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Abstract: This article presents a novel and remarkably efficient method of computing the statistical
G-test made possible by exploiting a connection with the fundamental elements of information
theory: by writing the G statistic as a sum of joint entropy terms, its computation is decomposed into
easily reusable partial results with no change in the resulting value. This method greatly improves the
efficiency of applications that perform a series of G-tests on permutations of the same features, such as
feature selection and causal inference applications because this decomposition allows for an intensive
reuse of these partial results. The efficiency of this method is demonstrated by implementing it as
part of an experiment involving IPC–MB, an efficient Markov blanket discovery algorithm, applicable
both as a feature selection algorithm and as a causal inference method. The results show outstanding
efficiency gains for IPC–MB when the G-test is computed with the proposed method, compared
to the unoptimized G-test, but also when compared to IPC–MB++, a variant of IPC–MB which is
enhanced with an AD–tree, both static and dynamic. Even if this proposed method of computing the
G-test is presented here in the context of IPC–MB, it is in fact bound neither to IPC–MB in particular,
nor to feature selection or causal inference applications in general, because this method targets the
information-theoretic concept that underlies the G-test, namely conditional mutual information. This
aspect grants it wide applicability in data sciences.

Keywords: Markov blanket; feature selection; causal inference; G-test; information theory;
computation reuse

1. Introduction

Statistical tests of independence are mathematical tools used to determine whether
two random variables, recorded in a data set as features, are more likely to be independent
of each other, as opposed to being dependent, given a significance threshold. They are
widely used in the analysis of experimentally collected data and relied upon to determine
relationships between observed phenomena.

One major drawback of independence tests is their lack of causal information. In other
words, such a test will not show which of the two tested features influences the other; it
can only establish whether they are independent or not. However, it is often the causal
information that is desired by researchers [1].

In order to extract causal information from a data set, the methods of causal inference
may be applied. Causal inference is the field concerned with methods which build causal
models from data sets. Such models encode causal relationships between the features of
the data set in an attempt to discover information about the real-world process that has
produced the data in the first place. This is achieved by exploiting the statistical information
already present in the data set to rigorously infer causation relationships. The models built
this way can then be used as predictors or as classifiers directly, or they can be studied to
gain insights about the process that produced the data.

An essential causal model is the Bayesian network [2], which is a directed acyclic
graph, the nodes of which represent the individual features of the data set, connected by
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edges which represent direct causal influences between the nodes. Apart from representing
a feature, a node also contains the probability distribution of the feature conditioned on its
immediate parents. By definition, the feature represented by the node is independent of
all its ancestors, given its immediate parents [2]. It is important to note that having two
unconnected nodes in a Bayesian network does not imply their independence. Instead, a
more complex criterion named d-separation is employed to reveal the dependence status
of two features in a Bayesian network [2].

Within a Bayesian network, the nodes immediately surrounding a node of interest
form a structure named the Markov blanket. More specifically, the Markov blanket of a
node is the subset of nodes containing the immediate parents, the immediate children,
and the spouses of the node (the nodes that share its children). Figure 1 below shows a
trivial example of a Bayesian network. By definition, the feature represented by the node is
conditionally independent of the entire Bayesian network, given the features in its Markov
blanket [2].

Figure 1. Example of Bayesian network; the Markov blanket of feature X5 is highlighted.

The complete Bayesian network is a rich source of causal information and having
it available is highly desirable [3], but it is often unknown. However, one method of
discovering it from the observed data set is to analyze the features to reveal their individual
Markov blankets, then connect the blankets to each other [2]. The class of algorithms which
can be used to build Bayesian networks from data in this manner are the Markov blanket
discovery algorithms [4]. To our knowledge, most Markov blanket discovery algorithms
found in literature are designed to perform a large number of statistical tests of conditional
independence (CI) on the features of the given data set.

It must be noted that Markov blanket discovery algorithms function by discovering
the Markov boundary (the smallest blanket) of features specifically, and not by discovering
any possible Markov blanket—there can be multiple blankets for a node but only one
boundary [2]. This is true in spite of the fact that the term ‘Markov blanket’ is used in other
related articles [4–6]. However, this article will continue to use the term ‘Markov blanket’
and not ‘Markov boundary’, for consistency with its references. The Markov blanket
discovery algorithms find themselves at an intersection point between causal inference
and feature selection because they can be applied unmodified to solve problems in both
fields [5,7], but interpreting their results to suit the perspective of the problem, either causal
inference or feature selection.

While the algorithms have evolved and have become more sophisticated and efficient,
requiring fewer tests of conditional independence, the CI tests themselves have remained a
performance bottleneck due to their expensive computation and also due to the multiple
passes of the data set required to compute a single one. A specific type of statistical
independence test, the G-test, is used by multiple Markov blanket discovery algorithms, as
described in Section 2. A theoretical overview of the G-test itself is provided in Section 4.
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To address the CI test performance bottleneck, we have designed a computational
optimization named ‘decomposed conditional mutual information’ (dcMI), which we
propose and discuss in this article. Described briefly, dcMI involves writing the G statistic
in the form of conditional mutual information, which can be further decomposed into
a sum of easily reusable joint entropy terms. These terms are computed and cached
once, but reused many times when computing subsequent G-tests during the same run
of the algorithm or future runs on the same data set. Because it exploits the underlying
connection between the G-test and the elements of information theory, our optimization is
remarkably simple and highly effective. It is also widely applicable since it can be used by
any algorithm which can be configured to use the G-test, while remaining strictly contained
within the bounds of the G-test implementation itself. Moreover, no approximation is
involved whatsoever: the G statistic has the exact same value when computed using our
optimization and when computed in the canonical manner.

To demonstrate the efficiency gains produced by the dcMI optimization, a comparative
experiment was performed using IPC–MB (Iterative Parent-Child Markov Blankets) [6],
an efficient Markov blanket discovery algorithm. IPC–MB explicitly uses the G-test to
determine conditional independence, applied sequentially over many permutations of the
features in the data set. This is a characteristic inherited from the algorithms it builds on [4].
The experiment compares IPC–MB across multiple runs: with the G-test unoptimized, with
the G-test enhanced with dcMI, and also with the G-test enhanced with an alternative
optimization, AD–trees, as proposed by the original authors of IPC–MB themselves [6]. For
each run of IPC–MB, the duration and memory consumption are measured. To achieve
a comprehensive comparison, IPC–MB was configured to discover the Markov blanket
of every feature of the data set, one at a time. The actual reconstruction of the Bayesian
network from the Markov blankets was not performed because it is not relevant to the
comparison.

As a secondary result, the comparative experiment revealed that computing the G
statistic in its canonical (unoptimized) form consumes an average of 99.74% of the total
running time of IPC–MB, even when applied on a small data set. This further emphasises
the performance bottleneck inherent to CI tests and the necessity of their optimization.

This article is structured as follows: Section 2 presents the dcMI optimization in
the context of existing Markov blanket discovery algorithms, while also describing other
optimizations found in literature with which it shares features; Sections 3 and 4 provide the
theoretical background required to describe the dcMI optimization, namely the elements
of information theory it relies on, and the statistical G-test, respectively; Section 5 describes
the theoretical design of dcMI and its relation to the G-test, also including an example of
how dcMI operates; Section 6 describes IPC–MB, the Markov blanket discovery algorithm
used to demonstrate the efficiency of dcMI; Section 7 presents the comparative experiment
in which dcMI is empirically evaluated using IPC–MB and compares its performance
to alternative optimizations of IPC–MB found in literature; Section 8 summarizes the
conclusions that emerge from the design of dcMI and from the experimental evaluation.

2. Related Work

The dcMI optimization was conceived, designed and implemented during research
on Markov blanket discovery algorithms and their applications in causal inference and
feature selection. For this reason, dcMI is discussed here only within this context, in
spite of its generality. The current design of dcMI is rooted in previous efforts [8] on
optimizing Koller and Sahami’s algorithm [9], the first algorithm to introduce Markov
blanket discovery as an approach to feature selection. Although now obsolete, Koller and
Sahami’s algorithm (KS) presented challenges interesting enough to merit further study,
out of which an optimization named γ-decomposition emerged, the precursor to dcMI.

Algorithms that perform Markov blanket (MB) discovery have used the G-test exten-
sively. However, the earlier algorithms of this family did not employ the G-test for testing
conditional independence: Koller and Sahami’s (KS) algorithm [9], the first such algorithm,
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relied on a custom metric expressed as a Kullback–Leibler divergence (but later shown
by Brown et al. [10] to be conditional mutual information); the IAMB algorithm [11] applied
a threshold to the conditional mutual information of the tested features; the Grow-Shrink
(GS) algorithm [3] used the canonical χ2 test.

Leaving the early algorithms aside, the PC algorithm [12] is to our knowledge the
first MB discovery algorithm to employ the G-test to determine conditional independence,
although the earlier GS algorithm was the first algorithm to be proven correct [4]. Inspired
by the aforementioned IAMB algorithm and attempting to attain better efficiency, the
MMMB [7] and HITON [13] algorithms were published. Both followed the same principles
as IAMB, while also using the G-test for conditional independence. Pena et al. [5] later
showed that the proofs of MMMB and HITON are incorrect and propose the PCMB
algorithm, which builds upon IAMB, MMMB, and HITON and which also uses the G-test.
To our knowledge, the next algorithm of this lineage is IPC–MB [6], which improves on the
design of PCMB to further reduce the number of required CI tests. The IPC–MB algorithm
uses the G-test as well, following in the footsteps of PCMB and its predecessors. IPC–MB
is the Markov blanket discovery algorithm chosen for this article to showcase the dcMI
optimization.

At a closer look, the aforementioned algorithms apply the G-test as it is described by
Spirtes and Scheines in ‘Causation, Prediction and Search’ [12], including the method of
computing the degrees of freedom of a test, as well as the minimum amount of samples
required to accept the result of a test.

To increase the computational efficiency of Markov blanket discovery algorithms,
specialized data structures such as AD–trees can be used, as proposed by the authors of
IPC–MB themselves [6]. An AD–tree is a data structure that allows for very fast retrieval
of sample counts that match a query. AD–trees were proposed by Moore and Lee [14]
as a very general solution to accelerate a wide range of machine learning problems. The
IPC–MB++ algorithm [6] uses such a pre-built static AD–tree to successfully overcome the
CI test bottleneck but at great cost, as later discussed in Section 7.

To address the shortcomings of static AD–trees, Komarek and Moore [15] proposed
dynamic AD–trees. Dynamic AD–trees are built while running the algorithm, not before.
New information is added at runtime only as a result of actual queries, making the tress
much smaller and more efficient. This mode of operation makes dynamic AD–trees far
more similar and comparable to the dcMI optimization than the static ones.

Furthermore, an alternative to dynamic AD–trees are AD+trees, proposed by Moraleda
and Miller [16] to address the inefficiencies of dynamic AD–trees when dealing with
stochastic queries, as opposed to more systematic queries, while also being more compact.
However, since IPC–MB++ performs queries quite systematically [6] (a characteristic shared
by most algorithms in its family), AD+trees were not implemented for IPC–MB++ in the
experimental comparison presented in this article. Instead, the experiment is focused only
on the aforementioned static and dynamic AD–trees.

Another general approach for accelerating CI tests is the PFBP algorithm proposed
by Tsamardinos et al. [17]. PFBP attempts to improve the time efficiency of CI tests
by partitioning the data set into Data Blocks, which are sent to separate computational
nodes (i.e., separate machines) in order to be processed in parallel. Each computational
node performs CI tests locally, on their received Data Block, in order to produce local
p-values. The local p-values are later centralized to a main node, which eventually produces
combined global p-values using Fisher’s combined probability test [17]. However, the
local p-values cannot be used to reconstruct the exact value of the global p-value. Because
the PFBP is intended to be a statistical feature filter and not a Markov blanket discovery
algorithm, the global p-values are used directly for ranking features among themselves
in each iteration and for making decisions on selecting or rejecting them. According to
the authors, the PFBP algorithm allows the use of any type of conditional independence
test to generate the local p-values. Inspired by their work, a method of distributing the
computation of the joint entropy terms used in dcMI is currently being designed. Such a
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method will rely on the fact that each term can be computed independently of any other.
Moreover, it is likely that a parallel dcMI implementation will require an algorithm with
different characteristics, replacing IPC–MB.

To our knowledge, there are no implementations of the G-test that attempt to optimize
it by exploiting its relationship to information theory. Still, an alternative method of
computing the G-test was presented by Tsagris [18]. According to the article, it is faster to
build a log-linear model on the data set using Poisson regression and compute its deviance
than to compute the G-test directly. This relies on the fact that the deviance of such a
model also has χ2 as its limiting distribution [19], just like the G statistic [20]. The method
presented by Tsagris [18] has not been replicated in the comparative experiment presented
in this article; therefore, its efficiency has not been compared to the dcMI optimization.

Apart from the G-test, there are other methods for testing independence that rely on
mutual information. Of particular interest is the work of Al-Labadi et al. [21], who propose
a test of independence for continuous features that relies on computing mutual information
using Bayesian nonparametric estimators for entropy. In theory, this would allow Markov
boundary discovery algorithms to operate on data sets with continuous variables.

3. Notes on Information Theory

This section introduces the fundamental elements of information theory required to
describe the dcMI optimization. The elements of interest are entropy, joint entropy, mutual
information, and conditional mutual information. Considering the abstract character of
the concepts presented below, the more general term ‘variable’ is used instead of ‘feature’,
although, for the purposes of this article, these two terms are interchangeable.

Information theory quantifies the informational content of the probability distribution
of a variable X using a measure named entropy [22], defined as:

H(X) = − ∑
x∈VX

P(x) · log(P(x))

The multivariate extension of entropy is named joint entropy [22]. Considering variables
X1, X2, . . ., Xm, their joint entropy is defined as follows:

H(X1, X2, . . . , Xm) = − ∑
x1∈VX1

. . . ∑
xm∈VXm

P(x1, x2, . . . , xm) · log(P(x1, x2, . . . , xm))

or, if X1, X2, . . . , Xm is noted simply with X (the bold letter denoting a set of variables,
instead of a single one), their joint entropy can be written compactly:

H(X) = − ∑
x∈VX

P(x) · log(P(x)) (1)

Joint entropy has the very convenient property of not depending on the order of its
arguments, a property which will be intensively exploited by the dcMI optimization, as
will be described in Section 5.

Entropy also has a conditional form:

H(X | Y) = − ∑
x∈VX

∑
y∈VY

P(x,y) · log(P(x | y))

The difference between the entropy of X and its conditional entropy given Y is named
mutual information [22], defined as:

I(X ; Y) = H(X)− H(X | Y)
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Mutual information is interpreted as the amount of information shared by X and Y. It is
also symmetric in its arguments, meaning that I(X ; Y) = I(Y ; X). There is a conditional
form of mutual information as well [22]. Let Z be a third variable:

I(X ; Y | Z) = I(X ; Y, Z)− I(X ; Z) (2)

The conditional mutual information of X and Y given Z is interpreted as the amount of
information shared by X and Y that still cannot be explained away by knowing Z.

Of notable importance is the fact that conditional mutual information can be decom-
posed into a sum of joint entropy terms:

I(X ; Y | Z) = I(X ; Y, Z)− I(X ; Z)

= H(X,Z) + H(Y,Z)− H(X,Y,Z)− H(Z) (3)

As will be discussed later, this decomposition features prominently in the proposed dcMI
optimization and has determined the choice of its name.

4. The G-Test

The G-test is a statistical hypothesis test with the formal name of log-likelihood ratio
test [23]. Therefore, it is a tool used to determine which of two competing hypotheses is
more likely to be true after empirically observing a series of events. More specifically, it
can be applied in the context of a data set in order to determine whether it is more likely
that two features are independent (the null hypothesis, H0) or, on the contrary, if they are
dependent (the alternative hypothesis, H1). For brevity, this article will keep using the
name ‘G-test’ for the test itself and G for its statistic, even though ‘log-likelihood ratio test’
is its canonical name. The name G2 also appears in literature [24].

Although the G-test can be used as a generic hypothesis test, this article focuses on
applying the G-test as a test of independence between two multinomial features X and Y,
after experimentally observing them and recording N instances. To test the unconditional
independence of X and Y, let the null hypothesis H0 be X ⊥⊥ Y, thus expressing the
independence of X and Y, and let H1 be the alternative hypothesis asserting the opposite,
X 6⊥⊥ Y, thus expressing a dependence relationship between X and Y.

After experimentally obtaining instances of X and Y, the test of independence becomes
a problem of determining how likely or unlikely H0 is in light of this evidence. The G
statistic quantifies the likelihood of H0 versus H1, and is defined as follows:

G(X, Y) = 2N ∑
x∈VX

∑
y∈VY

P(x, y) ln
P(x, y)

P(x) · P(y) (4)

Here, VX and VY are the sets of values that can be taken by the X and Y features. In
addition, x and y are elements of these sets, respectively.

After computing the G statistic, one can determine how likely it is that X and Y are
indeed independent, given the evidence. This is done by evaluating the probability of
obtaining the value of G yielded by Equation (4) under its limiting probability distribution,
χ2 [20]. This results in a p-value, a real number in the interval [0, 1) which is the conditional
probability of observations as extreme as expressed by G given that H0 is true. The lower
the p-value, the less probable the observations are under H0; therefore, for low p-values,
the H0 may be rejected, and H1 may be considered true instead.

It is up to the researcher to choose a threshold α for p-values under which H0 is
rejected and X and Y are considered dependent. The value α is formally known as the
significance of the test.

It is important to note that the χ2 distribution is parametric, requiring a number of
degrees of freedom (DoF) to be specified [24] before computing the p-value of the G statistic.
This distribution parameter is required due to the definition of the χ2 distribution: it is the
sum of the squares of a number of DoF independent standard normal variables [24]. The
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value of DoF must be calculated independently for each instance of the test. For consistency
with its references, the DoF values throughout this article will be calculated in a manner
similar to the one described by Spirtes et al. [12]. A more detailed description of how this
calculation is performed is provided in Appendix E.

Apart from testing the marginal independence of two features, the G-test can also be
used to test conditional independence as well, which is of central importance in Markov
blanket discovery. If an experiment has recorded more features than just X and Y, one can
then perform tests of conditional independence between X and Y, given some subset of the
other recorded features, in order to investigate any causality relationships among them [2].
Let Z be such a conditioning set, with the restrictions X /∈ Z and Y /∈ Z. The G statistic for
a conditional test of independence can then be calculated as:

G(X, Y | Z) = 2N ∑
x∈VX

∑
y∈VY

∑
z∈VZ

P(x, y, z) ln
P(x, y | z)

P(x | z) · P(y | z)
(5)

5. The G Statistic and dcMI

This section contains the discussion on the theoretical relationship of the G-test with
information theory and how it is exploited by dcMI, our proposed optimization.

As stated in the introduction, a significant performance bottleneck manifests itself
when an algorithm must compute a large number of tests of conditional independence (CI).
This is the case of Markov blanket discovery algorithms such as IPC–MB. These algorithms
apply the G-test on various permutations of the features in a data set in order to discover
relationships of conditional independence.

The probabilistic form of the G statistic shown in Equation (5) is visibly similar to the
definition of the conditional mutual information presented in Equation (2). Consequently,
Equation (6) compactly represents the G statistic as conditional mutual information:

G(X, Y | Z) = 2N · I(X ; Y | Z) (6)

Moreover, using the decomposition of conditional mutual information from Equation (3),
the G statistic can be written using a simple sum of joint entropy terms:

G(X,Y | Z) = 2N ·
[

H(X,Z) + H(Y,Z)− H(X,Y,Z)− H(Z)
]

(7)

Equation (7) is the form of the G statistic exploited by the dcMI optimization. This decom-
posed form is highly desirable when applying the G-test for conditional or unconditional
independence, especially for Markov blanket discovery. When calculating the G statistic
for various permutations of the features X, Y, and those in the set Z, it is highly likely that
some or all of the joint entropy terms of the decomposition will be reused directly from
previous calculations of G. This reusal is a direct consequence of the indifference of joint
entropy to the order of its arguments. Moreover, note that terms may be reused between
two separate calculations of G even when only some of the features on which they are
applied are shared. In effect, the dcMI optimization stores and reuses these joint entropy
terms for each computation of the G statistic that takes place during the run of an algorithm.
The only requirement is to compute G in its decomposed form as in Equation (7).

It can be shown that reusing joint entropy terms when computing G-tests requires
M(M−1)

2 times fewer probability distributions to be computed from a data set of M features
in the combinatorically exhaustive case (all possible G-tests performed on M features). The
proof is provided in Appendix A.

The dcMI optimization stores joint entropy terms in a cache named Joint Entropy
Table (JHT). There is no specific requirement for the underlying data structure of the JHT:
any associative mapping structure will suffice, as long as it can store and retrieve real
numbers (values of joint entropy), indexed by unique sets of feature indices. Retrieving the
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joint entropy of a set of features from the JHT makes it unnecessary to access the data set
for further information.

There is a drawback to caching terms and avoiding the data set entirely. As stated in
Section 4, computing a G-test also requires specifying the number of degrees of freedom
(DoF) of the χ2 distribution [12]. The DoF must be recalculated for each individual test
based on the features involved. However, when the JHT already contains the joint entropies
of the tested features, accessing the data set will still be required, only to compute the
DoF. This would negate the advantage brought by the JHT. For the purposes of this
article, comparability with DoF computation as implemented in previous work must be
preserved; therefore, the dcMI optimization may not use a different DoF computation
method than the ones used by the other G-test configurations in this experiment. To
mitigate this drawback, a secondary cache is maintained for DoF values, named DoF
cache, again indexed by unique sets of feature indices. Maintaining the DoF cache is more
complicated than maintaining the JHT itself and consumes more memory. The motivation
for maintaining the DoF cache and its operation is described in Section 6.2. Future work
will attempt to provide a better approach, obviating the need for the expensive DoF cache.

To better illustrate how joint entropy terms are reused by G-tests performed on
permutations of the same features, a simple and intuitive step-by-step example is provided
in Appendix B.

6. The Iterative Parent-Child Markov Blanket Algorithm

The Iterative Parent-Child Markov Blanket algorithm, IPC–MB for short, is an efficient
Markov blanket discovery algorithm [6]. As described in Section 2, IPC–MB is one of the
algorithms in its class which explicitly uses the G-test to establish conditional independence
(CI) and to discover the local structure around a target feature within a Bayesian network.
It guarantees finding the Markov blanket of a target feature, and it is proven correct by
its authors. To our knowledge, it is one of the most efficient algorithms in its class with
respect to the number of CI tests it performs.

Just like PCMB [5], IPC–MB divides the problem of discovering the Markov blanket of
a target feature T in two subproblems: (1) the discovery of its parents and children PC(T),
and (2) the discovery of its spouses, which are the nodes that share its children SP(T). The
Markov blanket is the union of these two sets, thus it is defined as MB(T) = PC(T)∪SP(T).
Due to the inherent structure of a Bayesian network, the set SP(T) can be found by iterating
over the features X ∈ PC(T), then finding PC(X) for each X and testing if each element of
each PC(X) is conditionally independent of T given PC(T). If an element of any PC(X) is
found to be not independent by this test, then it belongs to SP(T).

The improvement brought by IPC–MB over PCMB is the order in which tests of
conditional independence are performed. While PCMB does not mention a specific order,
IPC–MB ensures that CI tests are performed first conditioning on the small subsets of
features, then on the larger ones. Therefore, it first exhausts the tests of unconditional
independence (size 0), then the tests of conditional independence given the subsets of size
1, then 2 and so on [6]. Conditioning on incrementally increasing subsets of features has
the advantage of avoiding expensive and likely unnecessary tests that condition on larger
subsets.

It is important to note that IPC–MB neither has nor requires direct access to the actual
features and samples of the data set. Instead, all the information needed by IPC–MB is
provided by the G-test as a black box in the form of true/false answers concerning the
conditional independence of two specific features given a subset of features. Moreover, the
G-test is queried using only feature indices, which means it is the responsibility of the G-test
implementation to acquire the information it needs regardless of whether this involves
consulting the data set directly or extracting information from other data structures. Briefly
put, IPC–MB does not need to know how the G-test is computed nor how the information
required to compute the test is acquired.
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Upon completion, IPC–MB returns a set of indices which represent the features in the
data set that form the Markov blanket of the target feature T.

6.1. IPC–MB and AD–Trees

The authors of IPC–MB also proposed an improved variant of IPC–MB named IPC–
MB++ [6], which changes how sample counts are retrieved from the data set and fed into
the G-test computation. By default, the unoptimized G-test iterates over the samples of the
data set and counts those that match specific values in order to build the probability mass
functions it requires. In contrast with the default IPC–MB behavior, IPC–MB++ replaces
sample counting for G-tests with queries into an AD–tree [14] with the intention of gaining
efficiency.

An AD–tree is a data structure built to contain the sample counts of all possible
combinations of instance values for any subset of features. As its name indicates, it is
a tree and it contains two types of nodes named AD–nodes (sample count nodes) and
Vary–nodes (feature nodes). The root of the tree is an AD–node containing the count of all
samples; therefore, it contains the answer to the most universal sample count query. The
children of the root are Vary–nodes, one for each feature of the data set. The immediate
children of every Vary–node are also AD–nodes, one for each possible instance value that
the feature represented by the parent Vary–node can take. Every such AD–node is the root
of a new subtree, which can itself be queried for sample counts, with the restriction that the
query matches its corresponding instance value for the feature represented by its parent
Vary–node. For example, the number of samples for which X1 = 8 and X2 = 16 can be
found by starting at the root, then visiting the Vary–node corresponding to X1, then its
AD–node child corresponding to the value 8. This AD–node will also have Vary–node
children for all features (except for X1 itself); therefore, the Vary–node corresponding to
X2 must be visited next. The final answer is the sample count stored in its AD–node child
corresponding to the value 16. See Appendix C for a simple example of building a dynamic
AD–tree. Note that no AD–nodes are generated for sample counts of 0, to save memory.
When a query of the AD–tree finds no corresponding node, it implicitly returns 0.

When building AD–trees, an ordering of the features must be first established. The
AD–tree will follow this ordering when expanding. It is essential to always sort the features
in a query by the same ordering as the one used when the AD–tree was built.

If the AD–tree has been built in its entirety before it was ever queried, it is a static
AD–tree [14]. By contrast, if the AD–tree is empty at the time of the first query and will be
expanded on-demand while it is queried, it is a dynamic AD–tree [15]. The static AD–tree
has the obvious advantage of readily providing the answers to sample count queries, while
the dynamic AD–tree will still require access the data set and count samples if the subtrees
required by the query have not been expanded yet. However, the static AD–tree has the
severe disadvantage of non-trivial memory consumption, as well as being expensive to
build in the first place, while the dynamic AD–tree does not expand more than the queries
require it to expand, saving both time and memory.

Deciding whether to employ a static AD–tree or a dynamic one is a matter of com-
promise. Some applications may benefit from the low latency of the static AD–tree, while
others may benefit from the low resource consumption of the dynamic AD–tree. Moreover,
the static AD–tree completely obviates the need to keep the data set available because it
already contains all the information in the data set. By contrast, the dynamic AD–tree will
still need access to the data set when it is queried because it might need to expand new
nodes.

To reduce the memory consumption of an AD–tree, its authors [14] also propose two
pruning-like optimizations:

• eliding AD–nodes for the Most Common Value (MCV) whenever creating the children
of a Vary–node; MCV elision is a significant optimization for AD-trees because it
prevents the expansion of the subtree under the AD–node with the highest sample
count among the children of a Vary–node. This optimization relies on the assumption
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that a higher sample count would require a subtree with more nodes to be generated.
This is because it is more probable to encounter a greater variety of samples in a larger
subset of the samples, and a greater variety of samples implies that AD–nodes will
often contain positive (non-zero) sample counts, even at greater depths of the subtree.
To recover the information elided by an unexpanded subtree, the querying process
must reconstruct missing sample counts at runtime, a more complex procedure;

• replacing as many small subtrees as possible at the deeper levels with Leaf-List nodes;
Leaf-List nodes prevent the expansion of subtrees when their total sample count
drops under a manually given threshold but they keep references to (or copies of)
the original samples in the data set. This threshold is named the Leaf-List Threshold
(LLT). In case a query needs to descend into a subtree replaced by a Leaf-List node, it
will count the referenced raw samples instead, directly from the data set.

Employing these optimizations increases the logical complexity of querying because
the elided information must be inferred at runtime from other information existing in the
AD–tree [14]. These optimizations are applicable to both static and dynamic AD–trees [15].
See Appendix D for more details on these optimizations.

Computing a G-test requires the conditional probability mass function (CPMF) of a
subset of features. This means that the raw sample counts stored in the AD–trees must be
first assembled into a CPMF before computing the G statistic and computing the number of
degrees of freedom required for the CI test, as described in Appendix E. While not logically
straightforward, assembling a CPMF from an AD–tree suits the tree structure well because
the design of the AD–tree makes recursive querying possible.

When IPC–MB++ was proposed, it employed a static AD–tree [6] as the source of
sample counts when computing G-tests. However, in spite of the pronounced differences
in behaviour between static and dynamic AD–trees, they are essentially the same data
structure and are equivalent from the perspective of a consumer algorithm. As a conse-
quence, IPC–MB++ is agnostic of the type of AD–tree it queries. This fact makes it possible
to configure an implementation of IPC–MB++ to use either a static or dynamic AD–tree
with no further modification whatsoever.

6.2. IPC–MB and dcMI

The performance of IPC–MB can also be improved using the dcMI optimization.
Instead of computing the G statistic in its usual form, it is computed as a scaled sum of
joint entropy terms, as described in Section 5. This will exploit the abundant reusal of joint
entropy terms between G statistic computations for various permutations of features and
thus will greatly reduce the total running time of the algorithm. The dcMI optimization
requires no parameters to be set.

The design of the dcMI optimization is straightforward: the computation of the G
statistic is done by summing joint entropy terms stored in the Joint Entropy Table (JHT),
corresponding to the features currently being tested for conditional independence (CI) and
to the features in the conditioning set. If a CI test requires a joint entropy term that is not
currently stored in the JHT, then it must be calculated from the data set and added to the
JHT as follows:

1. the features required for the missing joint entropy term are retrieved from the data
set;

2. their joint probability mass function is computed;
3. their joint entropy is computed;
4. the joint entropy is stored in the JHT under a key that uniquely identifies the specific

subset of features; and
5. the new joint entropy value is now available to compute the G statistic.

These steps are performed as many times as required, on demand, a maximum of 4
times per CI test, as per Equation (7).
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At the beginning, the JHT is empty and joint entropy terms are added as IPC–MB
performs CI tests. Moreover, the JHT may be shared between IPC–MB runs performed on
the same data set, accelerating the algorithm further.

An essential piece of information required to perform a G-test is the number of degrees
of freedom (DoF) of the limiting χ2 distribution corresponding to the features being tested.
In the form in which it was proposed, IPC–MB computes the number of DoF as proposed
by Spirtes et al. [12]. This specific method requires the knowledge of zero values in the joint
probability mass function of the features in the test. A method that is more computationally
expensive but more mathematically appropriate is to employ linear algebra, in effect
treating the joint probability mass function as a system of linear equations and finding
its number of free variables. An overview of this approach is discussed by Lamont [25].
In this specific implementation, the number of DoF is not computed exactly as suggested
by Spirtes et al. [12], but in a slightly different way. The method is described in Appendix E.

A straightforward implementation of DoF computation would have put the dcMI
optimization at a significant disadvantage: having to eliminate the zero values from
P(X | Z), P(Y | Z) and P(Z) for each CI test would have required counting samples directly
from the data set. This would have negated the entire efficiency gain brought by caching
joint entropy terms. On the contrary, AD–trees do not have this disadvantage because
they already contain the sample counts, which have to be assembled into probability mass
functions anyway in order to compute the unoptimized G statistic.

To prevent having to compute the joint probability mass functions of the tested features
in each CI test, an alternative approach was employed. Whenever a new JHT entry is added
and a probability mass function is indeed built directly from the data set, a secondary cache
is updated as well. This is the DoF cache, which contains the degrees of freedom computed
for all the possible permutations of the encountered subsets of features. More specifically,
when IPC–MB requests a CI test between the features Xi and Xj conditioned on Xk, then
the DoF cache is immediately updated with the degrees of freedom for the tests between
Xi and Xk conditioned on Xj and between Xj and Xk conditioned on Xi, even if the CI
tests which would require the latter two entries have not been encountered yet. This is
the only opportunity available to compute the degrees of freedom for the aforementioned
permutations because the data set will not be accessed later for the joint probability mass
function of Xi, Xj and Xk.

Using this approach, IPC–MB with the dcMI optimization will be able to compute
DoF in the same way as IPC–MB++ does using the AD–trees, but at the cost of managing
and storing an extra cache which contains precomputed numbers of DoF. It is likely that
many of the entries of the DoF cache are never used, but this aspect has not been measured
in the experiment.

The DoF cache is only required in order to ensure that the G-tests computed with
dcMI are identical with the ones computed from AD–trees or those computed without
optimization, according to the method proposed by Spirtes et al. [12]. If this specific
restriction is lifted, different methods for DoF computation may be used. A discussion on
alternative DoF computation methods is beyond the scope of this article, but it is essential
and will be researched further in the future.

It is also possible to implement eviction mechanisms for the JHT and the DoF cache.
Such mechanisms would routinely remove entries from the JHT and DoF cache, thus
maintaining a lower memory consumption and enabling IPC–MB to run on far larger data
sets than the ones in the comparative experiment presented here. However, this experiment
was restricted to data sets that did not require eviction.

7. A Comparative Experiment

To evaluate the dcMI optimization empirically, a comparative experiment was per-
formed on two multinomial data sets (ALARM and ANDES, described in Section 7.2) by
running the IPC–MB algorithm in four configurations. The four configurations are the
following:
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• GDefault, using an unoptimized G-test implementation, which had to count raw
samples in the data set for calculating each CI test; this is the default configuration of
IPC–MB as proposed by Fu and Desmarais [6]; this configuration is only provided as
reference, where feasible;

• GStADt, using a G-test implementation which retrieves information from a pre-built
static AD–tree instead of reading the data set directly (except when Leaf-List nodes
are built, as described in Section 6.1); this configuration cannot be run unless the static
AD–tree has been already built on the chosen data set; this configuration allows the
variation of the LLT parameter (see Section 6.1); this configuration is only provided as
reference, where feasible;

• GDyADt, using a G-test implementation which retrieves information from a dynamic
AD–tree, instead of reading the data set directly; this configuration requires access to
the data set, but it does not require a tree-building phase and can start immediately;
this configuration allows the variation of the LLT parameter;

• GdcMI, using a G-test implementation which relies on dcMI to calculate CI tests, which
means that it maintains a Joint Entropy Table (JHT) and a DoF cache, both described
in Section 5, which are consulted to compute the G statistic without accessing the data
set at all for most CI tests.

As stated in Section 2, the dcMI optimization is most comparable to the dynamic
AD–trees, due to its mode of operation. For this reason, the focus of this experiment is to
compare these two optimizations. However, the experiment also contains the unoptimized
IPC–MB and static AD–trees in order to provide a more complete overview. Note that,
regardless of the G-test configuration, there is a single method of computing the number of
degrees of freedom for a G-test, described in Appendix E, used throughout the experiment.

The experiment consists of applying IPC–MB in each configuration to discover the
Markov blanket (MB) of every feature in the data sets ALARM and ANDES. While the
discovery of the MB of a single feature under a specific configuration constitutes a single
run of IPC–MB, the experimental unit actually consists of as many runs with a configuration
as the data set has features. The experiment records the time required to complete each of
the IPC–MB runs, as well as the memory consumed by the data structures employed by
the configurations, namely the AD–trees, the JHT and the DoF cache. In the context of this
experiment, these data structures were collectively named the ‘optimization structures’.

The LLT parameter of the configurations based on AD–trees was restricted to the
values 0, 5, and 10. However, these values do not represent the absolute numbers of
samples below which an AD–node would not be expanded further. Instead, these values
are percentages of the total samples of the data set.

Implementing AD–trees efficiently took considerable effort due to the overall complex-
ity of the querying logic. While a straightforward but correct implementation was expected
to be inefficient, the amount of work required to produce an implementation of acceptable
efficiency accounted for the vast majority of the total implementation effort expended for
this experiment. Profiling had to be used extensively to bring the AD–tree implementations
(both static and dynamic) to an efficiency that made the comparison to dcMI meaningful,
both in running time and memory, even when accounting for the overhead introduced by
DoF caching.

A core aspect of the experiment is that all four configurations produce exactly the
same results. This fact is a consequence of the design of each configuration: the AD–trees
contain the same counts which would have been retrieved from the data set directly, while
dcMI is only an equivalent writing of the definition of the G statistic. For this reason,
no measurement of accuracy was performed and the comparison between the IPC–MB
configurations is only made regarding time and memory.

For all four configurations, the significance of the G-test was set to 0.05. This means
that, for all G-tests, a p-value below 0.05 will result in the tested variables being consid-
ered dependent, while a p-value above 0.05 will result in the variables being considered
independent. No dynamic per-test adjustments are made to the significance.
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The experiment is focused on the most intensive use-case of the IPC–MB algorithm,
namely to find the Markov blankets of all the features in each data set. This exhaustive
use-case emulates how IPC–MB would be applied for reconstructing the entire Bayesian
network of the data sets, as opposed to the simpler use-case of applying IPC–MB to find
the MB of a single feature. For this reason, the optimization structures employed by the
algorithm configurations (AD–trees, JHT, DoF caches) were shared between all algorithm
runs of the same configuration and on the same data set, as follows:

• the GStADt configuration shares the static AD–trees among its runs on each specific
data set given an LLT argument, in order to amortize the cost of building it once per
data set [6];

• the GDyADt configuration shares the dynamic AD–trees among its runs on each
specific data set given an LLT argument, initially empty, but which are expanded as
IPC–MB performs G-tests on the features of the data sets;

• the GdcMI configuration shares the JHT instances and DoF caches among its runs on
each specific data set.

The IPC–MB runs were grouped into two subexperiments corresponding to the data
sets they were run on, ALARM and ANDES.

The entire experiment was performed on a modern machine of average specifications:
Intel Core i3-8100T processor with 16 GB of DDR4 RAM and an SSD drive for storage,
running an up-to-date installation of Fedora 32. To make sure the resources of the machine
were dedicated entirely to the experiment, a preparation step was run before starting the
experiment which included closing the desktop environment, setting the operating system
in multi-user mode only and shutting down all the networking subsystems, as well as
other userspace processes (such as dbus, pulseaudio, cups).

7.1. Implementation

The entire source code of the experiment is freely available under the terms of the
GPLv3 license and was published on the Internet as a Git repository [26]. This repository
also contains a miniature version of the entire experiment, intended as a short demonstra-
tion only.

The entire experimental framework, the IPC–MB algorithm, the G-test configurations
and the optimization structures were all implemented in Python 3 without relying on
other implementations. This lack of dependencies is an unfortunate fact caused by the
lack of acceptable public implementations of the IPC–MB algorithm and AD–trees. This
means that the IPC–MB and IPC–MB++ implementations used in this experiment are, to
our current knowledge, the only publicly available ones.

However, the experiment does rely on the open-source Python packages numpy [27],
scipy [28], and larkparser [29].

The implementation of the IPC–MB algorithm was validated by automatic tests in-
volving the d-separation criterion applied on the original Bayesian network as the CI test.
Because of this, the efficiency of IPC–MB itself could be compared to other algorithms in
its class, with respect to the number of CI tests required to find a Markov blanket. The
implementations of the four configurations of G-tests are validated by automatic tests
which ensure that all of them reach the same value of the G statistic and the same number
of degrees of freedom.

The AD–tree was implemented as a general-purpose data structure. The implemen-
tation is intended to be usable in external projects without the rest of the experimental
framework. Both the static and dynamic forms are available.

7.2. Data Sets

The data sets used in the experiment were synthetically generated from two publicly
available Bayesian networks, retrieved as BIF files (Bayesian Interchange Format) from
the bnlearn R package [30]. A BIF reader was implemented using the larkparser Python
package [29] to load them into the experimental framework. To generate the actual samples
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for the data sets, a custom-built Bayesian network sampler was implemented, which
produced randomly generated samples on-demand, respecting the conditional dependence
relationships between the features. This sampler provides the values of all the features of
a sample, thus generating full sample vectors. Similar sample generators were found as
libraries, but they lacked important features, such as generating a sample containing the
values of all features, not only the value of a target feature.

The ALARM Bayesian network [31] was produced by the ALARM diagnostic applica-
tion, which used the network to calculate probabilities that aid in differential diagnosis
and patient monitoring. This Bayesian network was categorized as a ‘medium network’
by the bnlearn package. The ANDES Bayesian network [32] is a model used to assist in
long-term student performance collected by the ANDES tutoring system. This network
was categorized as ‘very large’ by the bnlearn package.

The following subsections describe the two subexperiments performed on these data
sets.

7.2.1. The ALARM Subexperiment

The ALARM data set contains 37 features; therefore, this subexperiment contains the
following runs of IPC–MB:

• 37 runs of GDe f ault
• 111 runs of GStADt, further subdivided into 3 groups of 37 runs, one for each of the

selected values for the LLT parameter, namely 0, 5, and 10; the static AD–trees are
shared only among the runs in each LLT group;

• 111 runs of GDyADt, further subdivided into 3 groups of 37 runs, one group for each
of the selected values for LLT, namely 0, 5, and 10; the dynamic AD–trees are shared
only among the runs in each LLT group;

• 37 runs of GdcMI.

The ALARM data set was instantiated in three sizes: 4000 samples, 8000 samples,
and 16,000 samples. The ALARM subexperiment was therefore performed in its entirety
three times, once for each instance of the data set. In total, 888 runs of IPC–MB were
performed in this subexperiment.

Because the AD–trees cannot be shared among data set sizes, nor among configura-
tions with different values for LLT, a total of 18 AD–trees were built: nine static AD–trees
and nine dynamic AD–trees. The dynamic AD–trees do not require a building step because
they are built at runtime. However, static AD–trees must be pre-built. The durations
required to build the nine required static AD–trees are shown in Table 1.

Table 1. Pre-experimental build durations for static AD–trees, in seconds.

LLT 4000 Samples 8000 Samples 16,000 Samples

0 13.7 31.1 67.3
5 0.9 1.7 3.0

10 0.5 1.1 2.1

Table 2 presents the measurements recorded during the ALARM subexperiment. The
columns mean the following:

• ‘Time’: the total time spent by IPC–MB performing only CI tests; these durations
include neither initialization time, nor the time IPC–MB needs to perform its own
computation; the time to build the static AD–trees is excluded as well;

• ‘Rate’: the average number of CI tests performed per second;
• ‘Mem’: the total amount of memory consumed by the optimization structures, in

megabytes; for AD–tree–based configurations, this is the size of the AD–tree alone;
for GdcMI, it is the combined size of the JHT and DoF cache.
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Table 2. Results of the ALARM subexperiment for 4000, 8000 and 16,000 samples. The table header
also shows the amount of CI tests performed in each case. L00, L05, and L10 are abbreviations of LLT
0, LLT 5, and LLT 10, respectively.

4000 Samples 8000 Samples 16,000 Samples
26,430 CI Tests 33,183 CI Tests 34,291 CI Tests

Configuration Time Rate Mem Time Rate Mem Time Rate Mem
(s) (s−1) (MB) (s) (s−1) (MB) (s) (s−1) (MB)

GDefault 161 163.7 — 389 85.2 — 786 43.7 —
GStADt L00 24 1074.9 516.1 34 948.4 1123.4 38 894.0 2452.1
GStADt L05 57 459.2 34.1 95 348.5 54.8 123 278.4 87.4
GStADt L10 63 415.5 19.5 105 314.6 34.5 140 243.6 58.9

GDyADt L00 25 1044.4 14.6 37 892.5 28.6 40 838.5 49.6
GDyADt L05 58 453.7 12.6 96 345.4 25.3 127 268.5 45.2
GDyADt L10 66 400.0 11.1 106 310.9 23.0 143 239.0 41.7

GdcMI 11 2522.7 4.2 18 1815.4 4.6 32 1063.2 4.8

The results of the ALARM subexperiment, shown in Table 2, provide an overview
of the efficiency of the four configurations. The GDe f ault configuration, which computes
the G statistic without any optimization, is the slowest configuration, unsurprisingly. The
configurations GStADt and GDyADt performed similarly to each other for each of the LLT
values, but GDyADt has the significant advantage of constructing a very small dynamic
AD–tree, even for LLT 0 (no leaf-list elision).

For emphasis, the static AD–tree built for GStADt with LLT 0 is around 2.5 GB in size,
while the GDyADt with LLT 0 configuration produced an AD–tree of merely 49.6 MB. In
spite of the considerable difference in memory consumption, they finished discovering all
the Markov blankets in the ALARM data set within 1 or 2 s of each other (depending on
the number of samples in the data set instance).

Containing our proposed optimization, the GdcMI configuration outperforms all
the others on all three data set instances due to the high hit rates in the JHT, recorded at
97.0%, 97.5%, and 97.5% for the 4000, 8000, and 16,000 samples, respectively. On the data
set instances of 4000 and 8000 samples, GdcMI discovers the 37 Markov blankets in less
than half the time required by the next fastest configuration, GStADt with LLT 0, while
consuming under 5 MB of memory. In the case of the 16,000 sample data set instance, the
GdcMI configuration is still the fastest, but the difference to the next fastest configuration
is not as dramatic mostly due to the fact that the joint entropy terms were still expensive
to compute and also due to the low number of features in the data set, which caused
only modest reusal of the terms in the JHT. However, the GdcMI configuration required
8.6 times less memory than the most memory-efficient AD–tree configuration, GDyAdt
with LLT 10, which ranked third by time.

7.2.2. The ANDES Subexperiment

The ANDES data set contains 223 features, six times as many as the ALARM data
set. For this reason, the configuration GDe f ault was not even attempted on ANDES, but
also due to its low CI test rate in the ALARM subexperiment. Moreover, attempts to build
the static AD–trees for the GStADt configurations were aborted by the OS kernel due to
their excessive consumption of memory. As a consequence, the ANDES subexperiment
only contains the GDyADt and GdcMI configurations. As stated earlier, the proposed
dcMI optimization is most comparable to the dynamic AD–tree anyway. To summarize,
the ANDES subexperiment contains the following runs:

• 669 runs of GDyADt, further subdivided into three groups of 223 runs, one group for
each of the selected values for LLT, namely 0, 5, and 10; the dynamic AD–trees are
shared only among the runs in each LLT group;

• 223 runs of GdcMI.
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Like the ALARM data set, the ANDES data set was also instantiated in three sizes:
4000 samples, 8000 samples, and 16,000 samples. The ANDES subexperiment was therefore
performed in its entirety three times, once for each instance of the data set. In total, 892
runs of IPC–MB were performed in this subexperiment.

Because the AD–trees cannot be shared among data set sizes nor among configurations
with different values for LLT, a total of nine dynamic AD–trees were built at runtime. No
static AD–trees were built, as they were unfeasible on the experiment machine.

Table 3 presents the measurements recorded during the ANDES subexperiment. The
table is missing results for the GDe f ault and GStADt configurations, due to their un-
feasibility on the ANDES data set, as mentioned earlier. The remaining configurations,
GDyADt and GdcMI, show a much more dramatic difference in efficiency on the ANDES
data set. The columns have the same meaning they had for the ALARM subexperiment.

Table 3. Results of the ANDES subexperiment for 4000, 8000, and 16,000 samples. The table header
also shows the amount of CI tests performed in each case. L00, L05, and L10 are abbreviations of LLT
0, LLT 5, and LLT 10, respectively.

4000 Samples 8000 Samples 16,000 Samples
1,155,034 CI Tests 2,841,520 CI Tests 4,830,900 CI Tests

Configuration Time Rate Mem Time Rate Mem Time Rate Mem
(s) (s−1) (MB) (s) (s−1) (MB) (s) (s−1) (MB)

GDyADt L00 6001 192.4 567.8 30,462 93.2 1287.2 123,680 39.0 2718.1
GDyADt L05 8783 131.5 563.3 50,171 56.6 1269.0 261,236 18.5 2677.9
GDyADt L10 10,398 111.0 559.0 64,255 44.2 1257.8 346,235 13.9 2653.5

GdcMI 481 2401.1 166.1 1665 1706.4 369.2 5752 839.7 731.0

Firstly, the GDyADt configurations are slowed down significantly by deep-level
queries into the dynamic AD–tree caused by the higher number of features involved in
CI tests. This requires larger probability mass functions to be constructed by recursively
inspecting the trees, a task of non-trivial computational cost even without leaf-list elision
(Most Common Value elision was still enabled to reduce the memory consumption, see
Section 6.1). This puts the GDyADt at a disadvantage, which achieved its highest rate
of CI tests per second at LLT 0, namely 39.0 s−1, at the expense of consuming 2.7 GB of
memory. As a secondary observation, the LLT parameter matters far less on ANDES than
on the much smaller ALARM data set: the dynamic AD–trees consume similar amounts
of memory regardless of the value of LLT, although a performance penalty of having a
non-zero LLT value can be observed in the results.

Secondly, the GdcMI configuration benefits from the fact that our proposed optimiza-
tion performs queries into simple data structures, as discussed in Section 5. Querying the
JHT is significantly faster than recursing into the deep AD–trees. Moreover, the efficiency
gain caused by the reusal rate of the joint entropy terms stored in the JHT was much more
pronounced due to the far higher number of CI tests that had to be performed by IPC–MB
on the ANDES data set. This reusal has kept the test rates of the GdcMI configuration very
close to the test rates achieved on the ALARM data set, in spite of the ANDES data set
containing six times more features. In addition, the memory consumption of the GdcMI
configuration was around 3.6 times lower than the consumption of the GDyADt configura-
tions. An eviction mechanism would have brought the memory consumption of GdcMI
even lower, although this was not necessary in the experiment presented here.

8. Conclusions

The results of the comparative experiment presented in Section 7 show that our
proposed optimization dcMI provides a significant efficiency gain when a large numbers
of G-tests must be computed on the features of a data set. Such demanding situations
are exemplified by the already efficient Markov blanket discovery algorithm IPC–MB,
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which relies on the G-test to determine conditional independence between the features of
a data set. The dcMI optimization is also trivial to implement, requires no configuration
parameters, and is widely applicable, although the comparative experiment presented in
this article used IPC–MB specifically to evaluate the efficiency gains of dcMI.

Moreover, dcMI far exceeds the efficiency gains provided by either static or dynamic
AD–trees, in spite of using far less memory. The most significant difference was observed on
the ANDES data set, which contains 223 features, where dcMI outperformed the dynamic
AD–tree by a factor of 20 to 21, depending on the number of samples in the data set
instance, all the while consuming 3.6 times less memory. If the computationally expensive
MCV elision had been disabled for the dynamic AD–tree, while also adding a configurable
eviction mechanism to the data structures used by dcMI, the memory consumption ratio
between the two optimizations would have been even higher. The results also show that,
on the selected data sets, the dcMI optimization does not slow down significantly as the
number of features in the data set increases. Even if the difference in feature count is a
factor of 6, as it is between the ALARM and ANDES data sets, IPC–MB performed almost
as fast on either data set when using dcMI.

However, it must be noted that dcMI is an optimization specific to computing mutual
information, either conditional or unconditional. In its proposed form, it is not applicable
in other cases. However, this specificity is not a restriction because mutual information is a
fundamental concept in both information theory and in statistics. Indeed, dcMI greatly
accelerates the computation of the G statistic in particular, but other applications that
employ conditional mutual information may also benefit from it.

AD–trees are a more general optimization than dcMI because they have no built-in
assumptions about their consumer. This fact makes them applicable in a wider variety of
contexts, in spite of drawbacks such as memory consumption, complex querying logic, and
becoming slower as the number of features in the data set increases. It must be emphasized
that AD–trees allow for the construction of the contingency table of any feature in the data
set, a universally useful application.

Improvements for computing the number of degrees of freedom of a G-test are also
being considered. To accurately calculate degrees of freedom, linear algebra methods
will likely have to be integrated into the dcMI optimization, with consideration for their
computational cost and to the manner in which dcMI accesses the data set.

In the comparative experiment presented here, the significance of the G-test was
uniformly set to 0.05, for consistency with the previous literature on which it is based.
However, the effects of this uniformity will be examined further and the significance setting
may be changed to an adaptive one, computed with respect to the test being performed or
the data set itself.
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Appendix A. Analysis

This appendix provides means to quantify the efficiency gain of reusing the joint
entropy terms in the decomposed computation of the G statistic, contrasted with the
canonical computation without decomposition. For this purpose, the combinatorically
exhaustive case is considered, namely the hypothetical case in which all possible G-tests
must be performed on a data set of M features. Note that any real-world algorithm that
performs G-tests on a data set would perform significantly fewer tests than that.

As shown in Equation (5), computing a single G-test using the canonical formula of the
G statistic requires four probability mass functions (PMF): P(X, Y, Z), P(X, Y | Z), P(X | Z)
and P(Y | Z). Calculating the joint entropy terms of a single G-test in its decomposed form
for dcMI also requires four PMFs, as previously shown by Equation (7), although all of
them are unconditional. In practice, retrieving a conditional PMF is expected to require a
more complex implementation than retrieving an unconditional one. For the simplicity of
this analysis, it is assumed that there is no penalty for retrieving a conditional PMF from
the data set, compared to an unconditional one.

On a data set of M features, let Gk be the set of all the G-tests of the form G(X, Y | Z)
such that |Z| = k. In other words, any set Gk contains all the G-tests where the conditioning
set has exactly k features. This means that k is at least 0 (for tests with no conditioning,
having the form G(X, Y)) and at most M − 2 (for tests that have the largest possible
conditioning set, excluding the features X and Y being tested). All Gk sets are non-
overlapping. The size of any set Gk is determined by:

|Gk| =
(

M
k

)(
M− k

2

)
The first term, (M

k ), is the number of possible conditioning sets of size k in a data set of M
features. The second term expresses that, for each such conditioning set, there are (M−k

2 )
possible G-tests to perform (i.e., pairs of 2 features in the data set remaining after choosing
a conditioning set of size k). Again, k ∈ {0, 1, . . . , M− 2}.

Furthermore, let G∗ be the set of all the tests of the form G(X, Y | Z) that are combina-
torically possible in a data set of M, for all sizes of the conditioning set Z. It follows that
G∗ is the disjoint union of all Gk that can be defined on the data set of M features:

G∗ =
M−2⊔
k=0

Gk

The size of G∗ is the sum of the sizes of all Gk:

|G∗| =
M−2

∑
k=0
|Gk| =

M−2

∑
k=0

(
M
k

)(
M− k

2

)
or simply:

|G∗| =
M(M− 1)

2
· 2M−2 (A1)

Because each individual G-test requires 4 PMFs to be retrieved from the data set, a number
of 4 ·G∗ probability mass functions is required to compute the combinatorically exhaustive
set of G-tests on any given data set. It can be shown that, when decomposing all the G-tests
in G∗, every possible subset of features of the data set will appear in a joint entropy term.
Not only that, but each individual joint entropy term repeats itself M(M−1)

2 times across
all decomposed tests, regardless of the number of features involved in the term. Based on
the decomposition of the G statistic in Equation (7), the proof is provided in the following
paragraphs.

Let Hj denote any joint entropy term involving j features. For example, H3 stands for
any joint entropy term of the form H(A, B, C), where A, B, and C are any three individual
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and distinct features of the data set. Let τ(j, k) be the function that counts the number of
apparitions of any specific term Hj, across the decompositions of all the G-tests in Gk. In
addition, it is important to note that any term Hj can only appear in the decompositions
of the tests in a set Gk only when k ∈ {j− 2, j− 1, j}, and for no other value of k. The
resulting values of τ(j, k) for the cases k = j− 2, k = j− 1 and k = j are defined below.

Proof. Case k = j− 2. Any Hj term will appear as the third term of the decomposition.
In this case, all the j features in the specific Hj term must be involved in the G-test as the
tested features and as the conditioning set. No features outside those in Hj can be involved;
otherwise, Hj does not appear in the decomposition. The number of tests in Gk=j−2 in
which any specific Hj appears is:

τ(j, j− 2) =
(

j
2

)
Namely, it is the number of possible tests involving j specific features where any 2 of them
are tested, while the rest form the conditioning set. For example, the H3 term H(A, B, C)
appears in a G-test from G1 which involves the features A, B and C exclusively, and no
other feature:

G(A,B | C) = 2N ·
[

H(A,C) + H(B,C)− H(A,B,C)− H(C)
]

Proof. Case k = j− 1. Any Hj term will appear as either the first or the second term of the
decomposition. In this case, one of the features in the specific Hj will be one of the two
tested features, while the rest of them will be part of the conditioning set. The number of
tests in Gk=j−1 in which any specific Hj appears is:

τ(j, j− 1) = j · (M− j)

Namely, it is the number of features in the Hj term that can be tested against any of the
remaining M − j features in the data set, while the rest of the features in Hj form the
conditioning set (of size k = j− 1). For example, the H3 term H(A, B, C) appears in a G-test
from G2 where all three features A, B, and C are involved, one of them being tested against
another feature in the data set, while the remaining two are conditioned on:

G(A,F | B, C) = 2N ·
[

H(A,B, C) + H(F,B, C)− H(A,F,B, C)− H(B, C)
]

G(X,B | A, C) = 2N ·
[

H(X,A, C) + H(B,A, C)− H(X,B,A, C)− H(A, C)
]

Of course, H(B, A, C) = H(A, B, C).

Proof. Case k = j. Any Hj term will appear as the last term in the decomposition. In this
case, all the features in Hj will form the conditioning set of the G-test, regardless of the two
features being tested for conditional independence. The number of tests in Gk=j in which
any specific Hj appears is:

τ(j, j) =
(

M− j
2

)
Namely, it is the number of pairs of features that can be formed from the data set, after
selecting k = j features to be the conditioning set.
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As stated earlier, any specific term Hj can only appear in the decompositions of the
G-tests in Gk=j−2, Gk=j−1 and Gk=j, and in no other G-tests. As a consequence, the total
number of apparitions of any specific term Hj is the sum:

T(j) = τ(j, j− 2) + τ(j, j− 1) + τ(j,j)

Proof. Reuse is constant. It is easy to show that T(j) doesn’t even require the value of j.
Instead it is a constant specific to the data set, computed using the value of M:

T(j) = τ(j, j− 2) + τ(j, j− 1) + τ(j,j)

=

(
j
2

)
+ j · (M− j) +

(
M− j

2

)
=

j!
2!(j− 2)!

+ j · (M− j) +
(M− j)!

2!(M− j− 2)!

=
(M− j)(M + j− 1) + j(j− 1)

2

T =
M(M− 1)

2
(A2)

The consequence of Equation (A2) is that any individual joint entropy term, regardless
of its size, will appear T = M(M−1)

2 times across all decomposed G-tests that can be exhaus-
tively performed on a data set of M features. Furthermore, it can be said that Equation (A2)
expresses the characteristic efficiency gain of the dcMI optimization discussed in this arti-
cle. Recall the total number of G-tests possible on a data set of M features (Equation (A1)
revisited):

|G∗| =
M(M− 1)

2
· 2M−2

As stated earlier, performing a G-test requires four PMFs to be retrieved from the data set,
therefore performing the combinatorically exhaustive set of G-tests, G∗, a total number of
4 · |G∗| PMFs is required, or M(M−1)

2 · 2M. However, due to the amount of reuse quantified
by Equation (A2), it follows that there will be T times less PMFs required in total when
using dcMI. This is because any possible joint entropy term must only be computed once
for all its T apparitions. This means that, using dcMI to perform the combinatorically
exhaustive set of G-tests, G∗ will require a total of 4 · |G∗| · T−1 PMFs, equalling 2M.
Equation (A2) also makes it clear that the reuse of joint entropy terms grows polynomially
with the number of features M in the data set, thus benefitting larger data sets even more
than smaller ones.

As stated at the beginning of this appendix, this analysis considers the combinatori-
cally exhaustive case, which is unrealistic. Any real algorithm that performs G-tests on a
data set is expected to perform only a small part of the G-tests in G∗.

Appendix B. Simple Example of Reusing Joint Entropy Terms

This appendix provides a more intuitive presentation of the dcMI optimization by
means of a simple, yet thorough example.

Let D be a data set containing 12 features, named A, B, C . . . J, K, L. In addition, let A
be a hypothetical algorithm that needs to perform conditional tests of independence on the
features of D in order to produce some desired result. It uses the G-test for this purpose.
However, the algorithm A is unfortunately not an efficient one because it was designed to
perform all the possible tests on the data set. It is thus an exhaustive algorithm. Luckily, it
uses an implementation of the G-test enhanced with the dcMI optimization, which reuses
the joint entropy terms, following the principle described in Section 5.
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The algorithm A starts by performing all tests of the form X ⊥⊥ Y, where X and Y
are any two features in D. This means that it will have to calculate G(X, Y) as shown by
Equation (7) (with Z = ∅). In order to accelerate the tests, the joint entropy terms of the
form H(X), H(Y), and H(X, Y) are stored in a cache (the JHT described in Section 5). For
instance, observe how joint entropy terms are reused when the algorithm performs tests on
the features B, F, and J:

G(B,F) = 2N ·
[
H(B) + H(F)− H(B,F)

]
G(B,J) = 2N ·

[
H(B) + H(J)− H(B,J)

]
G(F,J) = 2N ·

[
H(F) + H(J)− H(F,J)

]
Notice how the terms H(B), H(F) and H(J) are each used twice. In fact, they will be used
every time the corresponding feature is either part of an unconditioned test or when the
individual features happen to be the sole conditioning variable in the test.

After calculating all the tests of the form X ⊥⊥ Y, the algorithm A must now exhaus-
tively perform all the tests of the form X ⊥⊥ Y | Z, where Z is any set formed by the
features of D, apart from X and Y. This means that A must now compute the G statistic
in its conditional form. For simplicity, assume that A only increases the size of the condi-
tioning set after evaluating all possible tests for the previous conditioning set size. The
following equations show how the G statistic will be computed for the tests on the features
B, F, and J, but this time considering A as well. Moreover, the tests will be conditioned by
each of these features, thus the size of the conditioning set is 1:

G(B,F | A) = 2N ·
[
H(B,A) + H(F,A)− H(B,F,A)− H(A)

]
G(B,J | A) = 2N ·

[
H(B,A) + H(J,A)− H(B,J,A)− H(A)

]
G(F,J | A) = 2N ·

[
H(F,A) + H(J,A)− H(F,J,A)− H(A)

]
G(F,A | B) = 2N ·

[
H(F,B) + H(A,B)− H(F,A,B)− H(B)

]
G(A,J | B) = 2N ·

[
H(A,B) + H(J,B)− H(A,J,B)− H(B)

]
G(F,J | B) = 2N ·

[
H(F,B) + H(J,B)− H(F,J,B)− H(B)

]
G(A,B | F) = 2N ·

[
H(A,F) + H(B,F)− H(A,B,F)− H(F)

]
G(A,J | F) = 2N ·

[
H(A,F) + H(J,F)− H(A,J,F)− H(F)

]
G(B,J | F) = 2N ·

[
H(B,F) + H(J,F)− H(B,J,F)− H(F)

]
G(A,B | J) = 2N ·

[
H(A,J) + H(B,J)− H(A,B,J)− H(J)

]
G(A,F | J) = 2N ·

[
H(A,J) + H(F,J)− H(A,F,J)− H(J)

]
G(B,F | J) = 2N ·

[
H(B,J) + H(F,J)− H(B,F,J)− H(J)

]
The reusability of the terms becomes far more apparent when the G statistic is conditional.
Notice how the single-feature entropy terms are each used three times, the two-feature
joint entropy terms appear four times each, while the three-feature joint entropy terms
appear three times each as well. Of course, some terms were already available from the
previous tests of the form X ⊥⊥ Y, performed at the beginning of the algorithm A. When
the algorithm starts computing tests with larger conditioning sets, there will be new terms
that must be calculated, but many of the terms calculated for the previous conditioning set
sizes will be reused in the same manner.
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Appendix C. Simple Example of Building a Dynamic AD–Tree

This appendix describes how a dynamic AD–tree is built and queried when used by an
algorithm that performs G-tests on a data set. For simplicity, this example avoids discussing
the elision techniques employed to keep AD–trees small, namely Leaf-List elision and Most
Common Value elision mentioned in Section 6.1. However, these techniques are described
in Appendix D.

Let D be a data set with 12 binary features named A, B, C . . . J, K, L. In addition, let A
be a hypothetical algorithm that must perform conditional tests of independence on the
features of D in order to produce some desired result. It uses the G-test for this purpose.
The algorithm A was designed to perform all the possible tests on the data set. It is thus
an exhaustive algorithm. For efficiency, A queries a dynamic AD–tree instead of the data
set. However, A must still hold a reference to the data set: it must expand the AD–tree at
runtime, which involves counting samples directly in the data set. For simplicity, assume
that A only increases the size of the conditioning set after evaluating all possible tests for
the previous conditioning set size. First, it will perform all the unconditional G-tests, then
all the conditional tests ordered by the size of the conditioning set.

Upon initialization, A begins with an AD–tree consisting of a single AD–node, its
root. AD–nodes contain the actual sample counts corresponding to a specific query, but,
by definition, the root will match the ∗ query, i.e., ‘everything’. As a consequence, the
root AD–node holds N as the sample count, which is the number of samples of the entire
dataset:

AD(∗ → N)

The algorithm A now begins performing all G-tests of the form X ⊥⊥ Y, where X and
Y are any two features in D. The first test it performs is A ⊥⊥ B. In order to compute the G
statistic for this unconditional test, three distributions are needed: P(A), P(B), and P(A, B).
At this point, the sample counts needed to compute these distributions are missing from the
AD–tree, so they will be retrieved from the data set. Once retrieved, they can be added to
the AD–tree for future querying. This involves adding new nodes to the tree. By definition,
the children of AD–node are Vary–nodes, and this rule applies to the root AD–node as well.
There will be one Vary–node added under the root for feature A and one for B. Below, we
illustrate the new structure, using · as a placeholder for sample counts:

AD(∗ → N)

Vary(A)

AD(A = 0→ ·) AD(A = 1→ ·)
Vary(B)

AD(B = 0→ ·) AD(B = 1→ ·)

Note how each Vary–node contains AD–nodes corresponding to the values that the features
A and B can take in the data set (0 and 1 in this case). Therefore, the new node Vary(B)
contains AD–nodes for B = 0 and B = 1. Later, when the algorithm A requires the number
of all samples in the data set for which B = 1, it will query the tree and retrieve the
information without actually consulting the data set.

There is one more node expansion to do before the algorithm moves to the next G-test:
the AD–tree must be updated with the counts that were retrieved for the joint distribution
P(A, B) as well. The AD–tree stores a specific sample count only once, without duplication:
the counts for P(A, B) and P(B, A) are the same and will not be duplicated. Due to an
internal ordering rule, the counts for either of these distributions will be equivalent to
P(A, B). The AD–tree now has the following structure:
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AD(∗ → N)

Vary(A)

AD(A = 0→ ·)
Vary(B)

AD(B = 0→ ·) AD(B = 1→ ·)
AD(A = 1→ ·)

Vary(B)

AD(B = 0→ ·) AD(B = 1→ ·)
Vary(B)

AD(B = 0→ ·) AD(B = 1→ ·)

Note how each AD–node corresponding to the values of A now has a Vary–node for feature
B, which in turn has AD–nodes for every value of B. These new AD–nodes contain the
counts for queries such as A = 1∧ B = 0, of great importance when building conditional
distributions such as P(B | A).

The algorithm A now moves to the next G-test, A ⊥⊥ C. It will need the distributions
P(A), P(C), and P(A, C). The sample counts required to compute P(A) are already in the
AD–tree, but not for P(C) and P(A, C). After retrieving the sample counts from the data
set, the AD–tree will have a more complete structure, as shown below:

AD(∗ → N)

Vary(A)

AD(A = 0→ ·)
Vary(B)

AD(B = 0→ ·) AD(B = 1→ ·)
Vary(C)

AD(C = 0→ ·) AD(C = 1→ ·)
AD(A = 1→ ·)

Vary(B)

AD(B = 0→ ·) AD(B = 1→ ·)
Vary(C)

AD(C = 0→ ·) AD(C = 1→ ·)
Vary(B)

AD(B = 0→ ·) AD(B = 1→ ·)
Vary(C)

AD(C = 0→ ·) AD(C = 1→ ·)

Note how each AD–node is a new subtree containing the counts conditioned on the value
it contains. For example, the node AD(A = 1→ ·) expands into nodes that contain sample
counts narrowed down after filtering the data set for A = 1. This recursive conditioning is
an extremely powerful property of AD–trees.

When later performing the test B ⊥⊥ C, the AD–tree will be expanded with new Vary–
nodes for C under both existing AD–nodes of B. Eventually, the algorithm A has to perform
the test A ⊥⊥ B | C and, at that point, it will have to update the AD–tree with information
from the dataset concerning P(A, B, C). As a consequence, new Vary–nodes for C will
appear under the every AD–node of B found in the subtrees beneath the Vary(A) of the
root. The subtrees beneath Vary(B) and Vary(C) of the root are unaffected by P(A, B, C).
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This appendix describes how a dynamic AD–tree is built at runtime, but the process is
the same for static AD–trees.

Appendix D. Optimizations for AD–Trees

This appendix discusses two optimizations for AD–trees proposed by the authors of
AD–trees themselves [14]. Both optimizations reduce the size of the AD–tree by eliding
information, at the expense of reconstructing that information when required at runtime.

Appendix D.1. Eliding the Most Common Value

Most Common Value (MCV) elision suppresses the creation of AD–nodes for the value
with the highest sample count in the feature represented by the parent Vary–node in order
to save memory. This also means that the entire subtree beneath the elided MCV AD–node
will also be elided, saving memory. This is possible because the elided AD–node can be
recalculated from other information. In fact, the entire elided subtree can be reconstructed
at runtime if needed, as will be shown below.

This optimization relies on the assumption that the subtrees under the MCV AD–
nodes will be the largest among their siblings: expanding an MCV subtree is likely to
require multiple subtrees of its own before finally covering the data set and reaching
0 sample counts, which are automatically elided and subtree expansion stops at them.
Among the AD–node siblings, it makes sense to choose for elision the one representing the
most common value, as this saves the most memory. However, from a querying point of
view, this is also the most expensive choice.

As a tree-building step, eliding the MCV subtrees is straightforward. When expanding
a Vary–node, the most common value for the feature represented by the Vary–node must
be determined, saved in the Vary–node, and then all AD–nodes must be expanded with the
exception of the AD–node for the value determined as most common. MCV elision implies
that every Vary–node will have at least one elided AD–node child, the MCV AD–node.
Other AD–node children may also be elided if they would have a sample count of 0. This
also means that a Vary–node may end up having no AD–node children at all, especially at
deeper levels of the tree.

As an example, assume that a static AD–tree has been built from the toy data set
shown in Table A1, which contains N = 8 samples in total and two features, A and B. Both
features are ternary, having 0, 1, and 2 as values. Concerning feature A in particular, there
is one sample for which A = 0, three samples for which A = 1, and four samples for which
A = 2, but there is no AD–node for A = 2 beneath Vary(A) because A = 2 is the MCV, its
most common value, with four samples. The AD–tree has the following structure:

AD(∗ → 8)

Vary(A, MCV = 2)

AD(A = 0→ 1)

Vary(B, MCV = 1)

AD(A = 1→ 3)

Vary(B, MCV = 2)

AD(B = 0→ 1)

Vary(B, MCV = 1)

AD(B = 0→ 2)

AD(B = 2→ 2)

Note that, because this AD–tree is static, it is completely expanded. Due to its internal
ordering rule, there are no Vary(A) nodes under the children of the Vary(B) node, as they
would be redundant. In addition, note how the nodes Vary(A) and Vary(B) now contain
the information about the MCV of their immediate children.
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Table A1. Toy data set of two ternary variables, containing eight samples.

A: 0 1 2 1 1 2 2 2
B: 1 0 0 2 2 1 1 1

The node Vary(B | A = 0) has no children at all because B = 1 is the MCV given
A = 0, so it has been elided, and moreover there are no remaining samples for B = 0 and
B = 2, for which no AD–nodes will be created.

An important property of AD–trees is that, in the subtree expanded under an AD–
node, the total sample count of each branch must be equal to the sample count of the
AD–node itself. The root of the AD–tree is the best example of this property. The root
AD–node contains the count N, covering the entire data set, and all the Vary–node children
of the root each represent a distribution of the same samples across different variables.
In the example tree above, this means that the nodes Vary(A) and Vary(B) immediately
under the root both would have three AD–node children that sum up to 8, assuming no
elision. This property holds recursively for all AD–nodes in the tree, not just for the root.

Appendix D.1.1. Retrieving Counts

As a tree-querying step, eliding the MCV makes it necessary to reconstruct the cor-
responding missing information if there is any MCV AD–node involved in resolving the
query. However, if no MCV AD–nodes are involved, then querying is straightforward. We
repeat below the previous example AD–tree, but with the elided information added in red.

AD(∗ → 8)

Vary(A, MCV = 2)

AD(A = 0→ 1)

Vary(B, MCV = 1)

AD(B = 0→ 0)

AD(B = 1→ 1)

AD(B = 2→ 0)

AD(A = 1→ 3)

Vary(B, MCV = 2)

AD(B = 0→ 1)

AD(B = 1→ 0)

AD(B = 2→ 2)

AD(A = 2→ 4)

Vary(B, MCV = 1)

AD(B = 0→ 1)

AD(B = 1→ 3)

AD(B = 2→ 0)

Vary(B, MCV = 1)

AD(B = 0→ 2)

AD(B = 1→ 4)

AD(B = 2→ 2)

Querying the tree for the sample count matching A = 1∧ B = 0 is simple, and the result is
one sample. No elided MCV AD–nodes were involved in this query. Just as trivial is the
query A = 1 ∧ B = 1. The node AD(B = 1 | A = 1) is indeed missing, but it is known
that it would have contained a 0 count because it is elided yet it is not the MCV: the node
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Vary(B | A = 1) specifies that B = 2 is the MCV instead. Thus, the result of A = 1∧ B = 1
must be a sample count of 0.

However, for the query A = 1∧ B = 2, there is an extra step required: 2 is the MCV
for Vary(B | A = 1), and it has been elided when the tree was built. However, in this
specific case, the solution is to simply add the sample counts stored in the siblings of the
MCV AD–node, resulting in a count of one sample, which is then subtracted from the
sample count stored in AD(A = 1), namely three, yielding a final result of two for the
query. This is a particular case of reconstructing the sample count within an elided MCV
AD–node: it is an elided leaf, thus reconstruction is trivial.

Non-leaf MCV AD–nodes are also reconstructed by querying and summing their
siblings, but because they are at intermediary levels, their siblings must be recursively
queried until the required level is reached, reconstructing all the elided MCV AD–nodes
that are needed from within the sibling subtrees. For example, retrieving the sample count
for the query A = 2 ∧ B = 0 will require more steps because the desired result must be
effectively isolated from the remaining information. First, the total sample count for all
values of B = 0 under Vary(A) must be computed (excepting the elided AD(A = 2), of
course): AD(B = 0 | A = 0) + AD(B = 0 | A = 1) = 1 sample. This sum must be
deducted from another sum: the total sample count for B = 0 outside of Vary(A). In this
example, this second sum is the value that appears in the tree for B = 0 under Vary(B),
and it has not been elided. Therefore, AD(B = 0) = 2. The final sample count for the query
A = 2∧ B = 0 is therefore 2− 1 = 1 sample. This relies on the fact that the sample counts
in each Vary subtree under an AD–node must sum up to the sample count in the parent
AD–node itself.

In applications that require building entire contingency tables for multiple features
from the AD–tree, the approach described above is highly inefficient. This is indeed the
case of the experiment described in this article, where probability mass functions (PMF)
were required in order to perform conditional G-tests. Querying the AD–tree for each
individual cell of a multidimensional contingency table is wasteful due to the redundant
recursion performed for each query, as opposed to gathering all the needed information
from a level of the AD–tree at once. This alternative approach is far more efficient and it is
in fact the approach recommended by Moore and Lee [14] themselves in the original article
describing AD–trees. However, the description in this appendix focuses on individual
querying because it is simpler to explain.

Building contingency tables is a natural extension of the querying for individual
sample counts and follows the same principles. When entire PMFs must be built, they
require sample counts for all the values of the involved features. This means that, when
an AD–node is visited in a query, its Vary–node child corresponding to the next feature
in the query will be read in its entirety, i.e., the values in all the AD–nodes beneath this
Vary–node will be added to the contingency table being built. Since every Vary–node has
an elided MCV AD–node, the reconstruction process described above must will always
happen: a contingency table must be built for the all siblings of an elided AD–node taken
together and another contingency table must be built for the AD–nodes under the Vary–
node corresponding to the next feature in the query, but outside the Vary–node of the
current feature (its Vary–node sibling). The former contingency table is then deducted from
the latter. This subtraction happens for all corresponding cells in the contingency tables.
Note that querying contingency tables is just as possible for dynamic AD–trees as it is for
static AD–trees.

Moore and Lee [14] also recommend representing these contingency tables as trees, so
that sparsity is handled gracefully and more memory-efficient. The experiment described in
this article relies on the MBTK library [26], which implements querying entire contingency
tables by building and operating on trees, as recommended, then converting them to actual
contingency tables where needed.
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Appendix D.2. Eliding Small Subtrees at Deeper Levels

It can be advantageous to prevent the expansion of a subtree if it will cover very few
samples. Moore and Lee [14] argue that creating an AD–node that simply keeps a reference
to a corresponding subset of samples will be more memory-efficient than instantiating new
Vary–node children of its own and expanding them further. In addition, counting samples
in that subset will be faster than querying the expanded nodes.

Such nodes are called Leaf-List nodes. This is a very simple optimization and it can
indeed have benefits, reducing both memory consumption and accelerating the querying
process. In Table 2, the advantages of Leaf-List nodes are indeed visible, especially for the
static AD–trees. Dynamic AD–trees appear to benefit less from Leaf-List nodes, however,
since they only expand as needed and avoid unnecessary nodes anyway.

A Leaf-List node is created instead of an AD–node when the sample count to be stored
in the AD–node falls below the Leaf-List threshold (LLT), specified by the researcher. In this
case, the AD–node is converted into a Leaf-List node, which has no children whatsoever.
In the MBTK library [26], the LLT is implemented as a percentage of the total number of
samples in the data set, and not as an absolute number of samples. As expected, Leaf-List
nodes can only replace AD–nodes, not Vary–nodes.

Querying a Leaf-List node is straightforward. The samples referenced by the node are
retrieved from the data set, the samples matching the query are counted directly and the
count returned. It is important to note that Leaf-List nodes fit seamlessly into the AD–tree
and do not hinder the querying process. In addition, there is no conflict when using both
MCV elision and Leaf-List nodes.

Appendix E. Computing Degrees of Freedom

According to the method proposed by Spirtes et al. [12], the calculation of degrees
of freedom of a test involving the features X and Y conditioned on a set of features
Z = {Z1, . . . Zn} is performed as follows:

1. retrieve the domains of X, Y and of each of the variables Z1, Z2, . . . Zn from the dataset;
they are noted with VX|Z, VY|Z and VZi , respectively;

2. compute the unadjusted degrees of freedom:

DoF(X, Y | Z) = (|VX | − 1) · (|VY| − 1) · ∏
Zi∈Z
|VZi | (A3)

3. Spirtes et al. [12] deduct 1 from DoF(X, Y | Z) for ‘each cell of the distribution that has
a zero entry’; it is not specified what the distribution is, but we assume it is most likely
the conditional distribution P(X,Y | Z) and not the joint distribution P(X, Y, Z).

4. return the adjusted sum as the degrees of freedom of the test between X and Y
given Z.

However, the experiment described in this article does not follow this method. Instead, it
follows an alternative method, still based on the one proposed by Spirtes et al. [12]. This
alternative method has the following steps:

1. retrieve the PMFs P(X | Z), P(Y | Z) and P(Z) from the data set;
2. remove all entries from these PMFs for which the probability value is 0;
3. for each z ∈ VZ, determine the domains of P(X | z) and P(Y | z), noted with VX|z

and VY|z respectively;
4. compute the number of cells in each contingency table of X and Y given Z, but, for

each table, a row and a column is deducted, resulting in the degrees of freedom of the
table; these are then summed together:

DoF(X, Y | Z) = ∑
z∈Z

(
|VX|z| − 1

)
·
(
|VY|z| − 1

)
(A4)

5. return this sum as the DoF of the test between X and Y given Z.
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This alternative method has a few efficiency advantages when compared to the method
proposed by Spirtes et al. [12]:

• it does not need to query the distribution P(X,Y | Z) for all possible values in order
to find the zero values; instead, the domains of the conditional distributions P(X | z)
and P(Y | z) are considered; this saves time because these distributions are much
smaller and their domains are smaller than the theoretical domain that resulted from
the Cartesian product of the domains of the variables X, Y, and Z (they only contain
what the data set contains); by contrast, the method proposed by Spirtes et al. [12]
focuses on the domains of the variables, even if there will be combinations of values
that do not even appear in the data set; as a consequence of this minor difference,
there are less adjustments to make to the computed DoF;

• it uses the conditional probabilities already retrieved from the data set for the G-test,
thus it does not require the larger P(X,Y | Z) to be retrieved separately.

It is important to note that this alternative method for computing the degrees of
freedom was not designed to increase accuracy. Moreover, it has not been compared to
the method proposed by Spirtes et al. [12]. Instead, it was designed to be more efficient
and also to be as compatible as possible with all the G-test optimizations described in this
article at the same time, while still providing acceptable accuracy for the IPC–MB algorithm
to function properly.
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