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Abstract: A single master equation governs the behaviour of shear-free neutral perfect fluid distribu-
tions arising in gravity theories. In this paper, we study the integrability of yxx = f (x)y2, find new
solutions, and generate a new first integral. The first integral is subject to an integrability condition
which is an integral equation which restricts the function f (x). We find that the integrability condition
can be written as a third order differential equation whose solution can be expressed in terms of
elementary functions and elliptic integrals. The solution of the integrability condition is generally

given parametrically. A particular form of f (x) ∼ 1
x5

(
1− 1

x

)−15/7
which corresponds to repeated

roots of a cubic equation is given explicitly, which is a new result. Our investigation demonstrates
that complexity of a self-gravitating shear-free fluid is related to the existence of a first integral, and
this may be extendable to general matter distributions.

Keywords: shear-free fluids; Einstein field equations; first integrals

1. Introduction

In many studies, the concept of complexity has been applied to topics such as entropy
and information. An intriguing approach is to also utilize this concept in self-gravitating
systems. Herrera [1] suggested that complexity in gravity would be studied by the defini-
tion of a minimal complexity factor. This approach may also be applied to dissipative fluids
in general relativity with applications to compact stars, neutron stars, and radiating objects
in the strong gravity regime. Several investigations have been initiated involving the
concept of complexity in self-gravitating systems in general relativity and some modified
theories of gravity [2–12]. Jasim et al. [13] studied a strange star model in a special case of
Lovelock theory, namely Einstein–Gauss–Bonnet gravity, and showed that such theories
are consistent with the concept of complexity. General matter distributions including
dissipative effects are necessary to analyse relativistic self-gravitating fluids. Shear-free
matter distributions arise as a special case and deserve special attention because of their
applicability to stellar models, and they have been used to model both static and radiating
stars. Therefore, in this investigation, we consider the behaviour of shear-free fluids in a
spherical spacetime. Our results indicate that it is possible to find new first integrals which
provide insight into the behaviour of the self-gravitating fluids. Our approach may help in
generating a general relationship between first integrals, extended to a general shearing
relativistic matter distribution, and the complexity of a self-gravitating relativistic fluid.

Seeking exact solutions to the Einstein field equations has been the subject of study in
many astrophysical and cosmological applications. Such solutions may be used to model
inhomogeneous processes in systems of galaxies and the broader universe [14]. Exact
solutions to the field equations have also been used to model and investigate properties of
observable phenomena such as relativistic stars [15] as well as expanding and contracting
spherical stars [16]. Dissipative fluids in general relativity are of particular importance
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because of various applications in astrophysics and the description of radiating stars. The
general framework for the study of physically acceptable dissipating systems in spherical
symmetry was undertaken in several works [17–21]. Some particular exact models have
been found using this framework [22–25]. The special case of vanishing shear provides
new insights into the behaviour of gravity, and some particular radiating stellar models
have been generated [26–29]. Our approach in this paper is to find a general result, namely
a first integral, in a shear-free fluid without having to specify the gravitational potentials.

When seeking exact solutions to the Einstein field equations, it is usual to assume
spherical symmetry for spacetimes and the absence of shear for the matter distribution.
These assumptions greatly simplify the field equations while ensuring that the results are
still physically meaningful. Spherically symmetric shear-free solutions have been used to
model many physical applications. Some of the classes of these solutions were obtained by
Stephani [30], Srivastava [31], Sussman [32,33], and Maharaj et al. [34]. Brassel et al. [35]
found gravitational potentials for shear-free heat conducting fluids in terms of elementary
functions in a recent treatment. However, it is important to note that most of the known
exact solutions to the Einstein field equations are not shearing [36]. This is largely due to
the fact that the shear-free condition introduces an additional equation which needs to be
solved. The Einstein field equations for spherically symmetric shear-free neutral matter
comprise a system of nonlinear partial differential equations. We will show how this system
of equations can be further reduced to the single Emden–Fowler equation yxx = f (x)y2.
The first general solution to this Emden–Fowler equation in general relativity was found
by Kustaanheimo and Qvist [37] for a specified form of the function f (x). Other classes of
solutions were found later by Stephani [30] and Srivastava [31]. Sussman [32], Wafo Soh
and Mahomed [38], and Maharaj et al. [39] found further classes of solutions by assuming
that the spacetime is invariant under a conformal Killing vector. Another recent treatment
of this problem was given by Maharaj et al. [34].

The shear-free condition is often applied in the study of radiating stars, gravitational
collapse, and relativistic astrophysical processes. The vanishing shear assumption leads
to a simplification of the field equations. Note that the homogeneous expansion rate and
shear-free condition are the classical analogue of homologous fluids in the Newtonian limit.
This means that the shear-free assumption in general relativity is well justified. However,
it is important to point out that the shear-free fluids may be unstable due to perturbations
arising from anisotropy and dissipation. Herrera et al. [40] investigated the conditions
when an initial shear-free configuration continues to be shear-free as the system evolves.
Pressure anisotropy and dissipation affect the propagation of the relativistic fluid. These
quantities play a role in the realistic modelling involving gravitational collapse and should
be contained in a stable model.

In this paper, we analyse the integrability of and find exact solutions to the Emden–
Fowler equation using an ad hoc method that was previously shown to be useful [34]. In
Section 2, we show how the field equations for the spherically symmetric nonstatic shear-free
metric reduce to the equation yxx = f (x)y2. We obtain its first integral in Section 3. This first
integral is subject to the integrability condition which we study in Section 4. In Section 5, we
find the functional form of the function f (x) and give the corresponding first integral.

2. Shear-Free Fluids

The metric for a shear-free, perfect fluid in the comoving and isotropic coordinate
system (xa) = (t, r, θ, φ) is given by

ds2 = −e2ν(t,r)dt2 + e2λ(t,r)
[
dr2 + r2(dθ2 + sin2 θφ2)

]
, (1)

where e2ν and e2λ are the gravitational potentials. The Einstein field equations take the form
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µ = 3
λt

2

e2ν
− 1

e2λ

(
2λrr + λ2

r +
4λr

r

)
, (2a)

p =
1

e2ν

(
−2λtt − 3λ2

t + 2νtλt

)
+

1
e2λ

(
λ2

r + 2νrλr +
2νr

r
+

2λr

r

)
, (2b)

p =
1

e2ν

(
−2λtt − 3λ2

t + 2νtλt

)
+

1
e2λ

(
νrr + ν2

r +
νr

r
+

λrr

r
+ λrr

)
, (2c)

0 = νrλt − λtr. (2d)

The quantities µ and p represent the energy density and pressure, respectively. The
subscripts r and t in Equation (2) above represent partial derivatives with respect to r and
t, respectively.

The condition of pressure isotropy is obtained by equating (2b) and (2c). The resulting
equation can be easily integrated once with respect to time which results in an arbitrary
function of integration, g(r). We can also integrate (2d) once with respect to r and obtain
another arbitrary function of integration, h(t). Using these simplifications, we can now
write the system (2) in the form

µ = 3e2h − e−2λ

(
2λrr + λ2

r +
4λr

r

)
, (3a)

p =
1
λt

[
e−2λ

(
λ2

r +
2λr

r

)
− e2h

]
t
, (3b)

eν = λte−h, (3c)

eλ

(
λrr − λ2

r −
λr

r

)
= −g(r). (3d)

The functions h and g need to be specified in order to find exact solutions for the field
equations. Thereafter, the metric function λ can be obtained by solving (3d), while the
remaining metric function ν then follows directly from (3c). Equation (3a,b) then define
the energy density µ and the isotropic pressure p, respectively. It is clear that the pivotal
equation is (3d).

Using the transformation

x = r2,

y(x, t) = e−λ,

f (x) =
g

4r2 ,

Equation (3d) reduces to
yxx = f (x)y2, (4)

as first shown by Kustaanheimo and Qvist [37]. Equation (4) is the master equation
governing the gravitational dynamics of a shear-free fluid in general relativity.

There have been a number of studies seeking solutions of field Equation (4). However,
the solution is known for only a few forms of f (x). The solution with

f (x) =
(

a + bx + cx2
)−5/2

,

was given by Kustaanheimo and Qvist [37]. Solutions with

f (x) = x−20/7, x−15/7, ex,
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were found by Stephani [30]. General analyses of Equation (4) were completed by Wafo Soh
and Mahomed [41], Maharaj et al. [34], and Stephani et al. [36]. A charged generalization
was studied by Kweyama et al. [42].

Our approach mirrors Maharaj et al. [34], who extended an idea of Srivastava [31]. We
briefly outline that approach here. We can integrate the left hand side of (4) once directly
and the right hand side by repeated applications of ‘integration-by-parts’. This eventually
yields the first integral [34]

ψ0(t) = −yx + f Iy2 − 2 f I Iyyx + 2 f I I Iy2
x + 2[( f f I I)I − 1

3 K0]y3, (5)

where ψ0(t) is an arbitrary function of integration, K0 is an arbitrary constant,

f I =
∫

f dx, (6)

and we have the integrability condition

2 f f I I I + 3( f f I I)I = K0. (7)

This equation was then thoroughly analysed by Maharaj et al. [34] to find new exact
solutions including the explicit forms of f (x) given by

f (x) =
48

343

(
−7b

2

)6/7
(x− x0)

15/7, (8)

which led to (5). Note that b and x0 are arbitrary constants of integration.

3. A New First Integral

We now apply the approach of Maharaj et al. [34] but with one important difference.
We observe that when (4) is multiplied by x, it becomes

xyxx = x f y2. (9)

If we now define
f̄ = x f ,

then we can write (9) in the form
xyxx = f̄ y2. (10)

We can still integrate the left hand side explicitly once while the right hand side of (10)
is simply the right hand side of (4) with f relabelled as f̄ . Thus, the Maharaj et al. [34]
integration will apply to the right hand side of (10) as well. We obtain

xyx − y = f̄ Iy2 − 2
∫

f̄ Iyyxdx− φ1(t), (11)

where for convenience we have used

f̄ I =
∫

f̄ dx, (12)

and φ1(t) is an arbitrary function of integration. Note the subtle difference between (6) and (12).
Integrating f̄ Iyyx by parts and using (4), we obtain

xyx − y = f̄ Iy2 − 2 f̄ I Iyyx + 2
∫

f̄ I Iy2
xdx + 2

∫
f f̄ I Iy3dx− φ1(t). (13)
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Integrating f f̄ I Iy3 and f̄ I Iy2
x, by parts again, we obtain

xyx − y = f̄ Iy2 − 2 f̄ I Iyyx + 2 f̄ I I Iy2
x + 2( f f̄ I I)Iy3

−2
[∫

[2 f f̄ I I I + 3( f f̄ I I)I ]y2yxdx
]
− φ1(t). (14)

The integral on the right hand side of (14) can be evaluated if

2 f f̄ I I I + 3( f f̄ I I)I = K1, (15)

where K1 is a constant. This equation can be written as a differential equation which still
needs to be solved (see later).

We now have the expression

φ1(t) = y− xyx + f̄ Iy2 − 2 f̄ I Iyyx + 2 f̄ I I Iy2
x + 2

[
( f f̄ I I)I −

1
3

K1

]
y3, (16)

where φ1(t) is an arbitrary function of integration. We then observe that (16) is another new
first integral of (4), provided that condition (15) is satisfied. (It is important to emphasize
that (15) is different from (7) since f̄ I =

∫
x f (x)dx.)

4. Integrability Conditions

To complete the analysis, we need to determine the form of the function f (x) (or
f̄ (x)). In an attempt to seek the form of the function f , the integral Equation (15) can be
transformed into an ordinary differential equation. It is easier to solve the differential
equation rather than the integral equation. Differentiating (15), we obtain

2 fx f̄ I I I + 5 f f̄ I I = 0, (17)

which can be written as

2
[

f̄x −
1
x

f̄
]

f̄ I I I + 5 f̄ f̄ I I = 0, (18)

which contains f̄ only. Now, setting
L̄ ≡ f̄ I I I ,

we eliminate f̄ in (18) to give the differential equation

2
[

L̄xxxx −
1
x

L̄xxx

]
L̄ + 5L̄x L̄xxx = 0. (19)

We can integrate (19) once to obtain

L̄xxx = C0xL̄−5/2, (20)

where C0 is a constant of integration.
We observe that the third-order ordinary differential Equation (20) is equivalent to the

integrability condition (15). Integrating (20) repeatedly, we find L̄, and hence f̄ (x). Solving
the nonlinear differential Equation (20), we obtain

x2 L̄−1 = C̄3 + C̄2

(∫
xL̄−

3
2 dx
)
+ C̄1

(∫
xL̄−

3
2 dx
)2

+ C̄0

(∫
xL̄−

3
2 dx
)3

, (21)

where C̄0 = −C0
3 and the remaining constants are arbitrary. Therefore, the third-order

Equation (20) has been completely integrated (see Appendix A for details on the integra-
tion process).



Entropy 2021, 23, 1539 6 of 12

In general, we can write the solution parametrically. For convenience, we let

u =
∫

xL̄−
3
2 dx,

so that (21) becomes

x2ux =
(

C̄3 + C̄2u + C̄1u2 + C̄0u3
) 3

2 .

In the above equation, the variables separate, and we can write

x0 −
1
x
=
∫ du

(C̄3 + C̄2u + C̄1u2 + C̄0u3)
3
2

, (22)

where x0 is constant. Now, the function f̄ (x) must be found satisfying the integrability
condition (15). In order to find f̄ (x) satisfying this integrability condition, it is convenient
to express the solution in the parametric form

f̄ (x) = L̄xxx,

ux = xL̄−
3
2 ,

x0 −
1
x

= p(u),

where
p(u) =

∫ du

(C̄3 + C̄2u + C̄1u2 + C̄0u3)
3
2

.

The evaluation of the integral is determined by the values of the constants C̄0, C̄1, C̄2,
and C̄3.

In summary, we have found a new first integral of (4) given by (16) where f in (4) is
obtained via L after evaluating the integral in p(u).

5. Particular Solutions

The evaluation of the integral in (22) has five cases depending on the nature of the
factors of the polynomial C̄3 + C̄2u + C̄1u2 + C̄0u3. (Since the coefficients are arbitrary, the
discriminant does not help us to reduce the options.) The five cases are

Case I —One order-three factor;

Case II —One order-one factor and one order-two factor;

Case III —Three order-one (non-repeated) factors;

Case IV —One linear factor and one quadratic factor;

Case V —No factors.

In order to illustrate the process, we provide the details of the calculation for some of
these cases.

5.1. Case I: One Order-Three Factor

This is the simplest case as the factors are repeated. If C̄3 + C̄2u + C̄1u2 + C̄0u3 has
one factor repeated three times, then we can write

C̄3 + C̄2u + C̄1u2 + C̄0u3 = (A + Bu)3,

with B 6= 0. In this case, the integral in (22) can be evaluated to give

x0 −
1
x
= − 2

7B
(A + Bu)−7/2,
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so that

L̄ = x2/3ux
−2/3 = x2

(
− 2

7B

)−6/7(
x0 −

1
x

)6/7
.

Differentiating L̄ three times, we obtain

f (x) =
48

343x5

(
− 2

7B

)−6/7(
x0 −

1
x

)−15/7
. (23)

After reparametrisation, f (x) can be written as

f (x) ∼ 1
x5

(
1− 1

x

)−15/7
. (24)

Note that in this case the function f (x) can be found explicitly. This functional form is
different from (8) in the approach of Maharaj et al. [34]. Hence, the first integral (16) for
this case is a new solution to the Emden–Fowler equation. For applications, this form of
the solution is probably easier to utilize in modelling as f (x) has a simple explicit form.
Now, we can write the first integral (16) in terms of x as follows:

φ1(t) = y− xyx + 2
(
− 2

7B

)−6/7(
x0 −

1
x

)6/7
y2 +

12
7x

(
− 2

7B

)−6/7(
x0 −

1
x

)−1/7
y2

− 6
49x2

(
− 2

7B

)−6/7(
x0 −

1
x

)−8/7
y2 − 4x

(
− 2

7B

)−6/7(
x0 −

1
x

)6/7
yyx (25)

−12
7

(
− 2

7B

)−6/7(
x0 −

1
x

)−1/7
yyx + 2x2

(
− 2

7B

)−6/7(
x0 −

1
x

)6/7
y2

x

+

[
192

343x4

(
− 2

7B

)−12/7(
x0 −

1
x

)−9/7
]

I

y3 +

[
576

2401

(
− 2

7B

)−12/7(
x0 −

1
x

)−16/7
]

I

y3

−2
3

K1y3.

The subscripts I in the Equation (25) denote a remaining integration which we have
omitted for brevity. It can be observed that this first integral is different from the first
integral obtained by Maharaj et al. [34].

In addition to the analysis performed by Maharaj et al. [34], we substitute the function
given in (23) into the integrability condition (15) in order to find restriction(s) on the
constant K1. This substitution implies that K1 = 0 in the first integral (25). Similarly, in
the Maharaj et al. [34] solution, substituting (8) into the integrability condition (7) yields
K0 = 0 in the first integral (5).

5.2. Case II: One Order-One Factor and One Order-Two Factor

If C̄3 + C̄2u + C̄1u2 + C̄0u3 has one factor repeated, then we can write

C̄3 + C̄2u + C̄1u2 + C̄0u3 = (A + Bu)(u + C)2,

with B 6= 0. In this case, the integral in (22) can be evaluated using [43] to obtain

p(u) =

(
15B2

4(A− BC)3 +
5B

4u(A− BC)2 −
1

2u2(A− BC)

)
1√

A + Bu− BC

+
15B2

8(A− BC)3

∫ du
u
√

A + Bu− BC
, (26)

where the integral can be expressed in terms of elementary functions depending on the
sign of A− BC. For this case, it is not possible to obtain the function u(x) explicitly, as it is
not possible to evaluate the integral on the right hand side of (26). Therefore the solution
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can only be given parametrically. However, the integral on the right hand side of (26) can
be evaluated in special cases: for example, A = 0 and C = 0. If A = 0, we can write

C̄3 + C̄2u + C̄1u2 + C̄0u3 = Bu(u + C)2.

Using the computer package Maple [44] to evaluate the integral in (22), we obtain

p(u) = −7
4

√
Bu

BC3(BC + Bu)
− 15

4

arctan
(√

Bu√
BC

)
BC3
√

BC
− 1

2

√
Bu

c2(BC + Bu)2 −
2

BC3
√

Bu
.

If C = 0, then we have that

C̄3 + C̄2u + C̄1u2 + C̄0u3 = (A + Bu)u2.

We evaluate the integral in (22) using Mathematica [45] to obtain

p(u) =
15B2u2 + 5ABu− 2A2

4A3u2
√

A + Bu
−

15B2 tanh
(√

A+Bu√
A

)
4A7/2 .

We observe that even for these special cases of A and C, it is not easy to perform the
inversion in order to obtain the function u(x) explicitly.

5.3. Case III: Three Order-One (Non-Repeated) Factors

If C̄3 + C̄2u + C̄1u2 + C̄0u3 has three non-repeated factors, then we can write

C̄3 + C̄2u + C̄1u2 + C̄0u3 = D(A− u)(B− u)(C− u),

with D 6= 0. In this case, with the aid of Mathematica [45], the integral in (22) can be written
in terms of elliptic integrals to obtain

p(u) =
2[C(A− C) + B(A− B)− u(2A− C− B)]

D3/2(A− B)(A− C)(B− C)2
√
(A− u)(B− u)(C− u)

+
2[(B− C)(A + B− 2C)F(α, β)]

D3/2(A− B)2(B− C)2
√
(A− C)3

− 2[(A2 + B2 + C2 − AB− AB− BC)E(α, β)]

D3/2(A− B)2(B− C)2
√
(A− C)3

,

where we have set

α = arcsin

√
A− C
A− u

,

and

β =

√
A− B
A− C

.

In this form of the solution, the quantities F(α, β) and E(α, β) are elliptic integrals of
the first and second kind, respectively. In this case of non-repeated factors, we also cannot
obtain u(x) explicitly, and hence the solution can only be given in parametric form.

In cases IV and V, the integral (22) can also be evaluated using elliptic functions. How-
ever, the subsequent expressions are lengthy, and since we cannot obtain f (x) explicitly,
we omit those results here.

6. Discussion

The Emden–Fowler equation yxx = f (x)y2 governs the behaviour of spherically
symmetric shear-free uncharged fluid distributions. In this paper, we investigated the
integrability of this equation and found a new class of exact solutions. This equation has
several applications in general relativity and other areas of mathematical physics. We
multiplied the Emden–Fowler equation by an integrating factor x and used integration
by parts to obtain the first integral which is given by (16), subject to the integrability
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condition (15). The first integral and the integrability condition are different from the
corresponding ones given in [34]. We were able to solve the integral Equation (15) by first
transforming it to a third-order ordinary differential Equation (20) whose solution was
given by (21). For convenience, we wrote the solution of (20) parametrically, which enabled
us to find f (x). One form of the function f (x) was given by

f (x) ∼ 1
x5

(
1− 1

x

)−15/7
, (27)

in (24), so that the first integral could be written parametrically as (25). Remarkably, we
have obtained a new solution of the Emden–Fowler Equation (4) with a new functional
dependence of f (x) given in (27). Note that the solutions by Stephani [30], Srivastava [31],
and Maharaj et al. [34] are not regained from our solution. Thus, our results complement
those and, together, constitute a more complete analysis of (4). This first integral may be
related to the geometrical structure of the Emden–Fowler equation. The complexity of a
self-gravitating relativistic shear-free fluid has been shown to be related to a first integral
arising from the integration of the Emden–Fowler equation in our treatment.

Extensions of the approach in this paper to include charged matter distributions may
also lead to useful results. In the presence of charge, the Emden–Fowler Equation (4) becomes

yxx = f (x)y2 + g(x)y3, (28)

where g(x) is related to the charge distribution (see Wafo Soh and Mahomed [38]). Equation (28)
arises from the analysis of the Einstein–Maxwell field equations. It may be possible to
consider extensions of this work to include anisotropy and dissipation, in addition to the
electromagnetic field. For this physical scenario, the generalization of (28) will involve
terms containing the heat flux and anisotropic pressure. The subsequent analysis of the
resulting differential equation will involve an extension of the approach developed in this
paper for a shear-free uncharged relativistic fluid. For a recent analysis of charged fluids
with anisotropy and dissipation relevant to radiating stars, see the analysis of Abebe and
Maharaj [46], where the geometric approach of Lie symmetries provided new solutions.
The complexity of a self-gravitating relativistically charged, anisotropic, and dissipative
fluid will then be related to a first integral arising from the integration of the generalized
Emden–Fowler equation. This suggests that there may be a deeper connection between
general matter fluids, first integrals, and complexity. This deserves further investigation.
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Appendix A. Intergation of L̄xxx = C0xL̄−5/2

In this appendix, we show how Equation (20) can be integrated to yield the solution (21).
The nonlinear differential Equation (20) may be written as

L̄L̄xxx = C0xL̄−
3
2 .
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The left hand side can be expressed in the exact form

(L̄L̄xx)x − L̄x L̄xx = (L̄L̄xx)x −
1
2
(L̄2

x)x.

Integrating, we obtain

L̄L̄xx −
1
2

L̄2
x = C1 + C0

∫
xL̄−

3
2 dx,

where C1 is constant. Again, focussing on the left hand side, we can write

xL̄−
3
2

(
L̄L̄xx −

1
2

L̄2
x

)
= x(L̄

1
2 )xx =

[
x(L̄

1
2 )x

]
x
− (L̄

1
2 )x,

and so we have the equation[
x(L̄

1
2 )x

]
x
− (L̄

1
2 )x = C1xL̄−

3
2 + C0xL̄−

3
2

∫
xL̄−

3
2 dx,

where we have absorbed the factor of 1
2 in C0 and C1. This can be easily integrated to yield

x(L̄
1
2 )x − L̄

1
2 = C2 + C1

∫
xL̄−

3
2 dx +

1
2

C0

(∫
xL̄−

3
2 dx
)2

, (A1)

where C2 is a new constant. The equation above is not in standard form. However, it is still
possible to make progress. When multiplied by a factor xL̄−

3
2 , Equation (A1) above can be

written as

1
2

x2 L̄−2 L̄x − xL̄−1 = C2xL̄−
3
2 + C1xL̄−

3
2

∫
xL̄−

3
2 dx +

1
2

C0xL̄−
3
2

(∫
xL̄−

3
2 dx
)2

.

The left hand side can be written as a total derivative, and we have(
−1

2
x2 L̄−1

)
x

= C2xL̄−
3
2 + C1xL̄−

3
2

∫
xL̄−

3
2 dx +

1
2

C0xL̄−
3
2

(∫
xL̄−

3
2 dx
)2

.

The integral of this equation is

−1
2

x2 L̄−1 = C3 + C2

(∫
xL̄−

3
2 dx
)
+

1
2

C1

(∫
xL̄−

3
2 dx
)2

+
1
6

C0

(∫
xL̄−

3
2 dx
)3

,

where C3 is constant. This can be simplified to

x2 L̄−1 = −2C3 − 2C2

(∫
xL̄−

3
2 dx
)
− C1

(∫
xL̄−

3
2 dx
)2
− 1

3
C0

(∫
xL̄−

3
2 dx
)3

.

Redefining the constants in the above equation, we can write it as

x2 L̄−1 = C̄3 + C̄2

(∫
xL̄−

3
2 dx
)
+ C̄1

(∫
xL̄−

3
2 dx
)2

+ C̄0

(∫
xL̄−

3
2 dx
)3

,

where C̄3 = −2C3, C̄2 = −2C2, C̄1 = −C1 and C̄0 = −C0
3 . Therefore, the third order

Equation (20) has been integrated to yield the solution (21).
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