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Abstract: Knowing the level of entanglement robustness against quantum bit loss or decoherence
mechanisms is an important issue for any application of quantum information. Fidelity of states
can be used to judge whether there is entanglement in multi-particle systems. It is well known
that quantum channel security in QKD can be estimated by measuring the robustness of Bell-type
inequality against noise. We experimentally investigate a new Bell-type inequality (NBTI) in the
three-photon Greenberger–Horne–Zeilinger (GHZ) states with different levels of spin-flip noise. The
results show that the fidelity and the degree of violation of the NBTI decrease monotonically with
the increase of noise intensity. They also provide a method to judge whether there is entanglement in
three-particle mixed states.

Keywords: quantum entanglement; tripartite entanglement; new Bell-type inequality; non-classicality;
bit-flip noise

1. Introduction

Quantum entanglement is a basic concept in quantum systems, which has no classical
counterpart. Einstein, Podolsky, and Rosen (EPR) claimed that the description of physical
reality provided by QM was incomplete. This led to controversy about the theory of
hidden variables [1]. In addition, Bohm has shown that distinguishable particles also have
non-classical properties [2]. In order to provide a criterion for distinguishing the local
and non-classical behaviors of systems, Bell introduced his inequality (Bell inequality) [3],
and later Clauser, Horne, Shimony, and Holt (CHSH) further proposed an optimized
CHSH inequality [4]. The Bell inequality and the CHSH inequality lead to non-classicality
becoming a physical quantity which can be measured experimentally. In three-qubit GHZ
class states, results of Svetlichny show that some inequalities may violate LR in the three-
particle system even if there are only two-particle correlations [5]. It is of great significance
to study entanglement and non-classicality of quantum states. In the local hidden variable
(LHV) theory, when a separable state violates a Bell inequality, it implies the existence of
entanglement [6]. According to a widely accepted view in physics, LR has been proven
wrong by experimental violations of Bell’s theory, although there are still some detection
loopholes and locality loopholes. In application, entanglement is a useful resource to
enhance the mutual information of the channel. Quantum correlation has promoted the
development of quantum key distribution (QKD) [7].

In a simple overview, when the total state of a particle system cannot be written as
the product of its constituent parts it is called entanglement. For the maximum entangled
state, including the maximum non-classicality, the maximum violation of Bell’s inequality
is possible [8]. In recent years, many efforts have been made to investigate the theoretical
predictions of QM based on polarization-entangled photons [9,10] and other entangled
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systems [11–13]. These studies show that the violation of inequality indicates the existence
of entanglement in the system, and the amount of violation increases with the degree of the
entanglement in the state. These results are important not only in theoretical research, but
also in engineering applications, such as improving the fidelity of dense coding, quantum
cryptography, and quantum teleportation [14,15]. Arpan D. proposed a set of NBTI for
three-qubit systems [16]. Those inequalities provided a new link between non-classicality
and entanglement. The results showed that the entangled three-qubit pure state violates all
these inequalities. One can use these inequalities not only to distinguish between separable,
biseparable, and genuinely entangled pure three qubits, but also to examine mixed three
qubits states. Still, no further research on the robustness of the NBTI against noise in a
multi-bit entangled system has been conducted. It is well known that decoherence of
the noise will cause the entangled pure state to evolve into the mixed state. The process
of quantum information processing is inevitably strongly influenced by environmental
noise [17].

In this paper, we experimentally study the robustness of the NBTI in three-photon
entanglement states with different levels of bit-flip noise. Firstly, using spontaneous
parametric down-conversion (SPDC) of nonlinear crystals, we have prepared three photon
entangled GHZ states and reconstructed the detailed density matrices of the states with
the method of over-complete quantum tomography. We have obtained the fidelities of the
entangled states. Secondly, a sandwich structure consisting of a half-wave plate (HWP) and
two quarter-wave plates (QWPs) is used to construct the bit flipping noise, which simulates
the bit flipping noise widely existing in quantum information processing. Finally, we
discuss the physical significance of this phenomenon. More importantly, we experimentally
investigate the evolution law of state fidelity and the violation of the NBTI against LR with
different levels of bit-flip noise. Therefore, these conclusions can provide some methods to
judge the credibility of quantum channels in quantum information processing.

2. NBTI and GHZ State with Bit-Flip Noise

It is known that all biqubit pure states violate the bipartite Bell-type inequality (BTI),
namely the CHSH inequality [18], and the violation increases as the entanglement of the
state increases [19]. Let us suppose that a pair of particles, A and B, are distributed in
two distant directions. Alice can randomly choose between measurement settings A and
A′, and Bob randomly choose between settings B and B′. The eigenvalue of the operator
A(A′) and B(B′) is a(a′) and b(b′), respectively. For each measurement setting, there are
two possible outcomes, +1 and −1. Realism assumes that the frequencies of measurement
results can always be expressed in terms of classical probabilities. Because they are not
necessarily observable, these properties are called hidden variables. The joint probability
p(a, b) can be obtained when Alice and Bob synchronously measure two parts of the
entangled system.

p(a, b) = ∑
λ

qλ p(a, λ)p(b, λ) (1)

where 0 ≤ qλ ≤ 1 and ∑ qλ = 1. For the two-photon state ρ, the probability of joint
operation p(a, b), p(a′, b), p(a, b′), p(a′, b′) can be measured separately. According to the
claims of local realism, the absolute value of the sum of measured probabilities must be
less than 2. The Bell-type inequality satisfies the following relation∣∣p(a, b) + p(a′, b) + p(a, b′)− p(a′, b′)

∣∣ ≤ 2 (2)

According to the principles of QM, the particles that Alice and Bob measure together
have non-classical correlations [20]. In quantum systems, the maximum allowable expected
value of the CHSH inequality is 2

√
2, which is also called Tsirelson’s bound [21]. This is

the maximum violation of CHSH inequality against LR within the framework of QM. The
measurement results between 2~2

√
2 are the violation of non-classicality against LR.

For the multipart case, non-classicality exhibits richer and more complex properties
than the two-part case [22]. The entanglement of multiparticles is different from the
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entanglement of the two particles mentioned above, not only because the classification
of the entanglement is still an unsolved problem, but also because it requires different
experimental verification conditions. Different types of non-classicality can be qualitatively
distinguished. In the case of three qubits, the Mermin–Ardehali–Belinskii–Klyshko (MABK)
inequality is violated [8,23]. Sufficient criteria are given to distinguish separable states from
entangled ones. However, it is not a necessary condition, because there are some states that
do not violate MABK inequalities but have genuine tripartite entanglement [24]. For the
three-bit GHZ system with noise, studies have shown that the GHZ state is non-classical
in the overall bit flipping noise dynamics. This result cannot be achieved by any other
known multi-part inequality consisting only of full correlators [25]. In this manuscript, we
consider the three-photon GHZ states. If Alice, Bob, and Charlie measure A, B, and C on
their respective subsystems, they can get the results a, b, and c. The probability correlations
p(a, b, c) among the measurement outcomes can be written as

p(a, b, c) = ∑
λ

qλ p(a, λ)p(b, λ)p(c, λ) (3)

As previously, 0 ≤ qλ ≤ 1 and ∑ qλ = 1. In the three qubits spin-1/2 system, the
probability of joint operation p(a, b, c) = 〈A, B, C〉λ can be measured separately. The Bell
inequality satisfies the following relation

|p(a, b, c)− p(a′, b, c)− p(a, b′, c)− p(a, b, c′)

+p(a′, b′, c) + p(|a, b′ , c′) + p(a, b′, c′)− p(a′, b′, c′)| ≤ 2
(4)

Under the principles of QM, the inequality is violated, and the traditional three
qubit GHZ state gives the maximum violation, which is 2

√
2. The maximum violation

represents the strongest conflict between QM and LR. This can be regarded as a three-
particle non-classicality, which is different from the usual two-particle non-classicality.
Arpan D proposed a set of Bell-type inequalities [16]. Two of the parties will make twice
joint measurements, while the third party will make only once tripartite joint measurement.
The results show that the separable three-qubit pure state does not violate these inequalities,
and the biseparable three-qubit pure states violate exactly two of them with same maximal
quantities. Since the inequalities are symmetric under identical particles, we can choose
any Bell-type inequality from the set. We chose the new inequality

SA = A1(B1 + B2) + A2(B1 − B2)C1 ≤ 2 (5)

We can write SA in terms of the Pauli matrix as an observable quantity and might
measure it in terms of any dichotomic measurements. For three qubits GHZ states,A1 = σz,
A2 = σx, B1 = cos ασx + sin ασz, B2 = − cos ασx + sin ασz, C1 = σx, α = 45◦. Similar to the
other traditional Bell inequalities, the new Bell-type operator SA has a maximum value 2

√
2

in the framework of quantum theory. A key point in this set of inequalities is that a qubit
needs to be measured only once. This measurement is necessary for violation, which is
similar to the original Bell inequality. We have achieved convincing results of the violation
and experimentally verified the NBTI in three-photon generalized GHZ states before [26].
The inevitable coupling between the quantum system and its environment will lead to the
decoherence and destruction of quantum correlation between the subsystems. This makes
the transmission of quantum information protocol unreliable. Due to the important future
of quantum information technology, we all need to understand the evolution of quantum
correlations under the influence of decoherence. This is also the research direction which
people are quite interested in [27–29].
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In order to further investigate the robustness of the NBTI, we further study the
violation law of the inequality against local realism in the GHZ states with bit-flip noise.
Let us consider the three-qubit GHZ state

ψGHZ =
1√
2
(|010203〉+ |111213〉) (6)

Bit-flip noise is a common error produced in many physical systems. The bit-flip
error can change a qubit from |0〉 to |1〉 or from |1〉 to |0〉 with probability p. So p denotes
the intensity of bit-flip noise introduced in our experiment. In order to describe the open
quantum system affected by quantum noise, the density matrix formalism must be used.

E1 =

[ √
p 0

0
√

p

]
E2 =

[
0

√
1− p√

1− p 0

]
(7)

The operators Ei representing bit-flip noise are usually called Kraus operators [30].
Arbitrary quantum action ρi of the bit-flip noise on the qubit i can be represented by the
operator-sum form

ρi = ∑
j

EjρiEj
† (8)

This kind of noise transformation can be easily realized by linear optical devices and
will be used further. For three-qubit GHZ states with bit-flip noise, the density matrix is
given by

ρ = (1− p)|ψ〉〈ψ|+ Ip/8 (9)

where I is the eight-dimensional identity matrix acting on the qubit’s Hilbert space.
The fidelity F = 〈ψGHZ|ρ|ψGHZ〉 of a GHZ state can been calculated using the over-

complete state tomography method [31]. In the system, the bit-flip operation F (ρi) locally
affected the qubits with probability p for each qubit i

F (ρi) = (1− p)ρi + pXiρiXi (10)

3. Experimental Measurement of the Robustness of NBTI against Bit-Flip Noise

The scheme of the experimental set-up is shown in Figure 1. In the first step of
the experiment, we produce the polarization-entangled three-photons GHZ states using
spontaneous down conversion [32]. As shown in Figure 1, the mode-locked Ti: sapphire
femto-second (fs) laser (Millennia, Spectra-Physics, Palo Alto, America) emits an infrared
(IR) light pulse laser beam with the central wavelength of 780 nm, the pulse width of
100 fs and the repetition of 80 MHz. The laser pulse is converted into an ultraviolet
(UV) light pulse with a central wavelength at 390 nm by the frequency doubling effect
of the LiB3O5 (LBO) nonlinear crystal. To improve the up-conversion efficiency, a lens
focusing the laser beam is inserted in front of the LBO crystal. Due to the up-conversion
efficiency of LBO crystal, the UV laser beam behind LBO crystal is mixed with unconverted
IR laser. In order to effectively separate the unwanted IR light, we used five dichroic
mirrors (DM) to form an efficient combination of filters. The DM used here is capable
of reflecting ultraviolet laser and emitting infrared laser. Behind the filters, the UV light
pulse is focused on a 2 mm-thickness β-barium borate (BBO) nonlinear crystal which
can generate polarization-entangled photon pairs owing to the process of SPDC with
an external half opening angle of 3◦. By selecting the appropriate incident pump laser
direction, a type II parameter down-conversion process occurs in the BBO crystal. In this
process, a 390 nm UV photon splits into two 780 nm IR photons with a certain probability,
that is, the EPR entangled pair. A set of birefringent crystals compensates walk-off between
horizontally and vertically polarized photons. This set consists of a half-wave plate (HWP)
and a 1 mm-thickness BBO crystal. A pair of entangled photons 1√

2
(|H1H2〉+ |V1V2〉) in

paths 1 and 2 is prepared, where H and V represent horizontal and vertical polarization,
respectively. The transmitted IR light becomes a weak pseudo single photon source by a
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combination attenuator and prepared in state 1√
2
(|H3〉+ |V3〉) in path 3. Then, photon 2 is

superposited with photon 3 by a polarizing beam splitter (PBS). By carefully adjusting the
delay time (∆d) between path 2 and 3 to make sure that photon 2 and photon 3 arrive at
the PBS23 simultaneously, Hong-Ou-Mandel interference will occur. We obtain three-qubit
GHZ states |ψ〉GHZ = 1√

2
(|HHH〉+ |VVV〉).
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Figure 1. (Color online) Scheme of the experimental setup. The average power of UV laser behind
filters in the experiment is 100 mW. Filters are formed by five DM which can reflect UV laser and
transmit IR laser. Prism ∆d is used to ensure that the input photons 2 and 3 arrive at the PBS23 at
the same time. Noise quantum channels are engineered by a sandwich structure consisting of one
HWP sandwiched by two QWPs. The coincidence time-window is set to be 5 ns, which ensures
that accidental coincidence is negligible. Every output is spectrally filtered ∆FWHM = 3 nm and
monitored by fiber-coupled single-photon detectors. The state analyzer is structured by PBS, QWP,
polarizer, filter, and single photon detector (SPCM-AQRH-13-FC, integrated detection efficiency 60%).

By reducing the average power of the UV laser pulse to 100 mW, we get a better
output state fidelity. The coincidence count rate of two-photon EPR entangled pairs is
about 6 × 103/s. The visibility of the EPR entangled state is about 97% in the H/V basis,
and about 95% in the +/− basis. In order to fully describe the states generated by the above
steps, we perform quantum state tomography. In theory, using the estimated density matrix
combined with the method of complete state tomography, the fidelity of the GHZ state
without adding bit flipping noise can be calculated as F = 〈ψGHZ|ρ|ψGHZ〉0 = 0.84 ± 0.01.
In the standard error model of photon detection and counting, it is assumed that the
design number is distributed according to Poissonian distribution. Error range indicates
one standard deviation deduced from propagated Poissonian counting statistics of the
raw detection events. The intensity of the prepared GHZ state is about 18 coincidences
per second. Here, we point out that the major factors affecting the GHZ state fidelity
include detector efficiency and the count of pseudo-single-photon source. To obtain the
density of states matrix means that a set of complementary measurements are performed
on the prepared GHZ state. For each state, we have collected the experimental data for
216 combinations of measurement basis H/V, +/−, and R/L, where |+〉 = 1√

2
(|H〉+ |V〉),

|−〉 = 1√
2
(|H〉 − |V〉), |R〉 = 1√

2
(|H〉+ i|V〉), and |L〉 = 1√

2
(|H〉 − i|V〉). Using these data

and the maximum-likelihood technique, we have reconstructed the density matrix of the
GHZ state without added noise shown as in Figure 2.
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Figure 2. (Color online) The density matrix of three photon GHZ state without added noise. (a) The
real parts of the density matrix. (b) The imaginary parts of density matrix. Coincidence counts
obtained in the H/V, +/−, and R/L basis, accumulated for 60 s.

Second, let us now consider the noise quantum channel formed by an HWP sand-
wiched between two QWPs. The HWP is switched randomly between +θ and −θ, and
the QWPs are set at 0◦, with respect to the vertical direction. Because HWP is made from
birefringent crystals, the incoming light is projected onto H and V. The entangled H/V
photons produced by a BBO are probabilistic. Thus, 2θ deflection in the H/V direction can
be achieved by changing the wave plate rotation angle θ and post selection. Using this
method, a noise quantum channel with a noise intensity of δ = sin2 2θ can be generated.
By varying θ, we are able to simulate different intensities of bit flip-noise in quantum infor-
mation processing. Finally, using the state analyzers combined by PBS, narrow bandwidth
(3 nm) filter, QWP, and single photon detector, we can analyze the quantum states and
obtain the relationship between fidelity and NBTI with different noise intensity.

4. Experimental Results and Analysis

Using the GHZ states and the bit flip channel prepared in the above steps, we have
measured one NBTI of the set. The NBTI measurement is a Pauli operation on photons
shared by Alice, Bob, and Charlie. We can reduce the Formula (5) to

√
2(σzσz + σxσxσx).

Two of the particles are measured by the operator σz at H/V basis, and the three particles
are measured by the operator σx at R/L basis. The Pauli matrix measurements required in
the NBTI test can be achieved by combining HWP, QWP, and PBS. For each measurement
point, we have collected the data of every setting, σ1σ2σ3, for 60 s and repeated it three
times. Figure 3 shows the experimental results of the fidelity and the robustness of the
NBTI in the three photons states with different levels bit-flip noise. From the results in
Figure 3, the first observation is that the fidelity of the three photons GHZ states directly
decreases when the noise intensity increases. When θ > 5◦, the fidelity F < 0.5. The second
result is that the violation of the new NBTI decreases when the noise level increases. When
θ > 5◦, the measured value of the Bell operator SA < 2 will not violate the prediction of
LR. Both the theoretical calculation and the experimental results show that the fidelity
of the multibit entangled state is less than 0.5, so we can judge that the system does not
have entanglement [33,34]. This conclusion is consistent with our measurement results
of the violation of the NBTI, though a little smaller than the theoretical expectation. We
can further study the mixed state of the three-qubit, where we can expect to find hidden
non-classical phenomena, about the set of inequalities. It is necessary to explain the three
main reasons of non-ideal experimental data. First, due to the probabilistic property of
parametric down-conversion, the visibility of EPR entangled pairs is reduced by multi-
photon production. Secondly, the defects of the beam splitter, wave plate, and other linear
optical elements make the experimental results non-ideal. Moreover, our single-photon
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detection efficiency is about 60%. The missing photons will reduce the coincidence count.
All these factors will reduce the fidelity of the target states.
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Figure 3. (Color online) Experimental values of the violation and fidelity with different noise intensity.
Each setting σ1σ2σ3 in the new Bell-type operator SA is measured for 60 s. The average total count
number for each setting is about 1100/s. In the standard error model of photon detection and
counting, it is assumed that the design number is distributed according to Poissonian distribution.

The error E(A) of the SA is the statistical error of the experiment. E(A) =
√
〈SA2〉 − 〈SA〉2 depends

on the particular experimental implementation and on the error model used. The fidelityF = 〈ψ|ρ|ψ〉.
The error bar of the E(A) and fidelity are calculated by performing a 100-run Monte Carlo simulation
of the whole state tomography analysis with Poissonian noise added to each experimental datum in
each run.

5. Conclusions

In summary, we have investigated the robustness of the NBTI and the fidelity in the
three photons states with bit-flip noise. The three photons entangled GHZ states have
been prepared using parametric down-conversion of BBO crystal. The detailed density
matrices of the states have been reconstructed with the method of over-complete quantum
tomography. We have simulated the bit-flip noise with a sandwich structure consisting
of one HWP sandwiched between two QWPs. The results show that the fidelity and the
violation of the NBTI decreases monotonicly when the noise level increases. Moreover, the
law of diminishing fidelity is consistent with the violation of the NBTI. It not only provides
us with a new method to judge whether there is entanglement in the three-particle system,
but also provides further support for evaluating the fidelity of quantum channels [35,36]
and the security test of ultra-dense coding [37]. In addition, it needs to be pointed out that it
is very meaningful to further study the universality and generalization of new inequalities
in multi-qubit entangled states [38,39].
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