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Abstract: Korean river design standards set general design standards for rivers and river-related
projects in Korea, which systematize the technologies and methods involved in river-related projects.
This includes measurement methods for parts necessary for river design, but does not include
information on shear stress. Shear stress is one of the factors necessary for river design and operation.
Shear stress is one of the most important hydraulic factors used in the fields of water, especially
for artificial channel design. Shear stress is calculated from the frictional force caused by viscosity
and fluctuating fluid velocity. Current methods are based on past calculations, but factors such as
boundary shear stress or energy gradient are difficult to actually measure or estimate. The point
velocity throughout the entire cross-section is needed to calculate the velocity gradient. In other
words, the current Korean river design standards use tractive force and critical tractive force instead
of shear stress because it is more difficult to calculate the shear stress in the current method. However,
it is difficult to calculate the exact value due to the limitations of the formula to obtain the river factor
called the tractive force. In addition, tractive force has limitations that use an empirically identified
base value for use in practice. This paper focuses on the modeling of shear-stress distribution
in open channel turbulent flow using entropy theory. In addition, this study suggests a shear
stress distribution formula, which can easily be used in practice after calculating the river-specific
factor T. The tractive force and critical tractive force in the Korean river design standards should
be modified by the shear stress obtained by the proposed shear stress distribution method. The
present study therefore focuses on the modeling of shear stress distribution in an open channel
turbulent flow using entropy theory. The shear stress distribution model is tested using a wide range
of forty-two experimental runs collected from the literature. Then, an error analysis is performed to
further evaluate the accuracy of the proposed model. The results reveal a correlation coefficient of
approximately 0.95–0.99, indicating that the proposed method can estimate shear-stress distribution
accurately. Based on this, the results of the distribution of shear stress after calculating the river-
specific factors show a correlation coefficient of about 0.86 to 0.98, which suggests that the equation
can be applied in practice.

Keywords: entropy; shear stress distribution; Shannon’s theory; Korean river design standards

1. Introduction

Understanding fluid interaction is very important in almost all studies of open channel
flows. Shear stress is used and applied in hydraulics, hydrology, fluid mechanics, and in
various fields, and is one of the most important mechanical factors [1]. It is a great challenge
to the river engineers and researchers working in the field to estimate the distribution of
bed shear stress in open channel flows [2].

Leighly [3] proposed that the bed shear stress can be balanced by the downstream
component of the weight of water contained within the bounding orthogonal. Lund-
gren and Jonsson [4] modified the logarithmic law to a parabolic cross-sectional open
channel and suggested a method to estimate the velocity and shear stress distribution.
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Chiu et al. [5,6] studied the complex interaction between primary and secondary flows,
shear stress distribution, channel characteristics such as roughness, slope and geometry,
and other related factors in open channel flows. However, the velocity profile was required
to estimate boundary shear stress.

Keulegan [7] and Johnson [8] contributed to the early development of shear stress, and
Einstein’s [9] hydraulic radius separation method is still used in various studies. Following
this idea, Knight and his associates [10–16] proposed several empirical relations that are
very helpful in understanding open channel flows and sediment transport. Noutsopoulos
and Hadjipanos [17], Hu [18], and Patel [19] have led to an improved understanding of the
lateral distributions of wall shear stress in rectangular channels, prismatic channels, and
ducts. Past literature shows that the shear stress profile in open channel flows has been
studied either experimentally or theoretically using deterministic approaches.

For these reasons, this study focuses on theoretical and statistic methods, which are
probability and entropy concepts. Combining these, a useful method can be developed to
explain the shear stress profile in open channel flows.

A probabilistic method of shear stress distribution in open channel flows using entropy
concepts has been studied. Bonakdari et al. [20] compared Shannon and Tsallis entropies
for shear stress distribution prediction in open channels. Sheikh and Wan [21] used the
new Tsallis-based equation to predict shear stress distribution in circular and trapezoidal
channels. Then, Mirauda and Maria [22] used an entropic parameter for modeling bed
shear stress distribution in rectangular channels.

For the past few decades, entropy theory has been applied in the field of river hydraulic
geometry and fluvial hydraulics. The entropy concept was introduced in hydraulics by
Chiu [23] with Shannon’s entropy. Chiu studied the two-dimensional velocity distribution
in an open channel [24,25]. Later, Choo [26] used Chiu’s velocity equation to calculate
the momentum and energy coefficients. Especially, Chiu et al. [27] modified the entropy
concept to be applied in pipe flows. Here, Chiu et al. compared with the Schlichting
equation and the relationship between the frictional loss coefficient and entropy coefficient
M, but there was no study on the shear stress. Singh [28] studied a wide range of hydrology
and water resources based on entropy theory.

Since then, various entropy-related research has been carried out. Chiu et al. [29,30]
applied the maximum velocity and regularity and a one-dimensional velocity distribution
in an open channel with the entropy concept. Singh and Luo [31] examined the one-
dimensional velocity distribution in an open channel with entropy theory, where they used
Shannon’s entropy to derive the power law and logarithmic velocity distribution. Cui and
Singh [32–34] studied velocity distribution and sediment concentration in open channels
using Tsallis entropy. Singh and Cui [35] developed sediment concentration in a debris
flow by Tsallis entropy.

Shear stress has to be estimated to determine flow characteristics. Considering the
importance in an open channel, the complete evaluation is highly difficult due to the
complexity of the cross-section and the various hydraulic parameters. The research related
to the shear stress is based on empirical outcomes. That being so, it is difficult to apply
the equations generally. Therefore, the current Korean river design standards use simple
and obtainable tractive force and critical tractive force, which can be obtained through
empirical methods instead of shear stress.

The objective of this study, therefore, is to model shear stress distribution using entropy
theory, verify the model using twenty-one experimental datasets obtained from Song’s
experimental data [36], and to prove the utility of the proposed equation. Based on the
proven equation, it is then suggested that the tractive force and critical tractive force in the
Korean river design standards be revised to the shear stress obtained using the proposed
shear stress distribution formula by presenting a method that can be easily used in the
actual conditions.
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2. Methodology
2.1. Entropy Theory

The variable x related to information I(x) is shown as Equation (1), which provides
the amount of information. Here, information I(x) is the measurement of uncertainty
related to a certain state as:

I(x) = lnp(x) (1)

Considering every state, the average value of information I(x) can be expressed as
Equation (2). Function H(x) is defined using Shannon’s [37] entropy as:

H(x) = −
∫ +∞

−∞
p(x)I(x)dx = −

∫ +∞

−∞
p(x)lnp(x)dx (2)

where p(x) and lnp(x) are dimensionless, but dx has a dimension; thus, H(x) has the same
dimension as dx. In Equation (2), a probability density function (PDF) p(x) of a continuous
variation state means maximizing the entropy of uncertainty x.

2.2. Constraint Conditions

The probability distribution of maximizing the entropy produces more information
from already acquired basic knowledge. To solve the PDF, i.e., the available information of
variable x in Equation (3), the constraint conditions, such as average, variance, distortion,
etc., are applied as: ∫ b

a
Φi(x, p)dx i = 1, 2, 3, . . . n (3)

Therefore, the PDF p(x), which maximizes the entropy, can be obtained using the
method from Lagrange in Equation (4); we have:

∂I(x, p)
∂p

+
n

∑
i=1

λi
∂φi(x, p)

∂p
= 0 (4)

where λi denotes the Lagrange multipliers.

2.3. Entropy Maximization

The entropy concept can be applied to the shear stress using Equation (5) from Shan-
non’s entropy as:

H(τ) = −
∫ τ0

0
p(τ)I(τ)dτ = −

∫ τ0

0
p(τ)lnp(τ)dτ (5)

where τ is point shear stress.
The available information for τ uses constraint conditions. First, the total probability

must be satisfied for the PDF p(τ) as:∫ τ0

0
p(τ)dτ = 1 (6)

which follows from the total probability rule.
Then, average information can be expressed as:∫ τ0

0
τ·p(τ)dτ = τ (7)

2.4. Lagrange Method

Arranging the independent constraint conditions can be given as:

∫ b

a
Φi(τ, p)dτ i = 1, 2 (8)
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Therefore, PDF p(τ), which maximizes the entropy, can be obtained using the method
of Lagrange as:

∂I(τ, p)
∂p

+
2

∑
i=1

λi
∂φi(τ, p)

∂p
= 0 (9)

I(τ, p) = p(τ)lnp(τ) (10)

where φ1(τ, p) = p(τ), φ2(τ, p) = τ·p(τ).

∂φ1(τ, p)
∂p

= 1,
∂φ2(τ, p)

∂p
= τ (11)

Substituting Equation (9) into Equations (10) and (11) can be constructed as follows:

− 1− lnp(τ) + λ1 + λ2τ = 0 (12)

where λ1 − 1 = a1, λ2 = a2 are the Lagrange multipliers and differentiating Equation (12)
with respect to p(τ) results in the shear stress PDF as:

p(τ) = expa1+a2τ (13)

We apply the cumulative probability function to fluid flow using Equation (14), and
Equation (13) will become Equation (14) by applying the PDF as:

F(τ) =
∫ τ

0
p(τ)dτ =

∫ τ

0
ea1+a2τdτ = 1−

[
ξ − ξ0

ξmax − ξ0

]
(14)

where ξ denotes the spatial coordinates (0 ≤ ξ ≤ 1), τ is the point shear stress at ξ, ξ0 is
the minimum value of ξ (occurring at the channel boundary where τ = 0), and ξmax is the
maximum value of ξ (where τ is at its maximum) (see Figure 1).
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Figure 1. ξ-η coordinates in an open channel flow (Chiu [25,38]).

The ξ-η coordinates are the isovel system, which was first developed by Chiu [25,38] to
explain two-dimensional velocity distribution in the cross-section of an open channel.
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2.5. Proposed Shear Stress Distribution Model

Solving Equation (14) can be written as:

τ =
1
a2

ln
[

1 +
a2

ea1

(
1−

[
ξ − ξ0

ξmax − ξ0

])]
(15)

Open channel flow also uses the constraint conditions of Equations (6) and (7). Substi-
tuting Equation (13) into Equation (6) is given as:

a2

ea1
= (ea2τ0 − 1)⇒ ea1 =

T
(eT − 1)τ0

(16)

where T = a2τ0 (normally called the entropy coefficient) to represent the model in a
simple-to-use form and substituting Equation (13) into Equation (7) can be expressed as:

τ =
∫ τ0

0
τ·p(τ)dτ =

∫ τ0

0
τea1+a2τdττ =

[
eT

eT − 1
− 1

T

]
τ0 = φ(T)τ0 (17)

where τ0 is the boundary shear stress, T is the entropy coefficient, and φ(T) is a function of
T. Equation (17) is one of the proposed shear stress distribution equations for open channel
flows. Substituting Equation (17) into Equation (16) and rearranging it in respect of the ea1

term gives:

ea1 =
T

(eT − 1)τ0
=

T·φ(T)
(eT − 1)τ

(18)

Substituting Equation (18) into Equation (15) and rearranging it results in another
proposed mean shear stress distribution formula as:

τ =
τ
(
eT − 1

)
(TeT − eT + 1)

ln
[

1 +
(

eT − 1
)(

1−
[

ξ − ξ0

ξmax − ξ0

])]
(19)

By inserting Equation (16) into Equation (15) we have:

τ =
τ0

T
ln
[

1 +
(

eT − 1
)(

1−
[

ξ − ξ0

ξmax − ξ0

])]
(20)

Equation (20) is the last proposed model for boundary shear stress distribution. Gen-
erally, ξ0 is close to 0, ξmax is 1, and ξ for Equations (19) and (20) is the same, which was
formulated as follows:

ξ =
y

D− h
exp
(

1− y
D− h

)
(21)

where D is the maximum depth, h is the depth where shear stress is 0 from the water
surface (maximum velocity also occurs at this location), and y is the vertical depth from
the bed for a given shear stress.

2.6. Shear Stress in Fluid

Normally when laminar and turbulent flows coincide, they can be written as:

τ = ρν
du
dy
− ρu′v′ = ρ(ν + ε)

du
dy

(22)

where ρ is the fluid density, ν is the fluid viscosity, du/dy is the velocity gradient, u′v′ is
the Reynolds stress, and ε is the eddy viscosity. Reynolds stress is the shear stress caused
by turbulent fluctuating velocity. The kinematic coefficient of viscosity, ν, is caused by the
molecular motion of fluid, and εy is caused by fluid particle mixing, which is much larger
than molecular motion.
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Boundary shear stress from Equation (22) can be expressed as follows: when there is
shear stress at the bed, y = 0, the velocity is 0, and u = 0. This is given by:

τ0 = ρ(ν + ε)

[
du
dy

]
y=0

= ρgRhS f (23)

where g is the gravitational acceleration, Rh is the shape form of the cross-section, and S f
is the energy gradient.

2.7. Tractive Force Formula in Fluid

Tractive force means the running water force when the silt on the river bed is moved
by water. The commonly used tractive force (τ0) formula is:

τ0 = ωRi (24)

where ω is the unit weight of water, i is the bed slope, and R is the hydraulic radius.

2.8. Critical Tractive Force Formula in Fluid

Critical tractive force means the tractive force at the beginning of the movement of the
river bed silt due to the fact that the running water force is greater than the resistance of
the river bed. The commonly used critical tractive force formula (Fs) is:

Fs =
τ0

(ρs − ρ)gd
=

u2∗c
1
ρ (ρs − ρ)gd

(25)

where u∗c is critical friction velocity, ρs is the density of silt particles, ρ is the density of
water, and g is gravitational acceleration.

In terms of simplicity and convenience, Equations (22) and (23) have an advantage,
but their accuracy is suspect. The reason for this is that the energy gradient is actually a
difficult factor to estimate. As can be seen in Equation (22), the measured point velocity of
the whole cross-section is required for shear stress to reach each gradient. In other words,
the velocity gradient (du/dy), eddy viscosity coefficient (ε), and the energy gradient (S f )
in Equations (22) and (23) are factors that are very difficult to estimate. In addition, as
shown by the Equation (24), it is difficult to accurately calculate the tractive force used by
the Korean river design standards due to the hard-to-find river factors such as the river
bed. Critical tractive force is readily calculated, but is not certain in terms of accuracy
because the formulas are empirical formulas obtained from experiments. Therefore, this
paper suggests an equation that can express the shear stress distribution and boundary
shear stress in open channel turbulent flow using entropy-based modeling. This study
demonstrates the utility of the proposed equation by using the Song data. It also proposes
to revise the tractive force and critical tractive force of the Korean river design standards to
shear stress by presenting measures easily applicable in practice.

3. Experimental Data

The proposed model of shear stress distribution was validated with experimental ob-
servations available in the literature. To test the validity of the model, i.e., Equations (19) and (20)
with a wide range of slope, discharge, and sediment flow conditions, experimental data
from Song [36] were selected (see Table 1). Forty-six flows were used in this study: twenty-
one uniform flows, twenty-one non-uniform flows, and four unsteady flows according
to four slope conditions. Out of twenty-one uniform flows, six runs were experimented
under sediment conditions. For non-uniform flow, twelve accelerating flows and nine
decelerating flows were tested. Four unsteady flows were tested according to four slope
conditions. This study considered a various range of experimental runs for verification of
the shear stress distribution.
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Table 1. Experimental data.

Flow Type Slope
(%)

Discharge
(cm/s)

Sediment
(cm)

Uniform

S25-Q40 0.25 40 12.2

S50-Q50 0.5 50 11.8

S75-Q120 0.75 120 18.5

S90-Q70 0.90 70 12.2

S100-Q55 1.00 55 10.5

S125-Q50 1.25 50 9.1

Non-uniform
(accelerating)

AS00-Q80 0 80 14.5

AS-25-Q100 0.25 100 16.9

AS-25-Q80 0.25 80 15.1

AS-50-Q110 0.50 110 17.9

AS-75-Q80 0.75 80 16.5

AS-93-Q80 0.93 80 17.2

Non-uniform
(deaccelerating)

DS25-Q70 0.25 70 16.0

DS25-Q90 0.25 90 20.0

DS50-Q70 0.50 70 16.5

DS50-Q90 0.50 90 18.5

DS75-Q80 0.75 80 20.5

DS90-Q70 0.90 70 18.0

Unsteady

S-25-931 0.631–0.697 4.05 6.26–7.04

S-60-933 0.564–0.612 7.01 5.11–6.14

S-10-932 0.642–0.703 5.74 5.94–7.63

S30-932 0.821–0.944 5.70 6.34–7.66

4. Parameter Estimation and Comparison with Experimental Data
4.1. Parameter Estimation

Proposed shear stress distribution was used to estimate the entropy parameter T. First,
we estimate parameter T by inserting experimental point shear stress (τ1, τ2, · · · · · · , τn)
and point vertical depth from the bed for a given shear stress (y1, y2, · · · · · · , yn) into Equa-
tions (19) and (20). We estimate the best boundary shear stress τ0 and mean shear stress τ
value, which has the least error for each run. We then use τ0 and τ from Equations (19) and (20)
to estimate φ(T) from Equation (17). Lastly, we calculate the shear stress distribution for
given vertical depths (y1, y2, · · · · · · , yn). The parameter estimation process is shown in
Figure 2.

4.2. Comparison with Experimental Data

Figures 3–6 compare the proposed model with the experimental data of Song [36] to
determine if the estimated shear stress distribution fits well with the observed shear stress
distribution. Each diagram shows shear stress at the x-axis and y/D at the y-axis with the
correlation coefficient of observed data and estimated shear stress.
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Figure 5. Verification of the proposed shear-stress distribution model with six decelerating non-uniform flows.
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Figure 6. Verification of the proposed shear-stress distribution model with unsteady flow of one slope (S-25-931).

For first (uniform), second (accelerating non-uniform), third (decelerating non-uniform)
and fourth (unsteady) flow conditions (Figures 3–6), the proposed model was applied to
compare the estimated and observed values of shear stress distribution to see how well
they were expressed.

In Figure 3, the proposed shear stress model showed a good agreement with exper-
imental data despite the scattered nature of the data. As for the six sediment runs, the
correlation coefficient was actually better in some cases compared to small sediment runs.
For uniform flows, the entropy-based model seems to estimate shear stress accurately. In
all uniform flows, the correlation coefficient showed a small range from 0.9375 to 0.9931.

From Figure 4, it is found that the proposed model simulated well even in more
complex flows. For accelerating non-uniform flows, the entropy-based model seems to
estimate shear stress accurately. In all accelerating non-uniform flows, the correlation
coefficient showed a small range from 0.9522 to 0.9959. However, some flows have shown
very scattered experimental data, especially in the bottom layer due to the difficulties in
measuring.

From Figure 5, it can be seen that the entropy-based model simulated very well.
For decelerating non-uniform flows, the proposed model seems to compute shear stress
accurately. In all decelerating non-uniform flows, the correlation coefficient showed a small
range from 0.9475 to 0.9822. The proposed model seems to express very accurate matching
results.

From Figure 6, it can be seen that the entropy-based model simulated well. For
unsteady flows, the proposed model appears to compute shear stress well. In an unsteady
flow (S-25-931), the correlation coefficient was between 0.8262 and 0.9843. The results for
the other three slopes are as follows. The correlation coefficient in S-60-933 was between
0.9034 and 0.952, the correlation coefficient in S-10-31 was between 0.8536 and 0.9899, and
the correlation coefficient in S-30-932 was between 0.712 and 0.9829. In four cases, the
correlation coefficient was above 0.89 on average. This demonstrates the utility of the
shear-stress distribution equation using entropy.
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4.3. Major Parameter Estimation Results

Table 2 shows the result of major parameters from Figures 3–6. The entropy-based
model showed a 0.9375 to 0.9959 range of correlation coefficients in steady flow conditions
and a 0.712 to 0.9899 range of correlation coefficients in unsteady flow conditions. From
these results, it seems that the number of measured shear stresses in one distribution
does not have a large effect on simulation. Entropy parameter T seems to have a range
of −1.441 to 6.405 in steady flow conditions and a range of −5.576 to 4.6124 in unsteady
flow conditions. Looking at the correlation coefficients, the decelerating non-uniform flow
showed the worst average, 0.9693, whereas accelerating non-uniform flow showed the best
average, 0.9887 in steady flow conditions. For unsteady flow conditions, S30-932 showed
the worst average, 0.89353, whereas S-10-932 showed the best average, 0.93602.

Table 2. Summary of major parameter results for steady (right) and unsteady (left) flow conditions.

Data Set τ0
¯
τ T R2 Data Set τ0

¯
τ T R2

S-60-933(t1) 69.5773 12.2146 −5.5760 0.9491 S25-Q31 20.531 14.458 2.742 0.9375

S-60-933(t3) 58.2623 11.4943 −4.8793 0.9340 S25-Q40 21.519 16.134 3.588 0.9834

...
...

...
...

...
...

...
...

...
...

S-60-933(t57) 47.9180 13.5993 −2.9491 0.9512 S150-Q40 102.850 58.927 0.887 0.9809

S-60-933(t59) 51.2248 12.9439 −3.5383 0.9520 S150-Q50 123.535 78.079 1.656 0.9677

S-10-932(t2) 39.5775 23.7430 1.2288 0.9255 AS00-Q145 92.144 52.484 0.845 0.9957

S-10-932(t6) 39.2120 25.3055 1.8404 0.9176 AS00-Q100 71.481 41.464 0.976 0.9934

...
...

...
...

...
...

...
...

...
...

S-10-932(t54) 41.6155 16.2094 −1.3667 0.9867 AS-93-Q100 41.036 23.846 0.989 0.9829

S-10-932(t78) 37.9574 20.7072 0.5492 0.9267 AS-93-Q80 38.194 19.674 0.182 0.9902

S-25-931(t2) 28.0111 21.0477 3.6227 0.8393 DS25-Q90 27.408 19.021 2.573 0.9769

S-25-931(t58) 37.6556 13.5880 −1.75 0.9800 DS25-Q70 23.983 17.553 3.236 0.9822

...
...

...
...

...
...

...
...

...
...

S-25-
931(t134) 32.2337 22.9028 2.8501 0.8262 DS90-Q80 48.087 40.659 6.405 0.9734

S-25-
931(t138) 30.1916 22.2638 3.3415 0.8382 DS90-Q70 33.711 27.751 5.532 0.9683

S-30-932(t1) 39.6605 23.9780 1.2893 0.9098

S-30-932(t17) 44.3978 33.9348 3.9019 0.7628

...
...

...
...

...

S-30-932(t57) 44.8305 20.6737 −0.4679 0.9607

S-30-932(t59) 48.5676 17.8320 −1.6665 0.9461

5. Proposal and Verification of Shear Stress Distribution Method
5.1. Easily Applied Shear Stress Distribution Formula for Practice

If the main parameters of Table 2 are used in expressions (17) to graph, the distribution
of mean shear stress and floor shear stress, φ(T), can be obtained based on the slope
values of the graph. Using the value of the obtained φ(T), it is possible to calculate the
river-specific factor (T′) in Equation (17). Here, T′ is the average value of T. The entropy
parameter T can be obtained from previous equations and represents one cross-section in a
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river. However, there are various cross-sections in a river which have many values of T, so
T′ is used for a representative factor for one river.

Therefore, in other words, if the river-specific factor T′ is calculated or known, it
is much easier to calculate the boundary shear stress, which is an important hydraulic
factor in river design. For example, when the river-specific factor T′ is used in the shear
stress distribution Equations (19) and (20), less calculation and more accurate shear stress
distribution can be obtained, because one of the parameters is already known.

Song data were used to prove the utility of shear stress distribution when the river-
specific factor T′ was fixed. The river-specific factor T′ for each flow state was then
obtained by using the floor shear stress and average shear stress, which are the parameters
of Figures 7 and 8. Shear stress was obtained by substituting T′ for Equations (19) and (20)
and the actual measurement value of the Song data was compared and analyzed.
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5.2. Estimation Graph of River-Specific Factors T′ in All Flow Conditions

Using Equation (17) based on the data, is the results were displayed graphically to
calculate the river-specific factor for each flow state. Figures 7 and 8 show graphs for the
calculating of river-specific factors in each flow state.

Figure 7 is a graph of calculating equilibrium T′ after calculating equilibrium φ(T′)
in uniform, non-uniform accelerating, and non-uniform decelerating flow. For each flow,
equilibrium φ(T′) is 0.6490 (uniform), 0.5344 (non-uniform accelerating), and 0.7466 (non-
uniform decelerating); and when Equation (17) is calculated using equilibrium φ(T′),
equilibrium T′ is calculated as 1.88 (uniform), 0.41 (non-uniform accelerating), and 3.52
(non-uniform decelerating).

Unsteady flow was divided into four cases according to the gradient, and equilibrium
T′ was calculated after selecting equilibrium φ(T′). Figure 8 is a graph that calculates
equilibrium T′ after obtaining equilibrium φ(T′) from the unsteady flow. For each case
in the unsteady flow, equilibrium φ(T′) is 0.3642 (S-60-933), 0.399 (S-25-931), 0.408 (S-10-
932), and 0.562 (S30-932); and when Equation (17) is calculated using equilibrium φ(T′),
equilibrium T′ is calculated as −1.70208 (S-60-933), 1.24195 (S-25-931), −1.1267 (S-10-932),
and 0.74953 (S30-932).

We now put the equilibrium T′ values into Equations (19) and (20) and verify the
utility of the equilibrium T′-fixed Equations (19) and (20) through the Song data. If the
effectiveness of the equation is verified, the T′-fixed method easily enables the calculation
of the floor shear stress by average shear stress, and the distribution of shear stress can be
easily calculated.
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5.3. Result and Error Analysis

The RMSE is a measure of the residual, which is the difference between the values
simulated by the model and actual observed values. The RMSE enables simulative power
to be integrated into a single unit of measurement. The RMSE of the model’s simulation
for the estimated variable Xest,i is defined as the square root of the mean square error
Equation (26).

RMSE =

√
∑n

i=1 (Xobs,i − Xest,i)
2

n
(26)

where Xobs,i indicates the actual observed value and Xest,i is the simulated value obtained
from the model.

The determined shear-stress distribution was compared with those measured by Song.
The determined RMSE values were very low from 0.000245 to 0.001108 as shown in Table 3.

Basically, the steady flow shows a high correlation coefficient value and proves the
utility of the shear-stress distribution equation. However, the unsteady flow shows a lower
mean correlation value compared to the steady flow. Looking at the results of the unsteady
flow in detail, note that not all areas are observed with low correlation, but with high and
low correlation. This indicates that the low correlation coefficient value from the unsteady
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flow is the error caused by the observation of the data. In practice, using point shear
stress values calculated based on accurate observations can reduce error and have higher
correlation coefficient values.

Table 3. Simulation results R2 and RMSE.

Flow Type R2 RMSE

Uniform

S25-Q40 0.9834 0.000491
S50-Q50 0.9848 0.000431

S75-Q120 0.9908 0.000394
S90-Q70 0.9812 0.000424

S100-Q55 0.9721 0.000564
S125-Q50 0.9871 0.000417

Non-uniform
(accelerating)

AS00-Q80 0.9959 0.000284
AS-25-Q100 0.9933 0.000304
AS-25-Q80 0.9914 0.000346
AS-50-Q110 0.9957 0.000245
AS-75-Q80 0.9931 0.000364
AS-93-Q80 0.9902 0.000384

Non-uniform
(deaccelerating)

DS25-Q70 0.9822 0.000436
DS25-Q90 0.9769 0.000513
DS50-Q70 0.9670 0.000685
DS50-Q90 0.9690 0.000613
DS75-Q80 0.9814 0.000531
DS90-Q70 0.9683 0.000678

Unsteady

S-25-931 2 s 0.8393 0.001108
S-25-931 26 s 0.8680 0.001085
S-25-931 42 s 0.9382 0.000712
S-25-931 50 s 0.9633 0.000675
S-25-931 66 s 0.9643 0.000645
S-25-931 98 s 0.8666 0.000907

Based on the advantages of being able to express and easily obtain shear stress
distribution by entropy shear stress distribution using equilibrium T′, it is suggested
that the contents of tractive force and critical tractive force with unclear accuracy can be
revised to shear stress in Korea’s river design standards.

6. Discussion

The proposed equation has proved to show reasonable results. From Figures 3–6, in
most cases, there is a good match between Song’s observed data and shear stress values
from the proposed model. It was confirmed that shear stress distributions estimated are
accurate showing an average 0.9780 correlation coefficient for forty-two types of steady
open channel flows. In four cases where the flow was unsteady, the mean value of the
correlation coefficient was found to be 0.9084. The estimated values are not from an
empirical formula but from a theoretical method, which has a great meaning for open
channel fields.

Using the estimated boundary shear stress and mean shear stress from all forty-two
runs, entropy parameter T was analyzed as 1.629. Figures 7 and 8 were plotted using the
relationship between bed shear stress and mean shear stress, Equation (17), which seems to
have a tendency for an equilibrium state. The equilibrium state of a velocity distribution
was studied previously by Chiu et al. [38,39], which shows similar results.

The aforementioned discussion delineates that an entropy-based model on shear stress
is able to describe the characteristics of shear stress from the frictional force caused by
viscosity and fluctuating fluid velocity in an open channel turbulent flow. The proposed
equation has proved to show reasonable results.
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Based on the parameters calculated, the mean values of the correlation coefficient
in the results of the shear stress distribution equation for each flow were 0.9708 for the
uniform flow, 0.9867 for the non-uniform flow (accelerating), 0.9471 for the non-uniform
flow(decelerating), and 0.8604–0.9212 in the unsteady flow for each gradient. Based on
these results, it was confirmed that the shear stress distribution formula using river-specific
factors can be available in practice.

Of course, part of the unsteady flow shows lower correlation coefficient values, but
the correlation coefficient values are error generated from observations. When measuring
the distribution of point shear stress for practical use, the conclusions based on accurate
observations are determined to reduce the error further and obtain high accuracy shear
stress distributions and results.

However, there are some minor limitations to this study. Some observed data, such
as shear stress distribution and vertical depth from the bed, should be known in order to
estimate the model. In other words, there needs to be some information in order to use this
model. In addition, the basic shape of the model depends on the PDF of shear stress and
Equation (21). This is important because in complex flows such as unsteady flows, it can be
difficult to show the distribution exactly, especially if the maximum velocity occurs below
the water surface. The model is based on probability and statistics and does not consider
basic hydraulics in the beginning, but only depends on constraints and data. Because the
accuracy of the observed data can affect the correlation value of the distribution equation,
accurate point shear stress data must be obtained for use in practice.

7. Conclusions and Proposition

Although the tractive force and critical tractive force formulas used in the current
Korean river design standards are simple to obtain, the tractive force is a formula using
a factor that is difficult to obtain, which makes it difficult to calculate the exact value.
In addition, critical tractive force is a value obtained empirically, which also has the
disadvantage of difficulty in calculating the exact value. However, in order to use the
existing shear stress formula, shear stress can be calculated only with the energy gradient,
a factor that is very difficult to obtain, so Korea’s river design standards use tractive force
and critical tractive force instead of shear stress.

Therefore, using the entropy concept, this study has proposed shear stress distribution
and boundary layer shear stress, which can be applied in open channel flows. To determine
how well the shear stress model fits with the observed data, Song’s data were used.
From this aspect, this paper validated the model with a wide range of forty-two runs of
experimental data published in the literature. The results show the utility and reliability
of Equations (19) and (20), in which the mean shear stress is considered, then using the
qualified shear stress distribution, the shear stress distribution over the whole flow depth
of open channel turbulent flows is shown.

Furthermore, based on the equations’ proven utility and reliability, this paper has
proposed a method that can easily be used in practice by obtaining river-specific factor
T if point shear stress is given. We suggest that the contents of tractive force and critical
tractive forces with shortcomings in terms of accuracy in the Korean river design standards
are revised to the shear stress distribution method presented in this study. The results
of the distribution of shear stress after the calculation of river-specific factor T were also
considered to be highly correlated, and thus it was determined that the method could be
used in practice.

However, there is no best entropy parameter T value for every run. This means that
we need to somewhat reach an agreement with solutions. To improve this, very precise
methods must be applied in order to enhance the results. One of these methods can be
an optimum technique. Optimization techniques such as genetic algorithms or harmony
searching can be applied for finding better solutions to these kinds of problems, where we
might even be getting closer to what we are seeking.
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There have been very few studies about shear stress in open channels recently. It
seems that there are only few models that can estimate shear stress distribution. Some
of the models require parameters that are difficult to calculate or even obtain, or even
have hypotheses that eventually reach the limit of the formula. Other models have many
parameters to estimate, but the features of the proposed model have only two parameters,
the entropy parameter (T) and the unknown boundary shear stress or mean shear stress.

In addition, if the river-specific factors T are calculated for practical use based on the
proposed model, the boundary shear stress, which is an important river factor for river
design, can be calculated immediately, and shear stress distribution can easily be calculated.
The proposed model can be used regardless of the shape or flow of the river (except for
unsteady flow). Nevertheless, in future research, our model has to be compared with some
shear stress models.

The analysis has limitations but the results appear to be useful. If the point shear stress
in the open channel and vertical depth from the bed are given, the shear stress distribution
can be estimated simply from the model, which will show high availability when designing
or managing the open channel. In addition, the boundary shear stress can be estimated
easily without the energy gradient when calculating the boundary shear stress in an open
channel.
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