values of the matrix are mapped into the integer interval x ∈ [1, 12] ⊆ Z.
3. Finally, the pitch dimension is collapsed to end up with a flattened matrix, i.e., a

vector representing a time series of length time_segments.

The intuition behind these transformations is that in each time segment, we seek to
preserve only the most representative pitch for that time segment. In this way, the matrix
representing the structure of the song reduces to its most representative perceptual element
in each time segment. Figure 3 illustrates this process.

http://millionsongdataset.com/
https://www.billboard.com/charts/year-end/2020/hot-100-songs
https://www.billboard.com/charts/year-end/2020/hot-100-songs
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Figure 3. Transformation from a chromatogram matrix to a time series.

We obtain a time series for each song with these transformations, and now it is possible
to calculate its corresponding MSE.

In order to create a proxy for the listener’s preferences, we use songs from the Bill-
boards Hot 100 list. This list includes the 100 most-listened songs for each year in the
United States and a ranking for the song’s popularity. Since the MSD database includes
songs in the range of years from 1931 to 2011, we could analyze the differences in complex-
ity between the songs included in the Hot 100 list and those not included for each year.
Because MSE generates a complexity profile associated to each song, it is possible then to
compare the complexity profiles of both groups and to determine if there is a significant
difference between “successful” and “unsuccessful” songs.

4. Results

We use a sample of songs between the years 2000 and 2010. The 100 top songs are
identified for each year, and its MSE is computed. MSE is also calculated for the songs not
included in the Hot 100. Therefore, for each year, it is possible to separate the songs into
two groups, successful and unsuccessful songs, and compare the complexity in each group.

The analysis of each time series includes scales from 1 to 20. The average is used to
aggregate the complexity values per series over the appropriate scale. Figure 4 summarizes
the findings of our analysis, and Appendix A includes the complete results and figures for
other years.
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Figure 4. MSE for the year 2000.

We observe that the mean complexity is higher for songs belonging to the top group
at most scales, suggesting that the songs with a better position in the ranking have slightly
greater complexity than the others (at least for the songs under consideration).

The mean complexity profile of the top songs is higher for each of the considered
scales. However, there are many overlapping regions at the intra-group variance of the
complexity profiles in the corresponding group distributions, as shown by Figure 5.

Figure 5. Complexity profile variance.

Due to the overlapping regions in the complexity profile distributions, it is necessary to
evaluate the statistical significance of the differences we have previously identified between
the complexity profiles of the top and non-top groups of songs, respectively. We use Welch’s
test to evaluate the difference between two independent populations [32] and check for
normality using the Shapiro–Wilk test [33]. The Welch’s test is a variant of Student’s t-test
with the property of being more robust when the hypothesis of equal variance does not
hold and when the sample sizes between the two populations are different. In our case,
one of our groups has only 100 observations, the top group, for each year. In addition to
the standard statistical test, it is important to note that we are facing a multiple hypothesis
testing scenario (as we are simultaneously testing 20 scales). Then it becomes necessary
to make a correction to take this into account. We use the Bonferroni correction [34] to
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adjust the significance results obtained with Welch’s test. In Figure 6, we present the results
derived from the Welch test (before the Bonferroni correction).

Figure 6. Statistically significant scales after the Welch test (level 0.05).

After the Welch test, eight out of the twenty scales in the complexity profile resulted
significant at level 0.05. It is important to note that the significant scales are distributed
along with the profile’s range. Nevertheless, after applying the Bonferroni correction, the
significance level dropped to 0.0025 (adjusted for 20 scales), at which none of the scales
resulted as significant. Although not all scales in the complexity profile were statistically
significant, the ones that were indeed significant are distributed along with the profile’s
range: Table 3 and Appendix A.2 present detailed results.

Table 3. Difference and statistical significance (year 2000)

Scale Difference p-value Welch (α = 0.05) Bonferroni (α = 0.0025)

6 0.1369 0.014 Yes No
7 0.1651 0.004 Yes No
8 0.1532 0.024 Yes No
11 0.1213 0.017 Yes No
12 0.1148 0.044 Yes No
13 0.1460 0.011 Yes No
16 0.1333 0.022 Yes No
19 0.1611 0.017 Yes No

Although the Bonferroni correction rendered all scales non-statistically significant,
this is somehow an expected result given that many factors are contributing to the success
or popularity of a song. Many of these factors are not even related to the musical properties
of the songs but to external factors such as advertising expenses and social trends. Never-
theless, the analysis shows that the complexity profile of the top songs tends to be above
that of the non-top songs for almost all the years of the studied period—a surprising fact
considering the simplicity of our approach and the musical elements we are considering.

In addition to the measured difference, the shape of the complexity profile provides
an overview of some of the important characteristics of a system and its complexity scale
relationship [18,35]. Nevertheless, to further investigate and compare the differences
between the two groups of songs, we evaluate the relation between the total area under
the complexity profile and the rank it obtained in the Billboard chart. We calculated the
area under the complexity profile for all the songs in the two considered groups (top and
non-top songs) to analyze this relation. We plotted these areas against the corresponding
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ranks (the logarithm of rank) for each song, Figure 7. As there is no rank information for
the non-top songs, we assigned ranks for all these songs via a Monte Carlo simulation
in which the overall shape of the distribution was invariant as the areas for each song
kept fixed.

Figure 7. Area under the complexity profile for top songs (blue) and non-top songs (red) and its
relation to log(rank) for the year 2000. For comparison purposes, white noise, pink noise, and the
sinusoidal wave are included at an arbitrarily set rank.

Figure 7 shows that the density of top songs tends to lay in the high side of the area
spectrum, and the average area of a top song is always greater than the average area of a
non-top song for all the considered years.

Interestingly, Figure 7 also suggests that area under the complexity profile of the most
preferred songs tend to be in a specific range of the spectrum (not so low and not so high).
Songs in the extremes of the spectrum are not widespread, thus indicating that there exists
a preferred level of complexity (this same pattern was observed in all sampled years).
Although we are not pursuing a predictive model for successful songs, Figure 7 lets us
predict that if the calculated area for a given song is extremely low or extremely high, the
corresponding song will certainly not be a well-ranked one.

This finding is somewhat related to [10], where the authors find a U-inverted rela-
tionship between complexity and preferences. Here, we found evidence that the area
under the complexity profile of top songs is hardly located in the low or high extremes of
the spectrum. However, as we do not have the exact rank positions for non-top songs, it
becomes impossible to confirm the U-inverted shape. Nevertheless, our findings do not
contradict the results described in [10].

We have also included in this figure the areas for the three signals (sinusoid, white
noise, and pink noise) described in Section 3 as a reference to compare the difference
between the complexity of a song and the complexity of the different signals.

5. Discussion

The meaning and quantification of complexity are under permanent discussion.
Loosely speaking, one view suggests that the complexity of an object includes the ef-
fort needed to build an object’s description. Following this intuition, methods to estimate
this description’s effort may include counting the number of object’s parts, assessing the
relationship among these parts, or any applicable extensive counting procedure. To avoid
the effects of prejudices in these counting processes, the notion of complexity, as intimately
related to the information account in the object’s description, has been accepted [18,36,37].
Complexity is, therefore, a property of the object. Nevertheless, complexity brings the
influence of the language used for the description and, more relevant for the scope of this
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work, the scale at which the object is observed. Thus, complexity shares objective and
subjective aspects.

To consider the variations of complexity when the object is seen at different scales, the
complexity profile [35] has been proposed. The complexity profile offers an overview of
the object’s complexity interpreted at a range of scales.

Here, we have proposed a framework for analyzing the complexity associated with a
song and relating this complexity to the listener’s preferences. Our findings suggest an
association between complexity and preferences in the sense that preferred (well ranked)
songs tend to have high complexity, at least for the considered songs and analyzed years.
Furthermore, our results add some evidence suggesting the existence of an optimal level of
complexity associated with our preferences.

In Figure 7, where we added the calculated areas for pink noise, white noise, and the
sinusoid, it is worth noting that the area for the pink noise is close to that of the preferred
songs, and this can be an explanation of why pink noise is sometimes used with relaxations
purposes. Its complexity is higher than white noise but without the necessary elements
to distract or catch our minds. We find this insight interesting as it opens the door for the
study of relaxing sounds using techniques similar to the one we have described.

Furthermore, when computing the average area for each group, we observe that the
mean area is higher for the top songs than the non-top areas. This comparison holds for
every year in our sample and was evaluated using the Wilcoxon test for independent
samples [38], as shown in Figure 8 (detailed analysis in Appendix A.6).

Figure 8. Average area vs. log(rank) for the two groups of songs in each year.

Although the framework presented here has some limitations and is far from describ-
ing a clear relationship (a predictive model) between complexity and preferences, it allows
for a descriptive characterization of popular songs in terms of their multiscale complexity.
Importantly, it provides a way to identify songs that will not be well ranked as they have
extreme (low or high) complexity.

We used multiscale entropy to measure and characterize the complexity of a song’s
melody when properly processed using standard music information retrieval (MIR) tools
because this metric captures some of the critical aspects of a complex process in which
we are particularly interested. Although MSE does not provide a complete description
of the complexity of a process, nor is it the only alternative for measuring complexity, it
does provide an interesting and innovative way to investigate the relationship between
complexity and preferences when analyzing audio or music. We introduced this work
intending to contribute to developing new methods to understand how the brain perceives
and processes complex objects. Since audio represents many dimensions: time series,
frequency, rhythm, number, and type of involved instruments, we decided to use audio
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signals (music) as our object of analysis. Due to this broad range of possibilities, there is
no clear and unique definition of the informational content associated with a song nor a
precise measure of its complexity. We hope that this work contributes to better frameworks
and methodologies to analyze and understand complex processes such as music.

5.1. Limitations

We found a certain degree of association between multiscale complexity and popular-
ity suggesting that the complexity of popular songs tends to be located in the high side
of the range. Although the results presented in this article are not entirely conclusive in
the sense of providing a clear relation between complexity and preferences, this can be
associated with the following:

• The associated factors involved for a song to become popular are more than we can
afford to consider in a study such as this.

• Many of the involved factors are not directly associated with the complexity of the
song, for example, social trends, cultural biases, spending on advertising, and sample
design biases, etc.

These exogenous factors make it difficult to compute an unbiased estimation of the
relationship between music complexity and its corresponding public preferences. We
believe, however, that there exists a level of music complexity where most people will find
this music as pleasant. This "optimal" level of music complexity can be estimated with the
methods presented.

5.2. Future Work

The study can be extended to make a complexity metric that accounts for more musical
features. Here, we limited the analysis to pitch sequences to construct a time series and only
to the most relevant pitch element. As the database includes the complete chromatogram
for each song, it is possible to select different combinations of pitch elements according to
their relevance. This generalization could consist of:

1. Consider a complexity profile for each level of relevance.
2. Construct a weighted average considering the distinct pitch classes involved in each

time segment and calculate the complexity profile of this weighted series.

In addition to the pitch elements, the database includes the timbre and loudness
elements. An identical treatment to the one described for pitch might be helpful to generate
the corresponding complexity profiles. Different combinations of musical elements will
allow for a richer approximation of music. One practical and interesting application of
the framework we have presented is to use the complexity profiles to improve music
recommender systems in streaming platforms. It is even possible to use the complexity
profile to generate new music by following specific complexity patterns associated with
customers’ preferences.

An analysis of the complexity profiles between genres would be illuminating. It would
be interesting to find out if there is a relevant difference between two songs that belong to
the same genre, but one is popular (top), and the other is not (non-top). Furthermore, to
investigate if each musical genre has a characteristic complexity profile. In addition to these
experiments, the complexity profile could be used as a feature in predictive models, for
example, trying to predict the genre of a song given its complexity profile. More elaborate
processing and treatment are necessary to carry out this analysis.

In future work, it would also be interesting to compare different complexity metrics to
determine the degree of similarity between MSE and other metrics for the same analysis.
Furthermore, it would be important to evaluate how robust our results are with respect to
parameter changes in the pre-processing steps, the musical elements considered or in the
sampling design.

Finally, it is important to remark that music also has therapeutic properties. Our
analysis found that pink noise has a complexity close to the preferred songs, making this a
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possible guide for creating music with properties in between the spectrum of pink noise
and popular music that could have better results in musical therapies. Some rehabilitation
therapies use musical stimuli to treat memory and speech-related problems [39–41]. A
complexity analysis relating sensory stimuli and the corresponding patient’s response can
help identify and select the stimulus for the appropriate treatment.
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Appendix A.

Appendix A.1. Complexity Profiles for the Years 2001–2010

Figure A1. Complexity profiles (2001-2010).
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Appendix A.2. Scale Distributions (2000)

Figure A2. Statistically significant distributions (year 2000).

Appendix A.3. Statistically Significant Differences in Scale (2001–2010).

There were no statistically significant scales for the years 2005, 2006 and 2008. This can
be by assessed observing that the respective profiles are almost completely overlapping.
For the rest of the years, the statistical significance is presented in the following tables:
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Table A1. Statistical significance 2001.

Scale Calculated Difference p-value

4 0.2066 0.0102
5 0.1437 0.0341
7 0.1771 0.0014
8 0.2158 0.0015

11 0.1481 0.0049
13 0.2281 0.0002
15 0.1544 0.0217
17 0.2249 0.0006

Table A2. Statistical significance 2002.

Scale Calculated Difference p-value

5 0.1480 0.0269
6 0.1458 0.0061
7 0.1236 0.0307
8 0.1513 0.0182

10 0.1415 0.0305
15 0.1418 0.0428

Table A3. Statistical significance 2003.

Scale Calculated Difference p-value

3 0.1979 0.0032
4 0.1978 0.0074

18 0.1434 0.0447

Table A4. Statistical significance 2004.

Scale Calculated Difference p-value

1 0.1071 0.0009
2 0.1192 0.0091
3 0.1353 0.0282
6 0.1163 0.0177

12 0.1319 0.0391
15 0.1416 0.0132
16 0.1366 0.0066
17 0.1037 0.0367
18 0.1131 0.0386
20 0.1176 0.0260
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Table A5. Statistical significance 2007.

Scala Calculated Difference p-value

1 0.0465 0.0414
7 0.0955 0.0449
8 0.0936 0.0437
9 0.1154 0.0174

10 0.1039 0.0354
13 0.1243 0.0043
18 0.1019 0.0328
19 0.1197 0.0107

Table A6. Statistical significance 2009.

Scale Calculated Difference p-value

1 -0.0598 0.0050
2 -0.1173 0.0002
3 -0.1628 0.0002

16 0.0910 0.0465

Table A7. Statistical significance 2010.

Scale Calculated Difference p-value

7 0.1798 0.0145
8 0.1531 0.0173

16 0.2233 0.0094

Appendix A.4. Shapiro–Wilk Test for Normality in Scale Distributions (2000–2010)

The Shapiro–Wilk test was used to evaluate the normality assumption in the scale
distributions used in Welch’s test. When the sample was too large (as in the case of all
non-top groups of songs, ∼10,000 samples), the test rendered non-significant results, but
for large samples, the normality assumptions are not strongly required as they are for small
samples. The p-values presented in the following tables correspond to the small samples
(top-songs).
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Table A8. Shapiro–Wilk test. p-values per scale and year (2000-2005).

Scale 2000 2001 2002 2003 2004 2005

1 0.9329 0.0936 0.0326 0.1685 0.2854 0.0633
2 0.0365 0.1406 0.2010 0.1104 0.1980 0.0006
3 0.8561 0.6597 0.8340 0.0013 0.5701 0.7112
4 0.0699 0.1221 0.0936 0.0879 0.6430 0.4746
5 0.5008 0.3178 0.5555 0.3835 0.1539 0.2213
6 0.0006 0.0065 0.0163 0.0011 0.2359 0.0341
7 0.0020 0.0856 0.4961 0.0031 0.1052 0.2203
8 0.0021 0.4071 0.2640 0.0097 0.5182 0.6734
9 0.1027 0.1666 0.8300 0.0160 0.1497 0.3567

10 0.0455 0.9184 0.4900 0.7766 0.0203 0.8399
11 0.0153 0.0454 0.4747 0.1271 0.9733 0.6351
12 0.0131 0.1530 0.8234 0.0076 0.0030 0.9613
13 0.1261 0.6955 0.2467 0.6120 0.7281 0.1045
14 0.8757 0.1543 0.6581 0.1633 0.0269 0.5477
15 0.3005 0.1063 0.9445 0.6983 0.2720 0.5705
16 0.8187 0.1645 0.0264 0.3736 0.0928 0.7060
17 0.0322 0.0705 0.4356 0.2320 0.0775 0.6569
18 0.3397 0.8494 0.9125 0.3709 0.1332 0.6508
19 0.7292 0.7102 0.0528 0.6223 0.4121 0.6581
20 0.6156 0.1075 0.3672 0.4147 0.0047 0.4603

Table A9. Shapiro–Wilk test. p-values per scale and year (2000-2005).

Scale 2006 2007 2008 2009 2010

1 0.4237 0.0457 0.5723 0.4247 0.6414
2 0.1894 0.7549 0.1976 0.5587 0.2651
3 0.1428 0.1868 0.3652 0.2921 0.0346
4 0.4861 0.5645 0.0102 0.5316 0.6629
5 0.1318 0.7352 0.0313 0.1480 0.0420
6 0.1656 0.0006 0.0016 0.0006 0.0044
7 0.1119 0.0037 0.0021 0.0040 0.3237
8 0.5568 0.0335 0.0025 0.1747 0.1008
9 0.0157 0.3449 0.0187 0.2692 0.0422

10 0.1804 0.6223 0.0324 0.4781 0.3087
11 0.3535 0.0303 0.0002 0.6112 0.0283
12 0.8280 0.3112 0.0132 0.2647 0.9715
13 0.8021 0.5907 0.0091 0.3962 0.3695
14 0.1404 0.0152 0.0005 0.1899 0.7427
15 0.7298 0.5955 0.0001 0.6707 0.1390
16 0.5348 0.2038 0.0025 0.4316 0.1962
17 0.0560 0.1144 0.0012 0.0534 0.0428
18 0.0923 0.5496 0.1424 0.2645 0.1992
19 0.2156 0.1237 0.0576 0.0001 0.7480
20 0.7259 0.5339 0.0857 0.0367 0.2382
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Appendix A.5. Reduction in Significant Scales after Bonferroni Correction

Figure A3. Statistical level needed to achieve significant scales.

Appendix A.6. Statistically Significant Differences for Area under the Complexity Profile
(2000–2010).

Table A10. Significance test for area distribution between top and non-top songs in each year
(Wilcoxon test, α = 0.05).

Year Difference p-value Significant

2000 2.939693 0.000003 Yes
2001 2.780737 0.000030 Yes
2002 2.569101 0.000033 Yes
2003 1.967215 0.000193 Yes
2004 2.362849 0.000177 Yes
2005 1.589775 0.000940 Yes
2006 0.751036 0.143811 No
2007 2.353117 0.000004 Yes
2008 1.518561 0.000003 Yes
2009 0.892549 0.032301 Yes
2010 2.091714 0.006654 Yes
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Figure A4. Average area vs. log(rank) for the two groups of songs in each year.
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