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Abstract: In this paper, we present some initial results aimed at defining a framework for the
analysis of thermodynamic systems with additional restrictions imposed on the intensive parameters.
Specifically, for the case of chemical reactions, we considered the states of constant affinity that form
isoffine submanifolds of the thermodynamic phase space. Wer discuss the problem of extending the
previously obtained stability conditions to the considered class of systems.

Keywords: chemical reactions; contact geometry; isoaffine manifolds; stability conditions

1. Introduction

The study of thermodynamic stability is one of the main and traditional tasks of
general and chemical thermodynamics. The general stability criteria were proposed by
Gibbs [1] at the end of 19th century, but further investigations showed the usefulness and
significance of other various forms of thermodynamic stability conditions, especially for
the systems subject to complex external influences and specific restrictions.

With reference to Gibbs, the deviations from equilibrium are typically assumed to
be virtual, although in his fundamental work [1], Gibbs discussed the possibility of real
deviations or, specifically, fluctuations. In Prigogine’s later work [2], the analysis of stability
conditions was carried out taking into account fluctuations, but the inclusion of such
elements really requires a significant expansion of the theory, as was noted by Tisza [3]. The
analysis of fluctuations should include finite deviations, and this opens up the possibility
to consider the difference between stable and metastable states. On the other hand, such
a consideration requires knowledge of the complete state diagram of the system state,
and general conclusions cannot be obtained, cf. Münster [4]. Already Gibbs noted that
an extension of his stability conditions to finite perturbations would require defining the
boundaries within which they will be valid: “. . . it must be possible to assign limits within
which it shall hold true of finite differences” [1], (p. 106).

Gibbs also proposed a variant of the stability condition that transforms the stability
matrix into the product of second derivatives of internal energy w.r.t. the extensive variables
at different fixings of the sets of intensive and extensive parameters [1], (p. 114). A thorough
analysis of these conditions was performed in the papers [5,6] based upon a contact
geometric formulation. The geometric framework has proved to be rather helpful for
analyzing complex thermodynamic relations. Specifically, several additional results have
been obtained within this framework—in particular, those related to the Le Chatelier–
Brown principle. It was also indicated how these conditions can be used to conclude about
the stability of a thermodynamic system.

In this paper, we aim at extending the developed approach to the thermodynamic
systems with additional restrictions imposed on the intensive parameters. The most
important, and by far the most practically relevant problem statement is presented by
chemical reactions. In this case, the condition of constant affinity defines the isoaffine
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submanifolds of the thermodynamic phase manifold, thus resulting in a natural geometric
formulation of the problem.

It is worth noting that the idea of using a geometric approach to analyzing thermody-
namic relations was also suggested by Gibbs at the end of 19th century. Later, Hermann [7]
recognized a deep connection between the equilibrium energy manifold and a Legen-
dre manifold of the specific 1-form, later referred to as the thermodynamic 1-form. This
contact geometry-based approach had been recognized and further developed in a num-
ber of papers [8–10]; see also more recent papers [11–15] and references therein. Almost
concurrently with the first papers on contact geometric description of thermodynamic
systems, the first substantial work on applying the geometric approach to chemical reac-
tion dynamics was carried out by Oster, Perelson and Katchalsky in the 1970’s; see, e.g.,
Oster and Perelson [16]. Later, van der Schaft and Maschke [17] extended these results and
formulated the dynamics of reaction networks within the port-Hamiltonian framework.

A somewhat different approach consists in studying the structure of chemical reactions
as determined by the stoichiometric matrix. This matrix possesses a number of nontrivial
properties and has been subject to a thorough study for decades; see [18,19] for an overview
of recent results. Quite remarkably, within the framework developed in [5,6], the matrix
theoretic analysis of chemical reactions turns out to be well connected to the geometric
study of the isoaffine submanifolds. This connection will be demonstrated below.

Notation

Throughout the paper, we use upright capital letters to denote matrices, slanted
capital vectors for thermodynamic variables and functions, and small letters for auxiliary
parameters and constants. Vectors are denoted either by upright capital letters, e.g., Y or
X, or by lower-case bold letters, e.g., x, depending on the context. We write 0 and 1 to
denote the vector (matrix) all of whose elements are equal to 0, resp. 1. It is assumed that
the dimensions of all matrices are clear from the context. Otherwise, the dimensions are
written as lower subscripts, e.g., 0[2×k].

Let U(X), U : Rn → R, be a sufficiently smooth function. We let ∇U and ∇2U denote
the row vector of partial derivatives of U(X) (the gradient), and the [n × n] matrix of
second-order partial derivatives of U(X) (the Hessian). Let M ∈ R(n×m) be a rectangular
matrix; we then define the null and the range spaces as N (M) = {X ∈ Rm|MX = 0} and
R(M) = {Y ∈ Rn|Y = MX, X ∈ Rm}, respectively. Respectively, the co-range and the
co-null spaces are coR(M) = N (M>), and coN (M) = R(M>). Note that for a symmetric
matrix, the range and co-null spaces coincide, as well as the null and co-range spaces.
Furthermore, we write M[I, J] to denote a submatrix of the [n× n] matrix M, obtained by
removing from M the rows with indices i ∈ I ⊂ {1, . . . , n} and the columns with indices
j ∈ J ⊂ {1, . . . , n}. The notation M[I, ∅] (resp., M[∅, J]) means that only rows (resp.,
columns) are removed.

2. Results
2.1. Geometric Representation of the Energy Manifold

Let U(Y) be a sufficiently smooth first-order positive homogeneous function of n
variables Y ∈ Rn

+. We define n conjugate variables X as Xi =
∂U(Y)

∂Yi
.

Within the thermodynamic context, the function U(Y) is referred to as the internal
energy function, the vector Y = [S, V, N1 . . . , Nn−2]

> contains the extensive parameters
S, V, Ni (entropy, volume, and the molar numbers of substances, respectively), while the
vector X = [T, −P, µ1 . . . , µn−2]

> contains n intensive parameters T, −P, µi (temperature,
pressure, and chemical potentials of respective components). In the following, we will
mostly use the generic notations Yi and Xi for the extensive and intensive variables, re-
spectively, and will use the specific notation S, T etc. to emphasize the role of particular
variables. We also note that our notation implies that there are n− 2 different components
(substances); hence we assume that n ≥ 4 to ensure that the problem is not degenerate.
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The evolution of the system can be represented by the trajectory of a point on a
co-dimension 1 manifold in the space of n + 1 variables (Y0, Y), where Y0 = U(Y). The
position of this point is uniquely specified by the values of n + 1 extensive variables (Y0, Y)
(note that Y0 = U is an extensive variable as well because it is determined by a first-order
homogeneous function). However, for the purpose of formal analysis, it is desirable to have
a formulation that explicitly encompasses not only the extensive, but also the intensive
variables X.

In [5,6], the authors proposed a systematic approach to the analysis of thermodynamic
systems based upon the apparatus of contact geometry. Below, we will present a brief
overview thereof.

The suggested approach consists in embedding the n-dimensional energy manifold
into a (2n + 1)-dimensional space with coordinates (Y0, Y, X), which is referred to as
the thermodynamic phase space. The energy equilibrium manifold U (which can be
formally seen as a Legendre submanifold of a particular thermodynamic 1-form, see
Gromov and Caines [20] for details) is thus defined by the following system of equations:

φ0 = Y0 −U(Y1, . . . , Yn) = 0
φ1 = X1 − ∂U

∂Y1
(Y1, . . . , Yn) = 0

...
φn = Xn − ∂U

∂Yn
(Y1, . . . , Yn) = 0.

(1)

System (1) can be compactly written as Φ(Y0, Y, X) = 0, where Φ(Y0, Y, X) is a smooth
vector-valued function, Φ : R2n+1 → Rn+1. The representation (1) along with the implicit
function theorem can be used to derive many useful thermodynamic relations, as was
demonstrated in [5].

The application of the implicit function theorem is based upon the computation of the
Jacobian matrix of Φ(Y0, Y, X). We write it concisely as

DΦ(Y0, Y, X) =

 1 |−∇U | 0

0 |−∇2U| I

, (2)

where the symbols ∇ and ∇2 are used to denote the gradient (the row-vector of partial
derivatives) and the Hessian (the matrix of second-order partial derivatives) of the energy
function U, respectively. The matrix DΦ has a full row rank, i.e., rank DΦ = n + 1. Note
that the matrix ∇2U has a rank equal to n− 1 as follows from the Gibbs–Duhem equation
(see [5] for the formal derivation).

Let the point Ξ = (Ȳ0, Ȳ, X̄) belong to the equilibrium energy manifold U , i.e., it holds
that Φ(Ξ) = 0. Thus, according to the implicit function theorem, in a neighborhood of
Ξ one can express n + 1 variables as functions of the remaining n variables. However,
the application of the implicit function theorem goes far beyond that. It allows one to
compute the partial derivatives of some dependent parameters with respect to certain
independent parameters for different choices of independent parameters, thus providing
a detailed characterization of the energy manifold curvature. In [6], such calculations
were used to derive equilibrium conditions for a thermodynamic system not undergoing a
chemical reaction.

2.2. Geometry of an Isoaffine Submanifold

We wish to expand the developed framework by considering the setup, where there are
chemical interactions between the components of the system. Suppose that the individual
components are involved in k reactions, k < n− 2. Each reaction is described by the balance
equation that for the ith reaction reads as follows:
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n−2

∑
j=1

νijRj = 0,

where Rj are the chemical reagents (species), and νij are the stoichiometric coefficients,
which are used to balance the reaction (positive values for reaction products and negative
for initial reactants). The entropy production σ for a unit volume V due to this non-
equilibrium process is presented as follows [2]:

σ =
k

∑
i=1

Ai
T

1
V

(
dξi
dt

)
,

where ξi is the extent of the ith reaction, t is time, and Ai is the affinity of the ith reaction,
which is defined as:

Ai =
n−2

∑
j=1

νijµj. (3)

Affinity Ai is associated with the thermodynamic force, while the velocity of the ith
reaction, dξi

dt , is interpreted as the flow. Accordingly, the progression of the ith reaction
can be characterized both by ξi and Ai. However, the extent of the ith reaction is not
a thermodynamic variable [4]: it describes only the deviation from the equilibrium. In
contrast to the extent of reaction, chemical affinity, defined by (3), is a thermodynamic
variable (a function of chemical potentials). Formally, affinity of a reaction can be deter-
mined at any stage of the reaction by introducing an inhibitor (negative catalyst), that is, by
“freezing” the reaction [4]. This implies that one can consider the states of constant affinity,
i.e., isoaffine submanifolds of the thermodynamic phase space, which are defined by the
equations Ai = const.

We are specifically interested in studying the properties of the system when the
chemical reactions are in equilibrium, i.e., when affinity is zero. Alternatively, this can be
formulated as: ∑n−2

j=1 νijµj = 0, which can be concisely written in vector-matrix notation as

Σµ = 0. (4)

Here, µ = [µ1, . . . , µn−2]
> is the vector of chemical potentials, and Σ = [νij], i = 1, . . . , k,

j = 1, . . . , n − 2 is the matrix of stoichiometric coefficients. We assume that there are
k < n− 2 independent reactions, which implies that the matrix Σ has full row rank, i.e.,
rank Σ = k. Note that the assumption of zero affinity is not restrictive in any way, as all
of the subsequent analysis will be focused on the structure of the stoichiometric matrix,
which remains unchanged.

The conditions (4) determine an isoaffine submanifold UA of the energy manifold U ,
which we will later refer to as the isoaffine energy manifold. To analyze the dimensionality
of this manifold one has to check the rank of the Jacobian matrix of the extended system
of constitutive equations formed by (1) and (4). We denote the extended system by Φ̃ and
write the Jacobian as:

DΦ̃(Y0, Y, X) =


1 |−∇U | 0

0 |−∇2U| I

0 | 0 | Σ̃

, (5)

where Σ̃ = [0[k×2], Σ], i.e., we pad Σ with two zero columns. Obviously, both Σ and Σ̃ have
the same row rank.

The co-dimension of the manifold UA at a point Ξ = (Y0, Y, X) is equal to the rank of
DΦ̃(Y0, Y, X) at that point. One can easily see that the rank of DΦ̃ is determined by the
rank of the principal submatrix obtained by removing the first row and the column of DΦ̃.
The following theorem provides the required characterization.
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Theorem 1. Consider the [(n + k)× 2n] matrix

M =

[
−∇2U I

0 Σ̃

]
, (6)

where Σ̃ ∈ R(k×n) is a full row rank matrix, i.e., rank Σ̃ = k < n− 2, and ∇2U is a symmetric
matrix with a rank deficiency equal to 1, i.e., rank∇2U = n− 1. Then, the rank of M is equal to
n + k− 1 if N (Σ̃) ⊂ R(∇2U) and n + k otherwise.

Proof. See Appendix A.

To interpret the formulated theorem we recall that the null space N (∇2U) changes
as the system state moves along the manifold and coincides with αȲ, α 6= 0, at a point
Ξ = (Y0, Ȳ, X̄). Furthermore, note that R(∇2U) ⊥ N (∇2U) = Ȳ as ∇2U is a symmetric
matrix. Thus the condition N (Σ̃) ⊂ R(∇2U) is equivalent to saying that N (Σ̃) ⊥ Ȳ,
which, in turn, implies that Ȳ> belongs to the span of the rows of matrix Σ̃. Note, however,
that the first two elements of each row of the matrix Σ̃ are zero, which implies that the
manifold UA loses its rank at the points where Ȳ1 = Ȳ2 = 0, which do not belong to the
energy manifold U . Thus, we eventually conclude that the manifold UA has a (full row)
constant rank equal to n + k + 1, where one dimension comes from the removed first row.

3. Dependent and Independent Thermodynamic Variables on an Isoaffine
Energy Manifold

The analysis carried out in the previous subsection implies that on the manifold UA
one can choose n + k + 1 dependent variables that can be expressed through the remaining
n− k ones. To put it differently, in a small neighborhood of any point Ξ ∈ UA, one can
choose exactly n− k independent coordinates.

To provide an intuition for this result, assume that we have chosen variables (S, V, µ)
as independent ones and the remaining ones as dependent. If the variables µ are consistent
with (4), one can express k chemical potentials in terms of the remaining (n− 2− k) ones.
Thus, the set of independent variables reduces to n− k: S, V and (n− k− 2) independent
chemical potentials. However, the problem of determining which variables can serve as
independent ones is in general rather intricate as will be discussed below.

In the following, we will assume that the internal energy U is considered as a depen-
dent variable. We thus restrict ourselves to considering 2n thermodynamic variables Y and
X. The problem of determining which variables can be taken as dependent boils down to
finding n + k linearly independent columns of the [2n× 2n] matrix (6). The first n columns
correspond to the extensive variables Y, while the remaining columns correspond to the
intensive variables X.

One can immediately observe that—in contrast to the case without chemical reactions—
the intensive variables have a different status: while the variables T and −P are “free”, the
chemical potentials µj are “bound” by (4). On the other hand, the chemical potentials are
not in equal rights as well: some of them can be expressed through others, while some
cannot. One should also take into account that a chemical potential, in our case the internal
energy U, is determined up to an arbitrary constant; this is the property of any potential.

Note that the value of µj is usually defined through the standard value for the pure
component j at certain constant values of T and P:

µj = µ◦j (T, P) + µmix
j ,

where µmix
j is the change in the chemical potential as a result of mixing the original pure

substance with other substances at given T and P. Thus, the affinity (3) is also a function
of T and P. Formally, an additional link between chemical potentials, temperature and
pressure could also be imposed by assuming that, e.g.,
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Ai = T + P−
n−2

∑
j=1

νijµj = const.,

but such constructions go beyond the scope of realistic physical framework. The change in
the standard value µ◦j (T, P) can also be derived from the Gibbs–Helmholtz equation

G = H + T
(

∂G
∂T

)
P

,

where G is the Gibbs energy and H is enthalpy. For pure substance, the molar Gibbs energy
is equal to the chemical potential, but the determination of this value requires knowledge
of the temperature dependence of enthalpy. As a result, no general conclusions can be
obtained along this line.

Before proceeding with the detailed analysis, observe that the whole set of extensive
variables Y cannot be chosen to be dependent, as the columns of the matrix ∇2U are
linearly dependent. However, under the thermodynamic stability condition, cf. [5], any
[(n− 1)× (n− 1)] principal submatrix of ∇2U has full rank. This allows us to formulate
the first result.

Theorem 2. Let J ⊂ {1, n − 2} be the set of indices of k linearly independent columns of the
matrix Σ. Then, the set of n + k dependent variables can be chosen as the union of one of the sets
{T, V, N1, . . . }, {S,−P, N1, . . . } or {T,−P, N1, . . . }, and the set of chemical potentials {µj}j∈J .

Proof. See Appendix A.

Note that the set of linearly independent columns of the matrix Σ is not uniquely
determined. Thus, depending upon the structure of the matrix Σ, the set J can be chosen in
different ways, which introduces additional degrees of freedom.

Theorem 2 can be extended as the following result shows.

Theorem 3. Let J ⊂ {1, n − 2} be the set of indices of k linearly independent columns of the
matrix Σ. Then, the set of n + k dependent variables can be chosen as the union of the set of chemical
potentials {µj}j∈J and the set Y = {S, V, N1, . . . } with some elements from the set {S, V} replaced
by the respective elements from {T,−P}, and up to n− 2− k variables Ni, i ∈ {1, . . . , n− 2} \ J
replaced by the respective variables µi.

Proof. See Appendix A.

Note that in all preceding theorems, the set of chemical potentials {µj}j∈J was always
chosen to be dependent. These variables can be chosen to be independent as well, but
this choice would not be valid for the whole isoaffine submanifold. A characterization of
the subsets of UA, where the respective columns of the Hessian matrix (6) turn out to be
linearly dependent, is closely related to the problem of stability analysis of the respective
system and will be reported in detail in a subsequent publication.

4. Discussion

In this paper, we presented some initial results aimed at defining a framework for
the analysis of systems with additional restrictions imposed on the intensive parameters.
Specifically, for the case of chemical reactions, we considered the equilibrium states or,
alternatively, the states of constant affinity as the most important setup for physical chem-
istry. However, using the developed approach, one can consider the situations where some
other links, e.g., between T and P, are imposed.

The presented results form a rigorous mathematical framework for the formulation
and analysis of stability conditions in the course of chemical reactions, including chemical
equilibrium. We emphasize that we are not discussing the stability of the chemical equi-
librium itself, but rather the stability of the system as a whole with additional coupling
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equations (in this case, for the constancy of chemical affinity). These and similar problems
have been considered in some works in the traditional thermodynamic way and for specific
cases. Some examples may be the works of Gitterman for chemical equilibrium [21,22],
Prigogine on configurational heat capacity (e.g., [2,23]), or the recent work by Toikka [24].
However, it is believed that the presented formulation would allow for a more systematic
analysis of the problems of stability and equilibrium displacement using well-developed
methods of vector algebra and matrix analysis.
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Appendix A. Proofs of the Theorems

Proof of Theorem 1. Note that rank M = 2n− dim(N (M)). Therefore, it suffices to com-

pute the dimension of the null space of M. Consider the vectors x =

[
x1
x2

]
∈ R2n, where

x1, x2 ∈ Rn. A vector x belongs to N (M) if Mx = 0, which amounts to the following
system:

−∇2Ux1 + x2 = 0 (A1a)

Σx2 = 0. (A1b)

By definition, there are exactly (n− k) linearly independent vectors x2 satisfying (A1b),
{xi

2}, i = 1, . . . , n− k. For each such vector, the system (A1a) has a solution if x2 ∈ R(∇2U).
If this is the case, we have N (Σ) ⊂ R(∇2U), that is, the null space of Σ forms a linear
subspace of the range space of∇2U. Note that k < n− 2 and hence, this is always possible.
Let us pick up a set of (n− k) orthogonal vectors xi

1 satisfying (A1a) for the corresponding
xi

2. The set of vectors xi, obtained by vertically stacking the vectors xi
1 and xi

2, forms an

(n− k)-dimensional subspace of R2n. This set can be extended by the vector x⊥ =

[
x⊥1
0

]
,

where x⊥1 ∈ N (∇2U). This vector is linearly independent with the previously defined
vectors as x⊥ ⊥ coR(∇2U) 3 xi

1. Noting that dim(N (∇2U)) = 1, we conclude that
there are no more linearly independent vectors that can be added to the =set. Therefore,
dim(N (M)) = k + 1 and rank(M) = 2n− (n− k + 1) = n + k− 1. This proves the first
part of the statement.

To prove the second part, we note that since rank∇2U = n− 1, N (Σ) 6⊂ R(∇2U) im-
plies N (Σ) +R(∇2U) = Rn. Using the Grassmann theorem, we conclude that dim(N (Σ)
∩R(∇2U)) = 1. The latter implies that there are (n − 1) linearly independent vectors
xi

2 ∈ N (Σ) satisfying (A1a) for some (linearly independent) vectors xi
1 ∈ R(∇2U). Extend-

ing this set by the vector x⊥, we obtain a set of (n− k) linearly independent vectors that
form the basis of N (M). Computing the dimensions, we obtain the required result.

Proof of Theorem 2. Denote by S the matrix, formed by jth columns of Σ, j ∈ J, i.e.,
S = Σ[∅, N \ J], where N = {1, . . . , n}. Furthermore, suppose that we replace Y1 = S by
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X1 = T. The remaining two cases are shown in the same way. We need to show that the
matrix

M =


1 |
−∇2U[∅, 1]

| 0

0 | | I

0 | 0 | S

,

is full rank. The result follows immediately by noting that M is a block triangular matrix
and rank∇2U[1, 1] = rank∇2U[∅, 1] (see ([5] Thm. A1), also [25]).

Proof of Theorem 3. To prove the stated theorem, assume that the extensive variables
(Y3, . . . , Yn) = (N1, . . . , Nn−2), and the respective intensive variables (X3, . . . , Xn) =
(µ1, . . . , µn−2) are renamed in the way that the last k variables correspond to the linearly
independent columns of the matrix Σ. Now let us replace the first q < n− k elements
of Y by the respective elements (X1, . . . , Xq). Denote Q = {1, . . . , q}. Then, the variables
(X1, . . . , Xq, Yq+1, . . . , Yn) ∩ (Xk, . . . , Xn) form a set of dependent variables if the following
matrix is non-singular:

P =


Ik |

−∇2U[∅, Q]
| 0[(n−k)×k]

0[(n−k)×q] | | Ik

S̃ | 0[k×(n−q)] | S

,

where S̃ is the [k× q] matrix, formed by the first q < n− k columns of Σ̃ that correspond to
the variables being replaced, and S is the matrix formed by the last k (linearly independent)
columns of Σ̃.

One can show that the leading n-principal submatrix of P in non-singular using the
same arguments as in the proof of Theorem 2, and S is non-singular by definition. The
matrix P is non-singular if the Schur complement of the matrix S, denoted as P/S, is
non-singular (see [26] Section 0.8.5). Thus, we need to check the following matrix:

P/S =

 Ik |
−∇2U[∅, Q]

0[(n−k)×q] |

−
 0[(n−k)×k]

Ik

S−1
[

S̃ | 0[k×(n−q)]

]
.

Note that q < n− k and hence,[
0[(n−k)×k]

Ik

]
S−1

[
S̃ | 0[k×(n−q)]

]
=

[
0[(n−k)×k]

Ik

][
S−1S̃ | 0[k×(n−q)]

]
= 0.

We conclude that the Schur complement P/S is non-singular, and the matrix P is non-
singular as well.
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