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Abstract: We consider a quantum spinless nonrelativistic charged particle moving in the xy plane
under the action of a time-dependent magnetic field, described by means of the linear vector potential
A = B(t)[−y(1 + α), x(1− α)]/2, with two fixed values of the gauge parameter α: α = 0 (the circular
gauge) and α = 1 (the Landau gauge). While the magnetic field is the same in all the cases, the
systems with different values of the gauge parameter are not equivalent for nonstationary magnetic
fields due to different structures of induced electric fields, whose lines of force are circles for α = 0
and straight lines for α = 1. We derive general formulas for the time-dependent mean values of the
energy and magnetic moment, as well as for their variances, for an arbitrary function B(t). They are
expressed in terms of solutions to the classical equation of motion ε̈ + ω2

α(t)ε = 0, with ω1 = 2ω0.
Explicit results are found in the cases of the sudden jump of magnetic field, the parametric resonance,
the adiabatic evolution, and for several specific functions B(t), when solutions can be expressed in
terms of elementary or hypergeometric functions. These examples show that the evolution of the
mentioned mean values can be rather different for the two gauges, if the evolution is not adiabatic. It
appears that the adiabatic approximation fails when the magnetic field goes to zero. Moreover, the
sudden jump approximation can fail in this case as well. The case of a slowly varying field changing
its sign seems especially interesting. In all the cases, fluctuations of the magnetic moment are very
strong, frequently exceeding the square of the mean value.

Keywords: circular versus Landau gauge of the vector potential; relative and guiding center
coordinates; adiabatic versus non-adiabatic evolution; the Epstein–Eckart profiles of magnetic field;
canonical versus kinetic angular momentum; strong fluctuations of magnetic moment

1. Introduction

The motion of a quantum charged particle in a uniform stationary magnetic field has
attracted the attention of many authors since the first years of quantum mechanics [1–6].
For a nonrelativistic spinless particle of mass m and charge e, moving in the xy plane
perpendicular to the magnetic field B = (0, 0, B) = rotA, the problem is reduced to solving
the Schrödinger equation with Hamiltonian (in the Gauss system of units)

Ĥ = π̂2/(2m), π = p− eA/c. (1)

It is well known that the same vector B can be obtained from the whole family of linear
vector potentials of the form

A = B[−y(1 + α), x(1− α)]/2. (2)
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Two choices of the gauge parameter α are frequently considered in the literature: α = 0
(the so called circular or symmetric gauge) and α = 1 (the Landau gauge). The solutions
to the stationary Schrödinger equation (with B = const) have different forms for the two
gauges: They are expressed in terms of the Laguerre polynomials for α = 0 [3] and in terms
of the Hermite polynomials for |α| = 1 [4]. Nonetheless, the physical consequences, such
as the mean energy in the thermodynamic equilibrium state or equilibrium magnetization,
are identical. Therefore, one could think that the concrete choice of the gauge is mainly a
matter of taste. However, this is true for time-independent magnetic fields only.

The Schrödinger equation with Hamiltonian (1) and a general function B(t) was
solved exactly for the first time in papers [7–9] for the circular gauge and [10] for the
Landau gauge. It was shown that quantum solutions are determined completely by the
solution of the classical equation of motion for the oscillator with a time-dependent frequency,

ε̈ + ω2
α(t)ε = 0. (3)

In the case of circular gauge, one should put in (3) the Larmor frequency ω0(t) ≡ ω(t) =
eB(t)/(2mc), whereas the cyclotron frequency ω1(t) ≡ Ω(t) = eB(t)/(mc) should be used
in the case of the Landau gauge. In particular, the authors of papers [7–10] constructed
generalizations of the energy eigenstates (as eigenstates of the quadratic operators - integrals
of motion), which look similar to the time-independent eigenstates, with the functions ε(t)
in the arguments of the Laguerre or Hermite polynomials. In papers [8–10], generalized
coherent states were constructed as eigenstates of the linear integrals of motion. These states
were used to calculate the propagators, transition amplitudes and transition probabilities
between energy levels corresponding to the initial and final asymptotic magnetic fields.
Several other aspects of the problem, where solutions to Equation (3) were used, were con-
sidered later, e.g., in papers [11–26] for α = 0. In particular, the problem of squeezing in the
time dependent magnetic field with α = 0 was considered in [14,16,17,19,26] with respect
to the canonical pairs of variables. The tomographic approach was used in papers [23,24].
Informational aspects of the problem motivated the authors of [26]. A few papers [27,28]
were devoted to the case of α = 1. Note, however, that no explicit solutions to Equation (3)
with ωα(t) 6= const were considered in all the cited papers.

It was mentioned already in paper [10], that the physical consequences are different for
the two gauges in the time-dependent magnetic fields. The difference can be clearly seen,
if one compares explicit expressions for the propagators and transition amplitudes for the
two gauges given in [9,10]. Other manifestations of the gauge nonequivalence in the case of
time-dependent magnetic fields were observed in studies [29,30], devoted to the problem
of generation of squeezed states of charged particles in magnetic fields, with respect to
relative and guiding center coordinates. Clearly, the origin of the gauge nonequivalence is
in different spatial distributions of the induced electric field E(r, t) = −∂A(r, t)/∂(ct), whose
lines of force are circles for α = 0 (the circular solenoid) and straight lines for α = 1 (the
plane solenoid).

The goal of our paper is to compare the explicit evolution of such physical quantities as
the mean energy and mean magnetic moment, as well as their variances, for two different
physical systems, characterized by two different gauge parameters of the time-dependent
vector potential with the same magnetic field B(t). It appears that none of these two quan-
tities were calculated for time-dependent magnetic fields in all known papers [7–28]. We
consider several concrete functions B(t) admitting exact explicit solutions of Equation (3).
No one of these functions was considered in connection with the problem under study
until now (except for the obvious case of the constant magnetic field). Using the explicit
solutions, we can establish, in particular, conditions of validity of two frequently used
approximations: adiabatic and “sudden jump” ones. While two physical situations are dif-
ferent, we believe that their treatment in the frames of a single paper is justified, because the
starting point for the analysis of the two cases is the same Equation (3) (although with
scaled frequencies). However, the final results are different. Why? It seems that the circular
gauge is so symmetric that it “hides” in some sense the presence of the circular induced
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electric field, as soon as all final expressions contain the functions ε(t) and ε̇(t) only. On the
other hand, this symmetry is broken for the Landau gauge, where an additional solution,
satisfying an inhomogenious oscillator equation, appears necessary. The inhomogeneous
term is proportional to the additional constant of the motion which, in turn, exists due
to the unidirectional structure of the induced electric field. Explicit examples considered
in this paper demonstrate how this difference in the geometry of induced electric fields
influences the energy and magnetic moment.

Our plan is as follows. In Section 2, we remind the definitions of the main quantities
characterizing the motion of a charged particle in the magnetic field, such as energy, angular
momentum and magnetic moment, emphasizing the role of the relative and the center of
orbit coordinates. Moreover, we analyze the dynamical equations for the canonical and
“geometrical” variables and discuss the choice of initial conditions. The details of evolution
are considered separately in Sections 3–6 for the circular gauge and Sections 7 and 8 for
the Landau gauge. In particular, in Section 3 we provide general expressions for the
mean values and fluctuations of the energy and magnetic moment in terms of solutions
to Equation (3). Three simple approximate solutions are considered in that section: the
adiabatic evolution, the sudden jump of the magnetic field, and the parametric resonance.
In Section 4, we analyze three concrete functions B(t), which permit us to find explicit exact
solutions to Equation (3) in terms of elementary functions. Four other examples, when exact
solutions can be written in terms of the confluent hypergeometric, Gauss hypergeometric,
cylindrical and Legendre functions, are analyzed in Sections 5 and 6. Section 7 is devoted
to general relations for the Landau gauge, with the same special cases as in Section 3.
Two special cases, when explicit exact solutions can be written in terms of elementary
functions, are considered in Section 8. Section 9 contains a discussion of results. Some
details of calculations are given in Appendices A–F. Appendices G and H are devoted to
the interesting questions arising in connection with our study: the existence (and sense)
of the Landau levels in the time-dependent magnetic field and the non-equivalence of
different time-dependent gauges.

2. Basic Definitions and Equations
2.1. Main Physical Quantities

The energy operator coincides with Hamiltonian (1) in the stationary case. However,
it is useful to write it in a different form, using the concept of relative and center of
orbit coordinates. For this purpose, we remember that Hamiltonian (1) admits two linear
integrals of motion,

x̂c = x̂ + π̂y/(mΩ) = (1 + α)x/2 + p̂y/(mΩ), ŷc = ŷ− π̂x/(mΩ) = (1− α)y/2− p̂x/(mΩ), (4)

provided the magnetic field B does not depend on time. Operators (4) describe nothing but
the coordinates of the center of a circle, which the particle rotates around with the cyclotron
frequency Ω = eB/(mc). The importance of these integrals of motion was emphasized by
many authors during decades [4,31–45]. Equivalent integrals of motion, obtained by the
multiplication of xc and yc by mΩ, were considered under the name “pseudomomentum”
in papers [36,46].

The second pair of physical observables consists of two relative coordinates,

x̂r = x̂− x̂c = −π̂y/(mΩ) = (1− α)x/2− p̂y/(mΩ),

ŷr = ŷ− ŷc = π̂x/(mΩ) = (1 + α)y/2 + p̂x/(mΩ).

Then, Hamiltonian (1) with B = const can be written as

Ĥ = mΩ2
(

x̂2
r + ŷ2

r

)
/2. (5)

Due to the commutation relations[
π̂x, π̂y

]
= −imΩh̄, [x̂r, ŷr] = [ŷc, x̂c] = ih̄/(mΩ), [x̂r, x̂c] = [x̂r, ŷc] = [ŷr, x̂c] = [ŷr, ŷc] = 0, (6)
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the eigenvalues of operator (5) assume discrete values h̄Ω(n + 1/2). Moreover, these
eigenvalues have infinite degeneracy [4], because they do not depend on the mean values
of operators x̂c and ŷc (or their functions). These results are well known, of course.

In addition to the energy, there exists another quadratic integral of motion, which
can be considered as the generalized angular momentum (the same formulas hold for the
classical variables and quantum operators):

L = xπy − yπx +
mΩ

2

(
x2 + y2

)
= xpy − ypx +

mΩ
2

α
(

x2 − y2
)
=

mΩ
2

(
x2

c + y2
c − x2

r − y2
r

)
. (7)

It coincides formally with the canonical angular momentum Lcan = xpy − ypx in the only
case of “circular” gauge of the vector potential. It follows from (7) that the “kinetic” angular
momentum, defined as

Lkin ≡ xπy − yπx = −mΩ
(

x2
r + y2

r + xcxr + ycyr

)
, (8)

is not a conserved quantity, and it can vary with time in the generic case [31,47–51], except
for the special cases of energy eigenstates or their statistical mixtures. On the other hand,
the “intrinsic” angular momentum

J = xrπy − yrπx = −mΩ
(

x2
r + y2

r

)
= −2H/Ω (9)

is conserved for the constant magnetic field. While operators (5) and (7) commute, one
cannot expect that the mean value of L can be preserved for time-dependent functions Ω(t),
unless α = 0, because d〈L̂〉/dt = 1

2 mα〈x2 − y2〉dΩ/dt.
To introduce the magnetic moment operator, we use the definition of the classical

magnetic moment [52,53]

M =
1
2c

∫
dV[r× j]. (10)

Then, using the expression for the quantum probability current density,

j =
ieh̄
2m

(ψ∇ψ∗ − ψ∗∇ψ)− e2

mc
Aψ∗ψ, (11)

one can write the right-hand side of (10) as the mean value of operator

M̂ =
e

2mc
L̂kin. (12)

A formula equivalent to (12) was justified (for α = 0) in [54,55], using the thermodynamical
approach. Another proof of the definition (12) for an arbitrary gauge was given in [56] (see
also [57–61]).

2.2. Equations Describing the Time Evolution

As soon as we are interested in the evolution of the mean energy and mean mag-
netic moment, we have to calculate the mean values of various products of operators
x̂r,c and ŷr,c as functions of time. At first glance, one could use the simplest form of
the Ehrenfest equation for the mean values of some operator, d〈Ô〉/dt = (i/h̄)〈[Ĥ, Ô]〉.
Then, the commutator (6) yields d〈π̂x〉/dt = −Ω〈π̂y〉 and d〈π̂y〉/dt = Ω〈π̂x〉, with-
out any dependence on the gauge parameter α. However, this is true only for the time-
independent frequency Ω. In the general case, one has to use the complete Ehrenfest
equation, d〈Ô〉/dt = (i/h̄)〈[Ĥ, Ô]〉 + 〈∂Ô/∂t〉, taking into account that the operator π̂
in (1) contains the explicit time dependence through the vector potential (2) with a time-
dependent function B(t). However, the equation for d〈π̂〉/dt contains the derivative
dΩ/dt in addition to Ω(t). For this reason, we prefer to start from the equations for the
mean values of the canonical operators, since these operators do not contain time-dependent
functions in their definitions. Omitting the symbol of quantum mechanical averaging 〈· · · 〉,
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we obtain the following equations (formally coinciding with the equations for classical
variables due to the linearity):

ẋ = px/m + ω(t)(1 + α)y, ẏ = py/m−ω(t)(1− α)x, (13)

ṗx = ω(t)(1− α)py −mω2(t)(1− α)2x, ṗy = −ω(t)(1 + α)px −mω2(t)(1 + α)2y, (14)

where ω(t) = eB(t)/(2mc) is the Larmor frequency. It is convenient to introduce the
vector Q = (x, y, px, py) (whose components are either mean values of quantum operators
or classical variables). Then, solutions to the system (13) and (14) can be written in the
compact form as

Q(t) = ΛQ(t)Q(0), (15)

where ΛQ(t) is some 4 × 4 matrix. Moreover, it is convenient to introduce the 4 × 4
symmetrical matrix σ = ‖σij‖, consisting of all symmetrical second order moments
σij = 〈Q̂iQ̂j + Q̂jQ̂i〉/2. Then, it is known (see, e.g., [62]) that the linear transformation (15)
results in the following relation between the matrices σ(t) and σ(0):

σ(t) = ΛQ(t)σ(0)Λ̃Q(t), (16)

where Λ̃Q means the transposed matrix. From the physical point of view, it is convenient
to use the matrices corresponding to the “geometrical” coordinates, combined in the vector
q = (xr, yr, xc, yc), instead of vector Q(t). Knowing the transformation q = UQ with

U =
1
2

∥∥∥∥∥∥∥∥
1− α 0 0 −r−1

0 1 + α r−1 0
1 + α 0 0 r−1

0 1− α −r−1 0

∥∥∥∥∥∥∥∥, U−1 =

∥∥∥∥∥∥∥∥
1 0 1 0
0 1 0 1
0 r(1− α) 0 −r(1 + α)

−r(1 + α) 0 r(1− α) 0

∥∥∥∥∥∥∥∥,

where r = mω, we arrive at the final expression

σq(t) = Λq(t)σq(0)Λ̃q(t), (17)

where
Λq(t) = U(t)ΛQ(t)U−1(0). (18)

Here, matrix U(t) contains the current Larmor frequency ω(t), whereas U(0) contains the
initial frequency ω(0).

In general, the 4× 4 symmetric matrix σq(0) can have 10 independent elements (obey-
ing some restrictions due to the uncertainty relations). Therefore, it is difficult to analyze
the problem for the most general initial states. We consider the most natural situation,
when the initial state is the thermodynamic equilibrium state, corresponding to the inverse
temperature β. Then we have the matrix with four non-negative parameters [63],

σq(0) = G

∥∥∥∥∥∥∥∥
1 0 −ρ 0
0 1 0 −ρ
−ρ 0 sΥ 0
0 −ρ 0 Υ/s

∥∥∥∥∥∥∥∥, (19)

G =
h̄C

4mωi
, C = coth(h̄ωiβ) ≥ 1, ρ =

tanh(h̄ωiβ)

h̄ωiβ
≤ 1, Υ =

tanh(h̄ωiβ)

tanh(h̄βν)
≥ 1. (20)

Actually, matrix (19) corresponds to the equilibrium state of the charged particle, confined
by means of a weak parabolic potential, so that ν is some effective frequency of this
potential, satisfying the restriction ν� ω. The real coefficient s characterizes the degree
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of anisotropy of the potential (s = 1 in the isotropic case). The initial mean values of the
energy and magnetic moment are as follows,

Ei = h̄ωiC, Mi = µBC(ρ− 1) = µB

[
(h̄ωiβ)

−1 − coth(h̄ωiβ)
]
, (21)

where µB = eh̄/(2mc) is the Bohr magneton. We see that the nonzero value of parameter
ρ is necessary to ensure the famous Landau–Darwin formula (21) for the diamagnetism
of a free charged particle [4,6] in all temperature regimes. We shall pay especial attention
to two limit cases. In the high temperature limit, h̄βωi � 1, we have ρ ≈ 1 and Υ � 1.
On the other hand, in the extreme low temperature limit, h̄βν� 1, we have Υ = 1, ρ = 0,
and G = h̄/(2mΩi). We assume that the direction of the initial magnetic field (or the
z-axis) is chosen in such a way that ωi > 0.

Under real conditions, the particle moves inside some container with an effective radius
R. Hence, the approximations and results of this study have sense under the restrictions

Tr(σq)� R2, 2G(1 + s0Υ)� R2, 2s0 = s + s−1. (22)

At zero temperature, we have the restriction on the magnetic field B � h̄c/(|e|R2).
Note that the particle mass does not enter this inequality. For R ∼ 1 cm, the restric-
tion is very weak: B � 10−7 G. Remember that Ω ≈ 1011 s−1 for electrons in the field
B ≈ 6× 103 G. Then, the low-temperature limit means that T � 1 K. On the other hand,
the high-temperature limit is more adequate for ions, whose cyclotron frequency Ω is
several (3 to 5) orders of magnitude smaller than the electron frequency.

It is convenient to split the 4× 4 matrices σq(t) and Λq(t) into 2× 2 blocks:

σq(t) = G
∥∥∥∥ σr σrc

σ̃rc σc

∥∥∥∥, Λq(t) =
∥∥∥∥ λ1 λ2

λ3 λ4

∥∥∥∥. (23)

Matrices Gσr and Gσc describe fluctuations of the relative and guiding center coordinates,
respectively. Matrix Gσrc describes correlations between these two subsystems. Note that
initial fluctuations of the guiding center coordinates are stronger than those of relative
coordinates, especially if Υ� 1.

Using formula (19), we can write the blocks of σq(t) as follows,

σr = λ1λ̃1 +Υλ2Sλ̃2− ρ
(
λ2λ̃1 + λ1λ̃2

)
, σc = λ3λ̃3 +Υλ4Sλ̃4− ρ

(
λ4λ̃3 + λ3λ̃4

)
, (24)

σrc = λ1λ̃3 + Υλ2Sλ̃4 − ρ
(
λ2λ̃3 + λ1λ̃4

)
, (25)

where S = diag(s, s−1) is the diagonal matrix.
We suppose that the confining potential is removed at the time instant t = 0, and the

system starts to evolve in accordance with Hamiltonian (1). Then, the main tool for
calculating mean values of the energy and magnetic moment is the transformation matrix
Λq. In turn, it is determined by the solutions to the set of four linear differential equations
with time-dependent coefficients (13) and (14). This set can be reduced to a single second
order differential equation in two special cases: α = 0 and α = 1 (or α = −1). These cases
are studied separately in Sections 3–8.

3. The Circular Gauge: General

For α = 0, it is convenient to introduce the complex variables z = x + iy and p = px +
ipy [7–9]. They obey the equations

ż = p/m− iω(t)z, ṗ = −iω(t)p−mω2(t)z.

Writing

z = Φz̃, p = Φ p̃, Φ = exp
[
−i
∫ t

0
ω(τ)dτ

]
,
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we get the equations
˙̃z = p̃/m, ˙̃p = −mω2(t)z̃, (26)

whose consequence is (3) with α = 0 for z̃(t). We fix the pair of independent complex
solutions ε(t) and ε∗(t), imposing the condition on the Wronskian [8,9]

ε̇ε∗ − ε̇∗ε = 2i or Im(ε̇ε∗) = 1. (27)

We assume that ω(t) = ωi = const > 0 for t ≤ 0 and ε(t) = ω−1/2
i exp(iωit) for t ≤ 0.

This means that we choose the initial conditions

ε(0) = ω−1/2
i , ε̇(0) = iω1/2

i . (28)

Solutions to Equation (26) are linear combinations,

z̃(t) = C1ε(t) + C2ε∗(t), p̃(t) = m[C1 ε̇(t) + C2 ε̇∗(t)],

where constant coefficients C1,2 are determined by the initial conditions. Thus we arrive
at formulas

z(t) = ω1/2
i Φ(t)[z(0)Re(ε) + p(0)Im(ε)/(mωi)],

p(t) = mω1/2
i Φ(t)[z(0)Re(ε̇) + p(0)Im(ε̇)/(mωi)].

Further details of calculations and explicit forms of blocks (24) and (25) of matrix Λq(t) (23)
are given in Appendix A.

Mean values of the energy and magnetic moment depend on traces of matrices σr and
σrc. These traces have the following explicit forms:

Tr(Gσr) =
Gωi

2ω2(t)

[
|F−|2 + s0Υ|F+|2 − 2ρRe(F−F+)

]
, (29)

Tr(Gσrc) =
Gωi

2ω2(t)

[
(1 + s0Υ)Re(F−F∗+)− ρRe

(
F2
− + F2

+

)]
, (30)

where
F±(t) = ω(t)ε(t)± iε̇(t), 2s0 = s + s−1. (31)

Note that the traces (29) and (30) are invariant with respect to the transformation s→ s−1.
Two important special cases will be analyzed in more details in the subsequent Sections.

(1) The adiabatic regime:

ε(t) ≈ [ω(t)]−1/2 exp[iϕ(t)], ε̇(t) ≈ i[ω(t)]1/2 exp[iϕ(t)], ϕ(t) =
∫ t

0
ω(x)dx, (32)

F−(t) ≈ 2[ω(t)]1/2 exp[iϕ(t)], F+(t) ≈ 0. (33)

In this case, matrix σq(t) assumes the form

σ
(ad)
q (t) =

Gωi
ω(t)

∥∥∥∥∥∥∥∥
1 0 −ρ cos(2ϕ) 0
0 1 0 −ρ cos(2ϕ)

−ρ cos(2ϕ) 0 Υ 0
0 −ρ cos(2ϕ) 0 Υ

∥∥∥∥∥∥∥∥. (34)

(2) The asymptotic regime, when the frequency ω(t) assumes a constant value ω f
after some time interval T (or asymptotically as t → ∞). In this case, one can write the
solution ε(t) for t > T as

ε(t) = |ω f |−1/2
[
u+ei|ω f |t + u−e−i|ω f |t

]
, (35)
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where constant complex coefficients u± obey the condition

|u+|2 − |u−|2 = 1, (36)

which is the consequence of (27). Then, we have for t > T,

F±(t) = 2|ω f |1/2u∓e∓i|ω f |t. (37)

3.1. Evolution of the Mean Energy

Equations (5) and (29) lead to the following expressions for the mean energy:

E(t) = mΩ2(t)Tr(Gσr)/2 =
Ei

4ωi

[
|F−|2 + s0Υ|F+|2 − 2ρRe(F−F+)

]
, Ei = 4mω2

i G. (38)

In the asymptotic regime (35), the ratio of the final energy to the initial one equals

E f /Ei =
(
|ω f |/ωi

)[
|u+|2 + s0Υ|u−|2 − 2ρ Re(u+u−)

]
. (39)

3.1.1. Adiabatic Regime

Taking the solution to Equation (3) in the form (32), we have

ε̇ =

(
iω1/2 − ω̇

2ω3/2

)
exp(iϕ), ε̇ε∗ = i− ω̇

2ω2 ,

so the condition Im(ε̇ε∗) = 1 is satisfied automatically. In this case, E(t) ≈ 4mGωiω(t),
meaning that the ratio E(t)/ω(t) is the known adiabatic invariant, which does not depend
on parameters ρ, Υ, s. However, this invariant exists for ω(t) > 0 only. Indeed, calculating
the second derivative of ε(t), one arrives at the equation

ε̈ + ω2ε =

(
3ω̇2

4ω5/2 −
ω̈

2ω3/2

)
exp(iϕ). (40)

The right-hand side of (40) can be neglected under the conditions

|ω̈/ω3| � 1, |ω̇/ω2| � 1. (41)

If the Larmor frequency ω(t) changes its sign, slowly passing through the value ω = 0,
the inequalities (41) cannot be guaranteed, and the situation can be quite different, as shown
in Sections 5 and 6.

3.1.2. Sudden Jump of the Magnetic Field

A simple special case is an instantaneous jump of the frequency from the value ωi at
t < 0 to ω f at t > 0. Then we have at t > 0 the solution (35) with

u± =
|ω f | ±ωi

2
√
|ω f |ωi

, (42)

so

E f /Ei =
[(

ω2
f + ω2

i

)
(1 + s0Υ)− 2ωi|ω f |(s0Υ− 1)− 2ρ

(
ω2

f −ω2
i

)]
/
(

4ω2
i

)
. (43)

Equation (43) is symmetric with respect to the inversion ω f → −ω f . In particular, E f /Ei = 1
if ω f = −ωi (the instantaneous inversion of the magnetic field). Another interesting feature
of Formula (43) is the non-analyticity of the sudden jump ratio E f /Ei as function of the
final frequency ω f at point ω f = 0 if s0Υ > 1. This discontinuity of the derivative is clearly
seen as a cusp in Figure 7.
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Equation (43) predicts that the mean energy does not go to zero after the instantaneous
jump of the frequency to ω f = 0 (contrary to the adiabatic evolution):

E f /Ei = [1 + s0Υ + 2ρ]/4 ≥ 1/2. (44)

One can question this result, because the limit ω f → 0 is not justified in the initial
Equations (35) and (42). However, the exact solution to Equation (3) with ω(t) = 0 at t > 0,
satisfying the initial conditions (28), has the form (this solution was used in reference [64]
in connection with the concept of “quantum sling”)

ε(t) = ω−1/2
i (1 + iωit). (45)

Hence, F±(t) = ∓ω1/2
i , so Equation (38) results in the same Formula (44). The mini-

mal value 1/2 of the right-hand side of Equation (44) is achieved for zero temperature
(Υ = 1 and ρ = 0) in the isotropic trap (s0 = 1). In this limit, E f /Ei = (ω2

i + ω2
f )/(2ω2

i ).
However, the final energy can be much higher than the initial one after instantaneous
switching off the magnetic field, if Υ � 1 or s0 � 1 (the high temperature initial state
or a strongly anisotropic trap). The approximate formula in this case reads E f /Ei ≈
s0Υ(ωi − |ω f |)2/(4ω2

i ) (provided the difference 1− |ω f |/ωi is not very small).
The model of instantaneous jumps of parameters was used by many authors for the

analysis of various physical processes [7,19,40,65–88]. Its validity is analyzed in the next
sections. In particular, we show in Section 4.1 that the exact results for ω f = 0 in some
cases can be quite different from (44).

3.1.3. Parametric Resonance

An approximate solution to Equation (3) in the form (35), with ω f = ωi and slowly
time dependent coefficients,

u+(t) = cosh(ωiγt), u−(t) = −i sinh(ωiγt), (46)

exists in the parametric resonance case, when the magnetic field is harmonically modulated
at the twice Larmor frequency (see, e.g., [41,73,89,90]):

ω(t) = ωi[1 + 2γ cos(2ωit)], |γ| � 1. (47)

Then,
E(t)/E(0) = cosh2(ωiγt) + s0Υ sinh2(ωiγt). (48)

Note that coefficient ρ does not enter Equation (48), because Re(u+u−) = 0 in the case
involved.

3.2. Energy Fluctuations

The energy fluctuations can be characterized by the variance σE = 〈Ĥ2〉 − 〈Ĥ〉2, where

〈Ĥ2〉 = (2mω2)2〈x̂4
r + ŷ4

r + x̂2
r ŷ2

r + ŷ2
r x̂2

r 〉. (49)

The fourth order moments in the right-hand side of (49) can be easily calculated for the
initial equilibrium state, because this state is Gaussian. Moreover, since the Hamiltonian (1) is
quadratic with respect to the canonical variables, it transforms any Gaussian state to another
Gaussian state. Therefore, we can use well known formulas of the classical probability
theory (with some modifications due to the non-commutativity of the coordinate and
momentum operators) for average values of the Gaussian distributions (see, e.g., [91]).
Namely, the mean values of symmetrical (or Wigner–Weyl) products [92] of four operators,
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Â, B̂, Ĉ and D̂ (with zero mean values), can be expressed as sums of pair products of their
second order central moments [91]:

〈ABCD〉W = AB · CD + AC · BD + AD · BC. (50)

Here A, B, C, D can be any of variables xr, yr, xc, yc. The symbol 〈ABCD〉W means the quan-
tum mechanical average value of the sum of all different products of operators Â, B̂, Ĉ, D̂,
taken in all possible orders, divided by the number of terms in the sum. The second order
central moments are defined as AB ≡ 〈ÂB̂ + B̂Â〉/2. Mean values of concrete products of
operators in predefined orders can be expressed in terms of symmetrical mean values with
the aid of commutation relations. The explicit expressions are given in Appendix B. Using
that formulas, we obtain

σE =
[
2mω2(t)

]2(
2σ2

11 + 2σ2
22 + [xr, yr]

2
)

.

Comparing this expression with (A4) and (38) in the case of s = 1, we arrive at a surprisingly
simple result

σE(t) = E2(t)− [h̄ω(t)]2, (51)

which holds for any values of parameters Υ and ρ. If s 6= 1, then the formula for σE is
much more involved (containing trigonometric functions of ϕ). For this reason, we do not
consider here the case of s 6= 1 in connection with the dynamics of fluctuations. In view of
Equation (21), the initial level of energy fluctuations is given by the formulas

σE(0) = (h̄ωi)
2
(
C2 − 1

)
, σE(0)/E2

i = 1− tanh2(h̄ωiβ). (52)

3.3. Evolution of the Mean Magnetic Moment

Equations (8), (12), (29) and (30) result in the following explicit expression for the time
dependent mean value of the magnetic moment:

M(t) = − eG
c

ω(t)Tr(σr + σrc) = −
µBC

2

{
ω(t)|ε|2 + 1 + Υs0

[
ω(t)|ε|2 − 1

]
− 2ρω(t)Re(ε2)

}
. (53)

Note that the derivative ε̇(t) does not enter the formula for the mean magnetic moment,
in contradistinction to the formula (38) for the mean energy. In particular, we have in the
zero temperature case (C = Υ = 1, ρ = 0)

M(l)(t) = −(µBC/2)
[
ω(t)|ε|2(1 + s0) + 1− s0

]
. (54)

Parameter Υ almost disappears from Equation (53) in the adiabatic case, when ω(t)|ε|2− 1 ≈ 0:

Mad(t) = µBC[ρ cos(2ϕ)− 1], ϕ(t) =
∫ t

0
ω(τ)dτ. (55)

According to Equation (55), the mean value of the magnetic moment is the adiabatic
invariant for ρ = 0 and C = 1 only (zero temperature initial state). If ρ > 0,Mad(t) is an
oscillating function of time (being always negative). Note that |Mad(t)| can achieve very
big values in the high temperature case, when C � 1. Moreover, the parameter Υ will
make a contribution when Υ� 1, due to corrections to the adiabatic approximation. We
return to this issue in Section 9.

In non-adiabatic regimes, when the difference ω(t)|ε|2 − 1 is not close to zero (includ-
ing all situations with ω ≤ 0), Equation (53) shows that the contribution of terms containing
parameter ρ can be neglected (because ρ is close to zero for low temperatures and ρ� s0Υ
in the high-temperature case). This observation will help us to simplify many formulas.
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In the asymptotic regime (35) we obtain

|ω f ||ε|2 = |u−|2 + |u+|2 + 2Re(u−u∗+) cos(2|ω f |t) + 2Im(u−u∗+) sin(2|ω f |t), (56)

|ω f |Re(ε2) = Re(u2
− + u2

+) cos(2|ω f |t) + Im(u2
− − u2

+) sin(2|ω f |t) + 2Re(u−u+). (57)

Using the formula a cos(x) + b sin(x) =
√

a2 + b2 sin(x + φ) (where φ is some phase which
is not interesting for our purposes), we can rewrite the right-hand side of Equation (53) as
a sum of constant (averaged over temporal oscillations) and oscillating parts:

M(t) = 〈〈M〉〉+ ∆̃M sin(2|ω f |t + φ), (58)

〈〈M〉〉 = −µBCσ
[
|uσ|2 + |u−σ|2s0Υ− 2ρRe(u−u+)

]
, σ = ω f /|ω f |, (59)

|∆̃M| = |µBC|
{
(1 + s0Υ)2|u+u−|2 − 2ρ(1 + s0Υ)Re(u+u−)

(
|u+|2 + |u−|2

)
+ρ2

[
|u+|2 + |u−|2 + 2Re(u2

+u2
−)
]}1/2

. (60)

Note that the consequence of identity (36) is the relation

|u+|2 + |u−|2 =
√

1 + 4|u+u−|2. (61)

The most simple expressions can be written for s0Υ = 1 and ρ = 0:

〈〈M〉〉 = −µBCσ
√

1 + 4|u+u−|2, |∆̃M| = 2|µBCu+u−|. (62)

Other simple formulas can be written in the high-temperature case s0Υ � 1. If ω f < 0,
then,

〈〈M〉〉 ≈ 1
2

µBCs0Υ
(

1 +
√

1 + 4|u+u−|2
)

, |∆̃M| ≈ |µBCs0Υu+u−|. (63)

We see that the amplitude of oscillations is close to the average value if |u+u−| � 1, being
always smaller than the average value. Consequently,M(t) does not change the sign in
the asymptotic regime in these two special cases.

In non-adiabatic regimes, the terms containing parameter ρ can be neglected in
Equations (59) and (60). In these cases, we have to calculate the coefficient |u−|2 only.
In particular, for ω f < 0 we can use the following approximate formulas:

〈〈M〉〉 ≈ µBC
[
|u−|2(1 + s0Υ) + s0Υ

]
, |∆̃M| = µBC(1 + s0Υ)|u−|

√
1 + |u−|2. (64)

3.3.1. The Case of Sudden Jump

Formulas (53), (56) and (57) can be simplified in the special case of the sudden jump
of magnetic field, when coefficients u± are real: see Equation (42). Then, for any sign of the
final frequency ω f , we obtain

M(t) = −µBC
{

ω f + ωi

2ωi
− ρ

ω f

ωi
+ Υs0

ω f −ωi

2ωi
+ sin2(ω f t)

[
ρW+−

W−
2

(1 + Υs0)

]}
, (65)

where W± = (ω2
f ±ω2

i )/(ωiω f ). In particular, at zero temperature we have the ratio

R ≡ |∆̃M|
|〈〈M〉〉| =

∣∣∣∣∣ω
2
f −ω2

i

ω2
f + ω2

i

∣∣∣∣∣. (66)
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The magnetic moment changes its sign immediately after the jump (at t = 0+) if

ω f < ω∗ = ωi
Υs0 − 1

Υs0 + 1− 2ρ
.

Note that ω∗ is only slightly smaller than ωi in the high-temperature case (Υ � 1 and
ρ ≈ 1). However, even in the zero-temperature case (Υ = 1 and ρ = 0), ω∗ can be close to
ωi in strongly anisotropic initial traps wih s0 � 1. If ω f = 0 exactly, then

M f /(µBC) = (Υs0 − 1)/2 = const ≥ 0 (67)

after switching off the field. The same result follows from Equation (53) with ω(t) = 0 and
ε(t) = ω−1/2

i (1 + iωit) at t > 0. However, if ω f 6= 0, then the magnetic moment oscillates
with frequency 2|ω f |, and the amplitude of oscillations can be rather high. For example,
for |ω f | � ωi we have

M(t) = − µBC
2

[
1−Υs0 +

ωi
ω f

sin2(ω f t)(1+Υs0+2ρ)

]
. (68)

Due to the fraction ωi/ω f , the magnetic moment can attain periodically very high negative
values (i.e., of the same sign as the initial valueMi) for ω f > 0 (and positive values for
ω f < 0). Moreover,M(t) changes its sign during the evolution if ω f > 0, because 1−Υs0 < 0.

Equations (67) and (68) show that the division of the mean magnetic moment in the con-
stant and oscillating parts (58) is questionable for ω f → 0, when the period of oscillations
becomes extremely large. Indeed, Equation (68) yields the ratio R = |∆̃M|/|〈〈M〉〉| ≈ 1 if
|1−Υs0| � |ωi/ω f |(1+Υs0+2ρ), while Equation (67) yields ∆̃M = 0 if ω f = 0 exactly.

After the sudden inversion of magnetic field (ω f = −ωi) we have the positive function

M(t)/(µBC) = Υs0 − ρ + 2ρ sin2(ωit), (69)

which shows that the amplitude of oscillations is very small compared with the average
value 〈〈M〉〉 for this specific choice of the final frequency.

3.3.2. Parametric Resonance

In the parametric resonance case (46) we have

Mres(t) = −µBC
[
cosh2(ωiγt) + Υs0 sinh2(ωiγt) + (1 + Υs0) sinh(2ωiγt) sin(2ωit)/2− ρ cos(2ωit)

]
.

This quantity grows with time by the absolute value, but it does not change its initial
negative sign, despite strong oscillations with the frequency 2ωi. In particular, when
ωiγt� 1, the ratio [−Mres(t)/(µBC)] rapidly oscillates between the maximal value close
to exp(2ωiγt)(1 + Υs0)/2 and the minimal value which is close to zero.

3.4. Magnetic Moment Fluctuations

The magnetic moment fluctuations can be characterized by the variance
σM ≡ 〈M̂2〉− 〈M̂〉2. Using Equations (5), (8) and (12), we can write M̂2 = e2Ĥ2/(mcΩ)2 +
K̂, where

K̂ =
(eω)2

c2

[
x̂2

c x̂2
r + ŷ2

c ŷ2
r + x̂cŷc x̂r ŷr + ŷc x̂cŷr x̂r + x̂c

(
ŷ2

r x̂r+x̂r ŷ2
r

)
+ ŷc

(
x̂2

r ŷr+ŷr x̂2
r

)
+ 2
(

x̂3
r x̂c+ŷ3

r ŷc

)]
.

The average value of Ĥ2 was calculated in Section 3.2. Average values of other
fourth-order products of operators can be calculated according to the rule (50), using
explicit formulas given in Appendix B. However, explicit expressions in terms of all initial
parameters are rather involved: see Equations (A4)–(A6). For this reason, we confine
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ourselves here to the case of symmetric trap (s = 1), with xryr = xcyc = 0. Then, taking
into account formula (53) and the symmetries of matrices (A9)–(A11), we find

σM = [eω(t)/c]2
{

2
(

2σ2
11 − σ2

14

)
+ 8σ11σ13 + 2σ2

13 + 2σ11σ33 + [x̂r, ŷr]/2
}

. (70)

Nonetheless, even this formula is still rather cumbersome, as soon as each term σij is
an inhomogeneous linear combination of parameters Υ and ρ with different coefficients.
Therefore, we confine ourselves here to the limit cases of low and high initial temperatures.

In the zero temperature case (ρ = 0, C = Υ = 1), using Equations (A9) and (A11)
together with the identity

|ε|2|ε̇|2 − Re2(ε̇ε∗) = Im2(ε̇ε∗) ≡ 1,

we obtain after some algebra an extremely simple formula

σ
(l)
M (t) = µ2

B

[
ω(t)|ε|2

]2
=
[
M(l)(t)

]2
, (71)

which shows that quantum fluctuations of the magnetic moment are always strong, even
at zero temperature.

In the adiabatic case, matrix (34) leads to the formula

σ
(ad)
M (t) = (µBC)2

[
2 + Υ + ρ2 cos2(2ϕ)− 4ρ cos(2ϕ)

]
/2− µ2

B/2. (72)

In contradistinction to Equation (55) for the mean magnetic moment, the magnetic moment
variance contains the term proportional to Υ in the adiabatic regime. Therefore, in the
high temperature case we have σ

(ad)
M ≈ (µBC)2Υ/2�M2

ad. Moreover, σ
(ad)
M (t) is almost

constant for Υ� 1, since the amplitude of oscillations is much smaller than Υ (remember
that ρ ≤ 1). On the other hand, in the non-adiabatic regime we obtain, taking into account
only terms proportional to Υ in matrices (A9)–(A11) and comparing the result with (53),
the following formula in the high temperature case:

σ
(h)
M = (µBCΥ)2

[
ω(t)|ε|2 − 1

]2
= 4

[
M(h)

]2
. (73)

It is valid provided Υ
[
ω(t)|ε|2 − 1

]
� 1.

It was shown in paper [93] that quantum fluctuations of the magnetic moment are
very strong in the high-temperature equilibrium state (when the mean value is small).
The formulas of this section show that time-dependent magnetic fields amplify these
fluctuations. Hence, in each concrete measurement one can obtain the values of the
magnetic moment of any sign, with huge differences in outcomes of different experiments.
The mean squared deviations can be much bigger than the mean values obtained after
averaging over many tests.

4. Explicit Solutions of the Oscillator Equation in Terms of Elementary Functions

Exact solutions to Equation (3) are known for about a dozen of families of functions
ω(t): see, e.g., a list in [62] (since we consider the circular gauge in this section, ω means the
Larmor frequency). In the majority of cases, these solutions are expressed in terms of various
special functions. Nonetheless, there exist at least three specific examples, when solutions
can be expressed in terms of elementary functions. Two of them describe the inverse power
law decrease of the magnetic field to zero value, while the third one corresponds to the
exponential-like decrease to an arbitrary final value.
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4.1. Inverse Linear Decrease of Magnetic Field

One can easily verify that Equation (3) with the function

ω(t) =
{

ω0, t ≤ 0
ω0t0/(t + t0) = ω0/τ, t ≥ 0

, τ = 1 + t/t0 (74)

has solutions τ1/2±r, where r =
√

1/4− u2 and u = ω0t0 (see, e.g., papers [94,95]). Hence,
the function ε(t) satisfying the initial conditions (28) has the following form at t ≥ 0 (or
τ ≥ 1):

ε(t) =
√

τ

4r
√

ω0

[
(2r + 2iu− 1)τr + (2r− 2iu + 1)τ−r], (75)

ε̇(t) =
i
√

ω0

4r
√

τ

[
(2r + 2iu + 1)τr + (2r− 2iu− 1)τ−r].

Note that the adiabaticity parameters, introduced in Equation (41), have very simple and
time independent forms in the case involved: |ω̇/ω2| = (ω0t0)

−1 = u−1, |ω̈/ω3| = 2u−1.
Consequently, the adiabatic regime corresponds to values u� 1, whereas the case of u� 1
can be considered as a smooth analog of sudden jump. Note that function (75) is close
to (45) for τ � 1 and u� 1. However, these functions do not coincide exactly. Important
consequences of this difference are shown below.

4.1.1. Fast Field Variation

If u < 1/2, Equation (38) results in the formula

E(t)/Ei =
[(

τr − τ−r)2
+ 16r2 + s0Υ

(
τr − τ−r)2

+ 4ρr
(

τ2r − τ−2r
)]

/(16τr2). (76)

If u� 1, then t0 � ω−1
0 . Consequently, practically for all values of time variable t, which

are not extremely small, we have τ � 1 (for example, if t = ω−1
0 , then τ ≈ u−1). Moreover,

2r is very close to unity in this case. Neglecting the terms τ−2r and putting r = 1/2
in coefficients of Equation (76) (except for the exponent r = (1− δ)/2), we arrive at a
simplified expression

E(t)/Ei ≈ (1 + s0Υ + 2ρ)/(4τδ), δ = 1− 2r ≈ 2u2 � 1. (77)

Hence, the mean energy rapidly drops to the sudden jump value (44), and remains at this
level for a long time interval, when τδ ≈ 1. Note that the relative accuracy of approxi-
mation (77) is better than 0.01 already for t > 10t0. Finally, the energy will drop to zero
anyway, but this will happen for extremely big values of τ. For example, if s0Υ� 1, then
the inequality τ � τ∗ = (s0Υ/4)1/δ must be fulfilled (in order to have E(τ)/Ei < 1). If,
for instance, u = 0.1, s0 = 1 and Υ = 40, then τ∗ ≈ 1050.

Equation (53) yields the following expression for the mean magnetic moment:

M(τ) = −µBC
{

1 +
1 + s0Υ

16r2

[
(1− 2r)τ2r + (1 + 2r)τ−2r − 2

]
+

ρ

4r

[
(1− 2r)τ2r − (1 + 2r)τ−2r

]}
.

For u� 1 and τ � 1, this expression can be simplified as

M(τ) = −µBC
{

1− s0Υ
2

+
δ

4
τ1−δ(1 + s0Υ + 2ρ)

}
. (78)

Neglecting the term proportional to δ in (78), one arrives at the sudden jump approxi-
mation formula (67). However, this can be done provided τ � 1/δ only. When τ → ∞,
the magnetic moment grows unlimitedly (maintaining the initial sign).

In the intermediate case of u = 1/2 we have

E(t)/Ei =
1
τ

[
1 + ln2(τ)(1 + s0Υ)/4 + ρ ln(τ)

]
, (79)
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M = µBC
{

ρ− 1− (1 + s0Υ)[ln2(τ)− 2 ln(τ)]/4− ρ ln(τ)
}

. (80)

The mean energy goes to zero value as t → ∞, while the magnetic moment increases
unlimitedly. The role of the asymmetry parameter s0 is shown in Figure 1.
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Figure 1. The ratio E(τ)/Ei for different values of the asymmetry parameter s (given nearby the curves) for the inverse-
linear decay of magnetic field (74) with u = ω0t0 = 1/2. (Left) the low temperature case, ρ = 0, Υ = 1. (Right) the high
temperature case, ρ = 1, Υ = 10. The trace lines show the ratio ω(τ)/ωi.

4.1.2. Slow Field Variation

If u > 1/2, then,

ε(t) = [ω(t)]−1/2
[
eiν + sin(ν)(2iδu − 1)/(2γ)

]
, ε̇(t) = i[ω(t)]1/2

[
eiν + sin(ν)(2iδu + 1)/(2γ)

]
,

where γ =
√

u2 − 1/4 = |r|, ν = γ ln(τ) and δu = u − γ. Note that ν is close to the
adiabatic phase

∫ t
0 ω(x)dx = u ln(τ) for u� 1, although these quantities do not coincide

exactly. Now, Equation (38) assumes the form

E(t)/Ei =
1
τ

[
1 +

sin2(ν)(2 + s0Υ)
2(4u2 − 1)

+
ρ sin(2ν)√

4u2 − 1

]
. (81)

This formula gives us the accuracy of the adiabatic invariant E(t)/ω(t) = Ei/ωi for u� 1.
The peculiarity of the frequency dependence (74) is that the adiabatic regime is maintained
even when ω(τ)→ 0, whereas the condition (41) fails for a generic function ω(t), if ω is
close to zero: see examples in the following sections.

In all the cases, the mean energy tends, finally, to the zero value, although the necessary
effective time depends on the parameter u. Paradoxically, this final effective time is much
bigger in the “initial fast evolution” case (almost sudden jump, u � 1) than in the “slow
evolution” case (almost adiabatic, u � 1). Examples of the evolution are shown in
Figures 1 and 2. It is impressive that the mean energy is still very far from the asymptotic
zero value even when the frequency is 100 times smaller than the initial value (when
ln τ ≈ 4.6), if u ≤ 1/2. Moreover, no proportionality between E(t) and ω(t) is observed if
s0Υ� 1, even if u > 1/2.
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Figure 2. The ratio E(τ)/Ei for different values of the evolution speed parameter u = ω0t0 (given nearby the curves) for
the inverse-linear decay of magnetic field (74) with the asymmetry parameter s = 1 (an isotropic trap). (Left) the low
temperature case, ρ = 0, Υ = 1. (Right) the high temperature case, ρ = 1, Υ = 10. The trace lines show the ratio ω(τ)/ωi.

The mean magnetic moment equals

M = µBC[ρ cos(2ν)− 1]− µBC
4u2 − 1

{
(1 + s0Υ)

[
sin2(ν)− |r| sin(2ν)

]
+ 2ρ|r| sin(2ν)

}
. (82)

This formula gives corrections to the adiabatic Equation (55) (which corresponds to u� 1),
demonstrating again the absence of the adiabatic invariance for the magnetic moment.

The mean magnetic moment oscillates with a logarithmically increasing frequency in
the “adiabatic” case u > 1/2, while it increases unlimitedly if u ≤ 1/2. This behavior is
shown in Figure 3. We see that neither adiabatic nor sudden jump approximations work
in the whole time axis, although both approximations can have sense inside some limited
time intervals.
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Figure 3. The mean magnetic momentM(τ) for different values of the evolution speed parameter u = ω0t0 (given nearby
the curves) for the inverse-linear decay of magnetic field (74) with the asymmetry parameter s = 1 (an isotropic trap).
(Left) the low temperature case, ρ = 0, Υ = 1. (Right) the high temperature case, ρ = 1, Υ = 10.
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4.2. Inverse Quadratic Decrease of Magnetic Field

It is interesting that there exists the function ω(t) for which the adiabatic form of
solution (32) is exact. To find it, one has to solve the equation following from Formula (40):
2ωω̈ = 3ω̇2. Using the standard technique, one can transform it to the linear equation
dy/dω = 3y/ω with respect to function y = ω̇2. Finally, we arrive at the following function
(assuming that ω = ω0 = const for t ≤ 0):

ω(t) =
{

ω0, τ ≤ 1
ω0/τ2, τ ≥ 1

, τ = 1 + t/t0, u = ω0t0. (83)

Analytic solutions to Equation (3) with this function have the form τ exp(±iu/τ) (see also,
e.g., reference [96]).

Now, the adiabatic parameters depend on time: |ω̇|/ω2 = 2τ/u, |ω̈|/ω3 = 6(τ/u)2.
Note that τ/u = (t + t0)/(ω0t2

0). The necessary condition for the adiabatic approximation
is u� 1. However, even under this condition, the adiabatic approximation is expected to
fail asymptotically, when t� ω−1

0 u2. On the other hand, one can expect that the sudden
jump approximation can be quite good for u � 1 and any value of τ. However, what
happens in reality?

One can verify that function ε(t) satisfying the initial conditions (28) is the following
superposition of functions τ exp(±iu/τ) at t ≥ 0:

ε(t) =
τ

u
√

ω0
[u exp(iϕ)− sin(ϕ)] = [ω(t)]−1/2[exp(iϕ)− sin(ϕ)/u], (84)

ϕ = u(1− 1/τ) =
uω0t

u + ω0t
≡
∫ t

0
ω(x)dx. (85)

The time derivative equals

ε̇(t) =

√
ω0

u2τ
[u(τ + iu) exp(iϕ)− τ sin(ϕ)− u cos(ϕ)]

= [ω(t)]1/2
[
i exp(iϕ)(1− iτ/u)− (τ sin ϕ + u cos ϕ)/u2

]
.

This formula clearly shows that the condition u� 1 is not sufficient for the validity of the
adiabatic approximation: an additional condition τ � u must be fulfilled. Other useful
relations are

F+(t) ≡ ω(t)ε(t) + iε̇(t) = [ω(t)]1/2
{
(iτ/u) exp(iϕ)− [(u + iτ) sin ϕ + iu cos ϕ]/u2

}
, (86)

F−(t) ≡ ω(t)ε(t)− iε̇(t) = [ω(t)]1/2
{

2 exp(iϕ)[1− iτ/(2u)] + [(iτ − u) sin ϕ + iu cos ϕ]/u2
}

. (87)

The limit values at τ = ∞,

F±(∞) = ±i
√

ω0[u exp(iu)− sin(u)]/u2, (88)

yield the following nonzero asymptotic value of the mean energy, according to Equation (38):

E(∞) =
Ei

4u4

{[
u2 + sin2(u)− u sin(2u)

]
(1 + s0Υ)− 2ρ

[
u2 cos(2u) + sin2(u)− u sin(2u)

]}
. (89)
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In the limit u→ 0, Equation (89) goes to the sudden jump approximation Formula (44),
up to terms of the order of u2. On the other hand, the Taylor expansions of functions (86) and (87)
for u� 1,

F+ = −
√

ω0

[
1− τ−2 + i(u/3)

(
1− τ−1

)3
+O(u2)

]
,

F− =
√

ω0

[
1 + τ−2 + i(u/3)

(
1 + 3τ−1 − 3τ−2 − τ−3

)
+O(u2)

]
,

show that the accuracy of the sudden jump approximation is about 10% already for t = 2t0
(or τ = 3). For t = 9t0 (or τ = 10), the accuracy is about 1%.

Formula (53) for the mean magnetic moment assumes the form

M = −µBC
{

1− ρ cos(2ϕ) +
1
2
(1 + s0Υ− 2ρ)

[
sin2(ϕ)

u2 − sin(2ϕ)

u

]}
. (90)

If u� 1 (the sudden jump regime), then,

M(τ) =
1
2

µBC
[
s0Υ− 1− (1 + s0Υ− 2ρ)/τ2 +O(u2)

]
, (91)

in accordance with Equation (67). On the other hand, if u � 1 (the adiabatic regime),
the asymptotic value

M(∞) = −µBC
[
1− ρ cos(2u) +O(u−1)

]
, (92)

appears to be very sensitive to the concrete value of parameter u. In this case, the mean
magnetic moment is preserved for the zero-temperature initial state (ρ = 0), while it can
be much higher than the initial one for high-temperature initial states (ρ ≈ 1), for almost
all values of u. Figures 4 and 5 show functions E(τ)/Ei andM(τ) for different values of
parameter u in the isotropic traps with s = 1.
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Figure 4. The ratio E(τ)/Ei for different values of the evolution speed parameter u = ω0t0 (given nearby the curves) for
the inverse-quadratic decay of magnetic field (83) with the asymmetry parameter s = 1 (an isotropic trap). (Left) the low
temperature case, ρ = 0, Υ = 1. (Right) the high temperature case, ρ = 1, Υ = 10. The trace lines show the ratio ω(τ)/ωi.
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Figure 5. The mean magnetic momentM(τ) for different values of the evolution speed parameter u = ω0t0 (given nearby
the curves) for the inverse-quadratic decay of magnetic field (83) with the asymmetry parameter s = 1 (an isotropic trap).
(Left) the low temperature case, ρ = 0, Υ = 1. (Right) the high temperature case, ρ = 1, Υ = 10. The trace lines show the
ratio ω(τ)/ωi.

4.3. Exponential-Like Decrease of Frequency to a Final Value

Equation (3) can be solved in terms of trigonometric and hyperbolic functions for [97]

ω2(t) = ω2 +
2ω2

0

cosh2(ω0t)
. (93)

This example is interesting, because it describes the evolution which is neither adiabatic
nor fast. In this case, we have ω2

i = ω2 + 2ω2
0 and ω f = ω. It is convenient to introduce

the “intermediate” frequency ω2
1 = ω2 + ω2

0. Then, the solution satisfying the initial
conditions (28) at t = 0 has the form

ε(t) = D+eiωt
[
1 + i

ω0

ω
tanh(τ)

]
+ D−e−iωt

[
1− i

ω0

ω
tanh(τ)

]
, D± =

ω2
1 ±ωωi

2ω2
1
√

ωi
, τ = ω0t. (94)

This function becomes very close to the asymptotic form (35) already for τ > 4 (since
tanh(4) ≈ 0.9993), unless the ratio ω/ω0 is extremely small. The coefficients u± in this
case are given by the formula u± =

√
ωD±(1± iω0/ω). Using Equation (39), we obtain

the asymptotic mean energy

E(∞) =
Ei

4ω2
1ω2

i

[(
ω2

1 + ωωi

)2
+ s0Υ

(
ω2

1 −ωωi

)2
− 2ρω4

0

]
. (95)

If ω � ω0, then the final frequency is very close to the initial one, so E(∞) ≈ Ei for any
values of parameters Υ and ρ. On the other hand, if ω = 0, then,

E(∞)/Ei = (1 + s0Υ− 2ρ)/8. (96)

The minimum 1/4 of this ratio is achieved for the initial zero temperature and isotropic trap,
while it can be quite high in the high temperature case. The ratio E(∞)/Ei is monotonously
increasing function of the final frequency ω in the low-temperature case (Υ = 1). However,
it shows a more interesting behavior as function of the ratio ω/ω0 in the high-temperature
case (Υ� 1): see Figure 6. We do not bring here explicit formulas for the time-dependent
function E(τ), since they are rather cumbersome.
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Figure 6. (Left) The asymptotic ratio E(∞)/Ei as function of the ratio ω/ω0 for the exponential-like variation of magnetic
field (93) in the low-temperature (ρ = 0, Υ = 1) and high temperature (ρ = 1, Υ = 10) cases. (Right) The time-dependent
ratio E(τ)/Ei in the high-temperature case (ρ = 1, Υ = 10), for different values of the ratio ω/ω0 (shown nearby the related
curves). The asymmetry parameter s = 1 (the isotropic trap).

4.3.1. A Decrease to Zero Final Frequency

Taking the limit ω → 0 in Equation (94), we obtain the solution

ε(t) = ω−1/2
i

[
1− τ tanh(τ) + i

√
2 tanh(τ)

]
, ε̇(t) =

ω0

[
i
√

2− τ − sinh(τ) cosh(τ)
]

ω1/2
i cosh2(τ)

, (97)

with ωi =
√

2ω0 and τ = ω0t. Hence,

|F±|2 =
ωi[C0(τ) + C∓(τ)− 2]

2 cosh4(τ)
, Re(F−F+) =

ωi

[
C0(τ)− 3 cosh2(τ) + 2

]
2 cosh4(τ)

,

C0(τ) = cosh4(τ)− 2τ cosh(τ) sinh(τ) + τ2
[
2 cosh2(τ)− 1

]
, C±(τ) = cosh2(τ)[5± 4 cosh(τ)].

The evolution of mean energy is given by the formula

E(τ)/Ei =
C+ + C0 − 2 + s0Υ(C− + C0 − 2)− 2ρ

[
2 + C0 − 3 cosh2(τ)

]
8 cosh4(τ)

. (98)

The asymptotic value at τ → ∞ is given by Equation (96).
Using Equation (53), we obtain the following expression for the mean magnetic mo-

ment:

M(τ) =
−µBC

2 cosh(τ)

[
S + (1− s0Υ) cosh(τ)− 2Sτ tanh(τ) +

(
Sτ2 + 2S + 8ρ

)
tanh2(τ)

]
, (99)

where S = 1 + s0Υ− 2ρ. The asymptotic value at τ → ∞ is always non-negative:

M(∞) = µBC(s0Υ− 1)/2. (100)

It equals zero only for the zero temperature initial state in the isotropic trap.

5. Exact Solutions in Terms of the Confluent Hypergeometric and
Cylindrical Functions

In three examples of the preceding section, the sign of frequency (or magnetic field)
could not change. It appears that the most interesting behavior can be observed in the
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situations when the magnetic field changes its sign. In this section we consider an example
of exponentially varying frequency on the time semi-axis in the following form:

ω(t) =

{
ωi, t ≤ 0
ω f +

(
ωi −ω f

)
exp(−κt), t ≥ 0

. (101)

Solutions to Equation (3) with function (101) were considered in [11]. They can be expressed
in terms of the confluent hypergeometric function. This can be achieved by means of the
transformation

ε = x(c−1)/2 exp(−x/2)y(x), x = x0 exp(−κt).

Then, Equation (3) assumes the canonical form of the equation for the confluent hypergeo-
metric function,

xd2y/dx2 + (c− x)dy/dx− ay = 0, (102)

with the following set of parameters:

x0 = 2iµ, a = 1/2, c = 1− 2iγ, µ =
(

ωi −ω f

)
/κ, γ = ω f /κ. (103)

Choosing the solution to Equation (102) which is regular at x = 0 [98],

Φ(a; c; x) =
∞

∑
n=0

a(a + 1) . . . (a + n− 1)xn

c(c + 1) . . . (c + n− 1)n!
, (104)

we obtain the time dependent solution to Equation (3) which is regular at t = ∞:

ε1(t) = ω−1/2
i exp[iφ(t)]

Φ[1/2; 1− 2iγ; 2iµξ(t)]
Φ(1/2; 1− 2iγ; 2iµ)

, (105)

ξ(t) = exp(−κt), φ(t) = ω f t + µ[1− ξ(t)].

However, although function (105) satisfies the first initial condition (28), ε1(0) = ω−1/2
i ,

it does not satisfy the second condition, due to the nonzero time derivative of func-
tion Φ[1/2; 1 − 2iγ; 2iµξ(t)]. Therefore, the correct complex solution to Equation (3),
satisfying (28), should be constructed as a linear combination of functions ε1(t) and ε∗1(t):

ε(t) = D+ε1(t) + D−ε∗1(t), (106)

D+ =
1− λ∗/2
1−Reλ

, D− = − λ/2
1−Reλ

= 1− D+, λ =
2
(

ωi −ω f

)
Φ′(1/2; 1− 2iγ; 2iµ)

ωi Φ(1/2; 1− 2iγ; 2iµ)
. (107)

Here Φ′ is the derivative of function Φ(a; c; x) with respect to its argument x. It can be
written as [98]

Φ′(a; c; x) = (a/c)Φ(a + 1; c + 1; x).

Hence, parameter λ can be also written as

λ =

(
ωi −ω f

)
Φ(3/2; 2− 2iγ; 2iµ)

ωi(1− 2iγ)Φ(1/2; 1− 2iγ; 2iµ)
. (108)

When t→ ∞, then ξ → 0 and Φ(a; c; 2iµξ)→ 1. Therefore, we have asymptotically

ε1(t) =
exp

[
i
(

ω f t + µ
)]

ω1/2
i Φ(1/2; 1− 2iγ; 2iµ)

, ε̇1(t) = iω f ε1(t).
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This means that

u+ =

√
|ω f |
ωi
×


D+ exp(iµ)

Φ(1/2; 1− 2iγ; 2iµ)
, ω f > 0

D− exp(−iµ)
[Φ(1/2; 1− 2iγ; 2iµ)]∗

, ω f < 0
, (109)

u− =

√
|ω f |
ωi
×


D− exp(−iµ)

[Φ(1/2; 1− 2iγ; 2iµ)]∗
, ω f > 0

D+ exp(iµ)
Φ(1/2; 1− 2iγ; 2iµ)

, ω f < 0
. (110)

Then, the identity (36) takes the form (for positive as well as for negative values of ω f )

(ω f /ωi)
[
(1− Reλ)|Φ(1/2; 1− 2iγ; 2iµ)|2

]−1
= 1. (111)

Hence, the signs of ω f and 1− Reλ coincide. Other consequences of (111) are the formulas

|u−|2 =
|λ|2

4[1− Re(λ)]
, ω f > 0; |u+|2 =

|λ|2
4[Re(λ)− 1]

, ω f < 0. (112)

u+u− =

(
|λ|2 − 2λ

)
ω f

4[1− Re(λ)]|ω f |
. (113)

5.1. Mean Energy

Equations (39), (112) and (113) yield the following ratio between the final and initial
mean energies:

E f

Ei
=

ω f
[
(1 + s0Υ− 2ρ)|λ|2 + 4ρRe(λ)

]
4ωi[1− Re(λ)]

+
ω f

ωi
×
{

1, ω f > 0
s0Υ, ω f < 0

. (114)

In the case of initial zero temperature and isotropic trap (ρ = 0 and s0Υ = 1), we have

E f

Ei
=

ω f

ωi

(
1 +

|λ|2/2
1− Reλ

)
. (115)

Figure 7 shows the ratio E f /Ei as function of ratio ω f /ωi with several fixed values of
parameter κ, for the initial zero-temperature and high-temperatures states. The accuracy of
numerical calculations (performed with the aid of Mathematica and Mapple) was checked
by the fulfillment of identity (111). The case of κ = 10ωi corresponds to the sudden
jump approximation discussed in Section 3.1.2. One can see the symmetry with respect
to the change of sign of the final frequency ω f , as well as the cusp at ω f = 0 in the high-
temperature regime. However, the symmetry is broken for moderate values of κ, and the
striken asymmetry is observed for κ � ωi. For example, the curve E f (ω f ) is practically
the straight line E f = Eiω f /ωi for κ/ωi = 0.1 and ω f > 0 in the low-temperature regime.
However, if ω f < 0, we see the straight line E f = 3Ei|ω f |/ωi for |ω f | � ωi. This
asymmetry (including the “strange” coefficient 3) is explained in Appendix C.
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Figure 7. The ratio E f /Ei versus the final frequency ω f for different values of parameter κ (shown nearby the respective
lines) in the case of exponentially varying frequency on the time semi-axis (101). The initial frequency is ωi = 1. (Left)
ρ = 0, s0Υ = 1. (Right) ρ = 1, s0Υ = 10.

Figure 8 shows the ratio E f /Ei as function of ratio κ/ωi for positive values of the final
frequency ω f . The dependence is rather weak, except for the case of small values of ω f ,
when the final energy turns out to be much higher than the initial one in the almost sudden-
jump regime with κ/ωi � 1, especially in the high-temperature case. For negative values
of ω f , the ratio E f /Ei is shown in Figure 9 for the high-temperature case (ρ = 1, s0Υ = 10).
Plots in the low-temperature case look similar, only the vertical scale is diminished.

According to Figure 8, the sudden jump approximation seems to be quite reasonable
already for κ > 5ωi. In principle, one can expect this approximation to be valid under the
condition κ � ωi. Indeed, if κ � ωi, f , then coefficients µ and γ are very small. Putting
γ = µ = 0 in the arguments of hypergeometric functions in Equation (108), one obtains
λ = (ωi −ω f )/ωi. Then, it is easy to verify that formulas (109) and (110) coincide with the
instantaneous jump expressions (42) for the coefficients u±. More precise estimations of
the accuracy of this approximation are given in Appendix D.
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Figure 8. The ratio E f /Ei versus parameter κ for different positive values of the final frequency ω f (shown nearby the
respective lines) in the case of exponentially varying frequency on the time semi-axis (101). The initial frequency is ωi = 1.
(Left) ρ = 0, s0Υ = 1. (Right) ρ = 1, s0Υ = 10.
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Figure 9. The ratio E f /Ei versus parameter κ for different negative values of the final frequency ω f (shown nearby the
respective lines) in the case of exponentially varying frequency on the time semi-axis (101). The initial frequency is taken as
ωi = 1. Other parameters are: ρ = 1, s0Υ = 10.

5.2. Mean Magnetic Moment in the Asymptotic Regime

In view of Equations (58)–(60), one needs two coefficients, |u−|2 (or |u+|2) and u+u−,
to calculate the mean magnetic moment in the asymptotic regime. They are given by
Formulas (112) and (113). Explicit expressions are rather cumbersome. We bring here only
the simple result for the ratio R = |∆̃M|/|〈〈M〉〉| in the case of zero initial temperature,
when Equations (62) and (113) yield

R =
|λ|
√
|λ|2 + 4[1− Re(λ)]

|λ|2 + 2[1− Re(λ)]
. (116)

Figures 10 and 11 show the ratio (116) as function of κ for different fixed values of the final
frequency ω f (assuming ωi = 1) and as function of ω f for different values of κ. We see
that the dependence R(κ) is quite different for finite positive and negative values of the
final frequency ω f , especially if κ � ωi (a slow evolution). Function R(ω f ; κ) also shows a
strong asymmetry for small and moderate values of the fixed parameter κ. A symmetry
with respect to the sign of frequency ω f is restored for κ � 1, when R(ω f ; ∞) coincides
with the sudden jump Formula (66).
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Figure 10. The ratio R = |∆̃M|/|〈〈M〉〉| in the case of zero initial temperature (ρ = 0 and s0Υ = 1) versus parameter κ for
different values of the final frequency ω f (shown nearby the respective lines) in the case of exponentially varying frequency
on the time semi-axis (101). The initial frequency is taken as ωi = 1. (Left) ω f > 0. (Right) ω f < 0.
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Figure 11. The ratio R = |∆̃M|/|〈〈M〉〉| in the case of zero initial temperature (ρ = 0 and s0Υ = 1) and exponentially
varying frequency (101) versus the final frequency ω f . (Left) for different finite values of the parameter κ (shown nearby
the respective lines). (Right) for the limit case of κ = ∞ (the sudden jump). The initial frequency is taken as ωi = 1.

According to Figure 11, we see that R = 1 for ω f = 0 and any value of parameter
κ. This result can be derived from Formula (116) in the following way. If ω f = 0, then
parameter γ defined in Equation (103) equals zero. In this case, we can use the known
formula relating the confluent hypergeometric function with the Bessel function [98]:

Φ(1/2; 1; 2iµ) = J0(µ)eiµ, Φ(1/2; 1; x) = J0(x/2i)ex/2. (117)

Then, dΦ(1/2; 1; x)/dx = (1/2)ex/2[J0(x/2i)− i J′0(x/2i)]. Using the formula J′0(x) =
−J1(x) and the formula for λ in Equation (107), we obtain the expression λ = 1 +
i J1(µ)/[2J0(µ)]. Since Re(λ) = 1 in this approximation, Equation (116) yields R = 1.

The identity (111) shows that the fraction [(1− Reλ)]−1 behaves as (ωi/ω f ) when
ω f → 0. Then, Equation (112) tells us that coefficients u2

± diverge as |ωi/ω f | in this limit.
In view of Equation (59), we conclude that the average magnetic moment 〈〈M〉〉 grows
unlimitedly with time if ω f = 0.

5.3. Exponential Switching off the Field: Solutions in Terms of the Hankel Functions

To understand better the behavior of the mean energy in the case of ω f = 0, we notice
that the substitution x = µ exp(−κt) with µ = ωi/κ transforms Equation (3) with function
ω(t) = ωi exp(−κt) to the Bessel equation

x2 f ′′ + x f ′ + x2 f = 0. (118)

Complex solutions to this equation can be written as linear combinations of the Hankel
functions of zero order, H0(x) = J0(x) + iY0(x) and H∗0 (x), where J0(x) is the Bessel
function and Y0(x) the Neumann function [98]. Then, function ε(t) can be written in the
form (106) with

ε1 =
H0(µξ)√
ωi H0(µ)

,
dε1

dt
=

ξ
√

ωi H1(µξ)

H0(µ)
, ξ = e−κt, (119)

so

D+ =
1 + iη∗

2Im(η)
, D− = − 1 + iη

2Im(η)
, η =

H1(µ)

H0(µ)
, Im(η) = −2

[
πµ|H0(µ)|2

]−1
. (120)

The following known formulas were used here:

H′0(x) = −H1(x), H0(x)H′∗0 (x)− H′0(x)H∗0 (x) = −4i/(πx). (121)
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The functions F±(t), introduced in Equation (31), can be written as follows,

F±(ξ) = ξ
√

ωi[D+h±(ξ) + D−h∗∓(ξ)], h±(ξ) = [H0(µξ)± iH1(µξ)]/H0(µ). (122)

5.3.1. Mean Energy

The time-dependent mean energy is given by Equation (38) with the following
coefficients:

|F±(ξ)|2 =
(πµξ)2ωi

8

{
V+(ξ)V+(1)− Re[U∗+(1)U+(ξ)]∓

16
(πµ)2ξ

}
, (123)

Re[F−(ξ)F+(ξ)] =
(πµξ)2ωi

8
{Re[U∗−(1)U+(ξ)]−V+(ξ)V−(1)}, (124)

where
V±(ξ) = |H0(µξ)|2 ± |H1(µξ)|2, U±(ξ) = H2

0(µξ)± H2
1(µξ). (125)

The most simple expression can be written for the initial zero-temperature state:

E(t)/Ei = (πµξ)2{V+(1)V+(ξ)− Re[U∗+(1)U+(ξ)]}/16. (126)

Typical plots of the ratio E/Ei as function of the dimensionless parameter τ = κt are
given in Figure 12. Similar plots for E/Ei as function of variable ξ are given in Figure 13.
Note that small values of parameter µ = ωi/κ correspond to almost instant “jump” of
the frequency to the final zero value, whereas the case of µ � 1 corresponds to a slow
(quasi-adiabatic) frequency decay to zero. The left-hand side of Figure 13 with µ = 10
shows practically adiabatic evolution E/Ei = ξ up to very small values of ξ. However,
the adiabaticity is always broken at the final stage of evolution, when the mean energy
tends to a nonzero final value, even at zero temperature. On the other hand, the adiabatic
evolution becomes very approximate in the high-temperature case, as one can see in the
right-hand side of Figure 13, where the line with the same value µ = 10 clearly shows
oscillations around the straight line E/Ei = ξ. The final energy is smaller than the initial
one for any value of µ in the zero-temperature regime. However, it can be much higher
than Ei in the high-temperature case with µ < 2, as one can see in Figures 12 and 13.
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Figure 12. The ratio E/Ei versus the dimensionless time τ = κt for different values of parameter µ = ωi/κ (shown nearby
the respective lines) in the case of exponentially varying frequency (101) with ω f = 0. The initial frequency is ωi = 1.
(Left) ρ = 0, s0Υ = 1. (Right) ρ = 1, s0Υ = 10.
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Figure 13. The ratio E/Ei versus the variable ξ = ω(t)/ωi for different values of parameter µ = ωi/κ (shown nearby the
respective lines) in the case of exponentially varying frequency (101) with ω f = 0. The initial frequency is taken as ωi = 1.
(Left) ρ = 0, s0Υ = 1. (Right) ρ = 1, s0Υ = 10.

If t → ∞, then ξ → 0, so [98] ξH0(µξ) → 0, but ξH1(µξ) → −2i/(πµ). Using these
relations, one can obtain after some algebra the following formula for the final mean energy
E f = E(∞):

E f /Ei =
{
(1 + s0Υ)

[
J2
0 (µ) + J2

1 (µ)
]
+ 2ρ

[
J2
0 (µ)− J2

1 (µ)
]}

/4. (127)

The right-hand side of this equation is shown in Figure 14 as function of parameter κ.
If µ� 1, formula (127) assumes the form

E f /Ei ≈
{
(1 + s0Υ)

(
1− µ2/4

)
+ 2ρ

(
1− 3µ2/4

)}
/4.

Putting µ = 0, we arrive at the instant jump approximation formula (44). We see that the
relative accuracy of this approximation is of the order of µ2/4.
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Figure 14. The ratio E f /Ei versus parameter κ in the case of exponentially varying frequency (101) with ω f = 0 and ωi = 1.
Lower curves: ρ = 0, s0Υ = 1. Upper curves: ρ = 1, s0Υ = 5.

In the adiabatic limit, κ � ωi, the known asymptotic formulas for µ� 1,

J0(µ) ≈
√

2/(πµ) cos(µ− π/4), J1(µ) ≈
√

2/(πµ) sin(µ− π/4),
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lead to the relation

E f /Ei ≈ κ[1 + s0Υ + 2ρ sin(2ωi/κ)]/(2πωi). (128)

The proportionality of the ratio E f /Ei to κ when κ � ωi in the zero-temperature case
is clearly seen in Figure 14. On the other hand, this ratio demonstrates strong oscillations
as function of κ in the high-temperature regime.

6. The Epstein–Eckart Profiles: Solutions in Terms of the Gauss
Hypergeometric Functions

Exact solutions in terms of the Gauss hypergeometric function

F(a, b; c; x) =
∞

∑
n=1

(a)n(b)nxn

(c)nn!
, (129)

satisfying the equation

x(1− x)F′′ + (c− (a + b + 1)x)F′ − abF = 0, (130)

can be found for the family of the Epstein–Eckart profiles [99,100], which are combinations
of some fractions containing exponential functions of time. The total family has four
constant parameters. In order to simplify the analysis, we confine ourselves here with two
simple subfamilies containing two or three parameters.

6.1. Evolution on the Whole Time Axis

The first example corresponds to the Larmor frequency of the form

ω(t) =
ω f exp(κt) + ωi

exp(κt) + 1
, −∞ < t < ∞, κ > 0. (131)

One can verify (see Appendix E) that Equation (3) with ω(t) given by Equation (131) has
the solution

ε(t) = ω−1/2
i eiωit(1 + ζ)dF(a, b; c;−ζ), ζ = eκt, (132)

with the following parameters:

d = 1/2−
√

1/4−
(

ω̃i − ω̃ f

)2
, a = d+ i

(
ω̃i + |ω̃ f |

)
, b = d+ i

(
ω̃i − |ω̃ f |

)
, c = 1+ 2iω̃i, (133)

where ω̃i,k ≡ ωi,k/κ. There exists also the solution with d = 1/2 +
√..., but namely the

choice (133) leads to the desired solution ω−1/2
i exp(iωit) if ωi = ω f . Since ζ = dζ/dt = 0

for t = −∞, function (132) behaves exactly as ω−1/2
i exp(iωit) at t→ −∞.

Note, however, that function (132) is the solution to Equation (3) for t ≤ 0 only, when
ζ ≤ 1. For t ≥ 0, one should use the analytic continuation of the hypergeometric function,
given by formula 2.10(2) from [98]:

F(a, b; c;−ζ) = B1ζ−aF(a, 1− c + a; 1− b + a;−ζ−1) + B2ζ−bF(b, 1− c + b; 1− a + b;−ζ−1), (134)

B1 =
Γ(c)Γ(b− a)
Γ(b)Γ(c− a)

, B2 =
Γ(c)Γ(a− b)
Γ(a)Γ(c− b)

. (135)

Therefore, at ζ → ∞ we arrive at the form (35) of ε(t) at t → ∞, with the following
coefficients u±:

u± =

(
|ω f |/ωi

)1/2
Γ(1 + 2iω̃i)Γ

(
±2i|ω̃ f |

)
Γ
[
d + i

(
ω̃i ± |ω̃ f |

)]
Γ
[
1 + i

(
ω̃i ± |ω̃ f |

)
− d
] . (136)
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If |ω̃i, f | � 1, then d ≈
(

ω̃i − ω̃ f

)2
. Hence, formula Γ(x) = Γ(1 + x)/x ≈ 1/x (valid for

|x| � 1) leads immediately to the sudden jump relations (42). Analyzing the maximum of
ratio |ω̇/ω2| as function of time for the Epstein–Eckart profile (131) with ω f > 0, we obtain
the condition of the adiabatic approximation κ|ω f −ωi|/(ω f ωi)� 1, which is equivalent
to κ � min(ω f , ωi), if the initial and final frequencies are well different.

In the case of ω f = −ωi, the formula Γ(z)Γ(1− z) = π/ sin(πz) leads to a simple
expression

u− =
i sin(πd)

sinh(2πω̃i)
=

i cos
(

π
√

1/4− 4ω̃2
i

)
sinh(2πω̃i)

. (137)

In the fast transition limit, ω̃i � 1, we have u− ≈ 2iω̃i, so E f is close to Ei, in accordance
with the sudden jump approximation. In the adiabatic limit, ω̃i � 1, we have u− ≈
i coth(2πω̃i). Note that parameter ρ is not very important for the mean energy: ρ = 0
at zero temperature and ρ � s0Υ in the high-temperature case. Taking into account this
observation, we obtain the following limit ratio for ω̃i � 1 (and ω f = −ωi): E f /Ei ≈
2 + s0Υ (i.e., E f /Ei ≈ 3 at zero temperature). Using Equation (64), one can obtain the
following simple expressions for the magnetic moment in the case of ω f = −ωi:

〈〈M〉〉
µBC

≈
{

s0Υ ω̃i � 1
1 + 2s0Υ ω̃i � 1

,
|∆̃M|
µBC

≈ (1 + s0Υ)×
{

2ω̃i ω̃i � 1√
2 ω̃i � 1

. (138)

Neglecting the term proportional to ρ in Equation (39), we need to know the only
quantity |u−|2. Using the formula [101] |Γ(ix)|2 = π[x sinh(πx)]−1, we can write

|u−|2 = π2
∣∣∣Γ[d + i

(
ω̃i − |ω̃ f |

)]
Γ
[
1 + i

(
ω̃i − |ω̃ f |

)
− d
]∣∣∣−2[

sinh(2πω̃i) sinh
(

2π|ω̃ f |
)]−1

. (139)

The right-hand side of this equation diverges when ω f → 0. Consequently, the magnetic
moment grows unlimitedly with time if ω f = 0.

For negative values of ω f with |ω̃ f | � 1, we have d = 1/2± i
(

ω̃i + |ω̃ f |
)
+O

(
|ω̃ f |−1

)
.

The product of two Gamma functions in (139) takes the form Γ(1/2+ 2iω̃i)Γ(1/2− 2i|ω̃ f |).
Hence, using the relation [101] |Γ(1/2 + ix)|2 = π/ cosh(πx), we obtain the formula
|u−|2 ≈ coth(2πω̃i) coth

(
2π|ω̃ f |

)
, so that E f /Ei ≈ (|ω f |/ωi)(2 + s0Υ) in the limit of

κ → 0.
On the other hand, if ω f > 0 and ω̃ f � 1, then d ≈ 1/2± i

(
ω̃i − ω̃ f

)
, and the

product of two Gamma functions in (139) takes the form Γ
[
1/2 + 2i

(
ω̃i − ω̃ f

)]
Γ(1/2).

Then, using the consequence of the Stirling formula [101],

|Γ(x + iy)|2 ≈ 2π|y|2x−1e−π|y|, |y| � 1,

we obtain

|u−|2 ≈ exp
(

2π|ω̃i − ω̃ f |
)[

sinh(2πω̃i) sinh
(

2πω̃ f

)]−1
≈ 2 exp

[
−4π min

(
ω̃i, ω̃ f

)]
� 1.

In this case, we have the known adiabatic invariant E f /Ei ≈ ω f /ωi. Figures 15–17 show
the ratio E f /Ei for the same values of ω f and κ as in Figures 7–9, for ωi = 1, using
Equations (39) and (139).
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Figure 15. The ratio E f /Ei versus the final frequency ω f for different values of parameter κ (shown nearby the respective
lines) in the case of the Epstein–Eckart profile (131). The initial frequency is taken as ωi = 1. (Left) ρ = 0, s0Υ = 1. (Right)
ρ = 1, s0Υ = 10.
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Figure 16. The ratio E f /Ei versus parameter κ for different positive values of the final frequency ω f (shown nearby the
respective lines) in the case of the Epstein–Eckart profile (131). The initial frequency is taken as ωi = 1. (Left) ρ = 0, s0Υ = 1.
(Right) ρ = 1, s0Υ = 10.
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Figure 17. The ratio E f /Ei versus parameter κ for different negative values of the final frequency ω f (shown nearby the
respective lines) in the case of the Epstein–Eckart profile (131). The initial frequency is taken as ωi = 1. (Left) ρ = 0, s0Υ = 1.
(Right) ρ = 1, s0Υ = 10.

We see that Figures 15 and 16 look similar to Figures 7 and 8. Especially expressive
is Figure 15 with straight lines in the adiabatic regime κ = 0.1, but with different incli-
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nations for positive and negative values of the final frequency ω f . On the other hand,
Figures 9 and 17 for negative values of the final frequency ω f are different: there are no
oscillations for small values of κ in Figure 17, whereas such oscillations are well pronounced
in Figure 9.

6.2. “Mild” Transition to the Exponential Decay on the Semi-Axis

In all examples of the evolution starting at t = 0, considered in the preceding sections,
the frequency ω(t) had a discontinuity of the derivative at the initial instant. This drawback
can be removed for the time-dependent frequency

ωm(t) = ωi/ cosh(κt), ω2
m(t) = ω2

i

[
1− tanh2(κt)

]
. (140)

Note that ωm(t) > ωi exp(−κt) for t > 0 and ωm(t) ≈ 2ωi exp(−κt) for κt� 1.
An example (97) shows that the solution to Equation (3) with frequency ωm(t) can

be expressed in terms of tanh(κt) in the special case when (ωi/κ)2 = 2. Therefore, it
seems reasonable to introduce the new variable ξ = tanh(κt). Using the transformation
of derivatives dψ/dt = κ

(
1− ξ2)dψ/dξ, one can transform Equation (3) with the time-

dependent frequency (140) to the Legendre equation(
1− ξ2

)
d2ε/dξ2 − 2ξdε/dξ + (ωi/κ)2ε = 0. (141)

Its general solution is a superposition of the Legendre functions of the first and second kind,
Pν(ξ) and Qν(ξ) [102]

ε(t) = DpPν(ξ) + DqQν(ξ), ν = −1/2 + r, r =
√

1/4 + (ωi/κ)2. (142)

[One can verify that the second solution of the equation ν(ν + 1) = (ωi/κ)2, ν = −1/2− r,
results in the same expression (142) due to the properties of functions Pν(ξ) and Qν(ξ)].
Constant complex coefficients Dp and Dq are determined by the initial conditions (27). The
following relations are useful for our purposes [102] (remembering that 0 ≤ ξ < 1):

Pν(ξ) = F
(
−ν, ν + 1; 1;

1− ξ

2

)
= F

(
1/2− r, 1/2 + r; 1;

exp(−κt)
2 cosh(κt)

)
, (143)

Qν(ξ) =
π

2 sin(νπ)
[cos(νπ)Pν(ξ)− Pν(−ξ)], ν 6= 0,±1,±2, . . . , (144)

P0(ξ) = 1, P1(ξ) = ξ, Q0(ξ) =
1
2

ln
(

1 + ξ

1− ξ

)
, Q1(ξ) =

ξ

2
ln
(

1 + ξ

1− ξ

)
− 1, (145)

Pν(0) = −
sin(νπ)

2π3/2 Γ
(

ν + 1
2

)
Γ
(
− ν

2

)
, Qν(0) =

1− cos(νπ)

4π1/2 Γ
(

ν + 1
2

)
Γ
(
− ν

2

)
, (146)(

1− ξ2
)

dPν(ξ)/dξ = (ν + 1)[ξPν(ξ)− Pν+1(ξ)], (147)(
1− ξ2

)
dQν(ξ)/dξ = (ν + 1)[ξQν(ξ)−Qν+1(ξ)], (148)

Using Equations (27), (142), (147) and (148), we find the coefficients

Dp =
(ν + 1)Qν+1(0) + iµQν(0)

ω1/2
i (ν + 1)[Pν(0)Qν+1(0)−Qν(0)Pν+1(0)]

, (149)

Dq = − (ν + 1)Pν+1(0) + iµPν(0)

ω1/2
i (ν + 1)[Pν(0)Qν+1(0)−Qν(0)Pν+1(0)]

, (150)

where µ = ωi/κ. Expressions in Equations (149) and (150) can be simplified with the aid
of Equation (146) and the known formulas for the products of Gamma-functions, such
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as Γ(x)Γ(1− x) = π/ sin(πx) and Γ(x)Γ(−x) = −π/[x sin(πx)]. Then, the following
relation can be verified:

(ν + 1)[Pν(0)Qν+1(0)−Qν(0)Pν+1(0)] = −1.

Consequently,

Dp =
√

π/ωi

{
cos(νπ/2)

Γ[(ν + 2)/2]
Γ[(ν + 1)/2]

+ i(µ/ν) sin(νπ/2)
Γ[(ν + 1)/2]

Γ[ν/2]

}
, (151)

Dq =
2√
πωi

{
− sin(νπ/2)

Γ[(ν + 2)/2]
Γ[(ν + 1)/2]

+ i(µ/ν) cos(νπ/2)
Γ[(ν + 1)/2]

Γ[ν/2]

}
. (152)

In the special case of µ =
√

2, when ν = 1, Equations (142), (145), (151) and (152) yield the
solution (97).

6.2.1. Mean Energy

The functions F±(ξ) determining the mean energy in accordance with Equations (31)
and (38), can be written as follows,

F±(ξ) = ωi

√
1− ξ2

[
DpPν(ξ) + DqQν(ξ)

]
±iκ(ν + 1)

{
Dp[ξPν(ξ)− Pν+1(ξ)] + Dq[ξQν(ξ)−Qν+1(ξ)]

}
. (153)

Figure 18 shows the evolution of the ratio E(τ)/Ei in the low- and high-temperature
regimes. Pay attention to small oscillations for µ = 10 in the right plot. They arise due to
oscillatory nature of functions Pν(ξ) and Qν(ξ) with big values of index ν (remember that
Pν(ξ) is the Legendre polynomial if ν is an integer). These oscillations are suppressed in
the low-temperature regime, but the high value of parameter Υ amplifies the oscillations
during the initial stage of the evolution.
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Figure 18. The ratio E(τ)/Ei for the “mild” exponential frequency decay (140) with µ = 0.1, 1.0, 10, 0. (Left) ρ = 0, s0Υ = 1.
(Right) ρ = 1, s0Υ = 10.

The asymptotic value of the mean energy at t→ ∞ is determined by the limit values
F±(1). Since Pν(1) = 1 for any value ν, the coefficient Dp does not contribute to these
limit values:

F±(1) = ωiDq lim
ξ→1

{√
1− ξ2Qν(ξ)± iµ−1(ν + 1)[ξQν(ξ)−Qν+1(ξ)]

}
.
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The following representation of function Qν(ξ) is useful here (see, e.g., Section 3.6.1 in
reference [98]):

Qν(ξ) = Pν(ξ)

[
1
2

ln
(

1 + ξ

1− ξ

)
− γ− ψ(ν + 1)

]
+

∞

∑
l=1

cl(1− ξ)l ,

where γ is the Euler constant and ψ(z) = d ln[Γ(z)]/dz is the logarithmic derivative of the
Gamma-function. The explicit form of coefficients cl is not important for our purpose, as soon
as the last series goes to zero for ξ = 1. Since the divergence of function Qν(ξ) at ξ = 1 is only
logarithmic, limξ→1

[√
1− ξ2Qν(ξ)

]
= 0. Then, using the relation ψ(1 + z)− ψ(z) = 1/z

(see, e.g., Equation 1.7(8) from [98]), we arrive at the simple formula F±(1) = ±iκDq.
Hence, the final mean energy equals (see Equation (38))

E f =
ωiEi
4µ2

[
|Dq|2(1 + s0Υ)− 2ρRe

(
D2

q

)]
. (154)

Plots of functions µ−2|Dq(µ)|2 and −µ−2Re
[

D2
q(µ)

]
are shown in Figure 19 (assuming

ωi = 1).
For µ � 1 we have ν ≈ µ2 and Dq ≈ iµ/

√
ωi. Then, Equation (154) goes to the

sudden jump formula (44). To see the dynamics of the “fast jump”, we can approximate
Equation (153), taking Dp ≈ 1/

√
ωi and replacing functions Pν(ξ) and Qν(ξ) with P0(ξ)

and Q0(ξ) from Equation (145). Then, we obtain F±(ξ) ≈ ω1/2
i [1/ cosh(τ)∓ 1] and

E(τ)/Ei =
1
4

{
[1 + 1/ cosh(τ)]2 + s0Υ[1− 1/ cosh(τ)]2 + 2ρ tanh2(τ)

}
, τ ≡ κt. (155)

In the “adiabatic” limit µ � 1 we have ν ≈ µ − 1/2. Then, using the Stirling
formula for the Gamma-functions, we find Dq ≈ i exp(iνπ/2)

√
2ν/(πωi) and Dp ≈

exp(iνπ/2)
√

πν/(2ωi). The final energy is very close to that given by Equation (128),
but the frequency of oscillations is different:

E f /Ei ≈ κ[1 + s0Υ + 2ρ sin(πωi/κ)]/(2πωi). (156)
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Figure 19. (Left) functions µ−2|Dq(µ)|2 and −µ−2Re
[

D2
q(µ)

]
with ωi = 1. (Right) functions |Dq(µ)|2 and |Dp(µ)|2.

6.2.2. Mean Magnetic Moment

Figure 20 shows the evolution of the mean magnetic moment as function of dimen-
sionless time τ = κt, calculated in accordance with Equation (53). The oscillations at the
initial stage of the evolution are distinctly pronounced here.
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Figure 20. The normalized mean magnetic moment as function of dimensionless time τ = κt for the “mild” exponential
frequency decay (140) with µ = 0.1, 1.0, 10, 0. (Left) ρ = 0, s0Υ = 1. (Right) ρ = 1, s0Υ = 10.

One can verify that the product
√

ω(t)ε(t) =
√

ωi
(
1− ξ2)1/4

ε(ξ) goes to zero as
t→ ∞ (or ξ → 1) for any value of parameter ν (because the divergence of function Qν(ξ)
at ξ → 1 is only logarithmic). Consequently, Equation (53) results in the asymptotic value
of the magnetic moment (100) for all values of the ratio κ/ωi. Function ε(t) (142) in the
case of µ � 1 has the form ε = ω−1/2

i (1 + iµτ) = ω−1/2
i (1 + iωit). However, the term

(µτ)2 can be neglected in the formula for ω(τ)|ε(τ)|2 when µ� 1 (due to the exponential
decrease of the frequency). Hence, formula (53) for the time-dependent mean magnetic
moment assumes the form

M(t) = −(µBC/2){1/ cosh(τ) + 1 + Υs0[1/ cosh(τ)− 1]− 2ρ/ cosh(τ)}. (157)

7. Landau Gauge: General Formulas

For α = 1, the set of Equations (13) and (14) takes the form

ẋ = px/m + Ω(t)y, ẏ = py/m, ṗx = 0, ṗy = −Ω(t)px −mΩ2(t)y,

where Ω(t) is the cyclotron frequency. Hence, px = const, and we arrive at the inhomoge-
neous equation

ÿ + Ω2(t)y = −Ω(t)px/m. (158)

Therefore, all solutions can be expressed in terms of complex functions ε(t) and ε∗(t),
satisfying Equation (3) with α = 1 and the condition (27). However, due to the presence of
function Ω(t) in the right-hand side of Equation (158), the solutions to the complete set of
equations contain three additional functions [10]:

σ(t) =
∫ t

t0

Ω(τ)ε(τ)dτ = −
∫ t

t0

ε̈(τ)/[Ω(τ)]dτ = − ε̇(t)
Ω(t)

+
i√
Ωi
−
∫ t

t0

ε̇(τ)Ω̇(τ)

Ω2(τ)
dτ, (159)

S(t) = Im(εσ∗), χ(t) =
∫ t

t0

[1−Ω(τ)S(τ)]dτ, (160)

where t0 is the time instant when the frequency Ω starts to vary (so that Ω(t) ≡ Ωi for
t ≤ t0). Functions ε(t) and σ(t) are complex, whereas functions S(t) and χ(t) are real.
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After some straightforward algebra, one can obtain the following form of matrix ΛQ in
Equation (15):

ΛQ(t) =

∥∥∥∥∥∥∥∥∥
1
√

Ωi Re(σ) χ/m Im(σ)/(m
√

Ωi)
0
√

Ωi Re(ε) −S/m Im(ε)/(m
√

Ωi)

0 0 1 0

0 m
√

Ωi Re(ε̇) −Ṡ Im(ε̇)/
√

Ωi

∥∥∥∥∥∥∥∥∥. (161)

The transformation (18) yields the final matrix Λq(t). Writing it in the same form as in
Equation (23), we find the following expressions for the 2× 2 blocks:

λ1 =

√
Ωi

Ω(t)

∥∥∥∥ Im(ε̇) −Re(ε̇)
−Ω(t)Im(ε) Ω(t)Re(ε)

∥∥∥∥, λ2 =

√
Ωi

Ω(t)

∥∥∥∥ 0 −Re
(
ε̇ +
√

Ωi Ṡ
)

0 Re
(
Ωε−

√
Ωi χ̇

) ∥∥∥∥, (162)

λ3 =

∥∥∥∥∥∥ 1−
√

Ωi
Ω(t)

Im(Ωσ + ε̇)

√
Ωi

Ω(t)
Re(Ωσ + ε̇)

0 0

∥∥∥∥∥∥, (163)

λ4 =

∥∥∥∥ 1
√

Ωi Re(σ + ε̇/Ω)−Ωi(χ− Ṡ/Ω)
0 Ωi/Ω

∥∥∥∥. (164)

7.1. Mean Energy

The mean energy can be written as follows.

E(t) = Ei/(2Ωi)
[
KΩ(t) + s−1ΥKY(t)− 2ρKρ(t)

]
, Ei = mΩ2

i G, (165)

KΩ(t) = |ε̇|2 + Ω2(t)|ε|2, KY(t) = U2(t) + V2(t), Kρ(t) = Re(ε̇)U(t) + Ω(t)Re(ε)V(t), (166)

V(t) = ΩRe(ε)−
√

Ωi χ̇, U(t) = Re(ε̇) +
√

Ωi Ṡ. (167)

7.1.1. Adiabatic Evolution

In the adiabatic approximation, one can use the solution

ε(t) ≈ [Ω(t)]−1/2 exp[iφ(t)], ε̇(t) ≈ iΩ(t)ε(t), φ(t) =
∫ t

0
Ω(τ)dτ (168)

Then, neglecting the derivative dΩ/dt in (159) and other formulas, one can write

σ(t) ≈ −iε(t) +
i√
Ωi

, S(t) ≈ 1
Ω(t)

− cos(φ)√
Ω(t)Ωi

,

χ(t) ≈ sin(φ)√
Ω(t)Ωi

,
(

Ṡ
χ̇

)
≈

√
Ω(t)
Ωi

(
sin(φ)
cos(φ)

)
,

so that U(t) = V(t) = 0. Hence, KY(t) = Kρ(t) = 0 and E(t) = EiΩ(t)/Ωi. This means
that the energy variation does not depend on the choice of the gauge in the adiabatic
approximation, provided the frequency Ω(t) does not pass through zero value, when the
approximation (168) fails.

7.1.2. Non-Adiabatic Evolution

However, the results in the cases of α = 0 and α = 1 are different for non-adiabatic
variations of Ω(t). One of the reasons is the necessity to know, in the asymptotic regime
t > T, in addition to two complex dimensionless coefficients u± in Equation (35) (where
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ω f must be replaced with Ω f ), the third complex constant dimensionless coefficient uσ,
describing the behavior of the function σ(t) for t > T:

σ(t) = − ε̇(t)
Ω f

+
uσ√
Ωi

, uσ = i−
√

Ωi

∫ T

t0

ε̇(τ)Ω̇(τ)

Ω2(τ)
dτ. (169)

Then,

S(t) = Ω−1
f + Im[u∗σε(t)]/

√
Ωi, χ̇(t) = −Ω f Im[u∗σε(t)]/

√
Ωi, t > T.

The final mean energy ratio equals

E f /Ei = (|Ω f |/Ωi)
{

1 + 2|u−|2 + s−1Υ
[(
|a|2 + |b|2

)
/2 + Im(ba∗)

]
− ρ
[
|a|2 + Im(ba∗)

]}
, (170)

where
a = u+ + u∗−, b = u+u∗σ − u∗−uσ. (171)

7.1.3. Sudden Jump

In the case of instantaneous jump, the coefficients u± are real: see Equation (42).
Calculating the first integral in (159) with ε(t) given by (35), we obtain the pure imaginary
coefficient uσ = iΩi/Ω f (note that its sign depends on the sign of magnetic field). Then,
formula (170) results in the relation (which holds for positive and negative values of the
final frequency Ω f )

E f /Ei =
[
Ω2

i + Ω2
f + s−1Υ(Ωi −Ω f )

2 + 2ρΩ f (Ωi −Ω f )
]
/(2Ω2

i ). (172)

It differs from Equation (43) for the circular gauge. In particular, E f /Ei = (1 + s−1Υ)/2
when Ω f → 0. The same result can be obtained directly from Formulas (165)–(167), if one
uses solution (45) (with Ω instead of ω) and its consequencies: KΩ = V2 = Ωi and U = 0.
This means that the energy does not change if s−1Υ = 1 and Ω f = 0 (for any value of
parameter ρ). The final energy for Ω f = −Ωi is also different from the case of α = 0:
E f /Ei = 1 + 2s−1Υ− 2ρ.

7.1.4. Parametric Resonance

The parametric resonance occurs now at the twice cyclotron frequency 2Ωi. Therefore,
one should replace ω → Ω in Equation (46) and calculate the functions ε̇, σ, S and χ,
assuming u± as constant coefficients (but remembering that u− is pure imaginary now).
Then, uσ = i(u+ − u−) and b = −i. In this case, Equation (170) leads to the formula

E(t)/Ei = cosh(2Ωiγt) + s−1Υ
[
cosh2(Ωiγt)− cosh(Ωiγt)

]
− ρ[cosh(2Ωiγt)− cosh(Ωiγt)]. (173)

This formula is different from (48), even in the low-temperature case.

7.2. Mean Magnetic Moment

Using Equations (8), (12), (24), (25), (162)–(164), we can write the mean magnetic
moment as

M(t) = − µBC
2
√

Ωi

[
SΩ(t) + s−1Υ

√
ΩiSY(t)− ρSρ(t)

]
, (174)

where
SΩ(t) = Im(ε̇) +

√
Ωi

[
Ω(t)|ε|2 − Re(ε̇σ∗)

]
, (175)

SY(t) =
√

Ωi N(t) + M(t) + Ωi
(
χṠ− Sχ̇

)
, Sρ(t) = Im(ε̇) + Ωi N(t) + 2

√
Ωi M(t), (176)

N(t) = (1− 2χ̇)Re(ε) + χRe(ε̇)− ṠRe(σ), M(t) = Ω(t)Re2(ε)− Re(ε̇)Re(σ). (177)
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The approximate solution (168) results in the following formula in the adiabatic case [when
Ω(t) > 0]:

Mad(t) = µBC
[

ρ[Ω(t) + Ωi] cos(ϕ)

2
√

Ω(t)Ωi
− 1

]
. (178)

It is different from (55), because it means the divergent magnetic moment when Ω(t)→ 0:

Mad(t) ≈ µBC
[

ρΩi cos(ϕ)

2
√

Ω(t)Ωi
− 1

]
. (179)

One can doubt in formula (179), because solution (168) is not justified when Ω(t) ≈ 0.
However, the exact solution in the inverse linear decay case (Section 8.1.2) leads to
Formula (188) coinciding with (179).

The explicit form of coefficients (175)–(177) is given in Appendix F. They lead to the
following simple formula in the case of sudden jump of magnetic field (note that it is valid
for positive as well as negative values of Ω f ):

M(t) =
(−µBC)
2Ω f Ωi

{
Ω2

f + Ω2
i + s−1Υ

(
Ω f−Ωi

)2
− 2ρΩ f

(
Ω f−Ωi

)
+Ωi cos(Ω f t)

[
(Ω f−Ωi)(1+s−1Υ)− 2ρΩ f

]}
. (180)

For Ω f = 0 and isotropic initial traps (s = 1) the result coincides with the circular gauge
Formula (67):

M f = µBC
(

s−1Υ− 1
)

/2. (181)

Here, we see an important role of the asymmetry parameter s. If s ≤ 1, themM f is always
positive. However,M f can be negative if s� 1, even in the high-temperature case.

The behavior of the mean magnetic moment after the sudden inversion of magnetic
field is quite different now from that given by Formula (69) for the circular gauge:

M(t) = µBC
[
s−1Υ + 2

(
1 + s−1Υ− ρ

)
sin2(Ωit)

]
. (182)

In particular, the ratio R ≡ |∆̃M|/|〈〈M〉〉| varies between 2/3 at zero temperature and
1/2 in the high-temperature regime (if s = 1).

In the case of parametric resonance, we have the following explicit expressions for the
functions determining the evolution of mean magnetic moment:√

Ωiσ = [cos(Ωit)− 1] sinh(Ωiγt) + sin(Ωit) cosh(Ωiγt)

−i{[cos(Ωit)− 1] cosh(Ωiγt) + sin(Ωit) sinh(Ωiγt)},

S = [1− cos(Ωit)]/Ωi, Ṡ = sin(ωit), χ = sin(Ωit)/Ωi, χ̇ = cos(Ωit),

SΩ = −
√

Ωi{sin(Ωit)S2(t) + cos(Ωit)C2(t)− 2 cosh(2Ωiγt)},

SY = [2− cos(Ωit)]C1(t)− sin(Ωit) sinh(2Ωiγt)/2,

Sρ = −
√

Ωi{sin(Ωit)S2(t) + 2 cos(Ωit)[C1(t)− 1]− 2C2(t)},

where

S2(t) = sinh(2Ωiγt)− sinh(Ωiγt), C2(t) = cosh(2Ωiγt)− cosh(Ωiγt),

C1(t) = cosh2(Ωiγt)− cosh(Ωiγt).

Formulas describing quantum fluctuations of the energy and magnetic moment are
very cumbersome for the Landau gauge. For this reason we do not bring them here.
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8. Landau Gauge: Explicit Examples
8.1. Inverse Linear Decrease of Magnetic Field

Explicit expressions for the functions ε(t), σ(t), S(t) and χ(t) can be obtained for
Ω(t) = Ω0/τ, where the same notation is used as in Section 4.1, with the replacement
ω → Ω. Using the solution (75), one can obtain the following explicit expression for the
function σ(t):

σ(t) =

√
τ
[
τ−r(2r + 1)2 − τr(2r− 1)2

]
− 8r

8ur
√

Ω0
+ i

4r−
√

τ
[
τ−r(2r + 1) + τr(2r− 1)

]
4r
√

Ω0
. (183)

The expressions for functions S(t) and χ(t) are different for real and imaginary values of
coefficient r =

√
1/4− u2.

8.1.1. Fast Variations

In the case of u < 1/2 we have

S(t) =
√

τ

4rΩ0

[
4r
√

τ − τ−r(2r− 1)− τr(2r + 1)
]
, Ṡ(t) =

8r
√

τ + τ−r(2r− 1)2 − τr(2r + 1)2

8ur
√

τ
,

χ(t) =
t0
√

τ

2r
(
τr − τ−r), χ̇(t) =

τ−r(2r− 1) + τr(2r + 1)
4r
√

τ
.

Then, the following explicit expressions for the functions entering Equations (165)–(167)
can be obtained:

KΩ(t) =
Ω0

4r2τ

[(
τ−r − τr)2

+ 8r2
]
, Kρ =

Ω0(τ
−r − τr)

4r2τ

[
τ−r − τr + 2r

√
τ
]
,

U(t) =
√

Ω0

u
+

√
Ω0

4ur
√

τ

[
τ−r(1− 2r)− τr(2r + 1)

]
, V(t) =

√
Ω0

2r
√

τ

(
τ−r − τr).

The leading terms of these expressions for τ � 1 result in the following coefficients of
Equation (166):

KΩ(τ) ≈ Ω0

4r2 τ−δ, KY(τ) ≈
Ω0

4r2 τ−δ +
Ω0

u2

[
1− 2r + 1

4r
τ−δ/2

]2
, Kρ(τ) ≈

Ω0

4r2

[
τ−δ − 2rτ−δ/2

]
,

where δ = 1− 2r. If u� 1, then r ≈ 1/2 and δ ≈ 2u2. If the time variable τ is not extremely
big, so that τ−δ ≈ 1, we arrive at the formula E(t)/Ei = (1 + s−1Υ)/2, coinciding with
the sudden jump approximation formula with Ω f = 0 of Section 7.1.3. On the other hand,
KΩ(∞) = Kρ(∞) = 0, while KY(∞) = Ω0/u2. This results in the nonzero asymptotic ratio

E(∞)/Ei = s−1Υ/(2u2), (184)

which can be very high if u� 1. This is a great difference from the case of circular gauge
considered in Section 4.1.1, where the mean energy finally decays to zero value. However,
the asymptotic ratio (184) can be achieved for extremely big values of time, since the relative
corrections are of the order of τ−u2

. Consequently, the accuracy of 10% can be achieved for
τ ∼ 101/u2

. For example, taking u = 0.1, we need τ ∼ 10100.
The time-dependent functions determining the evolution of the mean magnetic mo-

ment according to Equation (174) have the following form:

SΩ(t) =
√

Ω0

2rτ

(
4r
√

τ − T−
)
, (185)

SY(t) =
(
4r2τ + τ − 2

)
T− − 4r(τ + 1)T+ + 16r

√
τ

8ru2
√

τ
, (186)
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Sρ(t) =
√

Ω0

16ru2
√

τ

{[
τ − 5 + 4r2(3τ − 1)

]
T− − 2r

(
4r2 + 3

)
(τ + 1)T+ + 32r

√
τ
}

, (187)

where T+ = τr + τ−r and T− = τr − τ−r.

8.1.2. Slow Variations

If u > 1/2, then, using the notation γ =
√

u2 − 1/4 = ir and ν = γ ln(τ), we can write

ε(t) =
√

τ

2γ
√

Ω0
[2γ cos(ν)− sin(ν) + 2iu sin(ν)], ε̇(t) =

√
Ω0

2γ
√

τ
[2iγ cos(ν) + i sin(ν)− 2u sin(ν)],

KΩ = 2Ω0/τ + Ω0 sin2(ν)/(γ2τ),

σ(t) =
√

τ
[(

4γ2 − 1
)

sin(ν) + 4γ cos(ν)
]
− 4γ

4uγ
√

Ω0
+ i
√

τ[sin(ν)− 2γ cos(ν)] + 2γ

2γ
√

Ω0
,

S(t) =
√

τ

2γΩ0

[
2γ
√

τ − 2γ cos(ν)− sin(ν)
]
, Ṡ(t) =

(
4γ2 − 1

)
sin(ν) + 4γ

[√
τ − cos(ν)

]
4uγ
√

τ
,

χ(t) =
t0
√

τ sin(ν)
γ

, χ̇(t) =
2γ cos(ν) + sin(ν)

2γ
√

τ
,

V(t) = −
√

Ω0 sin(ν)
γ
√

τ
, U(t) =

√
Ω0

u
−
√

Ω0

2uγ
√

τ
{2γ cos(ν) + sin(ν)}.

The presence of the constant term
√

Ω0/u in the expression for U(t) imposes restrictions on
the validity of the adiabatic approximation for the Landau gauge. If this term were absent,
we would have the relation E(t)/Ei ≈ Ω(t)/Ωi (with oscillating corrections of the order
of u−2 if u � 1) for any value of the time variable t, similar to Equation (81). However,
in the present case, this relation holds only under the condition τ � u2, i.e., t� t0(Ω0t0)

2.
For bigger values of t, the true mean energy goes to the finite asymptotic value E(∞) =
Eis−1Υ/(2u2). While this value is small for u� 1, it is different from zero. Certainly, this
failure of the adiabatic approximation for very big times is due to the existence of function
σ(t) in addition to ε(t) for the Landau gauge.

The time-dependent functions determining the evolution of the mean magnetic mo-
ment according to Equation (174) have the following form:

SΩ(t) =
√

Ω0

4γ2
√

τ

{√
τ
[
8γ2 + sin2(ν)

]
− 4γ sin(ν)

}
,

SY(t) =
cos(ν)

[√
τ cos(ν)− 16γ2(τ + 1)

]
− 4γ sin(ν)

(
4γ2τ − τ + 3

)
+
√

τ
(
32γ2 − 1

)
16u2γ2

√
τ

,

Sρ(t)√
Ω0

=
cos(ν)

[√
τ cos(ν) + 8γ2(τ + 1)

(
2γ2 − 1

)]
− 8γ sin(ν)

[
γ2(3τ + 1) + 2

]
+
√

τ
(
32γ2 − 1

)
16u2γ2

√
τ

.

If u ≈ γ� 1 and τ � 1, then, SΩ(t) ≈ 2
√

Ω0, Sρ(t) ≈
√

Ω0τ cos(ν) and SY(t) ≈ 0 (being
of the order of

√
τ/γ). Hence,

M(t) ≈ −µBC
[
1− ρ

√
τ cos(ν)/2

]
, (188)

and this formula coincides with (179) for Ω(t) = Ω0/τ.

8.1.3. Intermediate Case

If u = 1/2, then,

ε(t) =
√

τ[2 + (i− 1) ln(τ)]
2
√

Ω0
, ε̇(t) =

√
Ω0[2i + (i− 1) ln(τ)]

2
√

τ
,
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σ(t) =
√

τ[4− ln(τ)]− 4
2
√

Ω0
+ i
√

τ[ln(τ)− 2] + 2
2
√

Ω0
,

S(t) =
√

τ
[
2
√

τ − ln(τ)− 2
]

2Ω0
, Ṡ(t) =

4
√

τ − ln(τ)− 4
2
√

τ
,

χ(t) =
√

τ ln(τ)
2Ω0

, χ̇(t) =
ln(τ) + 2

2
√

τ
,

E(τ) = Ei
2τ

(
ln2(τ) + 2 + 2s−1Υ

{
2(τ + 1) + [2 + ln(τ)]

[
ln(τ)− 2

√
τ
]}
− 2ρ ln(τ)

[
ln(τ)−

√
τ
])

,

with the asymptotic nonzero ratio E(∞)/Ei = 2s−1Υ.
The comparison of the functions E(t)/Ei for the circular and Landau gauges in the

case of inverse linear law of decrease of the magnetic field B(t) = B0/(1 + t/t0) is given
in Figure 21. The parameters B0 and t0 are assumed the same for the two gauges. The pa-
rameter u = Ω0t0 = 1/2 is chosen for the Landau gauge. Hence, the ratio E(t)/Ei goes
asymptotically to the nonzero value 2s−1Υ. However, since Ω = 2ω, the corresponding
value of parameter uc = ω0t0 for the circular gauge is twice smaller: uc = 1/4. This means
that the evolution in the circular gauge is given by Equation (76) with r =

√
3/4. In this

case, the ratio E(t)/Ei goes asymptotically to zero approximately as τ−0.14.

Circular

Landau
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Figure 21. The ratio E(τ)/Ei versus the dimensionless time τ = 1 + t/t0 for the circular and Landau gauges with the
same initial cyclotron frequency Ω0 and time-scale parameter t0, in the case of inverse linear decay of magnetic field
B(t) = B0/(1 + t/t0) with Ω0t0 = 1/2. (Left) the low temperature case, ρ = 0, s−1Υ = 1. (Right) the high temperature
case, ρ = 1, s−1Υ = 10.

Figure 22 shows the evolution of the mean magnetic moment under the same condi-
tions. The mean magnetic moment in the case of Landau gauge with u = 1/2 behaves as

M(τ) = −[µBC/(2
√

τ)]
{

2
√

τ − ln(τ) + s−1Υ
[
ln(τ)(τ − 2)− 4

(√
τ − 1

)2
]

−(ρ/2)
[
ln(τ)(τ − 5) + 16

√
τ − 6(1 + τ)

]}
. (189)

The leading term for τ � 1 isM(τ) ≈ −µBC
√

τ ln(τ)
(
2s−1Υ− ρ

)
/4.
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Figure 22. The mean magnetic momentM(τ) versus the dimensionless time τ = 1 + t/t0 for the circular and Landau
gauges with the same initial cyclotron frequency Ω0 and time-scale parameter t0, in the case of inverse linear decay of
magnetic field B(t) = B0/(1 + t/t0) with Ω0t0 = 1/2. (Left) the low temperature case, ρ = 0, Υ = 1. (Right) the high
temperature case, ρ = 1, Υ = 10.

8.2. Exponential-Like Decrease of the Magnetic Field

Another example of explicit formulas in terms of elementary functions corresponds
to the dependence Ω(t) = Ω0

√
2/ cosh(Ω0t). In all other cases, we did not succeed to

calculate the integral (159) analytically. Using solution (97) for ε(t) (with τ = Ω0t), one
can find all additional necessary functions. For the sake of simplicity, we assume here that
Ω0 = 1. Then,

ε(τ) = 2−1/4
[
1− τ tanh(τ) + i

√
2 tanh(τ)

]
, σ(τ) = 21/4

[
τ − i

√
2

cosh(τ)
+ i
√

2

]
, (190)

S(τ) =
√

2
[

1
cosh(τ)

− 1 + τ tanh(τ)
]

, χ(τ) =
2τ

cosh(τ)
+ τ − 2 tanh(τ). (191)

8.2.1. Evolution of the Mean Energy

The mean energy in this case is given by Equation (165) with the following time
dependent coefficients:

KΩ =
2 + [τ + sinh(τ) cosh(τ)]2√

2 cosh4(τ)
+

√
2
{

2 tanh2(τ) + [1− τ tanh(τ)]2
}

cosh2(τ)
, (192)

V(τ) =
21/4

[
2 + τ sinh(τ)− cosh2(τ)− cosh(τ)

]
cosh2(τ)

, U(τ) =
τ + sinh(τ)[cosh(τ)− 2]

21/4 cosh2(τ)
, (193)

Kρ =
21/4[1− τ tanh(τ)]V(τ)

cosh(τ)
− [τ + sinh(τ) cosh(τ)]U(τ)

21/4 cosh2(τ)
. (194)

When τ → ∞,
ELand(∞)/Ei = (1 + 3s−1Υ + 2ρ)/4. (195)

The right-hand side of this equation is four times higher than for the circular gauge in
isotropic traps at zero temperature with the same ratio ωi/Ω0: see Equation (96). However,
the situation can be inverted for strongly anisotropic initial traps with s � 1, when
Ecirc(∞)� ELand(∞).
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8.2.2. Evolution of the Mean Magnetic Moment

The time-dependent coefficients of formula (174) for the mean magnetic moment have
the following form:

SΩ =
21/4

cosh2(τ)

[(
τ2 + 3

)
cosh(τ)− τ sinh(τ)− 1

]
, (196)

SY =

√
2

cosh2(τ)

[
− cosh2(τ) +

(
τ2 + 3

)
cosh(τ)− 3τ sinh(τ) + τ2 − 2

]
, (197)

Sρ =
21/4

cosh2(τ)

[
cosh2(τ)− 2

(
τ2 + 1

)
cosh(τ) + 2τ sinh(τ)− τ2 + 3

]
. (198)

The asymptotic value is positive for any values of parameters in this special case (µLand =
√

2):

MLand(∞) = µBC
(

ρ + s−1Υ
)

/2. (199)

8.3. Dynamics of “Fast Jump to Zero”

One more simple example is the case of Ω(t) = Ωi/ cosh(κt) with κ � Ωi. As was
shown in Section 6.2.2, function ε(t) in this case can be chosen as ε(t) = Ω−1/2

i (1 + iΩit).
However, calculating the function σ(t), one can neglect the term iΩit, since function
Ω(t) goes to zero exponentially at t ∼ κ−1, when Ωit ∼ Ωi/κ � 1. Consequently,
the function σ(t) is real in this approximation. Hence, S(t) ≡ 0 and χ(t) = t. Then,
Equations (165)–(167) result in the formula

E(t)/Ei =
1
2

{
1 +

1
cosh2(τ)

+ s−1Υ
[

1− 1
cosh(τ)

]2
+

2ρ

cosh(τ)

[
1− 1

cosh(τ)

]}
. (200)

Equations (174)–(177) lead to the following expression for the time-dependent mean mag-
netic moment:

M(t) = − µBC
2

{
1 +

1
cosh(τ)

− s−1Υ
[

1− 1
cosh(τ)

]
− 2ρ

cosh(τ)

}
, (201)

withM(∞) = −µBC
(
1− s−1Υ

)
/2. Formula (201) coincides with (157) for isotropic traps

(s = 1). However, the behavior is different if s 6= 1. In particular,MLand(∞) is positive for
s−1Υ > 1 and negative for s−1Υ < 1, whereasMcirc(∞) is positive for any values of s and
Υ (unless s = Υ = 1).

The comparison of functions E(τ) andM(τ) for the circular and Landau gauges in the
case of the “mild” exponential decrease of the magnetic field B(t) = B0/ cosh(κt) is made
in Figures 23 and 24. We consider two values of the ratio µLand = Ωi/κ (normalized by
the cyclotron frequency): µLand =

√
2 and µLand � 1. In the first case, we use functions (165)

and (174) with coefficients (192)–(194) and (196)–(198), respectively, for the Landau gauge.
However, since Ω(t) = 2ω(t) for the same magnetic field, one should remember that
µcirc = µLand/2. For this reason, plots for the circular gauge are made using formulas from
Section 6.2 with µcirc =

√
2/2. Hence, the asymptotic value (195) should be compared

with the value given by Equations (152) and (154) for ν = (
√

3 − 1)/2. In this case,
Dq ≈ (−0.43 + 0.48i)/

√
ωi and Ecirc(∞)/Ei ≈ 0.21(1 + s0Υ) + 0.05ρ.

When µLand � 1, this parameter does not enter formulas for E(τ) andM(τ). In this
case, we used Equations (200) and (201) for the Landau gauge. The equations used for
the circular gauge were (155) and (157). The coincidence of the ratios ELand(∞)/Ei for two
values of parameter µ in the low-temperature case is accidental: these ratios are different if
s−1Υ 6= 1.
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Figure 23. The ratios E(τ)/Ei in the isotropic traps (s = 1) versus the dimensionless time τ = κt for the circular and Landau
gauges with B(t) = B0/ cosh(κt). Solid lines: µLand =

√
2 and µcirc =

√
2/2. Dashed lines: µLand � 1 and µcirc � 1. (Left)

the low temperature case, ρ = 0, Υ = 1. (Right) the high temperature case, ρ = 1, Υ = 10.
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Figure 24. The mean magnetic momentM(τ) in the anisotropic traps with s = 2 versus the dimensionless time τ = κt for
the circular and Landau gauges with with B(t) = B0/ cosh(κt). Solid lines: µLand =

√
2 and µcirc =

√
2/2. Dashed lines:

µLand � 1 and µcirc � 1. (Left) the low temperature case, ρ = 0, Υ = 1. (Right) the high temperature case, ρ = 1, Υ = 10.

9. Discussion

We have obtained several exact results describing the dynamics governed by Hamil-
tonian (1) with two gauges: the circular and Landau ones. The dynamics is quite reach,
depending on the concrete time dependence of the magnetic field B(t). All explicit analytic
examples and figures clearly show that the dynamics can be quite different for the two
gauges of the same time-dependent magnetic field. The only exception is the case of the adia-
batic variation of the magnetic field, provided the ratio of the final and initial frequencies is
not too small, so that the simple adiabatic solution (168) to Equation (3) can be justified. In
all the cases, fluctuations of the magnetic moment turn out extremely strong. Our results
show that the time-dependent variance of the magnetic moment can be much higher than
the square of its mean value. This is a generalization of the result found in reference [93]
for the equilibrium state.

Important consequences of numerous examples are the conditions of validity of two
frequently used approximations: the “sudden jump” and adiabatic ones. For the monotonous
variations of the cyclotron frequency Ω(t), a simple parameter distinguishing between
the two extreme cases is the ratio µ = Ωi/κ, where κ−1 is some characteristic time of
the transition from the initial frequency Ωi to the final Ω f . Formally, the “sudden jump”
corresponds to µ� 1, while the adiabatic approximation corresponds to µ� 1. However,
our examples show that in many cases a reasonable accuracy of the approximations can
be achieved when µ is a few times smaller or bigger than unity. Practically, the values
µ = 0.1 and µ = 10 can be quite sufficient. This result is important, because it justifies the
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reasonableness of the “sudden jump” approach in numerous applications, in particular,
in our papers [30,63,85]. However, such justifications are not universal: they work well
if only the “transition time” is well defined, as in the cases of exponential-like decay.
For more slow frequency evolution laws the situation can be more complicated: see
Sections 4.1, 4.2 and 8.1.

An interesting exceptional case is Ω f = 0. It has been known for a long time (starting,
perhaps, from reference [103]) that the description of the limit transition from a nonzero
magnetic field to the free motion is a nontrivial problem (for a similar problem for the
harmonic oscillator with a time-dependent frequency see, for example, paper [88]). Our
results show that the mean values of the energy and magnetic moment tend to some
constant values, which are different for the Landau and circular gauges. Moreover, these
constant values are sensitive to the concrete forms of the time-dependent frequency Ω(t).
For example, the values of Ecirc(∞) and Mcirc(∞) do not depend on the speed of the
frequency decay for the “mild exponential decay” Ω(t) = Ωi/ cosh(κt). On the other hand,
analogous final values for the Landau gauge strongly depend on the parameter κ in the
anisotropic case: even signs of the final magnetic moments can be opposite. Quite different
pictures are observed when the asymptotic forms of the function Ω(t) are non-exponential,
e.g., inverse power laws Ω(t) ∼ t−b with b > 0. If b = 2, Figures 4 and 5 still show the
existence of finite values Ecirc(∞) andMcirc(∞), which are well different from the case of
exponential decay. On the other hand,Mcirc(t) andMLand(t) can grow unlimitedly when
t→ ∞ if b = 1 and the characteristic time scale t0 is relatively small: see Figures 3 and 22.
Another intriguing feature of the special case of b = 1 is that neither adiabatic nor sudden
jump approximations work in the whole time axis, although both approximations can
have sense inside some limited time intervals for appropriate values of parameters. In
particular, under the condition Ω0t0 � 1, the mean energy and magnetic moment rapidly
attain the values predicted by the sudden jump approximation formulas, as one can expect.
A totally unexpected result is that after very long time intervals the functions E(t) and
M(t) go to the final values which are very different from the sudden jump predictions
(and different for the circular and Landau gauges). Perhaps, this is a consequence of the
absence of a well defined value of the “transition time” for this kind of evolution with a
very long non-exponential “tail”. Probably, a study of a more general situation, with an
arbitrary value of parameter b, could be interesting. However, we leave this problem for
another publication.

While the choice of Ω f = 0 enables us to find several simple exact solutions to
Equation (3), it is necessary to remember that this limit in Hamiltonian Ĥ0, given by
Equation (1), can be doubtful from the point of view of description of real physical situa-
tions, where a quantum particle is always confined within some container or trap. Probably,
a more adequate Hamiltonian in this case could be

Ĥg = Ĥ0 + M
(

g2
1 x̂2 + g2

2ŷ2
)

/2. (202)

A preliminary investigation in this direction for the circular gauge and g1 = g2 was
performed recently in paper [104]. A general case with g1 6= g2 seems worth studying,
especially in connection with the Landau gauge.

Some results, especially related to the behavior of the magnetic moment, seem para-
doxical. Indeed, the nonzero value of parameter ρ in the initial state is necessary to have
the correct Landau–Darwin value (21) of the mean magnetic moment in the equilibrium
state of a free charged particle in a uniform magnetic field. However, formula (55) gives
an oscillating mean magnetic moment even in the case of constant frequency ω (when
this formula is exact). On the other hand, all mean values cannot depend on time in any
equilibrium state described by the density operator ρ̂ = exp(−βĤ), if Ĥ is time inde-
pendent... A possible explanation of this controversy is that the covariance matrix (19)
corresponds, strictly speaking, to the equilibrium state of the system, described not by the
free Hamiltonian Ĥ0, given by Equation (1), but by the Hamiltonian (202) with gk � ωi. It
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seems that the abrupt switching off the confining parabolic potential at t = 0 transforms
the equilibrium state of Hamiltonian Ĥg into the non-equilibrium state of Hamiltonian Ĥ0,
so the further evolution of some quantities becomes time-dependent. The Hamiltonian (1)
possesses many attractive features, related to the existence of constants of motion xc and yc.
On the other hand, probably, it is oversimplified in some respects, because, for example,
the formal equilibrium density operator exp(−βĤ0) cannot be normalized: its trace equals
infinity. This issue needs a more detailed study.

One more intriguing problem is related to the case of very slow variation of the
cyclotron frequency Ω(t). At first glance, it is sufficient to use a simple solution (168) to
calculate all mean values and probabilities [9,105]. An immediate consequence is the
linear dependence E f /Ei = ω f /ωi (the well known adiabatic invariant), clearly seen in
Figures 7 and 15 for any values of parameters s0Υ and ρ. This linear dependence holds for
the circular gauge as well as for the Landau gauge. Probably, such a gauge independence
can be explained by the extremely small values of the induced electric fields, when the
difference between their geometries becomes insignificant. However, the solution (168) is
not valid when the frequency becomes close to zero, especially when it passes through zero
value and becomes negative. Two examples for the circular gauge in Sections 5.1 and 6.1 show
that the ratio E f /Ei as function of |ω f |/ωi is again a straight line when ω f < 0, but the
proportionality coefficient is bigger than unity: it equals 3 in the low-temperature regime,
while it can be even much bigger in the high-temperature regime. Unfortunately, we do
not know, what can happen for the Landau gauge, since we did not succeed to find explicit
solutions when ω(t) < 0 for this gauge (except for the sudden jump approximation). This
is a challenge for further studies, as well as the general adiabatic case with an arbitrary
gauge parameter α and negative final frequency ω f . Another challenge is the case of slow
variation of the gauge parameter itself, when α = α(t). Physically, it means a slow change
of the shape of solenoid without any change of the magnetic field inside.

It was shown that the dynamics of the initial high-temperature equilibrium states can
be quite different from the evolution of the initial low-temperature states. In particular,
the initial small mean magnetic moment can be strongly amplified (by the factor of the order
of s0Υ� 1) when the magnetic field depends on time (and the mean energy can be strongly
amplified, as well), even if the magnetic field decreases. The reason is that fluctuations of the
guiding center coordinates are much stronger than fluctuations of the relative coordinates
in the high-temperature equilibrium state, according to Equations (19) and (20). Due to
the dynamical coupling between the guiding center and relative coordinates in the time-
dependent magnetic field, the fragile statistical balance between the initial equilibrium
fluctuations of the relative and guiding center coordinates is broken in the process of
evolution, so that the contribution of strong guiding center fluctuations to the mean
magnetic moment becomes dominant.

In order to avoid possible misunderstandings, we stress that the interaction with any
reservoir during the evolution from the fixed initial state is neglected in our paper. From the
physical point of view, the interaction with a thermal reservoir can be important, especially
in the case of very slow (adiabatic) evolution, when various relaxation times can enter the
game. However, this problem needs a separate study, because the problem of relaxation in
the presence of a magnetic field is nontrivial even for the constant field [106–113], and it
can be more complicated for time-dependent fields [114].

It is worth mentioning that the linear vector potential (2) with any time-dependent
function B(t) is, as a matter of fact, an approximation in the absence of distributed external
currents. However, this approximation is quite good in the non-relativistic case, because the
spatial inhomogeneity scale of the electromagnetic field is proportional to the light velocity
c, whereas the cyclotron radius of a charged particle (defining the admissible inhomogeneity
scale of the magnetic field) is proportional to the particle velocity v� c. For more details
one can consult Refs. [19,85].

Note that the evolution of the covariance matrix and combinations of its components,
related to the mean energy and magnetic moment, strongly depends on the choice of the
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initial conditions. We considered the case which seems “the most natural” – the initial
“equilibrium” state described by means of four parameters. However, the covariance
matrix is determined by ten parameters in the most general case. Hence, the dynamics
corresponding to other initial conditions (e.g., some kinds of “cat” states) can be even more
fascinating (despite that such choices could seem rather artificial).

Author Contributions: V.V.D.: conceptualization, methodology, analytical calculations, writing—
review & editing. M.B.H.: analytical and numerical calculations, plotting figures, writing—review &
editing. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors are grateful to the anonymous referees for the important comments
and suggestions. We thank C. Farina, S.S. Mizrahi and A.E. Santana for the interest to our work
and useful discussions. V.V.D. acknowledges the partial support of the Brazilian funding agency
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Details of General Solutions for the Circular Gauge

It is convenient to introduce the 2× 2 rotation matrix

R =

∥∥∥∥ cos ϕ sin ϕ
− sin ϕ cos ϕ

∥∥∥∥, ϕ(t) =
∫ t

0
ω(τ)dτ. (A1)

Then, the 4× 4 matrix ΛQ of Equation (15) can be written as

ΛQ = ω1/2
i

∥∥∥∥ Re(ε)R Im(ε)R/(mωi)
mRe(ε̇)R Im(ε̇)R/ωi

∥∥∥∥. (A2)

Calculating the matrix product (18), we obtain matrix Λq(t). Its 2× 2 blocks have a similar
structure,

λj(t) =
√

ωi

2ω(t)

∥∥∥∥ cj(t) sj(t)
−sj(t) cj(t)

∥∥∥∥, (A3)

with the following coefficients:

c1 = a+ cos ϕ− b− sin ϕ, s1 = a+ sin ϕ + b− cos ϕ,

c2 = a− cos ϕ + b+ sin ϕ, s2 = a− sin ϕ− b+ cos ϕ,

c3 = a− cos ϕ− b+ sin ϕ, s3 = a− sin ϕ + b+ cos ϕ,

c4 = a+ cos ϕ + b− sin ϕ, s4 = a+ sin ϕ− b− cos ϕ,

where
a±(t) = ω(t)Re(ε)± Im(ε̇), b±(t) = ω(t)Im(ε)± Re(ε̇).

Then, Equations (24), (25) and (A3) result in the following expressions for blocks of ma-
trix σq(t):

Gσr =
Gωi

4ω2(t)

∥∥∥∥∥ c2
1 + s2

1 + ΥC2 − 2ρ(c1c2 + s1s2) Υs2c2
(
s−1 − s

)
Υs2c2

(
s−1 − s

)
c2

1 + s2
1 + ΥS2 − 2ρ(c1c2 + s1s2)

∥∥∥∥∥, (A4)

Gσc =
Gωi

4ω2(t)

∥∥∥∥∥ c2
3 + s2

3 + ΥC4 − 2ρ(c3c4 + s3s4) Υs4c4
(
s−1 − s

)
Υs4c4

(
s−1 − s

)
c2

3 + s2
3 + ΥS4 − 2ρ(c3c4 + s3s4)

∥∥∥∥∥, (A5)

where Ck = sc2
k + s−1s2

k and Sk = ss2
k + s−1c2

k for k = 2, 4,

Gσrc =
Gωi

4ω2(t)
(
Σ0 + ΥΣΥ − ρΣρ

)
, (A6)
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Σ0 =

∥∥∥∥ c1c3 + s1s3 s1c3 − c1s3
c1s3 − s1c3 c1c3 + s1s3

∥∥∥∥, ΣΥ =

∥∥∥∥ sc2c4 + s−1s2s4 s−1s2c4 − sc2s4
s−1c2s4 − ss2c4 ss2s4 + s−1c2c4

∥∥∥∥, (A7)

Σρ =

∥∥∥∥ c1c4 + s1s4 + c2c3 + s2s3 s1c4 + s2c3 − c1s4 − c2s3
c1s4 + c2s3 − s1c4 − s2c3 c1c4 + s1s4 + c2c3 + s2s3

∥∥∥∥. (A8)

We see that the trap anisotropy (s 6= 1) complicates significantly all formulas. For this
reason, we studied the fluctuations of the energy and magnetic moment in the simplest
case of s = 1, when matrices σr and σc are proportional to the unit 2× 2 matrix I2:

Gσr =
Gωi

4ω2(t)

[
|F−|2 + Υ|F+|2 − 2ρRe(F−F+)

]
I2, (A9)

Gσc =
Gωi

4ω2(t)

[
|F+|2 + Υ|F−|2 − 2ρRe(F−F+)

]
I2. (A10)

The only matrix σrc is not diagonal for s = 1:

Gσrc =
Gωi

4ω2(t)

∥∥∥∥∥ (1 + Υ)Re(F−F∗+)− ρRe
(

F2
− + F2

+

)
−2ω(1 + Υ)Re(ε̇ε∗)

2ω(1 + Υ)Re(ε̇ε∗) (1 + Υ)Re(F−F∗+)− ρRe
(

F2
− + F2

+

) ∥∥∥∥∥. (A11)

Appendix B. The Fourth-Order Moments in Terms of the Second-Order Ones for the
Gaussian States

The following relations hold in the Gaussian states, as special cases of the general
Formula (50):

x4
r = 3

(
x2

r

)2
, y4

r = 3
(

y2
r

)2
,

x2
r y2

r = 〈x̂2
r ŷ2

r + ŷ2
r x̂2

r + x̂r ŷr x̂r ŷr + ŷr x̂r ŷr x̂r + x̂r ŷ2
r x̂r + ŷr x̂2

r ŷr〉/6

= 〈x̂2
r ŷ2

r + ŷ2
r x̂2

r 〉/2− [x̂r, ŷr]
2/2 = x2

r · y2
r + 2(xryr)

2.

Therefore,
〈x̂2

r ŷ2
r + ŷ2

r x̂2
r 〉 = 2x2

r · y2
r + 4(xryr)

2 + [x̂r, ŷr]
2.

As [x̂r, x̂c] = [ŷr, ŷc] = 0, then,

〈x̂2
c x̂2

r + ŷ2
c ŷ2

r 〉 = x2
c x2

r + y2
c y2

r = x2
c · x2

r + y2
c · y2

r + 2
[
(xcxr)

2 + (ycyr)
2
]
.

In the case of four different operators we have

xcycxryr = 〈x̂cŷc x̂r ŷr+ŷc x̂cŷr x̂r+x̂cŷcŷr x̂r+ŷc x̂c x̂r ŷr〉/4

= 〈x̂cŷc x̂r ŷr + ŷc x̂cŷr x̂r〉/2 + [x̂r, ŷr][ŷc, x̂c]/4

= xcyc · xryr + xcxr · ycyr + xcyr · ycxr.

Other useful relations are

xcy2
r xr = 〈x̂c

(
ŷ2

r x̂r + x̂r ŷ2
r + ŷr x̂r ŷr

)
〉/3, 〈ŷr x̂r ŷr〉 =

〈
ŷ2

r x̂r + x̂r ŷ2
r

〉
/2.

Therefore,
xcy2

r xr = 〈x̂c

(
ŷ2

r x̂r+x̂r ŷ2
r

)
〉/2 = 2xcyr · yrxr + xcxr · y2

r ,

so that

〈x̂c

(
ŷ2

r x̂r + x̂r ŷ2
r

)
〉 = 4xcyr · yrxr + 2xcxr · y2

r , 〈ŷc

(
x̂2

r ŷr + ŷr x̂2
r

)
〉 = 4ycxr · xryr + 2ycyr · x2

r .

Similarly,
〈x̂3

r x̂c〉 = 3xrxc · x2
r , 〈ŷ3

r ŷc〉 = 3yryc · y2
r .
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Appendix C. Asymptotic Formulas for κ � ωi, f in the Case of Exponentially Varying
Frequency on the Time Semi-Axis

If κ � ωi and κ � ω f , then |µ| � 1 and |γ| � 1, and we need asymptotic formulas for
the confluent hypergeometric function Φ(a; c; x) with big absolute values of the argument
x and the second parameter c. The simplest formula can be found, if one writes c(c +
1) . . . (c + n − 1) ≈ cn in Equation (104). Then Φ(a; c; x) ≈ (1 − x/c)−a. Using this
approximation, we have

Φ(1/2; 1− 2iγ; 2iµ) ≈
√

ω f

ωi
, λ ≈ iκ

ω2
i

(
ωi −ω f

)
.

However, such a simple result can be justified under the condition |x/c| < 1 only [98],
which is equivalent to the inequality ω f > ωi/2. The case of negative final frequency ω f can
be studied with the aid of a more complicated asymptotic formula see [98], Equation 6.13(2),

Φ(a; c; iz) ≈ Γ(c)
Γ(c− a)

(
eiπ/2

z

)a

+
Γ(c)
Γ(a)

eiz(iz)a−c. (A12)

It holds for z → ∞, provided z > 0 and |c| � z. The last condition does not exclude the
possibility that |c| � 1, if κ � |ω f | � ωi. Then we can use also the asymptotic Stirling
formula for the Gamma function

Γ(z) ≈
√

2π exp[(z− 1/2) ln(z)− z], |z| � 1. (A13)

If c = xr − 2iγ, then

ln(xr − 2iγ) = ln(−2iγ) + ln[1 + ixr/(2γ)].

Here a big difference between the cases of positive and negative values of coefficient γ
arises. If γ > 0, then ln(−2iγ) = ln(2γ)− iπ/2, so that the product z ln(z) contains the
real part −πγ. On the other hand, if γ < 0,

ln(−2iγ) = ln(2i|γ|) = ln(2|γ|) + iπ/2,

and the product z ln(z) contains the real part +πγ. At the same time, the term ia−c =
exp[iπ(a− c)/2] in Equation (A12) always has the real part exp(−πγ). Hence, the product
Γ(c)(iz)a−c is proportional to exp(−2πγ) for γ > 0, meaning that the second term in
Equation (A12) can be neglected if γ� 1. As a result, we have the following asymptotic
expressions in the case of κ � ω f � ωi:

Φ(1/2; 1− 2iγ; 2iµ) ≈
(

ω f /ωi

)1/2
, λ ≈ iκ/ωi.

Consequently, E f /Ei ≈ ω f /ωi in both the cases of ω f > 0, in accordance with Figure 7.
On the other hand, the second term in Equation (A12) cannot be neglected for γ < 0,

since two exponential terms, exp(πγ) and exp(−πγ), mutually eliminate each other.
Moreover, this term is much bigger than the first one in the case of function Φ(3/2; 2−
2iγ; 2iµ) with µ� |γ|. After some algebra, one can obtain the following expressions [here
Φ ≡ Φ(1/2; 1− 2iγ; 2iµ)]:

Φ ≈

√
|γ|
µ

(
i +
√

2eiρ
)

, |Φ|2 ≈ |γ|
µ

(
3 + 2

√
2 sin ρ

)
, ρ = 2(µ + γ) + 2|γ| ln(|γ|/µ),

λ ≈ 2
√

2eiρ

i +
√

2eiρ
, Reλ ≈ 4 + 2

√
2 sin ρ

3 + 2
√

2 sin ρ
, 1− Reλ ≈ −

(
3 + 2

√
2 sin ρ

)−1
.
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Then, one can check that identity (111) is fulfilled exactly, so E f /Ei ≈ 3|ω f |/ωi for ω f < 0
and κ � |ω f | � ωi, again in accordance with Figure 7 in the zero-temperature case.
Actually, this simple nice result corresponds to the leading terms of the asymptotic expan-
sions of the confluent hypergeometric function. The nonzero ratio ω f /ωi results in some
oscillations around the average value, which are clearly seen in Figure 9. The frequency of
these oscillations increases with decrease of parameter κ, as can be seen in the formula for
coefficient ρ.

Appendix D. Analytic Corrections to the Sudden Jump Approximation for κ � ωi, f in
the Case of Exponentially Varying Frequency on the Time Semi-Axis

To find corrections to the sudden jump approximation in the case of big (but finite)
values of κ, one needs the expansion of the confluent hypergeometric function with respect
to its argument, up to terms of the order of κ−2:

Φ(1/2; 1− 2iγ; 2iµ) ≈ 1 + iµ− 2µγ− 3µ2/4, λ ≈
ωi −ω f

ωi

(
1 + 2iγ + iµ/2− µγ/2− 4γ2

)
.

Then, one can verify that the right-hand side of (111) equals unity up to the terms of the
order of κ−2, confirming the identity (36). Using (115), we obtain the following expression
for the correction to the final energy (43) due to the finite duration of the “jump” for the
circular gauge (we confine ourselves with the low-temperature case here):

δE = −mG
2κ2 (ω f −ωi)

2
[

5
(

ω f + ωi

)2
− 4ω2

i

]
. (A14)

Consequently, the sudden jump approximation can be well justified in fact under the
condition κ � |ω f −ωi|. The correction (A14) can be positive for negative values of ω f ,
belonging to the interval |ω f + ωi| < 2ωi/

√
5. Otherwise, the correction is negative.

Appendix E. Solution for the Epstein–Eckart Profile on the Whole Line

Introducing the variable ζ = exp(κt), one can transform Equation (3) with
function (131) to the form

(κζ)2ε′′ + κ2ζε′ +

(
ω f ζ + ωi

)2

(ζ + 1)2 ε = 0, (A15)

where the prime means the derivative with respect to ζ. Writing ε(ζ) = ζλ(1 + ζ)d f (ζ),
one arrives at the equation

(κζ)2(ζ + 1)2 f ′′ + κ2ζ(ζ + 1)[1 + 2λ + ζ(1 + 2λ + 2d)] f ′

+

{
κ2
[
(1 + ζ)2λ2 + d(d− 1)ζ2 + dζ(1 + ζ)(2λ + 1)

]
+
(

ω f ζ + ωi

)2
}

f = 0. (A16)

The next step is to find the values of parameters λ and d, which transform
Equation (A16) to the form

ζ(1 + ζ) f ′′ + (A + Bζ) f ′ + C f = 0, (A17)

with some constant coefficients A, B, C. The necessary condition is the possibility to divide
the coefficient at f by ζ(1+ ζ). This means that this coefficient must go to zero for ζ = 0 and
ζ = −1. Taking ζ = 0, one arrives at the equation κ2λ2 + ω2

i = 0. We choose the solution
λ = +iωi/κ, because it leads to the correct expression ε(t) ∼ exp(+iωit) as t → −∞.

Taking ζ = −1, one arrives at the equation κ2d(d− 1) +
(

ωi −ω f

)2
= 0. Then, comparing

Equation (A17) with (130), one can obtain the solution (132) with coefficients (133). The
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choice of parameter d with the negative sign before the square root in Equation (133)
guarantees that ε(t) ∼ exp(+iωit) for all times if ωi = ω f .

Appendix F. Asymptotic Functions Describing the Magnetic Moment in the
Landau Gauge

The time dependence of the mean magnetic moment is contained in functions SΩ(t),
SY(t) and Sρ(t). In the asymptotic regime, these functions are determined by the constant
coefficients uσ, u± and their combinations

a = u+ + u∗−, b = u+u∗σ − u∗−uσ, a− = u+ − u∗−, b− = u+u∗σ + u∗−uσ.

To simplify formulas, it is helpful to introduce four functions oscillating as exp
(

i|ω f |t
)

:

A = aei|ω f |t, B = bei|ω f |t, A− = a−ei|ω f |t, B− = b−ei|ω f |t.

Then,
SΩ =

√
|Ω f |Re(A− − iB−) + 2|Ω f |

√
Ωi

(
|u+|2 + |u−|2

)
/Ω f ,

SY =
(
|Ω f |/Ω f

){
Re(b)Im(A− iB) + |a− ib|2

}
+
√

Ωi/|Ω f |Re(A− iB)−
√
|Ω f |/Ωi Re(uσ)Im(A + iB),

Sρ =
√
|Ω f |[Re(A−)− Re(uσ)Re(B)− 2Re(uσ)Im(A)]

+
ΩiRe(A)

|Ω f |1/2 +
2|Ω f |

√
Ωi

Ω f

[
|a|2 + Im(ba∗) + Re(b)/2

]
.

Appendix G. Time-Dependent Landau Levels

One of several distinguished features of Hamiltonian (1) with a constant value of
the magnetic field is the infinite degeneracy of its eigenvalues (frequently called as the
Landau levels), whose spectrum is equidistant. This degeneracy is due to the existence of
additional integrals of motion, i.e., the operators commuting with the Hamiltonian: the
guiding center operators x̂c and ŷc (4) (which are especially useful for the Landau gauge)
and their consequence—the generalized angular momentum operator L̂ (7) (which is more
useful for the circular gauge). A natural question is: what happens for time-dependent
magnetic fields? Are there some analogs of the Landau levels, and whether they continue
to be infinitely degenerate? The answer is positive. Probably, it was given in the explicit
form for the first time in study [115]. Namely, if Â and B̂ are time-independent operators
in the Schrödinger picture (including the case when they are integrals of motion), then
operators Â(t) ≡ Û(t)ÂÛ−1(t) and B̂(t) ≡ Û(t)B̂Û−1(t) are the integrals of the motion for
the nonstationary problem, satisfying the same commutation relations as Â and B̂. Here
Û(t) is the evolution operator in the Schrödinger picture. The time-dependent integrals
of the motion Î(t) satisfy the equation ih̄∂ Î/∂t =

[
Ĥ(t), Î(t)

]
, which was used for the

first time by Lewis and Riesenfeld in the paper [7], where they “guessed” the existence of
quadratic time-dependent integrals of motion, generalizing the Hamiltonian. The linear
integrals of motion were constructed for the first time in papers [8–10], where it was shown
how to construct quadratic integrals of motion (including the LR-invariant as a special
case) from the linear ones. If the set {ψn(x)} describes the stationary “Landau states”,
satisfying the equation Ĥ0ψn(x) = Enψn(x) at t < 0, when the Hamiltonian Ĥ0 is assumed
to be time-independent, then, the set {Ψn(x, t)} = {Û(t)ψn(x)} can be considered as the
“nonstationary Landau states”, satisfying the equation K̂(t)Ψn(x, t) = EnΨn(x, t), where
K̂(t) = Û(t)Ĥ0Û−1(t). This set of states maintains the infinite degeneracy with respect to
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eigenvalues of operators X̂c(t) = Û(t)x̂cÛ−1(t) or L̂c(t) = Û(t)L̂Û−1(t). More details can
be found in [91]. For the most recent trends in this direction one can consult study [116].

Appendix H. Non-Equvalence of Time-Dependent Gauges

Probably, the question about the equivalence or non-equivalence of time-dependent
vector potentials yielding the same magnetic fields needs a discussion. It is well known
that the given magnetic field B and electric field E can be derived from different sets of the
vector and scalar potentials,

B = rotA, E = −∇ϕ− 1
c

∂A
∂t

, B = rotA′, E = −∇ϕ′ − 1
c

∂A′

∂t
,

provided the two sets are connected as follows,

A′ = A +∇χ, ϕ′ = ϕ− 1
c

∂χ

∂t
.

If the magnetic field does not depend on time, the scalar function χ can be also chosen
as time-independent. Then, ϕ′ = ϕ. In particular, if ϕ = 0, then ϕ′ = 0 as well. In
this case, the choice of the vector potential is, indeed, a matter of convenience, since the
physical consequences, such as the mean energy or the magnetization, do not depend on
this choice (although the relations between the transformed quantum states can be rather
nontrivial [46,117]).

However, the situation is different if vector B depends on time. Then, two different
vectors A′ and A must be also time-dependent, as well as function χ. Hence, ϕ′ 6= 0
even if ϕ = 0. Since we consider the systems described by means of Hamiltonian (1)
without any scalar potential, this means that the systems with different values of the gauge
parameter α are not equivalent if ∂B/∂t 6= 0. Perhaps, the most clear statement could be
that Hamiltonian (1) with a time-dependent vector potential A(r, t) describes the motion of
a particle not in the magnetic field, but in the eletromagnetic field with nonzero vectors B
and E. Then, different choices of the “gauge parameter” α correspond, as a matter of fact,
to different physical systems.
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