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Abstract: Modeling and analysis of time series are important in applications including economics,
engineering, environmental science and social science. Selecting the best time series model with
accurate parameters in forecasting is a challenging objective for scientists and academic researchers.
Hybrid models combining neural networks and traditional Autoregressive Moving Average (ARMA)
models are being used to improve the accuracy of modeling and forecasting time series. Most of the
existing time series models are selected by information-theoretic approaches, such as AIC, BIC, and
HQ. This paper revisits a model selection technique based on Minimum Message Length (MML) and
investigates its use in hybrid time series analysis. MML is a Bayesian information-theoretic approach
and has been used in selecting the best ARMA model. We utilize the long short-term memory (LSTM)
approach to construct a hybrid ARMA-LSTM model and show that MML performs better than AIC,
BIC, and HQ in selecting the model—both in the traditional ARMA models (without LSTM) and with
hybrid ARMA-LSTM models. These results held on simulated data and both real-world datasets that
we considered.We also develop a simple MML ARIMA model.

Keywords: long short-term memory; minimum message length; time series; neural network; deep
learning; Bayesian statistics; probabilistic modeling

1. Introduction

Forecasting in time series is a difficult task due to the presence of trends and/or
seasonal components. For example, economic time series data are highly impacted by sea-
sonal factors and often show trends with long-run cycles. Such trends and seasonality are
difficult to capture by the traditional Autoregressive Moving Average model (ARMA) [1].
The Bayesian Minimum Message Length (MML) principle [2], the Akaike Information
Criterion (AIC) [3], Schwarz’s Bayesian information criterion (BIC) [4] and Hannan–Quinn
(HQ) [5] are often used in model selection for the ARMA model [6–8]. The models selected
by MML87 [9] in ARMA time series have lower prediction errors than those from AIC,
BIC, and HQ [10]. Schmidt previously showed that MML87 outperforms a variety of other
(information-theoretic) approaches in ARMA time series modeling [11] (chapters 5 to 8).
In this paper, we extended the traditional ARMA time series model to form the hybrid
ARMA-LSTM by combining the neural network of long short-term memory (LSTM) in
order to test the performance of MML in model selection. The results suggest that MML
outperforms AIC, BIC, and HQ.

The ARIMA is used with integer differencing to achieve stationarity if the time series
is not stationary. A time series with seasonal components can be modeled using the
family of seasonal ARIMA (or SARIMA) models. On the other hand, this ARIMA family
has been generated to include long memory time series using a suitable fractional order
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differencing in (0, 0.5) to form the family of autoregressive fractionally integrated moving
average (ARFIMA) models. Nevertheless, the deep learning LSTM technique might be
more suitable to capture the information that is less obvious in the time series, as it allows
for a much more general class of models. Time series analysts require a lot of effort to
discover the appropriate model in order to identify the dependency in time series data [12].
Historically, the ARMA model was introduced by Box and Jenkins in 1976 [13], and it
is popular and widely used in the time series science community and provides accurate
forecasts in both in-sample and out-of-sample data when the parameters are correctly
estimated [14]. It is a hybrid (or mixture) of autoregressive (AR) and moving average (MA)
processes, but the ARMA model can only be used in stationary time series [15].

In parallel, machine learning has seen the development of neural network models in
computer science, ultimately influencing statistics. Similar to the families of the ARMA
model, deep learning also has several variants, such as a deep neural network (DNN), a
convolutional neural network (CNN), and a recurrent neural network (RNN). This report
investigates a particular form of the RNN called long short-term memory (LSTM), which is
typically used in time series [16]. In recent years, LSTM has been shown to work well in
forecasting for data with complex time dependency, such as the stock market and energy
consumption prediction [17]. In this paper, we select the best ARMA(p,q) model and then
train the LSTM model for the residuals through the ARMA model. The time-step order used
in LSTM is the parameter q in ARMA(p, q) determined by different information-theoretic
criteria [18,19].

Our results show that MML compares favorably with the other information-theoretic
approaches, including AIC, BIC, and HQ, when conducting ARMA-LSTM. Further, we
compare the ARMA-LSTM selected by MML with the ARMA model selected by MML.
These results also show that MML outperforms when compared to AIC [20], BIC [20], and
HQ [21] in terms of selecting a model with lower prediction error, and this holds whether
our modeling is enhanced by LSTM or instead is ARMA unassisted by LSTM. The Bayesian
information-theoretic MML principle provides more reliable and highly accurate results in
the model selection of the hybrid ARMA-LSTM model than other traditional methods (AIC,
BIC, HQ). When doing ARMA without a hybrid with LSTM, MML also performs better
than other traditional methods (AIC, BIC, HQ). The best performing method considered is
the hybrid MML ARMA-LSTM model. These results hold on simulated data and on the
real-world datasets considered.

Section 2 introduces the Box and Jenkins theory for the ARIMA model and discusses
its limitations. Section 3 introduces the information-theoretic Minimum Message Length
criterion in model selection, and Section 4 introduces the deep learning model LSTM.
Section 5 provides the algorithm of the hybrid ARMA-LSTM model, and Section 6 provides
the experimental results with a comparison.

2. ARIMA Modeling

This section reviews the theory of Autoregressive Integrated Moving Average (ARIMA)
modeling from Box and Jenkins (1970) [13,15]. Let {Yt} be a homogeneous nonstationary
time series and suppose that the dth (d = 1, 2, . . .) difference of the series is stationary and is
given by Xt = (1− B)dYt,, where B is the backshift operator. Then a stationary ARMA(p,q)
model can be fitted for {Xt}, satisfying

Xt = c +
p

∑
i=1

φiXt−i + εt +
q

∑
i=1

θiεt−i, (1)

where {εt} ∼WN(0, σ2).
Let φ(B) = 1− φ1B− . . .− φpBp; θ(B) = 1 + θ1B + . . . + θqBq, be two polynomials

of degree p and q, respectively, such that the zeros of φ(B) and θ(B) are outside the unit
circle. Then the ARMA(p,q) in Equation (1) can be written in a compact form as

φ(B)Xt = c + θ(B)εt. (2)
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Now the corresponding ARIMA(p,d,q) model for the original series {Yt} is given by

φ(B)(1− B)dYt = c + θ(B)εt. (3)

It is known that ARIMA is a form of a linear regression model with the lag order of
time series data and corresponding residuals. In an application where the ARIMA model
fits well for the given data, then the corresponding residuals through the model should
form a random scatter plot with a constant mean and a constant variance over the time,
see, for example, [13]. If the ARIMA model is not well fitted for the data or an incorrect
model has been fitted, then the residuals will not show a random scatter plot and instead
indicate autocorrelations within the residuals. This reveals that the information hidden in
the data has not been completely captured by the fitted ARIMA model, and we consider
refitting an alternative ARIMA model [22].

The above family of ARIMA models are also capable of modeling a wide range
of seasonal data using slight modifications. A seasonal extension of Model (3) can be
written for a set of time series data with seasonality m. Incorporating both the seasonal and
nonseasonal components together with additional polynomials, a new model is

φ(B)Φ(Bm)(1− B)d(1− Bm)DYt = c + θ(B)Θ(Bm)εt, (4)

where Φ(Bm) = 1−Φ1Bm − . . .−ΦPBmP, Θ(Bm) = 1 + Θ1Bm + . . . + ΘQBmQ, and D is
the degree of seasonal differencing. For simplicity, this is written as

Yt ∼ SARIMA(p, d, q)(P, D, Q)m (5)

Model (4) is known as the Seasonal ARIMA or SARIMA model.
To estimate the parameters of Model (4), it is important to identify the changes of

variance in the autocorrelation function (ACF) plot of data. This ACF provides an indication
of linear dependencies among the observation of time series, which is related to the order
of the model. In addition, the corresponding partial autocorrelation function (PACF) can
be used to confirm the approximate order required in the model.

In this study, we use non-seasonal ARIMA modeling because the non-seasonal degree
of differencing d can be predetermined in practice. We consider the stationary time series
data. Assuming the data are generated from a mean zero stationary ARMA(p, q) process
with Gaussian errors, we use the fact that the distribution of data is a multivariate Gaussian
distribution with mean µ = 0.

Suppose that we have a sample of N observations y = (y1, ..., yN) generated through
Model (2), with c = 0, and let β = (φ1, ..., φp, θ1, ..., θq, σ2) be the vector of all the parameters.
Then the corresponding unconditional log-likelihood function, L(yβ), can be written as:

L(yβ) = −N
2

log(2πσ2)− 1
2

log Σ− 1
2σ2 yTΣ−1y, (6)

where Σ is the determinant of Σ and σ2Σ is the N × N theoretical autocovariance matrix
of y.

3. Minimum Message Length

The Bayesian information-theoretic Minimum Message Length (MML)
principle [2,6,7,9,19,23] is based on coding theory and can be thought of in several equiv-
alent ways. It can be thought of in terms of a transmitter encoding a two-part message
and transmitting it to a receiver, where the first part of the message contains information
encoding the model and the second part of the message encodes the data given the model.
The length of the first part of the message can be thought of as the complexity of the
model, and the length of the second part of the message (effectively, the statistical negative
log-likelihood) is a measure of goodness of fit to the observed data. For example, with
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X = {A, B, C, D}, possible encodings would be, e.g., A = 00, B = 01, C = 10, and D = 11,
or instead, e.g., A = 1, B = 01, C = 001, and D = 0001, with the length of code represented
as I(), e.g., with A = 00, I(A) = 2. The code length is typically (close to) the negative
logarithm of the probability.

MML thus gives a quantitative information-theoretic trade-off between model com-
plexity (length of first part of message) and goodness of fit (length of second part of
message) [24]. A smaller MML value (or, equivalently, a shorter message length) indicates
the model is less complex and highly fitted to the data [6]. In practice, minimizing the
message length can be expressed as:

arg min
θ∈Θ

{I(θ) + I(yNθ)}, (7)

where I(θ) is the length of encoding the assertion (or model), and I(yNθ) is the length of
encoding the detail (or data given the model). In MML, there is (Bayesian) prior knowledge
(or a prior distribution), π, over the parameter space. Following Wallace and Freeman [9],
MML has been shown to work well in time series models, such as autoregressive (AR)
and moving average (MA) models [18,25,26]. We can thus estimate the parameters [7,9] by
minimizing the message length:

MessLen(y, β) = − log(
h3(β) f (y1, ..., yN β)εN√

F(β)
) +

k
2
(1 + log κk)− log h1(p)− log h2(q), (8)

where ε is measuring the accuracy of data, h3(β) is the Bayesian prior distribution over the
parameter set β, we model the parameter set β using uniform prior [0, 1] in the stationarity
region h3(β) = 1, and h1(p) = 2−(1+p) and h2(q) = 2−(1+q) are the priors on the (non-
negative integer) parameters p and q, k = p + q + 1 is the number of continuous-valued
parameters, f (y1, ..., yN β) is the standard statistical likelihood function, L = − log f , F(β)
is the expected Fisher Information matrix (of expected second-order partial derivatives of
L) and is a function of the parameter set β, F(β) is the expected Fisher information, κk is the
lattice constant (which accounts for the expected error in the log-likelihood function from
ARMA model (Equation (6)) due to the quantization of the k-dimensional space, which
is bounded above by 1

12 and bounded below by 1
2πe . For example, κ1 = 1

12 , κ2 = 5
36
√

3
,

κ3 = 19
192∗21/3 , and κk → 1

2πe as k→ ∞).
Ignoring the − log h1(p), − log h2(q), and −N log(ε) terms, the message length for

the ARMA model β can also be represented as:

I(y, β) = − log h3(β) +
1
2

log F(β) +
k
2

log κk +
k
2
− log f (yβ) (9)

MML87 is model invariant and avoids explicitly constructing the quantized parameter
space [7–9,23]. This is used for model selection and parameter estimation by choosing the
model that minimizes the message length.

MML has been used for a variety of problems, including clustering and mixture mod-
eling [27,28] ([19] Section 6.8), clustering of protein dihedral angles [29], decision graphs (as
an extension of decision trees, allowing for disjunctions, or “or”) [30] (Section 7.2.4 [19]) and
multi-way joins in decision graphs with dynamic attributes [31], causal Bayesian nets (or
Bayesian networks, or causal nets) ([19] Section 7.4) and Bayesian nets with decision trees
in their (leaf) nodes [32,33], inference of probabilistic finite state automata (or probabilistic
finite state machines, PFSAs, PFSMs) ([19] Section 7.1) and hierarchical PFSAs [34], and
(given sufficient data and time, and based to whatever degree on the above-mentioned
inference of Bayesian nets) automation of database normalization [35], etc.

Part of the reason for the above list is the universality of the MML approach [7] ([19]
Chapter 2) (seeking the single best theory) and that of the predictive approach (seeking
a Bayesian weighted combination of theories) of Solomonoff [36,37] ([38] Section 3.1).
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The MML approach of Wallace and the algorithmic probability approach of Solomonoff
both have many desirable properties, but they can be slow in practice, whereas deep
learning often runs relatively quickly. This motivates us to combine these approaches, as
we do using the deep learning approach of long short-term memory (LSTM). This gives
us something of a combination of the simplicity and accuracy of MML and the speed of
deep learning.

We note in passing that an earlier effort at combining MML with neural nets is [39].
We further note that some approaches to deep learning use a (suitably weighted) com-
bination of a squared error term and a Kullback–Leibler divergence term. Given that
squared error comes (or can come) from a Gaussian log-likelihood, this version of deep
learning regularization bears similarities to D. F. Schmidt’s MML approximation [11] ([6]
footnotes 64 and 65).(The MMLD version of MML ([6] Section 0.2.2, p. 528) [40] ([19]
Sections 4.10, 4.12.2 and 8.8.2, p. 360) modified MML87 [9] to allow for cases when the
Bayesian prior is not approximately constant over the relevant region. D. F. Schmidt’s
MML approximation, just discussed, is a further modification, and explicitly introduces
Kullback–Leibler divergence into the expression.) We also ask, for future work, whether
our approach might be combined with graph neural networks [41] or (higher-dimensional)
hyper-graph neural networks.

4. Long Short-Term Memory (LSTM)

With the development of computational power in electronic equipment, powerful comput-
ers provide many learning algorithms and approaches in time series forecasting [42–44]. Deep
learning is one of the popular approaches in recent years; it provides a complex model that
has at least the potential to capture (and often does capture) more general information from
the predictors than a traditional model, such as ARMA. Long short-term memory (LSTM)
is a special kind of recurrent neural network introduced by Hochreiter and Schmidhuber in
1997 [45]. LSTM manages the two state vectors, the short-term state ht and long term state
ct, and uses the gating mechanism by adding linear components from the previous layer in
order to provide the long memory. LSTM has been widely used in time series forecasting
because it is able to capture more information in the time series data, particularly for the
financial econometrics area, where the price of financial assets depends on various different
factors that are difficult to represent by a linear model [44,46]. Each LSTM layer, including
the cells of the forget gate, input gate, and output gate, is shown in Figure 1.

• Forget gate: ft = σ(U f xt + W f ht−1 + b f );
• Input gate: it = σ(Uixt + Wiht−1 + bi);
• Output gate: ot = σ(Uoxt + Woht−1 + bo).

The forget gate uses a sigmoid function σ(x) from Equation (10). It has a value
between 0 and 1, and it determines how much information should be forgotten. If the result
from the sigmoid function is close to 0, then more information should be forgotten, and if
the result from the sigmoid function is close to 1, then less information should be forgotten.

σ(x) =
1

1 + e−x (10)

The input gate also uses the sigmoid function, the input gate controls the value input
from the input function of gt = tanh(Wht−1 + Uxt + b) using the tanh(x) function:

tanh(x) =
sinh(x)
cosh(x)

=
ex − e−x

ex + e−x (11)

The input gate controls how much information should be remembered. The LSTM
long-term state uses an element-wise operation with ct = ft � ct−1 + gt � it, where � is
element-wise multiplication (of two matrices of the same dimension), also known as the
Hadamard product.
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Figure 1. LSTM Structure.

The output gate ot controls how much long-term information ct should be carried
forward to the next layer, and it also contributes to the short-term state of ht. The result
from the output gate function is also between 0 and 1, and the LSTM short-term state
also uses element-wise multiplication, with ht = ot � tanh(ct). An LSTM with more than
one layer is shown in Figure 2, and its structure enables the LSTM to capture long-term
and short-term information in order to forecast. As usual, an LSTM is trained by back
propagation as other neural network models are. An LSTM requires time series data to
train the model, and its time series pattern will be modeled in every layer of the network.

Figure 2. LSTM Overlapping.

5. Hybrid ARMA-LSTM Model

In recent years, LSTM and its variants—along with some hybrid models—have been
thought by many to largely dominate the financial time series forecasting domain [44]. The
LSTM is able to capture the dependency of residuals across time, and the LSTM is trained
by the time step [47]. In this paper, we are using the Moving Average lag order q from
ARMA parameters selected by MML87, AIC, BIC, and HQ—if q = 0, then we only use
ARMA to forecast the time series data without LSTM. Our LSTM model is composed of
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a single input layer with an input shape of MA order and the sequence learning features.
The following LSTM layer also contains the sequence learning features, and the third LSTM
layer with the same unit is followed by the fourth dense layer with one unit.

We developed Algorithm 1 based on [17] using a different loss function and activation
function in the regression task. The hybrid ARMA-LSTM model trains the LSTM model
by the residuals from the ARMA model. (This is similar in spirit to the discussion in ([7]
(Section 5.1))). The simple point here is that the LSTM has at least the potential to find
dependencies that the ARMA model (on its own) can not express. In this paper, MML87,
AIC, BIC, and HQ have been used to select the model parameter orders from the ARMA
model; so, this paper not only compares the errors of the hybrid ARMA-LSTM model with
those from the single ARMA model but also the hybrid model in terms of the selection(s)
of MML87, AIC, BIC, and HQ. The forecast from the ARMA model is the fitted mean µt+1.
Because information is hidden in the residuals from the ARMA model (in a similar vein to
([7] (Section 5.1))), the forecast of the hybrid model will be

Ŷt+1 = µt+1 + Et+1 (12)

where µt+1 represents the linearity modeling of data from the ARMA model selected ac-
cording to the information-theoretic MML87, AIC, BIC, and HQ. The term εt is the residual
left by the ARMA model Yt − Ŷt, and Et+1 = f (εt) = f (Yt − Ŷt), which is forecasted by the
LSTM based on the past residual values εt, εt−1, ..., εt−q, where the parameter q is selected
by MML87, AIC, BIC, and HQ. The hybrid ARMA-LSTM model combines both linear and
non-linear tendencies in time series data [48].

Algorithm 1 Algorithm 1 with the LSTM Model [17].

Require: number of epochs = 10
while MA(q) order in order set selected by MML, AIC, BIC, and HQ do

model.add(LSTM(30, return_sequences=True, input_shape=(q, 1)))
model.add(LSTM(30, return_sequences=True))
model.add(LSTM(30))
model.add(Dense(1))

The algorithm of the hybrid model is shown below (Algorithm 2):

Algorithm 2 Algorithm 2 with the Hybrid ARMA-LSTM Model.

Require: number of data n ≥ 0
while N ≤ number of different simulations do

while n ≤ number of dataset in simulation do
while i ∈MA orders selected from MML, AIC, BIC, and HQ do

if i 6= 0 then
Train LSTM model by the residuals of ARMA model
Rolling forecast the residual by LSTM
Calculate root mean squared error by Yt+1

else if i = 0 then
Calculate root mean squared error by forecast from ARMA only

6. Experiments

The experiments have been designed to compare the results of the ARMA model
itself with the hybrid ARMA-LSTM model and also to compare different versions of the
hybrid model with the parameters variously selected by the MML87, AIC, BIC, and HQ.
In order to analyze the accuracy of forecasting, we are using the root mean squared error,

RMSE =

√
1
T

T
∑

t=1
(yt − ŷi)2, to compare the different results, where T stands for the forecast

window size, and we are using rolling forecast in this experiment. To elaborate and clarify,
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for the financial data in Section 6.2, we do integer differencing with d = 1 to obtain
stationarity before using the ARMA model and, as such, use an ARIMA or autoregressive
integrated moving average model. We compare the performance of ARMA, ARIMA-LSTM,
and LSTM alone on simulated dataset(s) (Section 6.1) and also on real-world financial
(Section 6.2) and air pollution (Section 6.3) datasets.

We argue elsewhere (([6] footnotes 75 and 76) ([23] Section 3) ([38] Section 4.1)) about
various uniqueness and invariance properties of log-loss (or logarithm loss). Squared error
is a popular method and is also a variant of log-loss.

6.1. Simulated Dataset(s)

In this section, we perform experiments using various previously described modeling
methods on simulated data, and we begin (in terms of LNPPP space ([6] Section 0.2.7)) by
describing the experiments. We use a uniform distribution on [−0.9, 0.9] (from minimum
−0.9 to maximum 0.9) to randomize the parameters p and q of ARMA(p, q) for the data
simulation by using the arima.sim function in R and then reject them if they are outside the
stationarity region. There are 5× 2 = 10 different parameter sets from p1, ..., p5 and q1, q2.
The values in the table are the average RMSE over 100 runs (with standard deviation in
brackets) in the simulated dataset corresponding to the particular parameters. The dataset
includes N = 50, 100, 200, 300, and 500 time series data points in one dataset and also
includes forecast windows of window size(s) T = 3, 10, 30, and 50. Table 1 shows the
average of RMSE trained by LSTM alone (with different numbers of LSTM time steps) with
different forecast window sizes, T. The results suggest that the LSTM alone does not work
well in ARMA simulated data. For convenience of reading, we have moved Tables A1–A8
to the Appendix; each value in Table A1 is the average RMSE of forecast errors over the
datasets (with standard deviation in brackets). The bold texts indicate the smallest forecast
errors from the different kinds of models. Tables A1–A4 provide a comparison of different
forecast window sizes (or window size) with T = 3, 10, 30, and 50.

Table 1. RMSE in LSTM for simulated data (p1, q1) with different time steps and N = 100.

No. of LSTM
Time Steps T = 3 T = 10 T = 30 T = 50

1 1.2519 1.3677 1.4962 1.3911

2 1.1794 1.2442 1.3863 1.2718

3 1.3372 1.6324 1.2256 1.3018

4 1.2195 1.2301 1.3284 1.3951

5 1.1341 1.6294 1.4276 1.4494

Table A2 shows the results for the average RMSE in the datasets for different simulated
ARMA parameter sets, with the forecast window of T = 10. Table A3 provides the
comparison of root mean squared error results of those datasets in different criteria, also
comparing different simulated datasets with the forecast window of T = 30.

A large forecast window usually decreases the accuracy for the time series model. A
window size of T = 50 (Data provided by Table A4) is 50% of the size of the in-sample
set, and the MML87 hybrid model still outperforms its rivals. This indicates that the
MML information criterion is efficient in model selection, and the algorithm of the hybrid
model is also efficient in time series analysis, with the result of T = 50, as shown in
Table A4. Table 2 shows the average of the ten different parameters of the simulated dataset
in the forecast window sizes of T = 3 (Data provided by Table A1), 10 (Data provided by
Table A2), 30 (Data provided by Table A3) and 50 (Data provided by Table A4) with the
in-sample size of N = 100.
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Table 2. Average of RMSE in forecast window size T = 3, 10, 30, and 50.

Average of RMSE

ARMA ARMA-LSTM

AIC BIC HQ MML87 AIC BIC HQ MML87

T = 3 1.086 1.076 1.090 1.072 1.121 1.123 1.134 1.115

T = 10 1.149 1.136 1.144 1.121 1.159 1.136 1.143 1.134

T = 30 1.338 1.331 1.340 1.325 1.234 1.221 1.224 1.220

T = 50 1.308 1.296 1.297 1.295 1.225 1.195 1.219 1.221

MML87 outperforms the rival methods in the in-sample size of N = 100 in all cases
of T = 3, 10, 30, and 50. MML87 not only considers the goodness of fit of data but also
considers the model complexity. Figure 3 shows that MML87 has a lower root mean
squared error in most cases. The hybrid model selected by MML87 has the lowest error rate
for T = 3, 10, and 30. These comparisons argue well for MML. The results of N = 100 with
T = 50 seem to suggest that for a large size of the forecast window, the complex hybrid
ARMA-LSTM model seems to perform better than the simple time series model. Given that
the simulated data were generated from an ARMA model, it is not immediately apparent
why adding LSTM to produce a hybrid model should be advantageous in the case of larger
datasets (although we would typically expect this if not dealing with data that are purely
from an ARMA model). Table 3 shows the average of the ten different parameters of the
simulated dataset in the in-sample size of N = 50 (Data provided by Table A5), 100 (Data
provided by Table A2), 200 (Data provided by Table A6), 300 (Data provided by Table A7),
and 500 (Data provided by Table A8).

Figure 3. Comparison in forecast window sizes T = 3, 10, 30, and 50..
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Table 3. Average of RMSE for in sample size N = 50, 100, 200, 300, and 500 with forecast window size
T = 10.

Average of RMSE (and Standard Deviation)

ARMA ARMA-LSTM

AIC BIC HQ MML87 AIC BIC HQ MML87

N = 50 1.301 1.291 1.299 1.280 1.224 1.202 1.216 1.244

N = 100 1.149 1.136 1.144 1.121 1.159 1.136 1.143 1.134

N = 200 1.177 1.187 1.189 1.183 1.159 1.161 1.164 1.154

N = 300 1.163 1.152 1.155 1.147 1.131 1.125 1.124 1.123

N = 500 1.194 1.197 1.1984 1.196 1.180 1.173 1.179 1.181

Tables A5–A8 compare six different models or model selection techniques in the RMSE
of the dataset in N = 50, 200, 300, and 500, with the forecast window size T = 10. AIC tends
to overfit for small datasets, such as N = 50 (Data provided by Table A5 in the Appendix
A). Through an increase in the amount for the in-sample dataset, the RMSE decreases in
the hybrid ARMA-LSTM model because the larger size of data helps the LSTM to train and
fit an accurate model. Thus, the results show the RMSE for the MML87 model is lower
than the other models in the range N = 100, 200, and 300. Because of the efficiency in
controlling the model complexity in MML87, the model can avoid the overfitting problem
for small datasets.

The hybrid model with LSTM overfits when the in-sample size is small, basically
because there is a larger amount of parameters that need to be estimated compared to the
pure ARMA model. On the other hand, the hybrid model tends to perform well for a large
in-sample size because the deep learning model is often better off for a large in-sample size,
such as N = 200 (Data provided by Table A6), 300 (Data provided by Table A7), and 500
(Data provided by Table A8).

For a small in-sample size, such as N = 50, the BIC performance is good on the
hybrid ARMA-LSTM because BIC is able to select the model well without overfitting.
The MML87-Hybrid has the smallest average RMSE for N = 100, 200, and 300 for the
different randomized datasets. The hybrid models work efficiently when there is enough
in-sample data; otherwise, it can also overfit small datasets. In the meantime, by comparing
the RMSE from MML87-ARMA, AIC-ARMA, BIC-ARMA, and HQ-ARMA, the results
favor MML87 rather than AIC, BIC, and HQ. MML87 has a good performance in time
series model selection and is able to select the ARMA model with lower forecasting errors.
However, as noted earlier in this section, given that the simulated data were generated
from an ARMA model, it is not immediately apparent why adding LSTM to produce a
hybrid model should be advantageous in the case of larger datasets (although we would
typically expect this if not dealing with data that are purely from an ARMA model).
Figure 4 shows the comparison of RMSE in the in-sample size N = 50, 200, 300, and 500.
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Figure 4. Comparison in the in-sample size N = 50, 200, 300, and 500.

6.2. Financial Data-and Extension to ARIMA Models

Stock return prediction is one of the most popular research topics in economics and
finance [49,50]. This section studies the performance of the hybrid model from MML87; the
hybrid models from AIC, BIC, HQ; and the ARIMA models selected by MML87, AIC, BIC,
and HQ. The stock prices were selected from the components of the Dow Jones Industrial
Average, including Apple (APPL), Boeing (BA), Cisco System (CSCO), Goldman Sachs
(GS), IBM, Intel (INTC), Johnson & Johnson (JNJ), JPMorgan Chase (JPM), Coca-Cola (KO),
and 3 M (MMM).The data selected start at 23 September 2016 and finish at 22 September
2021, with a total of 1258 trading days. This experiment studies the different performances
in forecast window sizes T = 3, 5, 10, 30, 50, 70, 100, 130, 150, and 200. Table 4 shows the
characteristic of stock prices selected, including mean, standard deviation, and partial
autocorrelation.

Table 4. Mean, standard deviation, PACF lag 1 to 3 for ten selected stocks.

Mean S.D PACF1 PACF2 PACF3

AAPL 66.440217 37.060808 0.996875 0.044454 −0.004848

BA 258.704781 82.478194 0.995870 −0.031231 −0.061804

CSCO 40.585947 8.595774 0.994585 0.073202 −0.016488

GS 227.095242 56.820929 0.993579 0.039741 −0.043412

IBM 124.851224 10.369478 0.982339 0.070195 −0.040622

INTC 46.269478 9.305502 0.992194 0.178757 −0.053398

JNJ 130.715314 18.399352 0.993930 0.050988 −0.031304

JPM 104.046116 24.467471 0.993854 0.067756 −0.049235

KO 44.519034 6.089778 0.993828 0.031639 −0.039178

MMM 173.550240 20.467854 0.991641 0.004475 0.026664

The empirical results show that the hybrid ARIMA-LSTM model can substantially
outperform the traditional ARIMA (Autoregressive Integrated Moving Average) time series
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model, particularly in the forecast window sizes of T = 5, 30, 100, 130, 150, and 200. Many
studies demonstrated that the stock return depends on various factors, such as dividend
yield, the book to market ratio, and/or interest rate [49,51,52]. However, traditional linear
time series models are not able to take into account the effect of all those factors, thus
requiring a more complex model to capture the information hidden in residuals from
the ARIMA model. The hybrid model with LSTM is able to model publicly available
and other information, which we have no reason to believe will be restricted, coming
from a purely ARMA or ARIMA model. In order to make the stock price stationary in
time series analysis, the ARIMA models are using the parameter d = 1 (or, equivalently,
first-order differencing). As the experimental results show, MML87 outperforms the other
information-theoretic criteria AIC, BIC, and HQ in terms of lower root mean squared error
for out-of-sample forecasting. Figure 5 demonstrates the log prices for stock prices selected
in this experiment.

Figure 5. Log prices for ten selected stocks.

The hybrid model tends to outperform for a large forecast window size rather than the
small forecast window size because a large lookahead in forecasting has higher uncertainty.
For much—or perhaps even most—of the financial industry, there is high volatility in
long forecasts. The notion of semi-strong market efficiency suggests that the stock price
fully and fairly reflects publicly available information in the time horizontal in the forecast
window and also reflects all past information (although by no means all authors agree with
this in its entirety [53], partly due to principles of Solomonoff [37] and Wallace [7]). Thus,
it is more likely that a complex model will at least be able to provide accurate results in
predictions for a T greater than 100. Table 5 shows MML models have lower the RMSE in
most cases for different forecast window sizes in financial data.
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Table 5. RMSE for forecast window sizes T = 3, 5, 10, 30, 50, 70, 100, 130, 150, and 200.

Average of RMSE (& Standard Deviation)

ARIMA ARIMA-LSTM

AIC BIC HQ MML87 AIC BIC HQ MML87

T = 3 2.987
(3.446)

3.027
(3.555)

2.914
(3.567)

3.075
(3.572)

4.414
(4.75)

4.302
(4.608)

4.375
(4.757)

4.289
(4.616)

T = 5 4.024
(5.091)

4.077
(5.228)

4.126
(5.218)

4.163
(5.086)

4.024
(5.45)

3.966
(5.42)

4.081
(5.739)

3.907
(5.449)

T = 10 4.748
(4.707)

4.747
(4.858)

4.712
(4.815)

4.868
(4.347)

5.359
(5.429)

5.261
(5.268)

5.272
(5.443)

5.249
(5.262)

T = 30 5.872
(6.797)

5.867
(6.6)

5.91
(6.576)

5.994
(5.662)

5.754
(4.822)

5.628
(4.687)

5.726
(4.776)

5.643
(4.677)

T = 50 7.834
(7.511)

7.609
(7.298)

7.726
(7.269)

6.659
(6.966)

7.328
(6.787)

7.411
(6.879)

7.405
(6.789)

7.384
(6.898)

T = 70 9.991
(9.491)

9.909
(9.316)

10.024
(9.173)

9.645
(7.99)

10.393
(8.048)

10.221
(7.789)

10.42
(8.061)

10.085
(7.612)

T = 100 14.465
(17.187)

13.991
(15.428)

14.197
(13.637)

9.866
(10.854)

9.304
(9.256)

9.087
(9.35)

9.235
(9.396)

9.253
(9.486)

T = 130 14.482
(9.714)

14.301
(10.571)

17.672
(13.139)

13.551
(10.238)

13.768
(10.598)

13.811
(11.124)

13.9
(11.516)

14.581
(10.972)

T = 150 22.985
(28.173)

22.985
(28.077)

23.021
(28.071)

18.045
(17.856)

17.778
(16.771)

17.526
(16.582)

17.98
(16.734)

17.461
(15.931)

T = 200 31.144
(37.567)

30.502
(38.314)

30.712
(38.322)

30.286
(32.564)

26.831
(31.63)

26.424
(31.547)

26.662
(31.645)

26.507
(31.59)

Table 6 provides the average of RMSE for the selected stocks in different sizes, T,
of the forecast window (shown in different columns) and numbers of LSTM time steps
(shown in different rows). The LSTM models are trained by scalers in the range of 0 to
1, and the LSTM model performs worse in the case without scaling, which indicates that
the neural network LSTM is scale insensitive and that combining the traditional ARMA
time series model makes the neural network more scale-sensitive [54]. The results from
Table 6 suggest that the LSTM model alone (unenhanced by ARMA and ARIMA) is not
particularly able to capture the time series pattern for the stock price. The figures of the
average RMSE are significantly higher than traditional ARMA and ARMA-LSTM models.
Figure 6 shows the comparison between the ARIMA model and the hybrid ARIMA-LSTM
model in this experiment.

Table 6. LSTM with different time steps for financial data in varying forecast windows.

No.
Steps T = 3 T = 5 T = 30 T = 10 T = 50 T = 70 T =

100
T =
130

T =
150

T =
200

1 8.5789 10.1965 56.7817 104.3681 123.4805 119.2673 151.1338 107.2951 114.8106 73.2335

3 5.7604 3.5166 3.6097 13.325 10.6368 31.9361 33.4419 26.0112 31.5578 26.6354

5 4.0695 3.0575 8.5064 11.9009 15.5075 17.3077 19.0942 48.0012 30.0622 36.6099

7 3.9708 6.4145 10.6368 6.8547 13.2163 16.5474 19.0724 32.7076 20.5954 44.1875

10 5.3985 6.4576 5.9597 13.8295 16.0972 20.6271 12.8859 28.2251 28.2803 25.5409
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Figure 6. Comparison in different forecast windows.

6.3. PM2.5 Pollution Data

In this section, we use environmental data of PM2.5 pollution levels in the city of
Beijing, China, with ten sensors located in different areas. The data are hourly PM2.5 levels
in 53 days in 2013.

We are using the same data length and information-theoretic methods from Section 6.2
in order to demonstrate the performance of MML compared to rival methods. Table 7
shows the comparison between MML, AIC, BIC, and HQ. The hourly PM2.5 data have a
seasonality; the level of PM2.5 reaches its highest near midday and decreases to its lowest
near midnight. The results suggest that MML is a good model selection technique in
this case.

Table 7. RMSE for forecast window sizes T = 3, 5, 10, 30, 50, 70, 100, 130, 150, and 200.

Average of RMSE & Standard Deviation

ARIMA ARIMA-LSTM

AIC BIC HQ MML87 AIC BIC HQ MML87

T = 3 26.805
(7.496)

26.689
(7.532)

26.569
(7.545)

23.104
(7.843)

25.768
(7.833)

23.066
(8.693)

24.791
(7.883)

22.965
(6.711)

T = 5 28.036
(6.986)

27.538
(6.805)

27.479
(7.186)

23.478
(8.426)

24.636
(8.518)

22.309
(7.596)

24.113
(8.584)

21.666
(7.424)

T = 10 30.633
(12.679)

31.502
(12.283)

31.585
(12.518)

30.074
(14.917)

26.970
(10.502)

27.566
(13.487)

27.924
(10.107)

25.102
(9.855)

T = 30 40.730
(14.001)

40.788
(13.372)

40.157
(14.195)

37.989
(19.180)

31.022
(11.409)

29.382
(12.196)

31.689
(14.124)

28.572
(12.229)

T = 50 39.097
(4.238)

38.662
(4.660)

39.007
(4.232)

42.986
(6.062)

35.639
(5.599)

33.335
(5.184)

36.036
(6.339)

40.568
(9.24)

T = 70 34.004
(4.223)

33.551
(4.105)

34.773
(3.514)

32.030
(9.404)

48.942
(12.377)

45.305
(10.567)

49.723
(12.068)

42.987
(8.705)

T = 100 32.002
(2.434)

32.444
(2.425)

31.170
(2.865)

37.925
(4.444)

56.024
(13.199)

51.543
(12.714)

59.705
(13.435)

49.513
(11.45)

T = 130 44.023
(2.583)

44.162
(2.576)

43.635
(2.836)

43.802
(1.853)

36.183
(7.184)

33.716
(4.591)

39.401
(8.488)

46.496
(7.168)

T = 150 44.463
(1.612)

44.736
(1.862)

43.928
(1.773)

41.150
(5.221)

32.574
(6.211)

31.225
(4.301)

30.923
(6.598)

33.584
(7.679)

T = 200 42.150
(2.620)

42.372
(2.522)

41.863
(2.787)

43.75
(4.07)

46.711
(13.86)

43.721
(11.349)

53.393
(12.458)

46.363
(12.472)
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Table 8 shows the LSTM model alone in the PM2.5 data, and the results suggest that
the LSTM model (on its own, unenhanced by ARMA and ARIMA) outperforms in the
smaller-sized forecast windows, such as T = 3, 5, and 10. The RMSEs in larger window
sizes (T ≥ 50) are much larger for the LSTM than for the ARMA model and hybrid
ARMA-LSTM.

Table 8. LSTM for PM2.5 Beijing data in different time steps and forecast windows.

No.
Steps T = 3 T = 5 T = 10 T = 30 T = 50 T = 70 T =

100
T =
130

T =
150

T =
200

1 3.0976 5.7806 16.5048 47.8431 53.7436 67.2412 81.7044 92.6897 73.4192 71.5536

3 4.4983 8.1565 17.0462 34.0492 36.3896 47.2558 64.68533 90.7986 78.9972 78.5648

5 4.7719 9.2208 18.7955 33.6065 50.4786 56.7465 59.3666 75.4321 102.0098 88.1695

7 5.9126 9.8355 15.3696 25.8551 38.6874 53.06845 50.962 87.998 92.101 101.2337

10 8.4289 11.4749 11.4479 38.3303 44.5138 65.6299 70.6415 74.6879 90.1211 84.0196

7. Conclusions

We have investigated time series modeling in the Minimum Message Length frame-
work using Wallace and Freeman’s (1987) approximation [9]. The hybrid ARMA-LSTM
model has been compared with the traditional ARMA (Autoregressive Moving Average)
time series model based on the information-theoretic approaches: AIC, BIC, HQ and
MML87. We performed experiments on simulated data and also on two real-world datasets
(financial and environmental data). We conducted the experiments based on hybrid ARMA-
LSTM (with LSTM) and ARMA without LSTM (long short-term memory). This could
be broadly thought of as constituting two experiments each on three datasets or with six
experiments. For each of the six experiments, the results show that MML87 outperforms the
other information-theoretic criteria. The hybrid ARMA-LSTM model performs better than
the traditional ARMA model, and the MML hybrid ARMA-LSTM model performed best
out of everything considered. It is worth noting that the LSTM model alone with unscaled
data performed worse than everything else considered. In summary, MML87 is able to
select the lower forecasting errors better than the AIC, BIC, and HQ, as the experimental
results show.
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Appendix A

Table A1. Simulated data with N = 100 and T = 3 from Section 6.1.

Average of RMSE (and Standard Deviation)

Order of Stat- ARMA ARMA-LSTM

ionary ARMA AIC BIC HQ MML87 AIC BIC HQ MML87

p1, q1 0.982
(0.646)

1.108
(0.529)

1.112
(0.499)

1.033
(0.469)

1.204
(0.308)

1.217
(0.502)

1.215
(0.511)

1.234
(0.7)

p1, q2 1.133
(0.592)

1.053
(0.669)

1.172
(0.601)

1.166
(0.635)

1.301
(0.922)

1.289
(0.95)

1.366
(0.862)

1.384
(0.838)

p2, q1 1.027
(0.423)

1.024
(0.421)

1.029
(0.445)

1.023
(0.418)

1.025
(0.408)

1.012
(0.376)

1.021
(0.411)

1.005
(0.48)

p2, q2 1.333
(0.793)

1.278
(0.841)

1.286
(0.879)

1.271
(0.848)

1.241
(0.745)

1.182
(0.711)

1.211
(0.735)

1.194
(0.674)

p3, q1 0.955
(0.377)

0.956
(0.377)

0.951
(0.375)

0.944
(0.37)

0.965
(0.341)

0.975
(0.35)

0.971
(0.351)

0.986
(0.426)

p3, q2 1.293
(0.331)

1.241
(0.296)

1.245
(0.307)

1.238
(0.296)

1.114
(0.284)

1.211
(0.266)

1.172
(0.269)

1.105
(0.259)

p4, q1 0.901
(0.483)

0.916
(0.448)

0.913
(0.451)

0.871
(0.398)

0.948
(0.397)

0.944
(0.41)

0.945
(0.413)

0.932
(0.442)

p4, q2 1.207
(0.539)

1.226
(0.515)

1.224
(0.531)

1.206
(0.513)

1.252
(0.777)

1.261
(0.778)

1.257
(0.792)

1.251
(0.772)

p5, q1 1.006
(0.54)

0.907
(0.626)

0.911
(0.642)

0.903
(0.578)

1.122
(0.538)

1.117
(0.553)

1.112
(0.564)

1.018
(0.467)

p5, q2 1.026
(0.583)

1.052
(0.553)

1.054
(0.587)

1.061
(0.559)

1.042
(0.559)

1.021
(0.592)

1.027
(0.566)

1.046
(0.53)

Table A2. Simulated data with N = 100 and T = 10 from Section 6.1.

Average of RMSE (and Standard Deviation)

Order of Stat- ARMA ARMA-LSTM

ionary ARMA AIC BIC HQ MML87 AIC BIC HQ MML87

p1, q1 1.234
(0.178)

1.208
(0.165)

1.206
(0.167)

1.221
(0.293)

1.201
(0.404)

1.132
(0.184)

1.135
(0.188)

1.138
(0.317)

p1, q2 1.571
(0.375)

1.553
(0.386)

1.556
(0.391)

1.398
(0.304)

1.555
(1.109)

1.549
(1.125)

1.551
(1.123)

1.494
(0.834)

p2, q1 1.025
(0.194)

1.041
(0.203)

1.044
(0.216)

1.043
(0.193)

1.013
(0.174)

1.02
(0.182)

1.025
(0.174)

1.037
(0.265)

p2, q2 1.353
(0.438)

1.327
(0.373)

1.322
(0.391)

1.325
(0.368)

1.274
(0.213)

1.257
(0.206)

1.268
(0.211)

1.255
(0.205)

p3, q1 0.947
(0.194)

0.895
(0.129)

0.918
(0.157)

0.901
(0.134)

1.018
(0.135)

0.946
(0.116)

0.966
(0.151)

0.989
(0.154)

p3, q2 0.978
(0.266)

1.06
(0.239)

1.065
(0.225)

1.048
(0.226)

1.149
(0.328)

1.137
(0.338)

1.141
(0.352)

1.135
(0.328)

p4, q1 1.083
(0.206)

1.059
(0.2)

1.063
(0.218)

1.075
(0.179)

1.081
(0.261)

1.029
(0.179)

1.035
(0.219)

1.061
(0.128)

p4, q2 1.121
(0.192)

1.112
(0.17)

1.124
(0.186)

1.104
(0.174)

1.093
(0.212)

1.088
(0.191)

1.095
(0.252)

1.096
(0.181)

p5, q1 1.279
(0.322)

1.244
(0.296)

1.264
(0.251)

1.242
(0.29)

1.169
(0.335)

1.167
(0.327)

1.172
(0.335)

1.166
(0.306)

p5, q2 0.903
(0.078)

0.867
(0.067)

0.882
(0.059)

0.877
(0.074)

1.053
(0.231)

1.033
(0.192)

1.046
(0.188)

0.972
(0.126)
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Table A3. Simulated data with N = 100 and T = 30 from Section 6.1.

Average of RMSE (and Standard Deviation)

Order of Stat- ARMA ARMA-LSTM

ionary ARMA AIC BIC HQ MML87 AIC BIC HQ MML87

p1, q1 1.263
(0.167)

1.252
(0.156)

1.253
(0.173)

1.256
(0.159)

1.217
(0.295)

1.118
(0.119)

1.125
(0.133)

1.192
(0.247)

p1, q2 2.641
(0.905)

2.554
(0.838)

2.631
(0.972)

2.694
(0.961)

1.771
(1.135)

1.848
(0.739)

1.822
(0.959)

1.803
(1.373)

p2, q1 1.221
(0.139)

1.186
(0.096)

1.199
(0.121)

1.184
(0.102)

1.102
(0.084)

1.088
(0.083)

1.094
(0.089)

1.124
(0.101)

p2, q2 1.044
(0.091)

1.145
(0.108)

1.093
(0.117)

1.041
(0.088)

1.138
(0.255)

1.153
(0.211)

1.148
(0.262)

1.136
(0.256)

p3, q1 1.086
(0.181)

1.066
(0.19)

1.073
(0.195)

1.061
(0.182)

1.038
(0.172)

1.036
(0.171)

1.036
(0.188)

1.035
(0.145)

p3, q2 1.112
(0.295)

1.096
(0.309)

1.139
(0.331)

1.101
(0.306)

1.202
(0.38)

1.153
(0.328)

1.166
(0.369)

1.099
(0.264)

p4, q1 1.053
(0.22)

1.038
(0.189)

1.044
(0.167)

1.035
(0.185)

1.058
(0.14)

1.051
(0.124)

1.055
(0.139)

1.063
(0.152)

p4, q2 1.263
(0.2)

1.247
(0.194)

1.251
(0.229)

1.238
(0.21)

1.204
(0.133)

1.191
(0.114)

1.211
(0.138)

1.183
(0.152)

p5, q1 1.613
(0.27)

1.679
(0.301)

1.669
(0.343)

1.599
(0.342)

1.541
(0.884)

1.531
(0.609)

1.539
(0.915)

1.521
(0.848)

p5, q2 1.092
(0.132)

1.047
(0.234)

1.052
(0.337)

1.047
(0.114)

1.074
(0.144)

1.041
(0.117)

1.045
(0.196)

1.041
(0.115)

Table A4. Simulated data with N = 100 and T = 50 from Section 6.1.

Average of RMSE (and Standard Deviation)

Order of Stat- ARMA ARMA-LSTM

ionary ARMA AIC BIC HQ MML87 AIC BIC HQ MML87

p1, q1 1.189
(0.217)

1.191
(0.228)

1.193
(0.221)

1.182
(0.222)

1.164
(0.304)

1.091
(0.212)

1.155
(0.292)

1.173
(0.241)

p1, q2 2.307
(0.458)

2.308
(0.457)

2.305
(0.464)

2.298
(0.466)

1.862
(1.169)

1.868
(1.16)

1.889
(1.171)

1.852
(1.073)

p2, q1 1.113
(0.087)

1.092
(0.103)

1.095
(0.107)

1.094
(0.104)

1.058
(0.073)

1.045
(0.096)

1.172
(0.225)

1.059
(0.139)

p2, q2 1.191
(0.096)

1.189
(0.103)

1.192
(0.107)

1.191
(0.1)

1.176
(0.24)

1.178
(0.259)

1.183
(0.285)

1.201
(0.289)

p3, q1 1.094
(0.159)

1.093
(0.157)

1.095
(0.156)

1.097
(0.155)

1.101
(0.192)

1.061
(0.144)

1.065
(0.177)

1.093
(0.115)

p3, q2 1.127
(0.06)

1.123
(0.055)

1.129
(0.057)

1.125
(0.058)

1.121
(0.134)

1.129
(0.155)

1.126
(0.143)

1.132
(0.153)

p4, q1 1.188
(0.182)

1.189
(0.188)

1.185
(0.187)

1.192
(0.186)

1.136
(0.137)

1.095
(0.181)

1.099
(0.173)

1.139
(0.113)

p4, q2 1.232
(0.165)

1.221
(0.133)

1.222
(0.137)

1.212
(0.134)

1.268
(0.457)

1.19
(0.269)

1.197
(0.234)

1.203
(0.319)

p5, q1 1.593
(0.304)

1.521
(0.199)

1.533
(0.216)

1.528
(0.209)

1.331
(0.428)

1.275
(0.234)

1.277
(0.214)

1.338
(0.383)

p5, q2 1.051
(0.083)

1.033
(0.064)

1.029
(0.096)

1.032
(0.063)

1.035
(0.055)

1.021
(0.067)

1.029
(0.077)

1.023
(0.069)
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Table A5. Simulated data with N = 50 and T = 10 from Section 6.1.

Average of RMSE (and Standard Deviation)

Order of Stat- ARMA ARMA-LSTM

ionary ARMA AIC BIC HQ MML87 AIC BIC HQ MML87

p1, q1 1.068
(0.147)

1.071
(0.118)

1.073
(0.125)

1.067
(0.115)

1.198
(0.222)

1.122
(0.305)

1.137
(0.336)

1.175
(0.259)

p1, q2 1.994
(0.655)

1.994
(0.655)

2.056
(0.692)

2.04
(0.705)

1.93
(1.553)

1.932
(1.563)

1.926
(1.572)

1.921
(1.566)

p2, q1 1.242
(0.213)

1.242
(0.213)

1.274
(0.252)

1.235
(0.17)

1.106
(0.193)

1.116
(0.196)

1.119
(0.189)

1.154
(0.278)

p2, q2 1.185
(0.355)

1.183
(0.359)

1.196
(0.361)

1.232
(0.476)

1.163
(0.386)

1.194
(0.499)

1.172
(0.534)

1.254
(0.601)

p3, q1 1.348
(0.557)

1.254
(0.604)

1.269
(0.661)

1.304
(0.575)

1.257
(0.499)

1.139
(0.605)

1.212
(0.657)

1.256
(0.449)

p3, q2 1.283
(0.234)

1.283
(0.234)

1.281
(0.265)

1.291
(0.233)

1.198
(0.27)

1.198
(0.27)

1.211
(0.298)

1.215
(0.285)

p4, q1 1.263
(0.461)

1.251
(0.469)

1.288
(0.477)

1.044
(0.172)

1.091
(0.264)

1.079
(0.27)

1.096
(0.288)

1.129
(0.243)

p4, q2 0.987
(0.132)

0.987
(0.132)

0.989
(0.132)

0.989
(0.137)

1.007
(0.137)

1.017
(0.126)

1.022
(0.139)

0.999
(0.138)

p5, q1 1.533
(0.457)

1.426
(0.535)

1.454
(0.561)

1.464
(0.509)

1.227
(0.442)

1.178
(0.445)

1.192
(0.496)

1.254
(0.434)

p5, q2 1.101
(0.153)

1.098
(0.151)

1.111
(0.186)

1.137
(0.185)

1.061
(0.168)

1.068
(0.175)

1.072
(0.183)

1.08
(0.117)

Table A6. Simulated data with N = 200 and T = 10 from Section 6.1.

Average of RMSE (and Standard Deviation)

Order of Stat- ARMA ARMA-LSTM

ionary ARMA AIC BIC HQ MML87 AIC BIC HQ MML87

p1, q1 1.244
(0.365)

1.277
(0.42)

1.286
(0.417)

1.248
(0.404)

1.153
(0.381)

1.13
(0.376)

1.146
(0.392)

1.151
(0.353)

p1, q2 1.359
(0.445)

1.359
(0.445)

1.366
(0.462)

1.359
(0.445)

1.474
(0.813)

1.491
(0.882)

1.477
(0.893)

1.474
(0.813)

p2, q1 0.927
(0.183)

0.915
(0.172)

0.916
(0.185)

0.92
(0.182)

0.939
(0.126)

0.955
(0.15)

0.969
(0.163)

0.933
(0.128)

p2, q2 1.184
(0.41)

1.191
(0.398)

1.193
(0.366)

1.189
(0.402)

1.134
(0.368)

1.114
(0.393)

1.116
(0.407)

1.106
(0.37)

p3, q1 1.137
(0.347)

1.136
(0.347)

1.129
(0.351)

1.117
(0.355)

1.082
(0.314)

1.082
(0.316)

1.088
(0.361)

1.085
(0.325)

p3, q2 0.915
(0.198)

1.038
(0.08)

1.011
(0.081)

0.991
(0.093)

1.088
(0.184)

1.083
(0.172)

1.075
(0.199)

1.054
(0.161)

p4, q1 1.199
(0.558)

1.166
(0.557)

1.174
(0.531)

1.19
(0.562)

1.086
(0.591)

1.109
(0.507)

1.115
(0.691)

1.107
(0.732)

p4, q2 1.108
(0.196)

1.101
(0.191)

1.132
(0.615)

1.129
(0.24)

1.184
(0.358)

1.186
(0.359)

1.192
(0.379)

1.184
(0.36)

p5, q1 1.581
(0.481)

1.584
(0.475)

1.584
(0.422)

1.586
(0.48)

1.383
(0.83)

1.391
(0.802)

1.396
(0.811)

1.382
(0.832)

p5, q2 1.123
(0.263)

1.101
(0.174)

1.107
(0.155)

1.101
(0.174)

1.063
(0.234)

1.069
(0.133)

1.065
(0.129)

1.063
(0.128)
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Table A7. Simulated data with N = 300 and T = 10 from Section 6.1.

Average of RMSE (and Standard Deviation)

Order of Stat- ARMA ARMA-LSTM

ionary ARMA AIC BIC HQ MML87 AIC BIC HQ MML87

p1, q1 1.024
(0.312)

1.028
(0.332)

1.029
(0.321)

1.031
(0.322)

1.033
(0.316)

1.02
(0.27)

1.021
(0.291)

1.024
(0.32)

p1, q2 2.008
(1.123)

1.995
(1.024)

1.996
(1.031)

1.988
(1.028)

1.709
(0.918)

1.72
(0.896)

1.725
(0.812)

1.72
(0.854)

p2, q1 1.022
(0.144)

1.025
(0.138)

1.027
(0.132)

1.016
(0.133)

1.011
(0.125)

1.012
(0.121)

1.017
(0.126)

1.014
(0.297)

p2, q2 1.172
(0.398)

1.168
(0.383)

1.171
(0.326)

1.166
(0.384)

1.164
(0.422)

1.177
(0.443)

1.172
(0.461)

1.17
(0.413)

p3, q1 0.886
(0.198)

0.868
(0.205)

0.882
(0.217)

0.865
(0.215)

0.964
(0.261)

0.932
(0.183)

0.952
(0.191)

0.914
(0.188)

p3, q2 1.07
(0.408)

1.068
(0.412)

1.065
(0.407)

1.059
(0.401)

1.096
(0.284)

1.095
(0.289)

1.097
(0.277)

1.092
(0.284)

p4, q1 1.215
(0.445)

1.191
(0.468)

1.194
(0.462)

1.184
(0.464)

1.22
(0.621)

1.091
(0.42)

1.124
(0.468)

1.166
(0.453)

p4, q2 1.191
(0.338)

1.167
(0.308)

1.172
(0.311)

1.162
(0.278)

1.182
(0.427)

1.188
(0.473)

1.184
(0.113)

1.184
(0.433)

p5, q1 1.169
(0.225)

1.159
(0.216)

1.161
(0.232)

1.152
(0.216)

0.997
(0.131)

1.071
(0.213)

1.011
(0.159)

1.01
(0.146)

p5, q2 0.874
(0.25)

0.846
(0.249)

0.852
(0.297)

0.844
(0.247)

0.936
(0.213)

0.939
(0.197)

0.935
(0.199)

0.938
(0.196)

Table A8. Simulated data with N = 500 & T = 10 from Section 6.1.

Average of RMSE (and Standard Deviation)

Order of Stat- ARMA ARMA-LSTM

ionary ARMA AIC BIC HQ MML87 AIC BIC HQ MML87

p1, q1 0.988
(0.229)

0.966
(0.233)

0.967
(0.252)

0.968
(0.232)

1.016
(0.178)

1.012
(0.182)

1.017
(0.169)

1.014
(0.179)

p1, q2 1.546
(0.728)

1.549
(0.713)

1.552
(0.736)

1.562
(0.703)

1.841
(0.915)

1.838
(0.875)

1.838
(0.876)

1.838
(0.877)

p2, q1 1.002
(0.37)

1.017
(0.349)

1.017
(0.355)

1.016
(0.351)

1.008
(0.329)

1.008
(0.325)

1.008
(0.334)

1.05
(0.349)

p2, q2 1.156
(0.188)

1.165
(0.176)

1.163
(0.182)

1.165
(0.176)

1.167
(0.337)

1.156
(0.355)

1.159
(0.363)

1.156
(0.355)

p3, q1 1.091
(0.175)

1.093
(0.18)

1.099
(0.175)

1.09
(0.176)

1.064
(0.225)

1.06
(0.157)

1.066
(0.173)

1.058
(0.22)

p3, q2 1.23
(0.372)

1.235
(0.364)

1.235
(0.364)

1.235
(0.364)

1.197
(0.365)

1.209
(0.393)

1.21
(0.378)

1.209
(0.393)

p4, q1 1.041
(0.272)

1.07
(0.25)

1.069
(0.261)

1.063
(0.257)

1.135
(0.342)

1.053
(0.239)

1.096
(0.298)

1.139
(0.343)

p4, q2 1.253
(0.265)

1.256
(0.265)

1.261
(0.273)

1.255
(0.266)

1.134
(0.218)

1.136
(0.214)

1.131
(0.243)

1.126
(0.235)

p5, q1 1.559
(0.363)

1.551
(0.385)

1.55
(0.374)

1.541
(0.365)

1.159
(0.331)

1.199
(0.421)

1.196
(0.411)

1.161
(0.292)

p5, q2 1.073
(0.179)

1.068
(0.188)

1.071
(0.192)

1.068
(0.188)

1.083
(0.136)

1.062
(0.167)

1.067
(0.166)

1.062
(0.167)
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