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Abstract: The deployment of machine learning (ML) systems in applications with societal impact has
motivated the study of fairness for marginalized groups. Often, the protected attribute is absent from
the training dataset for legal reasons. However, datasets still contain proxy attributes that capture
protected information and can inject unfairness in the ML model. Some deployed systems allow
auditors, decision makers, or affected users to report issues or seek recourse by flagging individual
samples. In this work, we examine such systems and consider a feedback-based framework where
the protected attribute is unavailable and the flagged samples are indirect knowledge. The reported
samples are used as guidance to identify the proxy attributes that are causally dependent on the
(unknown) protected attribute. We work under the causal interventional fairness paradigm. Without
requiring the underlying structural causal model a priori, we propose an approach that performs
conditional independence tests on observed data to identify such proxy attributes. We theoretically
prove the optimality of our algorithm, bound its complexity, and complement it with an empirical
evaluation demonstrating its efficacy on various real-world and synthetic datasets.

Keywords: causal fairness; responsible data science

1. Introduction

Due to the societal impact of automated systems, fairness in supervised learning
has been a topic of prime importance. There have been numerous advances in defining
fairness in terms of associational and causal effects of protected attributes on the prediction
attribute [1–4], thereby mitigating unwanted bias. The majority of these algorithms assume
that the protected attribute is accurately specified for the training dataset, which is then
used to mitigate unwanted biases by processing the input dataset or modifying the train-
ing algorithm (in-processing) or post-processing the output of the prediction algorithm.
However, the protected attribute is often unavailable or anonymized for legal reasons [5–7].

The absence of protected attributes from the training dataset does not guarantee
fairness of the prediction algorithm. One of the primary reasons for this is the presence of
proxy attributes that are causally dependent on the protected attributes. In such settings,
a key challenge to ensure fairness is to identify these proxy attributes that may percolate
bias into the prediction algorithm and then develop ways to mitigate such biases. Even if
the dataset lacks any information about these attributes, software testing by legal auditors,
recourse analysis of certain samples [8], or complaints from customers often uncover the
presence of bias. In this work, we formalize a framework that leverages such indirect
knowledge to identify proxy attributes, which can then help to improve fairness. We
motivate this setting with the following example.

Example 1. Imagine that you are a manager examining a machine learning-powered resume
screening app that your software company is starting to use internally [9]. You notice that a
candidate named Latanya Sweeney—with an S.M. degree in electrical engineering and computer
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science from MIT and professional experience in minimizing privacy risk—has not been prioritized
for your requisition for a staff software engineer to work on a HIPAA-compliant cloud infrastructure
project. Suspecting algorithmic bias, you flag Latanya’s resume as feedback to the resume app.

In this example of possible unfairness, neither the app nor the manager had access to
any protected attributes such as race and gender for legal reasons [5,6]. The missingness
of the protected attribute, however, did not prevent the manager from mentally using
proxies for race and gender to flag the prediction. In this case, the name Latanya Sweeney
is correlated with black women. If the machine learning model behind the app did have
unwanted bias providing systematic disadvantage to black people and/or women, the
algorithm must have used proxy attributes (like zip code, projects, or writing style) to
reconstruct the information in the protected attributes. However, it is difficult to know what
those proxy attributes were; it is usually not as simple as just the name of the individual or
their zip code.

In this paper, we study fairness in terms of the causal effect of protected attributes on
the prediction output/outcome attribute [1–4] and sought to identify the proxy attributes
that are causally dependent on the protected attributes (that we do not know and do not
have). A variable X is said to be causally dependent on another attribute X′ if X′ → X
in the causal graph, i.e., X is functionally dependent on X′ and any manipulation of X′

would impact X. However, we needed some extra information to help us on this quest.
The information we utilized is precisely the indirect knowledge that we can glean from
the flagging of possibly unfair decisions that the manager in our example submitted as
feedback. We do not assume that the causal graph is known a priori.

We formalized the feedback-based framework to identify proxy attributes that are
causally dependent on the unknown protected attribute. In terms of the causal graph,
a proxy attribute is defined as the child of a protected attribute. We proposed efficient
polynomial time algorithms that identify various connectivity properties of the causal
graph that differ in the input dataset and the samples that are flagged by an auditor
(indirect knowledge). It then uses these properties to identify constraints over pairs of
input attributes, which are then used to formulate a constraint satisfaction problem (CSP).
The solution of the CSP returns the set of proxy attributes.
Contributions. Our primary contributions are as follows.

1. We formalized a novel problem of using indirect signals to identify proxy attributes
that are causally dependent on the protected attribute.

2. We identified unique connectivity properties of the causal graph, which are leveraged
to develop a suite of efficient polynomial time algorithms that do not require the
causal graph as an input. Our proposed techniques use off-the-shelf conditional
independence tests to identify these attributes.

3. We proved theoretical guarantees that our algorithm accurately identifies the proxy
attributes and runs in polynomial time. We showed that the complexity of our
algorithm is linear in the number of attributes for sparse graphs.

4. We performed an end-to-end evaluation of our proposed techniques on various real-
world and synthetic datasets. In real-world datasets, we showed that the classifier
trained using our methods is fair and maintains high accuracy. On synthetic datasets,
we validated the correctness of our algorithm by comparing with the ground truth.

2. Problem Setup

We denote random variables (also known as dataset attributes or features) by up-
percase letters like X, S, A and their corresponding sample values in lowercase like x, s, a.
Table 1 summarizes the notation.
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Table 1. Notation Table.

Symbol Meaning

S Unobserved protected attribute

V Set of attributes (also known
as variables of the causal graph)

D Input dataset containing V attributes

Y Prediction attribute

Y′ Classifier output

F Feedback attribute

D′ Feedback set

V ′ ⊆ V Proxy attributes

VF ⊆ V Parents of F in the causal graph

Causal DAG and interventions A causal directed acyclic graph (DAG), G over a set of
attributes V is a DAG that models the functional dependence between attributes in V . Each
node X represents an attribute in V that is functionally determined by its parents Pa(X)
in the DAG and some unobserved variables. An intervention to a causal graph is where
an attribute X is set to some specific value, say x, and its effect on the distribution of the
learned target attribute Y is observed. The do-operator allows this effect to be computed
on a causal DAG, denoted P(Y|do(X = x)). To compute this value, we assumed that X is
determined by a constant X = x. This assumption is equivalent to a modified graph with
all incoming edges into X removed, and the value of X was set to x.

We assumed that the causal graph G on V is faithful to the observational distribution
on V . This means that if two nodes A and B are connected by an edge in the causal graph,
the data cannot result in any incorrect conditional independence of the form A ⊥ B | C
for any subset C ⊂ V \ {A, B}. It is one of the most common assumptions in the causal
discovery literature [1,3,10–19]. We use ⊥ to denote independence. We denote the edges of
the causal graph E as a list of pairs (X1, X2) such that either X1 causes X2 or vice versa.
Unobserved Protected Attribute Consider a dataset D consisting of attributes V = {X1, . . .,
Xn} along with a target attribute Y. Let S denote the protected attribute that is not available
in the dataset D. S is considered as the common confounder for the set of attributes V ′ ⊆ V .
This is generally the case in settings where the protected attribute is the root node (has no
parent) of the causal graph [3].
Interventional Fairness In this work, we consider the causal interventional fairness [3]
paradigm that does not allow the protected attributes to affect the classifier output Y′

through any attribute that is not admissible (A). Intuitively, an admissible attribute is the
one that is allowed to percolate bias into the training algorithm. In Example 1, attributes
like race and gender are considered protected attributes, and user preferences like type of
job and expected salary are admissible.

Definition 1 (Causal Interventional Fairness). For a given set of admissible attributes A, a
classifier is considered fair if for any collection of values a of A and output Y′, the following holds:
Pr(Y′ = y|do(S) = s, do(A = a)) = Pr(Y′ = y|do(S) = s′, do(A = a)) for all values of A,
S and Y′.

Intuitively, this definition means that the probability distribution of the classifier
output Y′ is independent of the protected attributes when we intervene on the admissible
attributes. In terms of the causal graph, this holds when all paths from the protected at-
tribute to Y′ are blocked by the admissible attributes. For more details about this definition,
please refer to [3]. As discussed in the example, the current classifier output Y′ does not
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satisfy this fairness criterion, and we wanted to identify the proxy attributes in order to
train a fair classifier.
Feedback Attribute In this problem setup, we assume that a biased classifier outputs Y′ are
available and that an auditor inspects a subset of these records to identify biased outcomes.
These flagged records are denoted with an extra attribute F, where F = 1 denotes an
example that was flagged by the auditor. As discussed in Example 1, the auditor processes
a subset of the features, say, V ′ ⊆ V , to flag a data point. Therefore, F is a function of a
subset V ′ ⊆ V and the learned target Y′ such that F = 1 refers to a biased prediction. In
terms of the causal graph, the attributes that were used as a signal to flag the classifier
output are parents of F.
Complaint set. In order to define the complaint set, we assume a subset of the records from
marginalized groups are discriminated, and a small subset of these discriminated records
are reported as complaints. Therefore, all individuals in the complaint set are assumed
to correspond to a specific subset of the marginalized group. The set of complaints are
denoted by D′, comprising attributes V for a small subset where F = 1. (Note that the
complaints D′ does not contain all samples that suffer from biased prediction but only the
ones that have been flagged.) Therefore, any conditional independence test of the form
A ⊥D′ B|C on the sample D′ is equivalent to conditioning on the attribute F along with
C, denoted by (A ⊥D B|C, F). Whenever it is clear from context, we ignore the subscript
D from the expressions. Unless specified, we always write the expression in terms of ⊥D.
The operator ⊥D′ is equivalent to ⊥D with a conditioning on F. Since the feedback F = 1
refers to a sample of biased predictions, we assumed that the majority of the samples with
F = 1 correspond to the members of marginalized or otherwise unprivileged communities.

Assumption 1. Considering the set of complaints (dataset D′ where F = 1), the protected attribute
S = s is fixed for some records in the marginalized group S = s that have been flagged.

This assumption is crucial to ensure that the feedback set D′ contains indirect infor-
mation about the marginalized group of individuals. Without this assumption, the set D′

cannot be used to relate the complaints with the marginalized group. Note that the set D′

does not contain all datapoints that have S = s. Therefore, adding a new column that treats
all records in feedback set as S = s and all others as S = s′ cannot be used as the protected
attribute of individuals. Let VF ⊆ V denote the set of attributes that are used by the auditor
to flag the datapoint. In terms of the causal graph, F is functionally dependent on F. Since
F is a common descendant of all these attributes, any pair of attributes X1, X2 ∈ VF cannot
be d-separated over D′ i.e., (X1 6⊥D′ X2|A) ≡ (X1 6⊥D X2|A, F), ∀A ⊆ V \ {X1, X2}.
Proxy variables. We defined the proxy variables as the non-admissible set of attributes
that are functionally dependent on the unobserved protected attribute and that, therefore,
have the maximum causal impact of the protected attribute. Due to the absence of the
protected attribute, considering the proxy attributes as protected while employing any
prior fairness-aware learning algorithm would guarantee a causally fair classifier. More
formally, we claim the following.

Lemma 1. Consider a causal graph G over a set of attributes V , with unobserved protected attribute
S. Let Children of the protected attribute S be denoted by Ch(S). If

Pr(Y′|do(Ch(S) \ A) = c, do(A) = a) = P(Y′|do(Ch(S) \ A) = c′, do(A) = a)

then Y′ is causally fair, i.e., P(Y′|do(A) = a, do(S) = s) = P(Y′|do(A) = a, do(S) = s′)

Proof. Let T denote the children of S in the causal graph. If Pr(Y′|do(T ) = c, do(A) =
a) = P(Y′|do(T ) = c′, do(A) = a), then all paths from the attributes T to Y′ are blocked
when incoming edges of T and A are removed from G. In order to show that a classifier
that obeys the condition of causal fairness with respect to S, we need to prove the following.
After removing all incoming edges of S and A, there should be no directed paths from S
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to Y′ without a collider (Y′ should not be a descendant of S). Since all incoming edges of
S have been removed, all directed paths from S to Y′ pass through the children T . These
paths S→ X → . . .→ Y′ where X ∈ T : these paths that contain outgoing edges from T
are all blocked because Pr(Y′|do(T ) = c, do(A) = a) = P(Y′|do(T ) = c′, (A) = a).
This shows that whenever the proxy variables are considered as protected while training a
fair classifier, causal fairness of the outcome is guaranteed.

Note that any superset of the children of S (multi-hop descendants) is a valid set of
proxy variables as they may be causally dependent on S. However, Children(S) is the
smallest set of attributes that need to be accounted for fair classification. Considering more
variables as proxies could affect the overall classification accuracy.

3. Problem Statement and Solution Approach

In this section, we first define the problem statement and give high-level observations
about the connectivity properties of the causal graph. We then use these properties to
design a simple algorithm, which is then improved by formulating a constraint satisfaction
problem. We then improve the efficiency of the algorithm by leveraging the sparsity
properties of causal graphs.

Based on the notation we defined in the previous section, we can state the problem of
identifying proxy-protected attributes as follows.

Problem 1. Given a dataset D comprising attributes V with a classifier output Y′ and a biased
feedback set D′, identify the smallest subset V ′ ⊆ V such that the hidden protected attribute S is a
common confounder for the attributes in V ′.

Now let us work towards a solution. Let us first identify the condition under which
proxies for the protected attribute can be identified from observational data and develop
efficient techniques for the same. Consider a simple toy causal graph example, shown in
Figure 1, where only the protected attribute is unobserved. We made a simplistic assump-
tion that only the protected attribute is unobserved for this example. Our technique and
theoretical analysis extends to the general case where many other attributes may be un-
observed. Note that we have access to the training dataset D containing V = {X1, X2, X3}
and a small feedback dataset D′, which is equivalent to conditioning F = 1. The subset
of the data that has F = 1 may not overlap with the training data. In this example, the
attributes that impact F are VF = {X1, X3}, and the proxy attributes are V ′ = {X1, X2}.
We can see that identifying proxy attributes is an easy task if the causal graph is known.
Now, let us look at some of the properties of D and D′ that can help in the absence of the
causal graph.

1. Consider the attributes X1 and X2, which are confounded by the protected attribute
S and (X1, X2) /∈ E. Since S is unobserved in the dataset D, X1 and X2 cannot be
d-separated, i.e., X1 6⊥D X2|A, ∀A ⊆ V \ {X1, X2}. However, the feedback F is
equivalent to considering a smaller sub-population (conditioning on S), which breaks
the confounding relation between X1 and X2. Therefore, X1 ⊥D X2|F ≡ X1 ⊥D′ X2.
This equation can be easily tested by performing a CI test on the flagged samples.

2. Consider the attributes X1 and X3, which are not confounded by the protected at-
tribute S. For such attributes, there exists a subset A ⊆ V \ {X1, X3} such that
X1 ⊥ X3|A. In Figure 1, A = φ. However, X1, X3 ∈ VF means that the collider path
X1 → Y′ ← X3 gets unblocked given F, implying X1 6⊥D X3|A, F ≡ X1 6⊥D′ X3|A,
∀A ⊆ V \ {X1, X3}. Therefore, X1 and X3 can never be d-separated in the feedback
dataset D′.

These observations show that different attributes in the causal graph satisfy different
properties based on their membership. We formalize these intuitions for general graphs and
prove the following properties for any pair of attributes. Lemma 2 proves the condition in
which X1 and X2 can be d-separated with respect to D and D′, if X1, X2 are proxy attributes.
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X1

S

X3

Y’

X2

F

Proxy variables 

Figure 1. Example dataset where the protected attribute S and the causal graph are unobserved.
The attribute Y′ denotes the learned target attribute; F is the feedback attribute, which refers to the
selection variable for the complaints flagged by an auditor; and X1 and X2 are proxy attributes.

Lemma 2. Consider a pair of attributes X1 and X2 ∈ V with (X1, X2) /∈ E. X1, X2 ∈ V ′, and at
least one of X1 and X2 does not belong to VF iff

1. X1 6⊥ X2|A for all A ⊆ V \ {X1, X2} and
2. X1 ⊥ X2|A, F for some A ⊆ V \ {X1, X2}

Proof. We consider the two sides of the lemma separately. First, let us assume that
(X1, X2) /∈ E, X1, X2 ∈ V ′ and at least one of X1 and X2 do not belong to VF. This
implies the following conditions.

• If X1, X2 ∈ V ′, then S is a common confounder for both X1 and X2. Therefore, X1 and
X2 can not be d-separated, implying (X1 6⊥ X2|A) ∀A ⊆ V \ {X1, X2} because S is
not observed.

• If at least one of X1 and X2 do not belong to VF and (X1, X2) /∈ E, then there exists
some A such that X1 and X2 are d-separated given A, F. This is because conditioning
on the feedback F implies S = 1 (conditioning on S), which breaks the confounding
relationship between X1 and X2.

For the other direction,

• If X1 ⊥ X2|A, F for some A ⊆ V \ {X1, X2}, then both X1 and X2 cannot be in VF
and (X1, X2) /∈ E. This is because if X1, X2 ∈ VF, then X1 6⊥ X2|A, F for any A (by
definition of VF).

• If X1 6⊥ X2|A for all A but ∃A′ | X1 ⊥ X2|A′, F (we also know that (X1, X2) /∈ E.).
Suppose X1, X2 are not confounded by S. Conditioning on F and A′ blocks all paths
from X1 to X2. Since conditioning on F does not open any new paths between X1 and
X2, there will exist A′ such that X1 ⊥ X2|A′ if X1 and X2 are not confounded by S.
This is a contradiction, implying X1 and X2 are confounded by S.

Lemma 3 proves the properties for X1 and X2, whenever both of these attributes are
considered by the auditor to flag the datapoint.
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Lemma 3. For a pair of attributes X1 and X2 ∈ V with (X1, X2) /∈ E, X1, X2 ∈ VF, and at least
one of X1 and X2 does not belong to V ′ iff

1. X1 ⊥ X2|A for some A ⊆ V \ {X1, X2}
2. X1 6⊥ X2|A, F for all A ⊆ V \ {X1, X2}

Proof. First, let us assume that (X1, X2) /∈ E, X1, X2 ∈ VF, and at least one of X1 and X2
do not belong to V ′.
• If at least one of X1 and X2 do not belong to V ′ and (X1, X2) /∈ E, then there exists

some A ⊆ V \ {X1, X2} such that X1 and X2 are d-separated given A.
• If X1, X2 ∈ VF, then X1 → F ← X2 forms a collider path, which is unblocked given F.

Therefore, (X1 6⊥ X2|A, F) ∀A ⊆ V \ {X1, X2}
For the other direction,

• If X1 ⊥ X2|A for some A ⊆ V \ {X1, X2}, then both X1 and X2 cannot be in V ′ and
(X1, X2) /∈ E. This is because if X1, X2 ∈ V ′, then X1 6⊥ X2|A, ∀A ⊆ V because of an
unblocked path X1 ← S→ X2

• If X1 6⊥ X2|A, F for all A but ∃A such that X1 ⊥ X2|A. We also know that (X1, X2) /∈ E.
Consider the A for which X1 ⊥ X2|A. In this causal graph, all paths from X1 to X2 are
blocked but on conditioning F along with A, some path gets unblocked. Since X1 and
X2 cannot be d-separated when we condition on F, X1, X2 ∈ VF.

For simplicity, we proved these properties for two cases. These properties can be
extended for any combination of attributes based on their occurrence in V ′ and VF. Table 2
lists these conditional independence/dependence behavior of all possible combination of
attributes X1 and X2. For example, the first row shows that if X1 and X2 ∈ VF ∩ V ′, then
X1 6⊥ X2|A for all A ⊆ V \ {X1, X2}.

3.1. Simple Algorithm

Using the properties listed in Table 2, Algorithm 1 presents the pseudocode of a simple
algorithm that identifies proxy-protected attributes. It iterates over all pair of attributes
and performs two types of conditional independence tests (one with conditioning on
A ⊆ V \ {X1, X2} and the other with conditioning on A and F, i.e., with respect to D′).
Following Lemma 2, if ∃A such that X1 ⊥ X2|F, A and X1 6⊥ X2|A, ∀A, then X1 and X2 are
both added to the set V ′. Lemma 4 analyzes the conditions when an attribute X1 ∈ V ′ is
correctly identified by Algorithm 1.

Table 2. Conditional independence properties for a pair of attributes X1, X2 ∈ V such that (X1, X2) /∈ E where the output of
conditional independence tests varies based on the set that X1, X2 belong to and vice versa. For example, X1, X2 ∈ V ′ ∩ VF

iff X1 6⊥ X2|A and X1 6⊥ X2|A, F for all A ⊆ V \ {X1, X2}.

Conditions on X1, X2 Conditioning on D Conditioning on D′

X1, X2 ∈ V ′ ∩ VF X1 6⊥ X2|A for all A ⊆ V \ {X1, X2} X1 6⊥ X2|A, F for all A ⊆ V \ {X1, X2}

X1, X2 ∈ VF and
(X1 /∈ V ′ and/or X2 /∈ V ′)

(Lemma 3) and
X1 ⊥ X2|A for some A ⊆ V \ {X1, X2} X1 6⊥ X2|A, F for all A ⊆ V \ {X1, X2}

X1, X2 ∈ V ′ and
(X1 /∈ VF and/or X2 /∈ VF)

(Lemma 2)
X1 6⊥ X2|A for all A ⊆ V \ {X1, X2} X1 ⊥ X2|A, F for some A ⊆ V \ {X1, X2}

X1 ∈ V ′ \ VF and
X2 ∈ VF \ V ′

X1 ⊥ X2|A for some A ⊆ V \ {X1, X2} (X1 ⊥ X2|A, F) for some A ⊆ V \ {X1, X2}

X1 /∈ V ′ ∪ VF X1 ⊥ X2|A for some A ⊆ V \ {X1, X2} (X1 ⊥ X2|A, F) for some A ⊆ V \ {X1, X2}
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Algorithm 1 Proxy identification.

1: Input: attributes V , F
2: V ′ ← φ
3: for X1 ∈ V \ V ′ do
4: for X2 ∈ V do
5: if ∃A ⊆ V \ {X1, X2} | (X1 ⊥ X2|F, A) then
6: if ∀A ⊆ V \ {X1, X2} | (X1 6⊥ X2|A) then
7: V ′ ← V ′ ∪ {X1, X2}
8: return V ′

Lemma 4. An attribute X ∈ V ′ is correctly identified to belong to V ′ if ∃X′ ∈ V ′ such that
(X, X′) /∈ E and |VF ∩ {X, X′}| ≤ 1.

Proof. Consider an attribute X ∈ V ′, and let X′ ∈ V ′ such that VF ∩{X, X′} ≤ 1. Therefore,
one of X and X′ /∈ VF. Using Lemma 2, X 6⊥ X′|A, ∀A ⊆ V \ {X1, X2}, and ∃A ⊆
V \ {X1, X2} such that X ⊥ X′|A, F holds. Therefore, Algorithm 1 correctly identifies X
and X′ ∈ V ′.

However, Algorithm 1 has two main drawbacks:

1. In dense graphs, there may exist an attribute X ∈ V ′ such that @X′ ∈ V ′ where
(X, X′) /∈ E. Such attributes may not be identified by Algorithm 1.

2. The conditional independence test of the form X1 6⊥ X2|A, ∀A ⊆ V \ {X1, X2} re-
quires us to test the conditional dependence for every subset A ⊆ V \ {X1, X2}. This
condition requires an exponential number of conditional independence tests.

We now present a constraint satisfaction problem-based formulation that overcomes
the first limitation (Section 3.2) and an efficient mechanism to optimize the total number of
required conditional independence tests (Section 3.3).

3.2. Constraint Satisfaction Formulation

In this section, we leverage the properties of Table 2 to formulate a constraint satis-
faction problem (CSP), which is then solved to identify the membership of the attributes.
Let us first define the set of variables for this CSP. For each attribute X ∈ V , define two
binary variables XF and XS ∈ {0, 1} such that XF = 1 if X ∈ VF and 0 otherwise. Similarly,
XS = 1 if X ∈ V ′ and 0 otherwise. Given a pair of attributes X1 and X2, we can perform
conditional independence tests as described in Table 2 and introduce one of the following
constraints based on their output.

• If X1 6⊥ X2|A, ∀A ⊆ V \ {X1, X2} and ∃A ⊆ V \ {X1, X2} such that X1 ⊥ X2|A, F,
then both X1 and X2 ∈ V ′ and at least one of the two attributes does not belong to VF
(Using Lemma 2). Therefore, XS

1 = XS
2 = 1 and XF

1 + XF
2 ≤ 1.

• If ∃A ⊆ V \ {X1, X2} such that X1 ⊥ X2|A and X1 6⊥ X2|A, F ∀A ⊆ V \ {X1, X2},
then both attributes X1 and X2 belong to VF, and at least one of the attributes does
not belong to V ′ (Using Lemma 3). Therefore, XF

1 = XF
2 = 1 and XS

1 + XS
2 ≤ 1

• If ∃A ⊆ V \ {X1, X2} such that X1 ⊥ X2|A and ∃A′ ⊆ V \ {X1, X2} such that X1 ⊥
X2|A′, F, then X1 and X2 /∈ V ′ ∩ VF. Therefore, XF

1 + XS
1 + XF

2 + XS
2 ≤ 2.

Using this strategy, we introduce constraints for every pair of attributes X1, X2 ∈ V .
The membership of all attributes can be identified by solving this constraint satisfaction
problem. To solve this constraint satisfaction problem (containing at most O((n

2)) con-
straints), we can use any standard CSP solver [20]. Note that most of the presented
constraints are binary, and we can easily implement a polynomial time solver to calculate
their membership. An efficient implementation of this instance would be to construct a
complete graph over the attributes V with constraints on nodes and edges. For example,
the constraint of the form XS

1 + XF
1 ≤ 1 is a constraint on the node (as these constraints

involve a single attribute), and the ones of the form XF
1 + XF

2 ≤ 1 refer to edge constraints.
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To identify a feasible solution, we iteratively remove the constraints by processing node
constraints that fix the values of variables and then propagating their effect on the edge
constraints. In this constraint satisfaction formulation, membership of all variables that
have a unique value are correctly identified. All other variables that do not have a unique
value cannot be classified correctly and are considered as proxy attributes. However, we
next show that membership of all attributes are correctly identified for realistic settings
(sparse graphs). The membership may not be identified in case a number of attributes
have a very high degree (see Lemma 4). As an extreme case, membership of an attribute
that is functionally dependent on all other attributes would not be identified by the CSP.
However, it is impossible to identify its membership as all attributes are dependent on this
high-degree attribute.

The main advantage of this algorithm over Algorithm 1 is that we leveraged properties
from Table 2 to identify the membership of an attribute X. If an attribute X is attached
to every other attribute X′ ∈ V , then our techniques would not be able to pin-point
whether X is a proxy attribute or not. In such cases, it returns three sets of attributes (a)
proxy attributes having XS = 1, (b) non-proxy attributes (XS = 0), and (c) undecided
attributes (high-degree nodes for which XS is not uniquely determined). If all the proxy
and undecided attributes are not used, the trained classifier is guaranteed to be fair.

3.3. Efficient Implementation

Algorithm 1 and the constraint satisfaction problem rely on conditional independence
tests that consider all possible subsets A ⊆ V \ {X1, X2}. Therefore, a naive implementation
of Algorithm 1 requires O(2|V|) tests. This may not be feasible for large values of |V|,
especially when it has to be performed for all pairs of attributes.

In order to improve the overall complexity, we made the following observation for
sparse causal graphs. If there exist two attributes X1 and X2 /∈ V ′ where (X1, X2) /∈ E, then
they are not connected to any length-2 collider path (paths of the form X1 → X′ ← X2
for some X′ ∈ V) iff X1 ⊥ X2|V \ {X1, X2}. This holds because when we condition on
all attributes except X1 and X2, all paths from X1 and X2 are blocked except length-2
collider paths of the form X1 → X3 ← X2. Since there are no such paths, it means that the
test X1 6⊥ X2|A, ∀A ⊆ V \ {X1, X2} is equivalent to testing for X1 6⊥ X2|V \ {X1, X2} for
such pairs of attributes. Lemma 5 extends this observation to general scenarios where the
number of such length-2 collider paths between a pair of attributes is bounded.

Lemma 5. Consider a pair X1 and X2 such that (X1, X2) /∈ E and at least one of the two attributes
does not belong to V ′. The following conditions hold:

1. X1 and X2 are independent when conditioned on all other attributes (X1 ⊥ X2|V \ {X1, X2})
iff there does not exist X′ ∈ V such that X1 → X′ ← X2 form a collider path.

2. ∃V1 such that X1 ⊥ X2|V1 where |V1| ≥ n − t iff the number of attributes in set V ′
is less than t, where V ′ contains all attributes X ∈ V that form a length-2 collider path
X1 → X ← X2 or X is a descendant of some attribute X′ ∈ V ′, where X′ forms a length-2
collider path.

Proof of Lemma 5. Consider a pair of attributes X1 and X2 such that (X1, X2) /∈ E and at
least one of X1, X2 /∈ V ′. If X1 and X2 do not have any length-2 collider path, conditioning
on all attributes d-separates X1 and X2. This holds because for any collider path of length
more than 2 (say X1 → Xi . . .← Xj ← X2), then both Xi or Xj are conditioned. Similarly
for any path with incoming edges into X1 or X2 (backdoor paths), the parents of both
attributes are also conditioned on. Therefore, X1 ⊥ X2|V \ {X1, X2}.

If a set of attributes X ′, |X ′| ≤ t where X ′ contains all X such that attributes forming
length-2 collider of the form X1 → X ← X2 or X is a descendant of an attribute X′ ∈ X ′. In
this case, X1 and X2 can be d-separated by conditioning on all attributes except X ′ because
conditioning on any ancestor of X1 and X2 does not open new paths. Similarly, if the collider
path has a length greater than 2, then the path is blocked by conditioning on all attributes
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that are not in X ′. For example, if the collider path is length 3, X1 → X3 → X4 ← X2, then
conditioning on X3 and X4 does not open this collider path.

More formally, consider any collider path of length greater than 2, say X1 → Xi . . . Xj ←
X2. If Xi, Xj ∈ X ′, then all descendants of Xi and Xj also belong to X ′. Therefore, this path
is blocked. If Xi /∈ X ′, this path is blocked by conditioning on Xi, and conditioning on
Xi does not open any length-2 collider paths because Xi /∈ X ′. Any > 2 length collider
path that is unblocked by conditioning on Xi get blocked by another Xj′ , which is a child
of X1 or X2 in that path. Therefore, conditioning on V \ X ′ does not open any path from
X1 to X2.

Algorithm 2 uses this property to optimize the number of conditional independence
tests required to calculate the membership of each attribute. It initializes with t = |V| (line
3) and iteratively decreases t to consider attributes with at most |V| − t length-2 collider
paths. For an iteration t, it considers all subsets of V of size n− t (denoted by T ) as the
conditioning set (line 6). Using this conditioning set, it evaluates conditional independence
constraints for every pair of attributes X1, X2 ∈ V (Algorithm 3). These constraints are the
same as the ones discussed in Section 3.2. The SolveCSP subroutine then solves the CSP
with new constraints and removes the attributes from U for which XS has been uniquely
determined (line 9). The procedure stops as soon as the XS values of all attributes X ∈ V
have been uniquely identified (U = φ) and returns the subset for which XS = {1}.

Algorithm 2 Proxy identification.

1: Input: attributes V , F
2: U ← V , C ← φ
3: XS, XF ← {0, 1}, ∀X ∈ V
4: t← |V|
5: while t ≥ 0 and U 6= φ do
6: T ← IDENTIFYSUBSET(V , t)
7: C ← C ∪ PairwiseConstraints(V , T )
8: SolveCSP(V , C)
9: U ← {X : 0, 1 ∈ XS, X ∈ V}

10: t← t− 1
11: V ′ ← {X : XS = {1}}
12: return V ′

Algorithm 3 Pairwise constraints.

Input: Attributes V , F, T
C ← φ
for (X1, X2) ∈ V × V do

if ∃T ∈ T | X1 ⊥ X2|T \ {X1, X2} and X1 6⊥ X2|T \ {X1, X2}, F ∀T ∈ T then
C ← C ∪ {XF

1 , XF
2 ← 1}

C ← C ∪ {XS
1 + XS

2 ≤ 1}
if X1 6⊥ X2 | T \ {X1, X2} and X1 ⊥ X2 | T \ {X1, X2}, F then

C ← C ∪ {XS
1 , XS

2 ← 1}
C ← C ∪ {XF

1 + XF
2 ≤ 1}

if X1 ⊥ X2 | T \ {X1, X2} and X1 ⊥ X2 | T \ {X1, X2}, F then
C ← C ∪ {XS

1 + XF
1 + XS

2 + XF
2 ≤ 2}

return C

PairwiseConstraints. Algorithm 3 presents the pseudocode for this subroutine. It iterates
over pairs of attributes and performs CI tests to identify the corresponding constraint,
guided by Table 2.
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In order to prove the correctness of Algorithm 2, we argue that it does not introduce
any spurious constraints in the CSP optimization. Lemma 6 shows that if a pair X1 and
X2 have more than α length-2 collider paths, then X1 and X2 cannot be d-separated by
conditioning on any subset of size more than n− α. Since each new constraint introduced
by Algorithm 3 requires conditional independence of X1 and X2 with respect to some
subset on D or D′, it does not identify incorrect constraints. We now prove Lemma 6.

Lemma 6. Consider a pair of attributes X1 and X2 such that the total number of length-2 collider
paths (X1 → X ← X2 where X ∈ V ′) is at least α. Any CI test between X1 and X2 conditioning
on A where |A| > n− α returns X1 6⊥ X2|A.

Proof. If a pair of attributes X1 and X2 have more than α length-2 collider paths, then
conditioning on any subset of size more than n− α implies conditioning on at least one of
the collider nodes. Therefore, X1 6⊥ X2|A whenever |A| > n− α.

3.4. Time Complexity

We now analyze the running time of Algorithm 2 for commonly studied causal graph
models. Theorem 1 bounds the total number of CI tests required for a degree-bounded
graph, and then we extend our analysis to Erdős-Renyi graphs.

Theorem 1. For a causal graph where each node X ∈ V has a degree less than α and |V ′ \VF| > α2,
Algorithm 2 requires O(n2) CI tests to identify all proxy attributes.

Proof. For a node X with degree < α, the maximum number of 2-hop neighbors of X
is ≤ (α − 1)2. This analysis considers all edges as undirected and can be tightened by
considering directions and splitting α into incoming and outgoing degrees of each node.
Therefore, X can have at most (α− 1)2 length-2 collider paths. This means that if V ′ \ VF
contains more than (α− 1)2 two-hop and α− 1 one-hop attributes, then ∃X′ ∈ V ′ such that
X′ is at least 2-hops away from X. Since α2 > (α− 1)2 + (α− 1), ∃X′ ∈ V ′ that satisfies
this condition. Such attributes are identified in the CI test X ⊥ X′|F,V \ {X, X′}. Therefore,
all attributes are correctly identified in 1 test for every pair of attributes.

Erdős-Renyi Graphs. We consider a randomized generative model for the causal graph
construction where each pair of attributes are causally related independently with a prob-
ability p. We show that whenever p < 1/

√
n, Algorithm 2 identifies all proxy attributes

in O(n2) running time. Such connectivity models for causal graphs have been widely
studied [21]. Lemma 7 bounds the expected number of length-2 collider paths between a
pair of attributes X1 and X2.

Lemma 7. Consider a pair of attributes X1 and X2 such that (X1, X2) /∈ E. The probability that
X1 and X2 have a length-2 collider path between them is less than p2(n− 2).

Proof. Let Xv denote a binary random variable such that Xv = 1 if X1 → X ← X2 forms a
collider path for X ∈ V . The probability that (X1, X) ∈ E and (X, X2) ∈ E is p× p = p2.
Therefore, Pr[Xv = 1] = p2.

Using this result, we prove the following complexity of our algorithm.

Theorem 2. Algorithm 2 identifies the proxy attributes in less than O(n2) CI tests if p =
o(
√

1/n)

Proof. Given a pair of attributes X1 and X2, the probability that X1 and X2 are within
2-hops from each other is p2(n− 2) = o(1) if p = o(

√
1/n). Therefore, ∀X ∈ V ′, there

will exist X′ ∈ V ′ such that (X, X′) /∈ E and the two attributes are more than 2-hops away.
Therefore, X 6⊥ X′|A∀A ⊆ V \ {X, X′} and X ⊥ X′|A, F for some A ⊆ V \ {X, X′}.
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This means that all attributes in V ′ have been recovered in the first iteration of
Algorithm 2.

3.5. Graphical Lasso-Based Algorithm

In this section, we study a specific class of causal graphs where the structural equations
are Gaussian. In this setting, we show that Algorithm 2 can be implemented efficiently
using the graphical lasso algorithm.

Graphical lasso [22] is one of the widely studied methods to infer the precision matrix
of the underlying causal model in settings where the structural equations are Gaussian.
(The precision matrix is the inverse of the covariance matrix; its non-zero values encode
the edges in the graph.) Following the properties of Lemma 2, we know that X1 6⊥ X2|A,
∀A ⊆ V \ {X1, X2} if X1, X2 ∈ V ′. Therefore the precision matrix identified over D would
contain (X1, X2) as an edge. Similarly, Lemma 2 also shows that ∃A ⊆ V \ {X1, X2} such
that X1 ⊥ X2|A, F iff X1, X2 ∈ V ′. This means that the entry corresponding (X1, X2) in the
precision matrix will be 0. Using this property, a simple algorithm to identify the proxy
attributes is as follows. (a) Step 1: Run graphical lasso on the original dataset D. Let P
denote the returned precision matrix. (b) Step 2: Run graphical lass on the dataset D′. Let
P′ denote the returned precision matrix. (c) Step 3: Calculate the set difference P \ P′. All
attributes with degree more than 0 in P \ P′ are the proxy attributes. One of the advantages
of this technique is that the graphical lasso algorithm is highly efficient, but it is restricted
to multivariate Gaussian causal models and does not generalize to general datasets.

4. Experiments

In this section, we evaluate the effectiveness of our techniques to identify proxy
attributes that capture protected information such that removing these attributes improves
classifier fairness. The protected attributes are hidden from the dataset and are used only
to evaluate the fairness of the learned classifier.

4.1. Setup
4.1.1. Datasets

We consider the following real-world datasets.

• Medical Expenditure (MEPS) [23]: This dataset is used to predict the total number
of hospital visits from patient medical information. Healthcare utilization is some-
times used as a proxy for allocating preventative care management. We consider
“arthritis diagnosis” as admissible. Race is considered protected and is hidden for
experimentation. The dataset contains 7915 training and 3100 test records.

• German Credit [24] dataset contains attributes of various applicants, and the goal
was to classify them based on credit risk. The account status is taken as admissible,
and whether the person is below the mean age is considered protected. The dataset
contains 800 training and 200 test records.

• Adult dataset [25] contains demographic information of individuals along with their
information on their level of education, occupation, working hours, etc. The task
was to predict whether or not the annual income of an individual exceeds 50K. Race
was treated as the protected attribute, and education was treated as admissible. The
dataset contains around 32K training and 16K test records.

4.1.2. Baselines

Our experimental setup is similar to that of [3], where the input dataset contains
admissible attributes (denoted by A), referring to the set of attributes that are allowed to
inject bias into the trained classifier. In the implementation of our algorithm, we identified
all proxy attributes and trained a new classifier after removing them from the dataset. Due
to the small size of A, classifiers trained on A tend to predict a single class if the training
data are not balanced. Therefore, we compare the performance of the trained classifier on
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both original and balanced data. All algorithms were implemented in Python, and we use
Scikit-Learn’s logistic regression classifier with default parameters.

Since causal fairness cannot be tested on real datasets, we evaluate the fairness of the
classifier in terms of absolute odds difference (AOD) as a proxy. AOD is calculated as the
difference in the false-positive rate and the true-positive rate between the privileged and
unprivileged/marginalized groups. The set of privileged and unprivileged/marginalized
groups are identified according to the sensitive attribute. For example, white individuals
are considered privileged in MEPS dataset. The feedback sample is constructed randomly
by considering a small sample of unprivileged records that received negative outcomes
(less than 100 data points). We used the RCIT package [26] for CI testing, and the Glass
package [27] for graphical lasso. These packages are in R. Unless specified, we used
Algorithm 2 for our experiments. We considered the following baselines. (i) A uses the
attributes in the admissible set. (ii) ALL uses all attributes present in the dataset.

4.2. Solution Quality

Table 3 compares the accuracy and average precision of the trained classifier along
with absolute odds difference to measure fairness. Among all datasets, the accuracy of our
approach is similar to All, and the fairness is similar to that of A. This experiment validates
that the removal of proxy attributes from the dataset does not worsen the overall accuracy
but helps to improve fairness of the trained classifier. Low average precision (less than
0.60) for A shows that it does not learn the target attributes Y and predicts the same label
for each datapoint. On the other hand, All has high accuracy but is highly unfair. As an
example, it has an odds difference of 0.38 on the Adult and 0.27 on the MEPS dataset.

Table 3. Comparison of accuracy (Acc), average precision (AvgP), and absolute odds difference (AOD).

Dataset OurApproach All A
Acc AvgP OD Acc AvgP OD Acc AvgP OD

Adult 0.79 0.78 0.025 0.80 0.75 0.06 0.75 0.47 0.03

Adult-balanced 0.78 0.71 0.068 0.65 0.59 0.38 0.63 0.59 0.40

MEPS 0.85 0.75 0.09 0.86 0.77 0.15 0.83 0.41 0

MEPS-balanced 0.77 0.67 0.25 0.77 0.67 0.27 0.76 0.59 0.05

German 0.74 0.7 0.075 0.79 0.71 0.12 0.72 0.44 0.003

German-balanced 0.70 0.66 0.06 0.72 0.67 0.13 0.6 0.53 0.05

On training a balanced classifier for the Adult dataset, our algorithm achieved higher
accuracy than All and almost a 0 odds difference. On investigating this dataset, we
noticed that the identified proxy attributes did not help with prediction, and ignoring
those attributes helped with both accuracy and fairness. Some of the attributes used by our
technique for classifier training after removing the proxy attributes were education and
capital in Adult and purpose and age in German. In MEPS, our approach used diagnostic
features like cancer diagnosis and blood pressure for prediction. We observed similar
results on changing the training algorithm to random forest and AdaBoost classifier.

In addition to comparing the odds difference, we considered the causal graph for
Adult and German from the prior literature [2] and used it as a ground truth to test the
correctness of our algorithm. Overall, Algorithm 2 identified 95% of the proxy attributes
for these datasets. In terms of running time, our presented technique was completed in
less than 10 min on all datasets.

4.3. Synthetic Dataset

In this experiment, we considered different synthetic datasets and calculated the
fraction of proxy attributes identified by Algorithm 2. Since the causal graph was used to
generate data, we can verify the correctness of identified proxy attributes for these datasets.
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The first experiment considered causal graphs corresponding to Adult and German where
the structural equations of the causal graph followed a multivariate Gaussian distribution.
We used the graphical lasso variant of our algorithm for these datasets. Our algorithm
identified all proxy attributes on both datasets, and none of the non-proxy attributes were
labeled incorrectly.

The second experiment considered random causal graphs containing 20, 40, 60, 80,
and 100 attributes consisting of 5 proxy-protected attributes, generated according to the
Erdős-Renyi model where every pair of attributes was connected with probability p = 0.2.
In this case, Algorithm 2 achieved 100% accuracy to identify proxy attributes. To further
study the effect of probability p, we considered higher values of p = 0.5 and 0.75. In such
cases, Algorithm 2 identified 83% of the proxy attributes correctly where the high degree
nodes were not identified. These attributes were neither labeled as proxy nor non-proxy.
Complexity Figure 2a shows the effect of an increase in the number of proxy attributes
V ′ on the number of required conditional independence tests by Algorithms 1 and 2. In
this experiment, we considered a causal graph of 50 attributes and varied the number
of proxy attributes from 5 to 30. The complexity of both techniques increased linearly
with an increase in |V ′|, and Algorithm 2 is orders of magnitude better than Algorithm 1.
In Figure 2b, we varied the edge formation probability p of the generative model while
keeping the size of V ′ constant. In this experiment, the total number of tests required
increased with increasing p, but Algorithm 1 required much more tests as compared to
Algorithm 2. This experiment validated the effectiveness of Algorithm 2 to reduce the
number of CI tests required to identify proxy attributes.

In terms of running time, Algorithm 2 ran within 10 minutes for all real-world datasets.
In Figure 2, its running time increased proportionally to the increase in the number of
CI tests.
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Figure 2. Complexity comparison of our techniques for varying dataset sizes.

Effect of feedback set size As an additional experiment, we varied the feedback set size
and evaluated the difference in results for real datasets. We observed that our approach
ensures fairness whenever the feedback set contains more than 25 samples. An increase
in feedback ensures that our technique is stable and ensures fairness across different runs.
Whenever the number of samples is small, the behavior of our approach varies. This varied
behavior is because our algorithm uses RCIT as a black-box algorithm to test conditional
independence, and it returns spurious answers for small sizes of the feedback set.

Overall, this experiment validates that our technique is effective in identifying proxy
attributes and mitigating unwanted biases.

5. Related Work

There has been very little work to consider fairness in the absence of protected at-
tributes. Refs. [28,29] consider adversarial reweighting and empirical risk minimization
techniques to learn a fair classifier in the absence of demographic information. These
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techniques do not assume knowledge of protected attributes, but do not study the causal
impact of the unobserved features on the target attribute. Ref. [7] tackles the absence
of protected attributes using transfer learning from a different dataset that does have
protected attributes. Ref. [30] studies fair class balancing techniques in the absence of
protected attributes. There has been some recent interest in studying the effect of noisy
attributes on the fairness of classification. Ref. [31] studied the problem of training a fair
classifier in the presence of noisy protected attributes. This work does not consider the
causal fairness paradigm and does not directly extend to settings where the protected
attribute is unobserved. Ref. [32] considered fairness in the presence of noise in the target
attribute. These techniques are not directly applicable to our problem setting.

The literature on mitigating unwanted biases considers two types of fairness measures:
associational and causal. Associational methods [33–38] have been shown to fail in distin-
guishing spurious correlations and causal dependence between attributes [3]. Identifying
proxy attributes for these techniques is outside the scope of this work. There has been
much recent interest in studying causal fairness frameworks [1,10–15,17–19,39] to achieve
fairness. Ref. [2] studies the effect of different causal paths from the protected attributes
on the target attribute assuming knowledge of the protected attribute and the underlying
causal graph. Ref. [3] studies the problem of changing input data distribution in order to
ensure interventional fairness. All these techniques require accurate characterization of
the protected attribute for all data points. Extending these techniques [2,3] to leverage the
information about proxy attributes in the absence of protected attributes is orthogonal to
this work and an interesting question for future work.

6. Conclusions

In this work, we formalized a feedback based framework for interventional fairness in
settings where the protected attribute is unobserved. Specifically, we examined systems
where the auditors, decision makers, or affected individuals report issues in the deployed
classifier. These flagged samples that suffered from biased prediction are considered
indirect knowledge about the unobserved protected attributes. In this setting, we developed
efficient techniques that use conditional independence (CI) testing over the observational
data to formulate a constraint satisfaction problem, which identifies the proxy variables.
Our techniques partition the variables into different categories based on the output of the
performed CI tests. We theoretically proved the correctness of our algorithm, bound its
complexity for popular causal graph models, and demonstrated its efficacy on real-world
and synthetic datasets.
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