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Abstract: This paper focuses on the adaptive spline (A-spline) fitting of the semiparametric regres-
sion model to time series data with right-censored observations. Typically, there are two main prob-
lems that need to be solved in such a case: dealing with censored data and obtaining a proper A-
spline estimator for the components of the semiparametric model. The first problem is traditionally 
solved by the synthetic data approach based on the Kaplan–Meier estimator. In practice, although 
the synthetic data technique is one of the most widely used solutions for right-censored observa-
tions, the transformed data’s structure is distorted, especially for heavily censored datasets, due to 
the nature of the approach. In this paper, we introduced a modified semiparametric estimator based 
on the A-spline approach to overcome data irregularity with minimum information loss and to re-
solve the second problem described above. In addition, the semiparametric B-spline estimator was 
used as a benchmark method to gauge the success of the A-spline estimator. To this end, a detailed 
Monte Carlo simulation study and a real data sample were carried out to evaluate the performance 
of the proposed estimator and to make a practical comparison. 

Keywords: adaptive splines; B-splines; right-censored data; semiparametric regression; synthetic 
data transformation; time series 
 

1. Introduction 
Time series datasets are censored from the right under specific conditions, such as a 

detection limit or an insufficient observation process. Consider a device which cannot 
measure values above a certain point, which is known as a detection limit. Since the device 
cannot determine the real value of an observation above its detection limit, such observa-
tions are recorded as right-censored data points. The hourly observed cloud ceiling 
heights data collected by the National Center for Atmospheric Research (NCAR) and 
modelled by [1,2] can be used as an example of a right-censored time series. Although 
right-censored time series are encountered frequently in the real world, in the literature, 
there are truly few studies completed on the estimation of right-censored time series. This 
may be because censorship is an unwanted data irregularity for the researchers, and it is 
therefore often ignored or solved by outdated techniques. 

To solve the censorship problem before modelling the time series, reference [1] used 
the Gaussian imputation technique to estimate the series using modified ARMA models. 
In a similar manner, references [2,3] solved the censorship problem by using data impu-
tation techniques. The common ground of these studies is the use of imputation and data 
augmentation methods to estimate the regression models with autoregressive errors for 
right-censored time series. On the other hand, there is an easier way to handle the censor-
ship problem called synthetic data transformation. Although data imputation techniques 
have some merits, they are generally based on iterative algorithms and their calculations 
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are costly. Reference [4] estimated the temporally correlated and right-censored series by 
Nadaraya–Watson estimator nonparametrically, solving the censorship problem using a 
data transformation technique. Various data transformation (or synthetic data) methods 
have been proposed and studied in the literature for independent and identically distrib-
uted (i.i.d.) datasets; for example, see [5–7]. Because synthetic data transformation manip-
ulates the data structure, which is disadvantageous, this solution method is no longer the 
preferred technique for right-censored time series. This paper aims to propose a method 
which can overcome the disadvantage of the synthetic data transformation method. 

Note that the studies mentioned above consider the modeling of time series data us-
ing parametric or nonparametric methods. The data structure of a time series in the real 
world is generally not suitable for parametric modelling, because it requires rigid assump-
tions to reach reasonable estimates. Single-index nonparametric models, on the other 
hand, are very flexible, which is an important advantage over parametric methods and 
there are valuable studies on the subject [2,8,9]. However, nonparametric approaches lose 
their statistical efficiencies, when the number of covariates increases. In addition, it should 
be noted that, when a time series dataset is right-censored, the weaknesses of both meth-
ods are further increased. 

Considering the issues mentioned above, this paper adopts semiparametric regres-
sion model for estimating right-censored time series. Although several researchers have 
introduced different types of semiparametric estimators for time series data, such as [10] 
and [11], there remains a significant gap in the research regarding the modelling of right-
censored time series data. To address this absence, our paper proposes a modified semi-
parametric A-spline (AS) estimator based on synthetic data transformation. Thus, the bi-
directional flexibility of the semiparametric model will be used, and the censorship prob-
lem will be effectively solved. 

The paper is designed as follows: the methodology and fundamental ideas about 
right-censored semiparametric time series model with autoregressive errors and the syn-
thetic data transformation method are given in Section 2. Section 3 introduces a modified 
AS estimator for parametric and nonparametric components of the right-censored time 
series model, and a semiparametric B-spline (BS) is given as a benchmark. Section 4 in-
volves the statistical properties and evaluation criteria for both the modified AS and 
benchmark BS methods. Section 5 introduces some additional information about the pen-
alty term of the semiparametric AS approach. Sections 6 and 7 contain a detailed Monte 
Carlo simulation study and a real-world data example, respectively. Conclusions are pre-
sented in Section 8. 

2. Background 
The classical semiparametric model can be defined as a hybrid model with a finite 

dimensional parametric component and a nonparametric component having an infinite 
dimensional nuisance parameter. See [12–15] for additional information. In both theory 
and practice, the semiparametric model brings a new perspective to data modeling, since 
it includes both parametric and nonparametric components. As mentioned in the previous 
section, it is well-suited to time series data, because it brings the advantages of the semi-
parametric model to time series analysis. 

Suppose that a time series dataset 𝑍 , 𝐱 , 𝑠 , 𝑡 =  1,2, … , 𝑛   satisfies an uncensored 
semiparametric time series model of the form: 𝑍 =   𝐱 𝛃 + 𝑓(𝑠 ) + 𝜀 , 𝑎 =  𝑠 < ⋯ < 𝑠 = 𝑏, (1)

where 𝑍 ′s are the observations of stationary time series, 𝐱 = (𝐱 , … , 𝐱 ) and 𝐱 , … , 𝐱  
are known p-dimensional vectors of the explanatory variables, 𝛃 = 𝛽 , 𝛽 , … , 𝛽  is an 
unknown 𝑝-dimensional vector of the regression coefficients to be estimated, 𝑓(. ) is an 
unknown smooth function that describes the relationship between 𝑍  and a nonparamet-
ric temporal covariate 𝑠 , and finally, 𝜀 ’s are the stationary autoregressive error terms 
generated by: 
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𝜀  =  𝜌 𝜀 + ⋯ + 𝜌 𝜀 + 𝑢 , (2)

where  𝜌 , … , 𝜌  are the autoregressive coefficients, and 𝑢  denotes the independent and 
identically distributed random error terms with mean zero and a constant variance. Model 
(1) does not include lagged 𝑍 ′s and has auto-correlated errors. This expression makes it 
a suitable model for the semiparametric regression analysis of certain kinds of time series. 

A common problem in practice is that dependent observations 𝑍 ′𝑠 cannot be per-
fectly collected due to limitations including the detection limit of an evaluation tool or the 
end time for the study. To express this situation algebraically, we assume that 𝑍 ′𝑠 are 
censored from the right by a non-negative random variable representing detection limit 𝐶  . Therefore, instead of observing the values of 𝑍 , we now observe: 𝑌  =  min(𝑍 , 𝐶 ) and 𝛿  =  1  𝑖𝑓 𝑍 ≤ 𝐶   (uncensored)0  𝑖𝑓 𝑍 > 𝐶   (censored)    , (3)

where 𝛿 ’s denote the censoring information. Suppose that we are interested in estimating 
the mean semiparametric regression function. The distribution of the observable random 
variables does not identify the mean regression function uniquely. However, this problem 
can be solved as follows. 

Let F (α)  =  P(Z ≤ α), G (α) = P(C ≤ α) , and H (α) = P(Y ≤ α)  for α ∈ ℝ  be cu-
mulative distribution functions of non-negative random variables Z , C , and Y , respec-
tively. If random variables Z  and C  are independent, then the survival function H (α) 
for observed response variable Y  can be defined from the basic relationship between F  and G : H (α)  =  1 − H (α)  =  1 − F (α) . 1 − G (α) . (4)

Given a random sample from the distribution of (𝑌 , 𝑋 , 𝑠 , 𝛿 ), it is of interest to ex-
amine the explanatory variables’ effect on the observations of time series (i.e., response 
variable) by estimating the survival function 𝐻 (𝛼)  = 𝑃(𝑌 > 𝛼), which is the regression 
function 𝐸(𝑌 |𝐱 , 𝑠 ) = 𝐱 𝛃 + 𝑓(𝑠 ), the conditional mean of time series 𝑌 . However, be-
cause of the censoring, ordinary methods cannot be applied directly to estimate the re-
gression function. To overcome censored observations, a data transformation technique 
should be used. One of the most widely used techniques is the synthetic data transfor-
mation, detailed in the section below. 

2.1. Synthetic Data 

To extend the penalized sum of squares approach to right-censored semiparametric 
regression analysis, we updated the synthetic data approach developed by [5]. The first 
step is to create an unbiased synthetic response variable of which the expectation is equal 
to the original and then to obtain the penalized squares estimator by means of this syn-
thetic variable. The main goal of this transaction is to consider the censoring effect on the 
distribution of response variable. In the case of censored data, the authors of [16] and [17] 
used the synthetic data approach. 

In the synthetic approach, we replace observed variable 𝑌  with transformed data 𝑌 ; a transformation maintains the conditional expectation of original variable 𝑍 . To de-
scribe this situation, it is easier to proceed directly using the cumulative distributions 
given in Lemma 1 below. Note also that if 𝐺  is known then it is possible to transform 
observed data  (𝑌 , 𝛿 ), 𝑡 =  1, … , 𝑛  into unbiased synthetic data, given by: 𝑌  =  ( ), (5)

where 𝐺 (. ) is the distribution function of the censoring time 𝐶 , as defined before. It 
should be noted that the distribution of  𝐺  is rarely known. In this case, we use the 
Kaplan–Meier estimator defined by: 
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1 − 𝐺 (𝑦)  =  ∏ ( ) ,   ( )    , 𝑦 ≥ 0, (6)

where 𝑌( ) ≤ ⋯ ≤ 𝑌( ) are the sorted values of 𝑌 , … , 𝑌  and 𝛿( ) is the 𝛿  related to 𝑌( ). 
Equation (5) has the following properties: (a) if distribution G  is selected arbitrarily, 
some Y( )  can be identical. In this case, the ranking of Y , … , Y  into Y( ) … Y( )  is not 
unique. However, the Kaplan–Meier estimator allows us to define the ranking of Y  
uniquely; (b) G (. ) has jumps only at the censored observations of the time series (see 
[18]). 

Substituting 𝐺 (. ) for  𝐺 (. ) in Equation (5), we construct the following synthetic 
data, given by: 𝑌  =  ( ). (7)

Then, one practical consequence of the following Lemma is that synthetic data 𝑌  
and completely observed response times 𝑍  have the same conditional expectations, as 
claimed in before. 

Lemma 1: Consider time series data 𝑍  denoted as a response variable. If the data is censored by 
random censoring variable 𝐶 with distribution 𝐺 , transform observed series 𝑌 = 𝑚𝑖𝑛 (𝑍 , 𝐶 ) 
to 𝑌 = 𝛿 𝑌 / 1 − 𝐺 (𝑌 ) in an unbiased form, as defined in Equation (4). Based on the infor-
mation, it can be easily verified that 𝐸[𝑌 |𝒙 , 𝑠 ] = 𝐸[𝑍 |𝒙 , 𝑠 ] = 𝒙 𝜷 + 𝑓(𝑠 ). However, gener-
ally, 𝐺  is unknown as mentioned before. Therefore, 𝑌  is used which is defined in Equation (7), 
instead of 𝑌 . Because of 𝐺 → 𝐺  when 𝑛 → ∞, (see [5]), it is ensured that 𝐸[𝑌 |𝒙 , 𝑠 ] ≅𝐸[𝑌 |𝒙 , 𝑠 ]  =  𝒙 𝜷 + 𝑓(𝑠 ). 

Let us consider that 𝜏 = sup 𝛼: 𝐻 (𝛼) < 1 , where 𝐻 (. )  is defined right after 
Equation (3). In the literature, the convergence rate of the Kaplan–Meier estimator is ex-
amined in two classes: (i) restriction of time-interval as [0, 𝛼] with 𝛼 < 𝜏 ; (ii) extension 
of time-interval 0, 𝜏  (see [19] for more detailed discussions). Here, the convergence 
rate of the Kaplan–Meier estimator is inspected with regard to case (ii). However, 0, 𝜏  
cannot be used without some strong conditions that can be given by: 
(i) 𝐺 𝜏 < 1 =  𝐹 𝜏 ; 
(ii) 𝜏 < ∞; 

(iii) ( ) 𝑑𝐹 < ∞. 

Details about conditions (i)–(iii) were studied by [20]. The convergence of 𝐺 → 𝐺 
over the interval 0, 𝜏  can be provided. Reference [19] clearly shows both strong and 
weak convergences at the rate 𝑛  where 0 ≤ 𝜗 ≤ 1/2. 

The proof of Lemma 1 is given in Appendix A. 
The major concern of this paper is to overcome the censoring problem and to estimate 

the semiparametric time series model efficiently. To achieve this goal, we used two differ-
ent approaches, BS and modified AS estimators. In the following section, we applied these 
approaches to the transformed data to estimate time series observations under random 
right-censorship. 

3. Estimating the Semiparametric Model Based on the BS Estimator 
We first introduce the BS considered for estimating the components of model (1). A 

univariate B-spline is constructed by a piecewise polynomial function of degree 𝑞 such 
that its derivatives up to order (𝑞 − 1) is continuous at each knot point 𝑟 , … , 𝑟 .  The set 
of BSs of degree 𝑞 over the real numbers (𝑟 , … , 𝑟 ) = 𝐫 is a vector space of dimension 
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𝑞 + 𝑘 + 1. In addition, note that 𝑘 denotes the number of interior knots, while 𝑞 ≥ 0 in-
dicates the polynomial order. For example, the polynomials of order 𝑞 = 0, 1, 2, and 3 are 
defined as constant, linear, quadratic, and cubic BS basis functions, respectively. If the 
knots are equally spaced (i.e., separated by same distance ℎ = (𝑟 − 𝑟 )), the knot points 
and the corresponding BSs are called uniform. 

Definition 1: Given an ordered knot vector 𝒓 = 𝑟 ≤ 𝑟 ≤ ⋯ ≤ 𝑟  in the domain of co-
variate 𝑠 , then 𝑖  BS basis functions 𝐵 , (𝑠 ), 𝑖 =  1, 2, … , 𝑞 + 𝑘 + 1  of degree 𝑞 = 0 and 𝑞 > 0 can be defined in recursive series, respectively, as: 

 𝐵 , (𝑠)  =  1 𝑖𝑓   𝑟 ≤ 𝑠 ≤ 𝑟0,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 , (8)𝐵 , (𝑠)  =  𝐵 , (𝑠) + 𝐵 , (𝑠). (9)

Note that if the denominator of Equation (9) is equal to zero, then the BS basis function is 
assumed to be zero. From Equations (8) and (9), a set of (𝑞 + 𝑘 + 1) basis functions have the 
following important properties: 

(a) The BS basis functions form a partition of unity, ∑ 𝐵 , (𝑠) = 1;   
(b) For all values of covariate 𝑠 ,  𝐵 , (𝑠) ≥ 0; and 
(c) 𝐵 , (𝑠) is realized in the interval [𝑟 , 𝑟 ]. 
Reference [21] proposes an algorithm to solve equation (9). See also the work of [22] 

for more detailed discussions on the BS approximation. Note also that the BS curve can be 
uniquely represented as a linear combination of the BSs basis functions in Equation (9), as 
given in the next section. Note that references [23] and [24] could be counted as recent 
studies about BSs. 

3.1. BS Estimator 
As previously noted, in this paper, we fit semiparametric time series model (1) with 

right-censored data. For this purpose, the BS estimator can be used as an approximation 
method. Using the synthetic data in Equation (7), we estimated the parametric and non-
parametric components of model (1). Therefore, the sum of the squares of the differences 
between the censored time series values 𝑌  and 𝐱 𝛃 + 𝑓(𝑠 )  are minimum. Assume 
that 𝑓(. ) is a smooth function that can be approximated by a linear combination of the 
BSs basis functions in Equations (8) and (9): 𝑓(𝑠)  ≅  ∑ 𝛼 𝐵 , (𝑠) = 𝐁𝛂 , (10)

where 𝑚 = (𝑞 + 𝑘 + 1) is the total number of BS basis functions being used, 𝛼 ′𝑠 are es-
timated coefficients (or control points) for each BS, 𝐁 is an (𝑛 × 𝑚)-dimensional matrix 
which includes BSs as defined by Equation (9) and 𝛂 = (α , … , α )′ is a parameter vector 
of the BS function. Note also that the autoregressive errors in model (1) follow an 𝑛-di-
mensional multivariate normal distribution with a zero mean and stationary (𝑛 ×  𝑛) co-
variance matrix 𝚺, that is, (𝜀 , … , 𝜀 ) ∼ 𝑁 (𝟎, 𝚺 ), where the covariance matrix 𝚺 is a 
symmetric and positive definite matrix with elements: 𝚺 =  𝐑, 𝑅(𝑡, 𝑗) = 𝜌| |, 1 ≤ (𝑡, 𝑗) ≤ 𝑛. (11)

Throughout the paper, the notation is used as 𝚺 = 𝐕. Note that 𝐕 is generally un-
known. However, its elements can be obtained by the generalized least squares (GLS) 
based on an iterative process. Then, as in [25] which is a penalized BS study combining BS 
and difference penalties, the estimates of the components of semiparametric model (1) 
were obtained by minimizing the penalized sum of squares (𝑃𝑆𝑆) criterion: 𝑃𝑆𝑆 =  ∑ 𝐕 𝑌 − ∑ 𝑥 𝛽 − ∑ 𝛼 𝐵 , (𝑠) + 𝜆 ∑ (Δ 𝛼 ) , (12)
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where ∆𝛼 = (𝛼 − 𝛼 ) is the first-order difference penalty on the coefficients of the BSs. 
The other differences can be defined as follows: ∆ 𝛼  =  ∆(∆𝛼 )  =  (𝛼 − 𝛼 ) − (𝛼 − 𝛼 ) = 𝛼 − 2𝛼 + 𝛼 , (13)

and similarly: Δ 𝛼  =  ∆(Δ 𝛼 ). (14)

Note that if degree 𝑞 = 0 in Equation (12), we obtain semiparametric ridge regres-
sion based on BSs. When 𝜆 = 0 in Equation (12), we have the minimization equation of 
ordinary least squares regression with a correlated error. If 𝜆 > 0, the penalty only influ-
ences the main diagonal and 𝑞 sub-diagonals (on both sides of the main diagonal ele-
ments) of the banded structure system due to the limited overlap of the BSs. 

We rewrite the minimization criterion described as Equation (12) in a matrix and vec-
tor notation: 𝑃𝑆𝑆 =  (𝐘 − 𝐗𝛃 − 𝐁𝛂)  𝐕 (𝐘 − 𝐗𝛃 − 𝐁𝛂) + 𝜆‖𝐃𝛂‖ , (15)

where ‖. ‖ denotes Euclidean norm, 𝐗 = (𝐱 , … , 𝐱 )′, 𝐘 = (𝑌 , … , 𝑌 )′ is the synthetic 
response vector defined in Equation (7), 𝜆 > 0 is a smoothing parameter, and 𝐃 denotes 
the matrix notation of the difference operator (∆ ) defined in Equation (13). For example, 𝐃 is an (𝑛 − 2)  ×  𝑛-dimensional banded matrix that corresponds to the second-order 
difference penalty, given by: 

 𝐃 =  1 −2 1 ⋯ 0⋮ ⋱ ⋱ ⋱  ⋮0 ⋯ 1 −2 1 . (16)

From simple algebraic operations, it follows that the solution to the minimization 
problem in Equation (15) satisfies the following block matrix equation: 𝐗 𝐕 𝐗 𝐗 𝐕 𝐁𝐁 𝐕 𝐗 (𝐁′𝐕 𝐁 + 𝛌𝐃 𝐃) 𝛃𝛂  =  𝐗𝐁 𝐕𝐘 . (17)

Given a parameter λ > 0, the corresponding estimators based on BSs for vectors 𝛃 
and 𝛂 can be easily obtained by: 𝛂  =  [𝐁 𝐕𝐁 + λ𝐃 𝐃] 𝐁 𝐕 𝐘 − 𝐗𝛃 , (18)

and: 𝛃  =  [(𝐗 𝐕 − 𝑨 )𝐗] 𝟏(𝐗 − 𝑨 ) 𝐕𝐘 , (19)

where 𝑨 = 𝐗 𝐕𝐁[𝐁 𝐕𝐁 + λ𝐃 𝐃] 𝐁 𝐕. It should be noted that the estimates of the un-
known regression function in a censored semiparametric model are obtained by: 𝐟  =  𝐁𝛂  =  𝑓(𝑠 ), … , 𝑓(𝑠 ) ′. (20)

From Equations (19)–(20), we see that the fitted values of dependent time series data 
can be written as: 𝛍  =  𝐗𝛃 + 𝐟 = 𝐇 𝐘 = 𝐸[𝑌 | 𝑋, 𝑠], (21)

where 𝐇  is a hat matrix for BSs and computed as follows: 𝐇  =  [𝐗[(𝐗 𝐕 − 𝑨 )𝐗] 𝟏(𝐗 − 𝑨 )𝐕(𝐈 − 𝐌 ) + 𝐌 ], (22)

where 𝐌  =  𝐁[𝐁 𝐕𝐁 + λ𝐃 𝐃] 𝐁 𝐕. 

3.2. AS Estimator 
The adaptive spline (AS) applies an adaptive ridge penalty to the BS method, which 

makes it more flexible for knot determination. The AS concept is explained in [26] in a 
nonparametric context. However, in this paper, we generalized this estimation concept to 
the semiparametric environment based on synthetic response observations. It should be 
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noted that the location and number of knots have crucial importance in terms of synthetic 
data transformation. This issue is discussed in detail in Section 4.3. The point here is that 
a more efficient estimator based on synthetic responses is needed, as most of the existing 
smoothing techniques (spline smoothing, kernel smoothing, etc.) cannot properly handle 
synthetic data. This article aims to solve this issue with the AS estimator. 

When a BS is defined on the knots 𝑟 ≤ 𝑟 ≤ ⋯ ≤ 𝑟  such that Δ 𝛼  =  0 for some 𝑖  knot, it may be reparametrized as a BS on the knots 𝑟 , 𝑟 , … , 𝑟 , 𝑟 , … , 𝑟 . Accord-
ingly, when 𝑚 =  (𝑞 + 𝑘 + 1), we want to put a penalty on the number of non-zero dif-
ferences indicated as below: 

𝜆 Δ 𝛼   , (23)

where Δ 𝛼  is the 𝑞 -order difference operator and ‖Δ 𝛼 ‖  is the 𝐿 -norm of the differ-
ences, that is, ‖Δ 𝛼 ‖  = 0 if Δ 𝛼  =  0, otherwise, ‖Δ 𝛼 ‖  = 1, and 𝜆 is a positive pen-
alty parameter that ensures the tradeoff between the goodness of fit to the data and the 
smoothness of the fitted curve. This penalty enables us to remove knot 𝑟  that is not re-
lated to the smoothing problem, to join the neighbor intervals [𝑟 , 𝑟 ) and [𝑟 , 𝑟 ), and 
to carry on fitting with a BS described over the remaining knot points. Note also that when 𝜆 → 0, the fitted curve becomes a BS with knots 𝑟 , 𝑖 = 1, 2, … , 𝑘 and when 𝜆 → ∞, the fit-
ted function becomes a polynomial of degree 𝑞. 

It should be emphasized that one of the important points about the adaptive ridge 
penalty is that Equation (23) cannot be differentiated due to the 𝐿 -norm. As a result, the 
fitting process is made numerically untraceable. An approximate solution to dealing with 
the 𝐿 -norm is provided by [27] and [28]. Following the studies of these authors, we ap-
proximate the 𝐿 -norm by using an iterative process referred to as an “adaptive ridge” 
based on synthetic data. The new criterion function is expressed by the following 
weighted penalized sum of squares: 𝑊𝑃𝑆𝑆 =  (𝐘𝑮 − 𝐗𝛃 − 𝐁𝛂) 𝐕(𝐘𝑮 − 𝐗𝛃 − 𝐁𝛂) + 𝜆 ∑ 𝑤 ( Δ 𝛼 )  , (24)

where 𝑤 ’s denote the positive weights. It should be noted that the penalty is close to the 𝐿 -norm of the differences when the weights are iteratively calculated from the parameter 
vector α of BS following the equation: 𝑤  =  [(Δ 𝛼 ) + 𝛾 ] , 𝛾 > 0, (25)

where 𝛾 is a constant properly determined by the researcher. 

Remark 1: There are a few important points to know about the selection of 𝛾. If (𝛥 𝛼 ) < 𝛾, 
then the magnitudes of 𝑤 ’s might be quite large, resulting in (𝛥 𝛼 )  ≅  0 and the penalty term 
turning into 𝑤 (𝛥 𝛼 )  ≅  0. Furthermore, if (𝛥 𝛼 ) ≫ 𝛾 , then 𝑤 (𝛥 𝛼 )  ≅  ‖𝛥 𝛼 ‖ . This 
convergence gives us a measure of how relevant the 𝑖  knot point is. In practice, one possible choice, 
suggested by [28], is 𝛾 =  10 . They select the knots (denoted as 𝑟 ∗) with a weighted difference 
bigger than 0.99. The number of parameters of the chosen BS is 𝑚  =  𝑞 + 𝑘 + 1, where 𝑘  de-
notes the number of selected knot points. 

Note that reference [28] provides a figure to show the effects of different norm de-
grees (𝑞) on the quality of estimation. It is seen from that the performance of estimation 
does not change for different values of 𝛾 when norm degree is zero (𝑞 = 0). However, it 
affects the performance seriously if 𝑞 > 0. 

For some 𝜆 > 0 and non-negative weights, the 𝑊𝑃𝑆𝑆 of Equation (26) can be rewrit-
ten as: 𝑊𝑃𝑆𝑆 =  (𝐘𝑮 − 𝐗𝛃 − 𝐁𝛂) 𝐕(𝐘𝑮 − 𝐗𝛃 − 𝐁𝛂) + 𝜆𝛂 𝐊𝛂, (26)
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where 𝐊 is a penalty matrix and written as  𝐊 = 𝐃′𝐖𝐃, where 𝐖 = diag(𝑤 , . . , 𝑤 ) 
and 𝐃 is the matrix form of the difference operator  Δ , as defined in Equation (13). Simple 
algebraic operations show that the solution to the minimization problem 𝑊𝑃𝑆𝑆 in Equa-
tion (26) satisfies the block matrix equation: 𝐗 𝐕𝐗 𝐗 𝐕𝐁𝐁 𝐕𝐗 (𝐁 𝐕𝐁 + 𝝀𝑲) 𝛃𝛂  =  𝐗𝐁 𝐕𝐘𝑮. (27)

By similar arguments as in the case of the BS approach, the corresponding estimators 𝛂  and 𝛃  of 𝛂 and 𝛃, based on the right-censored semiparametric time series model 
(1) with correlated data, can be easily obtained, respectively, as: 𝛂𝑨𝑺  =  [𝐁 𝐕𝐁 + λ𝑲] 𝟏𝐁 𝐕 𝐘𝑮 − 𝐗𝛃𝑨𝑺 , (28)

and: 𝛃𝑨𝑺  =  ((𝐗 𝐕 − 𝑨𝑨𝑺)𝐗) 𝟏(𝐗 − 𝑨𝑨𝑺)𝐕𝐘𝑮, (29)

where 𝑨𝑨𝑺 = 𝐗 𝐕𝐁[𝐁 𝐕𝐁 + 𝜆𝐊] 𝟏𝐁 𝐕 . The proofs and derivations of Equations (28) and 
(29) are given in Appendix B. Notice that the estimates corresponding to the nonparametric 
part of the semiparametric model (1) are obtained using Equation (28) as described in the 
following equation: 𝐟𝑨𝑺  =  𝐁𝛂𝑨𝑺  =  𝑓(𝑠 ), … , 𝑓(𝑠 ) ′. (30)

From Equations (29) and (30), we can see that the fitted values of the dependent time 
series data can be obtained as: 𝛍𝑨𝑺  =  𝐗𝛃𝑨𝑺 + 𝐟𝑨𝑺  =  𝐇𝑨𝑺𝐘𝑮  =  𝐸[𝑌|𝑋, 𝑠], (31)

where 𝐇  denotes the hat matrix, given by: 𝐇𝑨𝑺  =  [𝐗[(𝐗 𝐕 − 𝑨𝑨𝑺)𝐗] 𝟏(𝐗 − 𝑨𝑨𝑺)𝐕(𝐈 − 𝐌𝑨𝑺) + 𝐌𝑨𝑺], (32)

with 𝐌𝑨𝑺  =  𝐁[𝐁 𝐕𝐁 + 𝛌𝐊] 𝟏𝐁 𝐕 . 
To make the computation process efficient, all penalty terms (𝐃𝑻𝐖𝐃) are calculated 

by using the iteration process instead of finding matrix 𝐃 and knot set individually. The 
iterative algorithm is given in Algorithm 1 below. 

Algorithm 1. Iterative algorithm process for the modified A-spline (AS) estimator α . 
Input: 𝐗, 𝐬, 𝐘𝑮. 
Output: 𝛃𝑨𝑺(𝒊)  =  𝛽( ), 𝛽( ), … , 𝛽( )    𝛂𝑨𝑺(𝒊)  =  𝛼( ), 𝛼( ), … , 𝛼( )  
1: Begin 
2: Give initial values, 𝛃( )  =  1 ,  𝛂(𝟎)  =  𝟎  and 𝐖(𝟎) = 𝐈 to start iterative process 
3: do until converges weighted differences to 𝐿 -norm  
4: 𝛃𝑨𝑺(𝒊)  =  ((𝐗 𝐕 − 𝑨)𝐗) 𝟏(𝐗 − 𝐀)𝐕𝐘𝑮  
5: 𝛂𝑨𝑺(𝒊)  =  [𝐁 𝐕𝐁 + 𝛌𝑲] 𝟏𝐁 𝐕 𝐘𝑮 − 𝐗𝛃𝑨𝑺(𝒊)  
6: Determine 𝛾 = 10   

7: 𝑤( ) = Δ 𝛼( ) + 𝛾  

8: 𝛃𝑨𝑺 = 𝛃𝑨𝑺(𝒊), 𝛂𝑨𝑺 = 𝛂𝑨𝑺(𝒊), 𝐖 =  𝑑𝑖𝑎𝑔 𝑤( )  
9: end 

10: Calculate 𝐫(𝒊∗) by the criterion of Δ 𝛂( ) 𝐖(𝒊) > 0.99 
11: Return 𝛃( )  =  𝛽 , 𝛽 , … , 𝛽 , 𝛂( )  =  𝛼 , 𝛼 , … , 𝛼  
12: End 

Remark 2: For the constant value of 𝛾 =  10 , the iteration process repeats between step 3 and 
step 9 until the pre-determined tolerance value 𝛿 =  10  is obtained where 𝛿 =  ∑ 𝑛 𝑌 −  
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𝑌 . From our experience, the expected number of iterations is observed as 𝑛𝑜. 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 20 to 
achieve the convergence. 

Notice that the complexity and efficiency of Algorithm 1 is analyzed from different 
aspects that are given by: 

(i) Number of local searches: algorithm does not involve a local search procedure 
which is an advantage for the speed of Algorithm 1; 

(ii) Number of nested loops: due to the fact that there is only an iteration loop (with-
out nested loops), if an algorithm does not include nested loops, its "order of growth" will 
be 𝑂(𝑛); 

(iii) Asymptotic behaviors: as the former inference mentioned, Algorithm 1 has 𝑂(𝑛) 
which means that the limiting case of its convergence speed is considerable when it is com-
pared with its alternative BS method on this issue. 

As mentioned at the beginning of this section, the choice of an optimum smoothing 
parameter λ is required for both semiparametric BS and AS estimators. In this context, the 
improved Akaike information criterion (𝐴𝐼𝐶 ) proposed by [29] is used, which is com-
puted with the following equation: 𝐴𝐼𝐶 (𝜆)  =  log(𝜎 ) + 1 + (𝐇)(𝐇) , (33)

where 𝜎  is the estimate of the model variance, which is estimated for both methods sep-
arately in the next section, and 𝐇 denotes the hat matrix for any of two methods. It is 
replaced by 𝐇  for the AS method and 𝐇  for the BS method, respectively. 

4. Statistical Properties of the Estimators 
In this paper, we introduced the semiparametric AS and BS estimators for the esti-

mation of the right-censored time series model. It should be noted that these two methods 
were used for the first time in the setting of a time series estimation procedure. Inferences 
were therefore carried out about their statistical properties. For example, among these, the 
error terms obtained from the estimates of both methods and the estimators of parametric 
and nonparametric components were inspected and their properties were extracted. 

4.1. Properties of the Semiparametric BS Estimator 
Firstly, the parametric component was inspected. As is known, in a parametric con-

text, errors can be decomposed into the bias and the variance terms that provide the qual-
ity of the estimator. Accordingly, the estimator 𝛃  of the parametric coefficients vector 
is expanded as follows: 𝛃 = [(𝐗 𝐕 − 𝐀 )𝐗] (𝐗 𝐕 − 𝐀 )𝐘 =  𝛃 + [(𝐗 𝐕 − 𝐀 )𝐗] (𝐗 𝐕 − 𝐀 )𝐟, (34)

where 𝐕, 𝐀  and 𝐌  matrices are as defined in Section 3.1 and 𝐟 = [𝑓(𝑠 ), 𝑓(𝑠 ), … , 𝑓(𝑠 )] . From here, bias 𝐵 𝛃  and variance-covariance 𝑉 𝛃  of esti-
mator 𝛃  can be computed as follows: 𝐵 𝛃  =  𝐸 𝛃 − 𝛃 =  [(𝐗 𝐕 − 𝐀 )𝐗] (𝐗 𝐕 − 𝐀 )𝐟, (35)𝑉 𝛃  =  𝜎 [(𝐗 𝐕 − 𝐀 )𝐗] (𝐗 𝐕 − 𝐀 )𝐗[(𝐗 𝐕 − 𝐀 )𝐗] , (36)

where 𝜎  is the variance of the fitted semiparametric model. Since the variance is not 
generally known, instead of 𝜎 , the estimation (denoted by 𝜎 ) based on the BS is used. 
It can be computed from the residuals sum of squares (RSS) using error terms: 

𝜎  =  (𝐈 𝐇 )  =  (𝐈 𝐇 )[(𝐈 𝐇 ) (𝐈 𝐇 )], (37)

where 𝑡𝑟(𝐈 − 𝐇 )  =  𝑛 − 2𝑡𝑟(𝐇 ) + 𝑡𝑟(𝐇 𝐇 )  denotes the degrees of freedom. In 
addition, 𝑡𝑟(𝐇 𝐇 ) needs 𝑂(𝑛) algebraic operations. In the context of the BS, if the data 
have a normal distribution, 𝜎  is asymptotically unbiased. 
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Secondly, the properties of estimated nonparametric component 𝛂 =𝛼 , 𝛼 , … , 𝛼  are given here. The bias of  𝛂 is one of the quality measurements for 
the estimated model. The bias is denoted as conditional expectation 𝐸[𝛂|𝑠 ], given by: 𝐸[𝛂 |𝑠 ]  =  (𝐁 𝐕𝐁 + 𝜆𝐃 𝐃) 𝐁 𝐕𝐁𝛂. (38)

From that, the bias is given by: 𝐵𝑖𝑎𝑠(𝛂 )  =  𝐸[𝛂 |𝑠 ] − 𝛂 =  [(𝐁 𝐕𝐁 + 𝜆𝐃 𝐃)] 𝐁 𝐕 𝐟 − [(𝐁 𝐕𝐁 +𝜆𝐃 𝐃)] 𝐁 𝐕 𝐗[(𝐗 𝐕 − 𝐀 )𝐗] (𝐗 𝐕 − 𝐀 ) − [(𝐁 𝐕𝐁 + 𝜆𝐃 𝐃)] 𝐁 𝐕  = [(𝐁 𝐕𝐁 + 𝜆𝐃 𝐃)] 𝐁 𝐕 𝐗[(𝐗 𝐕 − 𝐀 )𝐗] (𝐗 𝐕 − 𝐀 ). 
(39)

Accordingly, the covariance of 𝛂  can be computed as: 𝐶𝑜𝑣(𝛂 )  =  𝜎 (𝐁 𝐕𝐁 + 𝜆𝐃 𝐃) (𝐁 𝐕𝐁)(𝐁 𝐕𝐁 + 𝜆𝐃 𝐃) , (40)

where 𝜎  is defined by Equation (36). In addition, to reveal the performance of 𝐟  =  𝐁𝛂 , the root square of mean squared error 𝑅𝑀𝑆𝐸 𝐟, 𝐟  is used: 𝑅𝑀𝑆𝐸 𝐟, 𝐟  =  𝑛 ∑ 𝑓(𝑠 ) − 𝑓 (𝑠 )  =  𝑛 𝐟 − 𝐟 𝐟 − 𝐟  . (41)

4.2. Properties of the Semiparametric AS Estimator 
Similar to in Section 4.1, the same properties for parametric and nonparametric com-

ponents are given for the AS estimator here. The necessary expansion is written as follows 
to derivate the bias and variance of 𝛃 : 𝛃  =  [(𝐗 𝐕 − 𝐀 )𝐗] (𝐗 𝐕 − 𝐀 )𝐘   = 𝛃 + [(𝐗 𝐕 − 𝐀 )𝐗] (𝐗 𝐕 −𝐀 )𝐟, (42)

where 𝐀  and 𝐌  are given in Section 3.2. Now, the bias and the covariance matrix of 
the estimator 𝛃  can be provided by: 𝐵 𝛃  =  𝐸 𝛃 − 𝛃 = [(𝐗 𝐕 − 𝐀 )𝐗] (𝐗 𝐕 − 𝐀 )𝐟, (43)𝑉 𝛃  =  𝜎 [(𝐗 𝐕 − 𝐀 )𝐗] (𝐗 𝐕 − 𝐀 )𝐗[(𝐗 𝐕 − 𝐀 )𝐗] , (44)

where 𝜎  is the variance of the fitted semiparametric model. Similar to Equation (40), in-
stead of the model variance, 𝜎  is obtained as follows: 

𝜎  =  (𝐈 𝐇 ) = (𝐈 𝐇 )𝐘[(𝐈 𝐇 ) (𝐈 𝐇 )]. (45)

The properties of estimated nonparametric component 𝛂 = 𝛼 , 𝛼 , … , 𝛼  for 
the AS method are described below. The bias and the variance of the AS estimator 𝛂  
can be given, respectively, as: 𝐵𝑖𝑎𝑠(𝛂 )  =  𝐸[𝛂 |𝑠 ] − 𝛂 =  [(𝐁 𝐕𝐁 + 𝜆𝐃 𝐖𝐃)] 𝐁 𝐕 𝐟 − [(𝐁 𝐕𝐁 +𝜆𝐃 𝐖𝐃)] 𝐁 𝐕 𝐗[(𝐗 𝐕 − 𝐀 )𝐗] (𝐗 𝐕 − 𝐀 ) − [(𝐁 𝐕𝐁 +𝜆𝐃 𝐖𝐃)] 𝐁 𝐕 𝐟 =  [(𝐁 𝐕𝐁 + 𝜆𝐃 𝐖𝐃)] 𝐁 𝐕 𝐗[(𝐗 𝐕 − 𝐀 )𝐗] (𝐗 𝐕 − 𝐀 , 

(46)

and 𝐶𝑜𝑣(𝛂 )  =  𝜎 (𝐁 𝐕𝐁 + 𝜆𝐃 𝐖𝐃) (𝐁 𝐕𝐁)(𝐁 𝐕𝐁 + 𝜆𝐃 𝐖𝐃) . (47)

Thus, the value of 𝑅𝑀𝑆𝐸 𝐟, 𝐟  for 𝐟 = 𝐁𝛂 , similar to Equation (41), is calculated 
as follows: 𝑅𝑀𝑆𝐸 𝐟, 𝐟  =  𝑛 ∑ 𝑓(𝑠 ) − 𝑓 (𝑠 )  =  𝑛 𝐟 − 𝐟 𝐟 − 𝐟 . (48)

4.3. Quality Measures for the Fitted Model 
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After assessing the parametric and nonparametric components of the model in Sec-
tions 4.1 and 4.2, several measurements are introduced in this section to evaluate the over-
all model performance. In the literature on time series modelling, mean absolute percent-
age error (𝑀𝐴𝑃𝐸), mean absolute error (𝑀𝐴𝐸), and mean squared error (𝑀𝑆𝐸) are the most 
commonly used performance criteria. To represent these criteria, 𝑀𝐴𝑃𝐸 is preferred in 
this study. In addition, median absolute error (𝑀𝑒𝑑𝐴𝐸) was used, which allowed us to 
account for missing or censored data. Generalized 𝑀𝑆𝐸 (𝐺𝑀𝑆𝐸) and the ratio of 𝐺𝑀𝑆𝐸 (𝑅𝐺𝑀𝑆𝐸) proposed by [30] and [2], respectively, were used to measure the quality of the 
fitted time series model. The aforementioned criteria can be defined as follows: 𝑀𝐴𝑃𝐸 𝑌𝒕 , 𝑌  =  ∑ , 𝑀𝑒𝑑𝐴𝐸 𝐘 , 𝐘  =  𝑀𝑒𝑑𝑖𝑎𝑛 𝐘 − 𝐘 , 

𝐺𝑀𝑆𝐸 𝐘 , 𝐘  =  𝐘 − 𝐘 𝐸 𝐘 𝐘  𝐘 − 𝐘 , 

where 𝑌  and 𝐘  denote the fitted dependent variable values and vector for any esti-
mation method. Here, 𝑌  and 𝐘  are replaced by 𝑌  and 𝐘  for the BS, and 𝑌  
and 𝐘  for the AS. In addition, to make a more considerable comparison between the AS 
and BS estimators, 𝑅𝐺𝑀𝑆𝐸 is defined below. 

Definition 2: The ratio of GMSE can be defined as follows: 𝑅𝐺𝑀𝑆𝐸 𝒀 , 𝒀  =  𝐺𝑀𝑆𝐸 𝒀𝐺𝑀𝑆𝐸 𝒀 . (49)

Regarding the RGMSE criterion, if RGMSE 𝐘 , 𝐘 < 1, then it can be seen that 
the fitted model by the AS method shows better performance then the BS method. 

5. Further Information for Adaptive-Ridge Penalty 
The semiparametric AS estimator proposed for the right-censored time series model, 

with its adaptive nature, aims for qualified estimations despite the censorship. To ap-
proach the 𝐿 -norm given in Equation (23), the most suitable knot locations can be chosen 
due to the weighted penalty term. Thus, the model avoids the disadvantages of synthetic 
data transformation, which gives higher magnitudes to uncensored observations. 

This section is designed to inspect some of the large sample properties of the modi-
fied AS estimator under right-censored data. It should be noted that adaptive ridge pen-
alty in the setting of regression has been studied by many authors; see for example 
[25,26,28]. However, the aforementioned studies consider adaptive ridge penalty individ-
ually, not as a part of a semiparametric time series model. This section provides basic 
information for the large sample properties of the proposed AS estimator in the context of 
a semiparametric time series model. 

As previously stated, the AS approximation is a modified version of the P-splines 
(penalized BSs) estimator proposed by [31]. Note also that the AS method diverges from 
BSs with a significant difference of the 𝐿 -norm in the penalty term. The AS estimator is 
obtained by an iterative process with determining weights, as expressed in Section 3.2. In 
addition, apart from the usage of the AS method in the literature, it is also used for mod-
elling censored time series. For these reasons, we can make several important assump-
tions. The large sample properties are written based on the assumptions given below: 

Assumption 1: The minimization problem for the semiparametric AS is given in Equation (26). 
To make this expression more general, it can be rewritten as follows: 

𝑃𝑆𝑆(𝛼; 𝜆)  =  𝑽 𝑌 − 𝑥 𝛽 − 𝛼 𝐵 , (𝑠 ) + 𝜆 𝛥 𝛼 ,  (50)
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where 𝛥 𝛼  represents the 𝜏-norm of the penalty term. The first assumption is 𝜏 → 0, which 
allows approximation to the 𝐿 -norm with the acquisition of weights via the iterative process. Oth-
erwise, the 𝐿 -norm needs overly complex calculations, which leads to the loss of practicality when 
using the method. From our knowledge of the literature, when 𝜏 → 0, such as in Equation (26), 
the minimization of Equation (50) works by penalizing the non-zero coefficients 𝛼 ’s, as shown by 
[32]. 

Assumption 2: When 𝜶  is examined asymptotically, the objective function of Equation (26) 
may not have a global minimum, since it is not clearly convex. However, if we assume that: 𝑹  =  ∑ 𝑩 𝑩. → 𝑹, (51)

then it is possible to point out some important aspects of asymptotic consistency. Therefore, it 
should be presumed that 𝑹 is a non-negative definite matrix and: 𝑚𝑎𝑥 𝑩 𝑩 → 0, (52)

where elements of 𝑑𝑖𝑎𝑔(𝑅 ) = 1. 

Assumption 3: 𝑩 𝑩 , 𝑩 𝑩 , and 𝑹 are assumed to be full rank matrices. Under the as-
sumptions given above, to see asymptotic consistency of 𝜶  and 𝜷 , an equation can be obtained 
from Equation (50) as follows: 

𝑀 𝜶 , 𝜷  =  ∑ 𝑽 𝑌 − ∑ 𝑥 𝛽  − ∑ 𝜶 𝐵 , (𝑠  )+𝜆 ∑ 𝛥 𝜶       , (53)

where 𝜶 , 𝜷  denote the limiting case of the estimators for 𝜆 = 𝑂(𝑛). Note that Equation 
(52) is ensured by following Theorem 1. 
Theorem 1: Based on assumptions (1)–(3), and 𝜆 → 𝜆 ≥ 0, then 𝜷 , 𝜶 → 𝑎𝑟𝑔𝑚𝑖𝑛(𝑀 ) 

where: 𝑀 𝜷 , 𝜶  =  𝜷   𝜶 − (𝜷  𝜶) 𝑹 𝜷   𝜶 − (𝜷  𝜶) +𝜆 ∑ ‖𝛥 𝛼 ‖    . 
(54)

Therefore, for optimal 𝜆  =  𝑂(1), pair 𝜷 , 𝜶  can be counted as a consistent AS es-
timator of (𝜷, 𝜶). In this context, when 𝑛 → ∞ then 𝜷 , 𝜶 → (𝜷, 𝜶). 

For the proof of Theorem 1, see Appendix C. 
To clearly indicate the place of assumptions (1–3) in the estimation process, the following 

explanations are given for each assumption. 
• Assumption 1 is independent from the data. We assume that to provide a practical 

solution when minimizing Equation (50). Therefore, in both empirical and real data 
studies, this assumption does not impose anything to the dataset, but it is necessary 
to reduce the computational complexity. 

• In real data studies, to ensure Assumption 2, “𝐁” matrix obtained by using the non-
parametric covariate needs to have independent columns. Because (𝐁 𝐁) should be 
identifiable and avoid the ill-posed problem, (𝐁 𝐁) must be a full-ranked matrix. 

• Assumption 3 confirms assumption 2. Thus, it can be seen that asymptotic con-
sistency can be confirmed by assumption 3. From that it can be said that Assumption 
3 is indirectly depended on the dataset. 

5.1. Asymptotic Distribution and Consistency of the Proposed Estimator 
In this section, the estimate of parametric component 𝛃  is inspected in terms of 

asymptotic consistency and asymptotic distribution. 
Assume the following regularity conditions: 
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(i) 𝐅  =  𝑛 (𝐗 𝐕 − 𝐀)𝐗 → 𝐅 for non-negative matrix 𝐅; 
(ii) 𝑛 max (𝐗 𝐕 − 𝐀)𝐗  → 0; 
(iii) Autoregressive errors 𝜀 ’s given in Equation (2) are stationary with independent and 

identically distributed random error terms 𝑢 ’s that have zero mean and finite vari-
ance 0 < 𝜎 < ∞;  

(iv) 𝐅  =  𝑛 [(𝐗 𝐕 − 𝐀)𝐗 ]  exists. 

Here, condition (ii) indicates that the diagonal elements of 𝐅 and 𝐅  are identical 
and one, because the covariates are scaled. To obtain the asymptotic distribution of 𝛃 , 
“nearly-singular” designs are performed due to 𝜏 → 0 for 𝐅 . Thus, it can be ensured that 𝐅 → 𝐅 asymptotically. On the other hand, 𝐅  and 𝐅 are assumed as non-singular in Sec-
tion 5.1. 

To show the consistency and asymptotic normality of the semiparametric AS estima-
tor when conditions (i), (ii), and (iii) are ensured with non-singular 𝐅, first the case of 𝜏 ≥1 is considered, followed by the case of 𝜏 < 1. 

Let 𝛃  be an asymptotic estimator. The consistency of 𝛃  can be reached by us-
ing following minimization function: 𝜓 𝛃 , 𝑓(𝑠 )  =  𝑛 ∑ 𝑌 − 𝐗 𝛃 − 𝑓(𝑠 ) + 𝜆 𝑛 ∑ 𝛽( ) . (55)

The following theorem shows the consistency of 𝛃  for validated additional as-
sumption 𝜆 = 𝑂(𝑛). 

Theorem 2. Assume that 𝑭 is non-singular, 𝑓(𝑠 ) behaves stable, and 𝜆 𝑛 → 𝜆 ≥ 0. It 
can then be said that as 𝑛 → ∞: 𝜷 → 𝜷, (56)

where 𝜷  is a consistent estimator of 𝜷. The proofs of this theorem are given in Appendix D. 
For 𝜆 = 𝑂(𝑛), 𝑎𝑟𝑔𝑚𝑖𝑛(𝜓) = 𝜷 and therefore 𝜷  is a consistent estimator. 

It should be emphasized that the consistency of 𝛃  is sufficient to show that λ =O(n). However, this depends on the magnitude of growth of λ . When λ  grows more 
slowly, then a limiting distribution √n 𝛃 − 𝛃  exists. It is clear from Theorem 2 that 
the mean of the limiting distribution of √n 𝛃 − 𝛃  converges to zero for the con-
sistency of 𝛃 . In addition, its asymptotic variance can be obtained based on conditions 
(i) and (iv) as σ 𝐅 . Accordingly, the asymptotic distribution of the semiparametric AS 
estimator is written as: 𝛉 =  √n 𝛃 − 𝛃 → N[0, σ 𝐅 ]. (57)

However, the limiting distribution depends on whether τ < 1 or τ ≥ 1. In the con-
text of this paper, Theorem 3 is given for the limiting distribution of 𝛃  when τ < 1. 

Theorem 3: Assume that 𝜏 < 1 if 𝜆 𝑛⁄ → 𝜆 ≥ 0. Then: 𝜽 =  √𝑛 𝜷 − 𝜷 → 𝑎𝑟𝑔𝑚𝑖𝑛(𝜉), (58)

where 𝜉(𝜽) = −2𝜽 𝑭 + 𝜽 𝑭𝜽 + 𝜆 ∑ 𝜃 𝐼 𝛽 = 0 . The proofs of Theorem 3 are given in 
Appendix E. 

6. Simulation Study 
In this section, a simulation study was conducted to inspect the finite-sample behav-

iors and performances of the two semiparametric estimators 𝛂 , 𝛃  and 𝛂 , 𝛃  
under right-censored time series. These estimators were then compared through the qual-
ity measurements given in Section 4. The simulation scenarios are designed as follows: 
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(a) We use the model 𝑍  =  𝐗 𝛃 + 𝑓(𝑠 ) + 𝜀 , 𝑡 =  1,2, … , 𝑛 to generate datasets in the 
simulation experiments. 

(b) The unknown smooth regression function 𝑓(𝑠 ) is constructed by combining the 
functions 𝑆 , 𝑗 = 1, … ,5  that denote seasonal effects on the data, that is,  𝑓(𝑠 ) =⋃ 𝑆 (𝑠 ), where 𝑆 (𝑠 )   =   𝑠 sin (𝑠 ) with 𝑠  =  ( . ) , 𝑖  =  1, … , (𝑛/5). 

(c) The design matrix is generated from a normal distribution: 𝐗 ~𝑁(𝜇  =  5, 𝜎  =  1), 
where 𝐗  is the (𝑛 × 𝑝) dimensional matrix for 𝑝 = 3. Note also that the distribu-
tion may not be normal, and that one can thus consider a uniform or other distribu-
tions. The vectors of the regression coefficients are 𝛃 =  (3, 0.5, −1). 

(d) The autoregressive error terms are generated from a one-lagged process 𝜀 =𝜌𝜀 + 𝑢  with 𝜌 = 0.5 and 𝑢 ~𝑁(0,1). 
(e) Thus, as stated in (a), completely observed dependent time series 𝑍 ’s are generated 

from the sum of the parametric, nonparametric, and error terms using (b), (c), and 
(d). 

(f) To produce the right censored variable 𝑌 , as specified in Equation (3), we generate 
the censoring variable 𝐶  from the binomial distribution with proportions or cen-
soring levels (CLs) at 5%, 20%, and 40%. The Algorithm 2, given below, demon-
strates how the censoring variable is created. 

Algorithm 2. Generation of censoring variable 𝐶 . 
Input: Completely observed 𝑍  
Output: Right-censored dependent variable 𝑌  
1: For given censoring level (CL), produce 𝛿  =  𝐼(𝑍 ≤ 𝐶 ) from the binomial distribution 
2: for (𝑡 𝑖𝑛 1 𝑡𝑜 𝑛) 
3:       If (𝛿  =  0)  
4:            while (𝑍 ≤ 𝐶 ) 
5:            generate 𝐶 ~𝑁(𝜇 , 𝜎 ) 
6:       Else 
7:             𝐶  =  𝑍  
8: end (for loop in step 2) 
9: for (𝑡 𝑖𝑛 1 𝑡𝑜 𝑛) 
10:     If (𝑍 ≤ 𝐶 ) 
11:             𝑌  =  𝑍  
12:     Else 
13:             𝑌  =  𝐶  
14: end (for loop in Step 9) 

(a) To deal with censored observations in 𝑌  obtained with Algorithm 2, we use syn-
thetic data values 𝑌  obtained through the Kaplan and Meier estimator [18], as de-
scribed in Equation (6). 

(b) AR(1) model is used as a naïve model to estimate the right-censored time-series as in 
[1] and [2]. Thus, the finite sample performance of the introduced methods can be 
made. 
For each CL in the simulation experiments, we generated 1000 random samples for 

size 𝑛 = 50, 100, and 200. 
The results of the simulation study were divided into three parts for parametric com-

ponents, nonparametric components, and overall model performance. Accordingly, the 
outcomes of the estimated models, comparative results, and corresponding comments are 
given together in the following tables and figures. To understand the simulated datasets 
and the scenarios, examples of some of the simulation configurations are given in Figure 
1. Panel (a) shows the dataset for small sample size and low censorship. Panel (b) is drawn 
to show the case when the censoring level is really high. Panels (c)-(d) indicates the cases 
for medium and large sample sized data with censoring levels 20% and 40% respectively. 

 
(a) 𝑛 = 50, CL = 5% (b) 𝑛 = 50, CL = 40% 
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(c) 𝑛 = 100, CL = 20% 

 

(d) 𝑛 = 200, CL = 40% 

 
Figure 1. Some of the datasets generated using algorithm 2 including both fully observed and cen-
sored data points for different censoring levels and sample sizes. 

6.1. Assessing the Parametric Component 
In this section, the performances of the two methods were compared in terms of the 

parametric components of the right-censored semiparametric linear models generated by 
the simulation. It should be also noted that in this simulation study, 54 different configu-
rations were analyzed to provide a broad perspective of the adequacy of each method. 
The results from the parametric components in the simulation study are displayed in Ta-
ble 1 and Figure 2. Note that bold colored scores indicate the best (minimum) scores. 

From the careful inspection of Table 1, it can be demonstrated that the behaviors of 
the BS and AS change noticeably in different scenarios. Let us look at low and medium 
CLs for 𝑛 = 50; under these conditions, the BS has remarkable superiority over the AS. 
This can be interpreted as the BS fitting the data better when the data’s structure is dis-
torted less by censorship. However, for 𝐶𝐿 = 40%, which means the data are heavily cen-
sored, the AS method gives better scores. 

Table 1. Estimated regression coefficients from the AS and the B-spline (BS) with values of variance 
and bias. 

  𝜷𝟏 = 𝟑 𝜷𝟐 = 𝟎. 𝟓 𝜷𝟑 = −𝟏 
  𝑩𝒊𝒂𝒔(𝜷𝟏) 𝑽𝒂𝒓(𝜷𝟏) 𝑩𝒊𝒂𝒔(𝜷𝟐) 𝑽𝒂𝒓(𝜷𝟐) 𝑩𝒊𝒂𝒔(𝜷𝟑) 𝑽𝒂𝒓(𝜷𝟑) 𝒏  𝑪. 𝑳. 𝐀S 𝐁𝐒 𝐀𝐒 𝐁𝐒 𝐀𝐒 𝐁𝐒 𝐀𝐒 𝐁𝐒 𝐀𝐒 𝐁𝐒 𝐀𝐒 𝐁𝐒 

50 
5 0.887 0.870 0.936 0.842 0.809 0.786 0.922 0.845 0.867 0.837 0.884 0.804 

20 0.852 0.895 1.180 1.290 0.888 0.892 1.210 1.358 0.963 0.949 1.191 1.336 
40 0.999 1.172 1.455 1.641 0.916 1.108 1.431 1.657 0.946 1.145 1.453 1.674 

100 
5 0.510 0.470 0.440 0.425 0.539 0.434 0.433 0.422 0.515 0.467 0.439 0.431 

20 0.514 0.610 0.583 0.609 0.538 0.579 0.583 0.609 0.527 0.599 0.590 0.618 
40 0.535 0.433 0.619 0.689 0.525 0.622 0.619 0.689 0.535 0.610 0.629 0.692 

200 
5 0.285 0.271 0.260 0.253 0.290 0.272 0.255 0.255 0.294 0.271 0.252 0.254 

20 0.310 0.324 0.333 0.355 0.311 0.300 0.325 0.351 0.304 0.296 0.328 0.353 
40 0.314 0.333 0.338 0.352 0.321 0.337 0.332 0.356 0.307 0.336 0.332 0.363 

The bolded values indicate the best scores. 

As the sample size increases, although the bias and variance values from the methods 
are obtained more closely, the AS provides more efficient performance in estimating the 
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parametric component. Regarding the parametric component, it should be emphasized 
that the AS behaves as expected and gives the best scores for cases of heavy censorship. 

(a) Biases obtained from estimated coefficients when n = 50 

 
(b) Biases obtained from estimated coefficients when n = 100 

 
(c) Biases obtained from estimated coefficients when n = 200 

 
Figure 2. Boxplots of bias values for both the AS and BS methods for all configurations. In the x-
axis, b1, b2, and b3 denote 𝛽 , 𝛽 , and 𝛽 ; A1, A2, and A3 denote biases obtained from the AS 
method for CLs of 5%, 20%, and 40%. Similarly, B1, B2, and B3 denote biases for the BS method, 
when CLs are 5%, 20%, and 40%. 

In general, the best scores for each method can be evaluated in terms of bias and 
variance results. When we examined the bias results of the regression coefficients, the AS 
method gives the best score in only 12 out of 27 configurations while the BS method gives 
the best score in 15. However, regarding the variances, the AS gives the best score in 18 of 
27 configurations, while the BS is superior in only 9 configurations. In Figure 2, Panels (a-
c) shows the calculated biases for each simulation repetition for all cases when sample size 
is small, medium, and large. 

6.2. Evaluating the Nonparametric Component 
As in the case of parametric components, we constructed 1000 estimates of the re-

gression function 𝑓(. ), which is the nonparametric component of model (1). For each 
method, 1000 replications were carried out, and the estimated bias, variance and RMSE 
values were computed for each estimator. This section is designed to show the simulated 
results related to the nonparametric component. 

The results in Table 2 showed that the AS method proves its efficiency for the esti-
mation of the nonparametric component when time series data are moderately to heavily 
censored. On the other hand, for 𝐶𝐿 = 5%, the BS method gives better results for all sam-
ple sizes according to our evaluation metrics. One of the main reasons for this is that the 
BS adapted to the knots more than the AS. Consequently, when the data points are ma-
nipulated by censorship, these knots force the BS to make inefficient estimates. At this 
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point, the knot determination of the AS based on the weights given in Equation (24) di-
minishes the effect of the censorship. That is why the AS method performs better under 
moderately and heavily censored time series data. 

Table 2. Outcomes from the fitted nonparametric components. 

 𝑩𝒊𝒂𝒔(𝛂) 𝑽𝒂𝒓(𝛂) 𝑹𝑴𝑺𝑬(𝐟, 𝐟) 𝒏 𝑪𝑳𝒔 𝐀𝐒 𝐁𝐒 AS BS AS BS 

50 
5 1.085 0.629 0.048 0.022 1.135 0.883 

20 1.128 1.498 0.066 0.075 1.099 2.061 
40 1.287 2.510 0.079 0.095 2.511 3.127 

100 
5 0.961 0.851 0.022 0.025 0.824 0.664 

20 1.040 1.217 0.030 0.041 1.255 1.779 
40 1.070 1.302 0.037 0.070 1.815 2.331 

200 
5 0.891 0.813 0.009 0.008 0.670 0.435 

20 0.928 0.959 0.013 0.021 1.547 1.871 
40 0.995 1.070 0.017 0.028 2.397 2.882 

The bolded values indicate the best scores. 

Figure 3, consisting of four panels (a), (b), (c), and (d), is drawn to illustrate the per-
formance of the AS and BS methods in nonparametric curve estimation and to present 
different simulation configurations. Panel (a) show the estimated curves for small sample 
size and medium censoring level. Similarly, Panel (b) shows the case when medium sam-
ple size and high censoring level. Panel (c) indicates the estimated curves for small sample 
size and low censoring level. Finally, Panel (d) shows the estimated curves when sample 
size is large and censoring level is medium.  When panels (a) and (c) are analyzed com-
paratively, the effect of the censorship level can be seen. At the first glance, the distortion 
of both curves is noticeable. However, the BS method is insufficient to represent censored 
time series compared to the AS method. In addition, panel (b) shows that when data are 
heavily censored, the BS curve is drawn towards the x = 0 line, due to the presence of zero 
values in the synthetic response variable. Finally, panel (d) indicates that although the 
time series contains censored data points, the qualities of the estimates for both the AS 
and BS methods become better as the sample size increases. 
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(a) n=50, CL=20% 

 

(b) n=100, CL=%40 

 
(c) n=50, CL=5% 

 

(d) n=200, CL=20% 

 
Figure 3. Data points, real regression functions, and curves fitted by two methods. In the legend of 
the plots, f(A) and f(B) represent function estimates obtained from the AS and BS methods, respec-
tively. 

6.3. Assessing the Performances of Methods 
This section involves the results for overall model estimations obtained from the AS 

and BS methods. Although results are given for parametric and nonparametric compo-
nents in the previous sections, a separate review for the whole model estimation is re-
quired for a healthy comparison. Accordingly, the performance scores for 𝑀𝐴𝑃𝐸, 𝑀𝑒𝑑𝐴𝐸, 
and 𝐺𝑀𝑆𝐸 are given in Table 3, and Figure 4 is drawn to illustrate the 𝑅𝐺𝑀𝑆𝐸 values. 

Table 3. The values of performances from the AS and BS methods. 

 𝑴𝑨𝑷𝑬  𝑴𝒆𝒅𝑨𝑬  𝑮𝑴𝑺𝑬  𝒏 𝑪𝑳s AS BS AR(1) AS BS AR(1) AS BS AR(1) 

50 
5 0.166 0.157 0.322 0.419 0.383 0.999 3.119 3.510 4.915 

20 0.358 0.348 0.388 0.737 0.896 1.052 4.468 4.920 5.142 
40 0.584 0.688 1.980 1.030 1.519 1.971 7.762 9.542 10.751 

100 
5 0.154 0.186 0.303 0.323 0.320 0.860 1.001 0.928 3.614 

20 0.333 0.336 0.365 0.668 0.750 0.914 1.870 1.988 4.147 
40 0.514 0.528 1.476 1.025 1.831 1.891 3.663 4.182 6.798 

200 
5 0.111 0.096 0.283 0.264 0.251 0.717 0.983 0.761 1.935 

20 0.312 0.332 0.364 0.552 0.606 0.847 2.065 2.497 3.411 
40 0.499 0.508 0.654 1.008 1.086 1.501 2.759 2.816 3.131 

The bolded values indicated the best scores. 

When Table 3 is examined, it can be seen that the results obtained for the model esti-
mates are slightly different from the previous results, as expected. The total error obtained 
from the estimation of parametric and nonparametric components is one of the reasons 
for this discrepancy. In addition, considering the situations where the two methods pro-
duce extremely similar scores, this difference can be understood better. Note that AR(1) 
model shows poor performance, which depends on its parametric and linear structure. 
However, for the large sample size (n = 200), the scores of models obtained are close to 
each other. However, it is clearly seen that the AS and BS methods are much better on the 
estimation of right-censored time series. 
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As can be seen from the bolded scores, the AS method generally performs better. 
From Table 3, it can be seen that the 𝑀𝐴𝑃𝐸 values obtained by BS are better for 𝑛 =  50. 
However, as mentioned earlier, in this study, the 𝑀𝑒𝑑𝐴𝐸  criterion, which is not fre-
quently used for time series data, is used to measure the durability of the predictions. 
When the scores of this criterion are examined, it is understood that, as stated from the 
beginning of the study, the BS method has more successful estimates under low censor-
ship levels, but the AS method is superior for medium and high censorship levels. 

Figure 4 includes the 𝑅𝐺𝑀𝑆𝐸 scores for both the AS and BS methods that are formed 
by the ratio of the 𝐺𝑀𝑆𝐸 values of each method. In Figure 4, the difference between the 
qualities of the estimates is clearly very small for 𝐶𝐿 = 5%. However, the difference be-
comes more significant for 𝐶𝐿 = 20% and 𝐶𝐿 = 40%. Note that for 𝐶𝐿 = 5%, the BS 
method gives smaller ratio values, which confirms the results given in Table 3. As stated 
before, the AS method is demonstrably superior at higher censorship levels, which can be 
seen in Figure 4 for all sample sizes. 

 
Figure 4. 360° bar chart for the 𝑅𝐺𝑀𝑆𝐸s of all simulation combinations. 

7. Real-World Data 
This section is designed to show how the newly introduced semiparametric estimator 

AS and benchmark BS method behave with a real right-censored time series dataset. For 
this purpose, we consider unemployment duration data involving the monthly unem-
ployment period rates years between 2004 and 2019 for Turkey; this dataset is available at 
https://ec.europa.eu/eurostat/databrowser/view/UNE_RT_M__custom_1635127/de-
fault/table?lang=en. In the dataset, the last three months of 2004 and the last three months 
of 2019 cannot be observed correctly. Therefore, these data points can be censored from 
the right by the detection limit zero, because none of the data points are negative values. 
Accordingly, the introduced semiparametric methods, AS and BS, can be used for this 
time series analysis. In addition, as in the simulation study, the results of the AR model 
are given in the following tables. However, different from the simulation study, AR(2) 
model was used for the real data study, because the optimal lag values is determined as 𝑙𝑎𝑔 = 2 from Table 4. Before the modelling procedure, the stationarity of the time series 
data was tested with the augmented Dickey–Fuller (ADF) test, the suitable lag is deter-
mined under null hypothesis 𝐻 : 𝑦  𝑖𝑠 𝑛𝑜𝑛 − 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦. The test results are given in Ta-
ble 4 below: 
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Table 4. Augmented Dickey–Fuller (ADF) test results for the stationarity of time series data and the 
determination of the appropriate lag. 

No. lag ADF Test Results  p-Value 
0 −2.61 0.318 
1 −3.27 0.077 
2 −3.52 0.041 
3 −3.33 0.066 
4 −3.30 0.072 

Bold scoresare significant score for the 95% confidence level. 

Table 4 shows that the second lag for this time series is suitable for the modelling. 
From this information, the semiparametric time series model can be given by: 𝑈𝐸𝐷  =  𝛽 𝑈𝐸𝐷( ) + 𝛽 𝑈𝐸𝐷( ) + 𝑓(𝑠 ) + 𝜀 , 𝑡 =  1, … ,186, (59)

where 𝑈𝐸𝐷 s represent the dependent time series of the unemployment duration ratio, 𝑈𝐸𝐷( )  and 𝑈𝐸𝐷( )  denote the first and second lags of the dependent series 𝑈𝐸𝐷  
that are used as covariates, respectively, 𝑠 = (1, … , 𝑛)  denotes the seasonality, and fi-
nally, 𝜀 ’s are the stationary autoregressive error terms as given in Equation (2). The esti-
mation of model (6.1) is realized by both the AS and BS methods, and then, results are 
presented in Tables 5 and 6 and Figure 5. 

Table 5 involves the bias and variance values for estimated regression coefficients 𝛃  =  𝛽 , 𝛽  and 𝛂  =  𝛼 , 𝛼 , … , 𝛼 . Accordingly, the AS method gives smaller 
bias and variance values than the BS method regarding 𝛃. Moreover, the AS method has 
better bias values for 𝛂, but the BS method gives smaller variance values for 𝛂 than the 
AS method. In overview, the AS and BS methods give similar values, because the data 
properties are 𝑛 =  186 and 𝐶𝐿 =  8.1%. Thus, it can be seen that the results of the un-
employment duration data ensure the simulation outputs. 

Table 5. The performances of the BS and AS methods for the estimation of both parametric and 
nonparametric components. 

Measurement Bias Variance 
 AS BS AS BS 𝛽  1.941 2.682 1.272 1.703 𝛽  0.915 1.139 1.562 1.624 𝛂 3.628 4.566 0.067 0.058 

The bolded values indicate the best scores. 

Table 6. Scores of performance measures for the AS and BS methods obtained from the whole model 
estimation. 

Method 𝑴𝑨𝑷𝑬 𝑴𝒆𝒅𝑨𝑬 𝑮𝑴𝑺𝑬 𝑹𝑮𝑴𝑺𝑬 𝑹𝑴𝑺𝑬(𝐟, 𝐟) 
AS 0.623 0.510 1.275 0.824 1.154 
BS 1.315 1.166 1.546 1.212 1.385 

AR(2) 1.856 4.506 3.702 2.775 - 
The bolded values indicate the best scores. 

In addition, it should be noted that the outcomes obtained from estimated model 
(7.1) are given in Table 6 with 𝑅𝑀𝑆𝐸  scores for the estimated nonparametric function 𝑓(𝑠 ). Upon close inspection, it is obviously seen from the results that the AS method pro-
duces the best scores. It should be emphasized that the largest difference between the 
methods regarding performance criteria is in 𝑀𝑒𝑑𝐴𝐸, which indicates the strength of the 
AS method under censorship. Table 6 indicates the results of AR(2) model that are worse 
than the results of the other two as in the simulation study. Note that because of the sample 
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size of the real data of 𝑛 = 186 which is close to the simulation configurations when 𝑛 =200, scores are relatively close to each other. Figure 5 is given to compare the AS and BS 
methods in representing data under censorship. 

As can be seen in Figure 5, the estimated curves are quite similar due to the data 
properties of a large sample size and a low CL. The effect of synthetic data manipulation 
is obvious in the figure with zero values. Like the simulation study, the BS method is 
affected by these zero values more than the AS method. The reason for this is that the 
knots of the AS method are determined by iteratively calculated weights. Therefore, the 
optimal knot sequence diminishes the effect of censorship. 

 
Figure 5. Estimated curves for the seasonality 𝑓(𝑠 ) obtained from the AS and BS methods. 

8. Concluding Remarks 
This paper demonstrated the estimation of right-censored time series data using a 

newly introduced semiparametric AS estimator and making a comparison with the BS 
method as a benchmark. The results obtained from both a simulation study and a real data 
example proved that the introduced method (AS) achieves the superior modelling of right-
censored time series data in a semiparametric context. Comparative outcomes also support 
that the AS method provides better performance scores over the BS method in most simu-
lation configurations and the real data example. The most important factor in the success 
of the AS method is the adaptive nature of the method based on iteratively calculated 
weights. In the AS method, weights are responsible for determining and controlling the 
penalty term and for dependently obtaining the optimal knot points. Accordingly, our 
findings showed that the proposed method provides an advantage in modelling right-cen-
sored time series over the benchmark. 

The simulation study examined the performance of the methods in three parts: the 
outcomes for the estimated parametric component (Table 1 and Figure 2), the nonparamet-
ric component (Table 2 and Figure 3), and the whole semiparametric model (Table 3 and 
Figure 4). The unemployment data estimation was evaluated for bias and variance (Table 
5) using the criteria of 𝑀𝐴𝑃𝐸, 𝑀𝑒𝑑𝐴𝐸, 𝐺𝑀𝑆𝐸, and 𝑅𝐺𝑀𝑆𝐸 (Table 6). Given the outcomes 
of the simulation study and the real data example, our general and detailed conclusions 
are as follows: 

• As expected, the estimation qualities for both the AS and BS methods change for dif-
ferent CLs and sample sizes. The performances of the methods are affected nega-
tively by increasing CLs, and they give better results for larger sample sizes. This 
claim is seen clearly from Tables 1–3.  

• When unemployment duration data were analyzed, it can be seen that the results 
agreed with the corresponding configuration (𝑛 = 200;   𝐶𝐿 = 20%) of the simula-
tion study. 



Entropy 2021, 23, 1586 22 of 25 
 

 

• One of the striking results of this paper is that, as Tables 1–3 demonstrate, while the 
AS method gives worse results at low censorship levels than the BS method, it pro-
vides significantly better results at medium and high censorship levels. This conclu-
sion proves the claim of the paper, which is that using the AS method reduces the 
effect of the data manipulation of synthetic data transformation.  

• When all the results obtained from simulation and real data studies were inspected, 
the AS method gives better results than the BS method, except in the configurations 
for low CLs, which supports the targeted conclusion.   

• Unemployment duration data were modelled by the BS and AS methods using two 
lagged parametric components and the seasonal effect as a nonparametric compo-
nent. Tables 5 and 6 show each method’s scores using four evaluation metrics, which 
indicate the superiority of the AS method. Figure 5 shows the estimated curves for 
both methods, which are similar. However, the estimated curves show that the AS 
method is less affected by zero values of synthetic data and thus gives more satisfying 
estimates for the right-censored time series model than the BS method. 
Finally, as can be understood from the whole paper, the AS method is superior for 

estimating right-censored time series over the BS method in both theory and practice. 
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Appendix A 
Proof of Lemma 1: Lemma 1 can be ensured based on the common censorship assumption that 𝑍  
and 𝐶  are independent. From that, the proof can be written as follows: 

𝐸[𝑌 |𝑥, 𝑠]  =  𝐸 ( ) | 𝑥, 𝑠 = 𝐸 ̅( ) |𝑥, 𝑠                     =  𝐸 ( ) ( , )̅ [ ( , )] |𝑥, 𝑠 =𝐸 𝐼(𝑍 ≤ 𝐶 ) ̅( ) |𝑥, 𝑠  =  𝐸 𝐸 ̅( ) 𝐼(𝑍 ≤ 𝐶 )|𝑥, 𝑠 |𝑥, 𝑠 = 𝐸 ̅( )  �̅�(𝑍 )|𝑥, 𝑠 =𝐸[𝑍 |𝑥, 𝑠] = 𝐱 𝛃 + 𝑓(𝑠 ). 

(A1)

Thus, Lemma 1 is proven. Here, �̅�(. )  =  1 − 𝐺(. ). Generally, distribution 𝐺(. ) is unknown. There-
fore, its Kaplan–Meier estimator 𝐺(. ) is used instead of 𝐺(. ), which is given in Equation (=5). □ 

Appendix B 
Derivations of Equations (29) and (30). 

To show the derivations of Equations (29) and (30), two equations obtained from Equation (27) are 
written as: 

(𝐗 𝐕𝐗)𝛃 + 𝐗 𝐕𝐁𝛂 = 𝐗 𝐕𝐘       𝐁 𝐕𝐗𝛃 + (𝐁 𝐕𝐁 + 𝛌𝐊)𝛂 = 𝐁 𝐕𝐘  (A2)

From Equation (B1), 𝛂  can be acquired by the algebraic operations: 
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(𝐁 𝐕𝐁 + 𝛌𝐊)𝛂 =  𝐁 𝐕𝐘 − 𝐁 𝐕𝐗𝛃     (𝐁 𝐕𝐁 + 𝛌𝐊)𝛂 =  𝐁 𝐕(𝐘 − 𝐗𝛃). (A3)

Thus, if 𝛃 is replaced by 𝛃 , then 𝛂  can be written as: 𝛂 = [𝐁 𝐕𝐁 + λ𝑲] 𝐁 𝐕 𝐘 − 𝐗𝛃 . (A4)

Therefore, Equation (27) can be derived. Accordingly, the derivation of 𝛃  can be obtained by us-
ing (B1): (𝐗 𝐕𝐗)𝛃 + 𝐗 𝐕𝐁[[𝐁 𝐕𝐁 + λ𝑲] 𝐁 𝐕 (𝐘 − 𝐗𝛃)] = 𝐗 𝐕𝐘 , (𝐗 𝐕𝐗)𝛃 + 𝐗 𝐕𝐁[𝐁 𝐕𝐁 + λ𝑲] 𝐁 𝐕 𝐘 − 𝐗 𝐕𝐁[𝐁 𝐕𝐁 + λ𝑲] 𝐁 𝐕 𝐗𝛃 = 𝐗 𝐕𝐘 , [(𝐗 𝐕𝐗) − 𝐗 𝐕𝐁[𝐁 𝐕𝐁 + λ𝑲] 𝐁 𝐕 𝐗]𝛃 = 𝐗 𝐕𝐘 − 𝐗 𝐕𝐁[𝐁 𝐕𝐁 + λ𝑲] 𝐁 𝐕 𝐘 . 

(A5)

To simplify the calculations, let 𝑨 = 𝐗 𝐕𝐁[𝐁 𝐕𝐁 + λ𝐊] 𝐁 𝐕 . Therefore,  [(𝐗 𝐕 − 𝑨 )𝐗]𝛃 = (𝐗 − 𝑨 )𝐕𝐘 ,     𝛃 = ((𝐗 𝐕 − 𝑨 )𝐗) (𝐗 − 𝑨 )𝐕𝐘 . (A6)

The derivations of Equations (29) and (30) are thus completed. 

Appendix C 
Proof of Theorem 1: To validate the Theorem 1, necessary equations are given by: 

sup∈ |𝑀 (𝛼 ) − 𝑀(𝛼 ) − 𝜎 | → 0, (A7)

where 𝜎  is the variance of the model defined in Equation (7), 𝑄 is a compact set in a metric space 
and by using Equations (54)–(57), it can be seen that: |𝛂 | → 𝛂, as 𝑛 → ∞. (A8)

See [33] for more details. □  

Appendix D 
Proof of Theorem 2: For ensured regularity conditions (i)–(iv), 𝑝𝑙𝑖𝑚 𝛃  is written as follows: 

 𝑝𝑙𝑖𝑚 𝛃   =  𝛃 + 𝑝𝑙𝑖𝑚(𝑛 [(𝐗 𝐕 − 𝐀 )𝐗] (𝐗 𝐕 − 𝐀 )𝐟) + 𝑝𝑙𝑖𝑚(𝑛 [(𝐗 𝐕 −𝐀 )𝐗] (𝐗 𝐕 − 𝐀 )𝛆)   𝑝𝑙𝑖𝑚 𝛃  =  𝛃 + 𝑝𝑙𝑖𝑚 𝑛  [(𝐗 𝐕 − 𝐀 )𝐗] 𝑝𝑙𝑖𝑚 𝑛 (𝐗 𝐕 − 𝐀 )[𝐟 + 𝛆] . 

(A9)

Because 𝐟  can be counted as a nuisance parameter, and from assumptions (i) and (ii), 𝑝𝑙𝑖𝑚 𝑛  [(𝐗 𝐕 − 𝐀 )𝐗] = 𝐅  and 𝑝𝑙𝑖𝑚 𝑛 (𝐗 𝐕 − 𝐀 )[𝐟 + 𝛆] = 𝑜(1). Therefore, the expres-
sion at the right side in (D1) goes to zero. Thus, from that, it is obtained that: 

argmin(𝜓 ) → argmin(𝜓),    𝛃 → 𝛃. (A10) 

Note that the results obtained above are for 𝜏 ≥ 1, which means 𝜓  has a convex struc-
ture (see [34] and [35]). However, the proposed AS estimator includes the case of 𝜏 < 1, 
so that 𝜓  is not convex. In this matter, Equation (D2) is processed differently as: 

𝜓 𝛃 , 𝑓(𝑠 ) > 𝑛 𝑌 − 𝐗 𝛃 − 𝑓(𝑠 ) =  𝜓( ) 𝛃 , 𝑓(𝑠 )  (A11)

Note that Equation (D3) is validated for all 𝛃 . Moreover, 𝑎𝑟𝑔𝑚𝑖𝑛(𝜓 )  =  𝑂 (1) , because  𝜓( )  =  𝑂 (1). □  

Appendix E 

Proof of Theorem 3: To show the proof of Theorem 3, due to the non-convex structure of 𝜏 < 1, 
some complex expressions are needed for minimization criterion 𝜉. These are given by: 
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𝜉 (𝜃)  =  ∑ 𝜀 − 𝐗 − 𝜀 + 𝜆 ∑ 𝛽 + − 𝛽 . (A12)

Due to 𝜆  =  𝑂 𝑛 /  =  𝑜 √𝑛 , the following expression is obtained similar to Theorem 3: 

𝜆 ∑ 𝛽 + − 𝛽  → 𝜆 ∑ 𝜃 I 𝛽  =  0  . (A13)

Then the convergence is realized as follows: 

𝑎𝑟𝑔𝑚𝑖𝑛(𝜉 ) → 𝑎𝑟𝑔𝑚𝑖𝑛(𝜉). (A14)

Thus, the proof is finished. It is important to note that, for 𝜏 < 1, the non-zero regression coefficients 
of the model can be estimated without asymptotic bias if zero ones are shrunk to the zero with a 
positive probability. □  
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