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Abstract: This work is about observational causal discovery for deterministic and stochastic dynamic
systems. We explore what additional knowledge can be gained by the usage of standard conditional
independence tests and if the interacting systems are located in a geodesic space.
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1. Introduction

It is not necessary to emphasize the importance of the concept of causality in science
and in the natural sciences in particular. The concept traverses all disciplines, and it is a
matter of extensive research fueled by the exponentially increasing available scientific data
and computation power. Revealing causal relations between systems via the time series
produced by them is one of the most attractive challenges. The first major advancement
was due to Granger who used an auto-regressive framework for a practical implementation
of the predictive causality principle by Wiener [1].

The very popular Granger [2] method has some theoretical and practical limitations.
It is not able to detect hidden common cause and, instead, indicates false directional causal
relation between the observed systems (for details of all the pros and cons cf. [3]). Several
further methods appeared in the last two decades (for a concise review see Runge [4]
or [5,6]). One of the most prominent is the convergent cross mapping method developed
by Sugihara [7] to investigate deterministic dynamic systems, which essentially utilizes
Takens’ embedding theorem [8]. Stark [9,10] generalized Takens’ result and showed the
theoretical limitations to use it for stochastic dynamic systems. For deterministic dynamics,
a new approach was presented in a recent work [11] that was based on the comparison of
the dimension of the attractors of the given systems and their joint observation.

The present paper investigates the causal relation of a pair of dynamic systems (which
might be deterministic or stochastic). Facts are revealed that, to our best knowledge,
avoided the attention of previous studies. We show that the common driver is an i.i.d.
sequence, shared observational noise, if there is dependence between the systems with
the smallest but positive time difference. We also show that, if the pair is located in a
non-abstract physical space where the speed of information transfer is known, then direct
causation and common cause cases can be distinguished, which, in general, is theoretically
impossible.

Basic Definitions

First, we provide the framework of our investigation. Our aim is to find the causal
relationship between two stochastic dynamic systems X and Y from which we observe the
time series {xi}n

i=1, {yi}n
i=1.
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Assumption 1. We assume that there is a set of systems S = {X, Y, L}, X ∈ RdX and Y ∈
RdY , L ∈ RdL , D = dX + dY + dL, and an external source of noise W such that the process
mi = (si, ωi) =

(
(xi, yi, l1

i , . . . lm
i ), ωi

)
∈ R2D, si ∈ RD, ωi ∈ RD has a joint distribution. The

series ln are unobserved, hidden series that are not i.i.d. (see Figure 1).

Figure 1. An example is given for a possible causation scheme for the system M. In the observed
series X and Y, and in between we have L a common cause. Above X and below Y, small circles
represent the i.i.d. input ξ, η, and the large circles VX , VY (also belonging to the set of unobserved
series) represent the non i.i.d. influences that are not shared and not common for X and Y. In this
example, X drives Y, and they have L as a common cause.

In what follows, for ω1, we will use ξ emphasizing that it influences x and similarly η
for ω2 for y.

For brevity, we will use the multi-index of involved dimensions: d = (dX , dY, dL).

Assumption 2. The external noise ωi ∈ RD is modeled with an unobserved i.i.d. sequence and
affects all the systems with independent ξ, η, ωli components. Furthermore, ωi+1 is independent

from Si
0 =

{
sj
}i

j=0.

Assumption 3. The process mi is stationary.

Assumption 4. The causal structure of the time series is time invariant and non random.

In what follows, we use the expression “drives” for all the terms “causes”, “influences”
and “injects information” in relation to dynamic systems.

Following [12], we use the next model. The visible and invisible system can be
described by a p-order Structural Vector Auto-regressive SVAR model:

mn+1 = f
(
mn, . . . , mn−p+1, ωn+1

)
n ∈ N, and m0 follows the stationary distribution of the system. (It is a SVAR(d, p)
process, were d is the multi index of dimensions of the variables, and p is the order of
auto-regression.)

The recursion clearly can be transformed with time delay embedding into higher
dimension first order SVAR in particular to SVAR(2D× p, 1) in short SVAR(1) with

Mn =
(
mn, mn−1, . . . , mn−p+1

)
: (1)

Mn+1 = g(Mn , ωn+1) (2)
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We make the same restriction as in [12] that (2) must be recursive in the variables, which
ensures that there is no directed functional cycle. Variables with capital letters denote the
same “embedding” as in (1).

Assumption 5. The process M is exact (cf. Definition 4.3.2. [13]).

Exactness means that, if the process started from a set with positive probability, then,
after a long time, the set in which it can be found has probability one. It is natural to assume
exactness given that we work with an observation, and the support of the observed process
for us will be the whole set where the process can run and, consequently, has probability
one. On the other hand, exactness implies mixing for stationary processes, and, at the same
time, a mixing stationary process is α-mixing (or strong mixing). Let us note here that, from
strong mixing, ergodicity also follows, but we do not need that fact (see also [13]).

In our discovery scheme, we may allow instantaneous causation between all variables;
however, we do not elaborate on that case here. For brevity, that is not reflected in (2). We
note that a system like (2) with contemporaneous interaction but without a directed cycle
can be rewritten into the form of (2) using time shifts thanks to the acyclic recursivity.

Definition 1. We will say that X drives Y if there is a k > 0 s.t.

Yn+k = f (Xn, Yn, Ln, ηn+k) (3)

where Ln stands for the set of latent variables, ηn+1 is an i.i.d sequence that is independent of
(Xi, Yi, Li)

n
i=0, and Xn cannot be omitted without violating the validity of (3).

Let us explain that key definition. We may say that there is no such a function
g that

Yn+k = g(Yn, Ln, ηn+k) (4)

which makes the fact explicit, that Yn+1 can be created without Xn. Here, one should also
observe that the i.i.d. part is also the same as in (3), and there is no possibility for an i.i.d.
Xn to be hidden in ηn+1.

2. Causal Discovery Schemes

The literature of causal discovery is huge. This work has been inspired by two recent
ones with their strengths and limitations. First, we found the framework defined by
Malinsky in [12] very appealing and that the complex nature of assumptions and the
suggested algorithm in [14] presented an essential challenge. The algorithm in [12] is
an extension of [15,16]. The algorithm provides a theoretically complete recall of the
underlying causal structure at the price that some relations are marked undetermined and
some causal relations are not or only partially revealed.

In [14], in addition to many other assumptions, it is assumed that all hidden processes
that influence an observed one have no memory (Assumption A9 in [14]). That assumption
and A6 in [14] cannot be checked. In [12], such restrictions are eliminated. That paper and
most of the works based on Pearl’s DAG analysis have theoretical limitations as admitted
in [12]. In what follows, we investigate some situations in which that limitation can be
relaxed.

Information from X to Y can be transferred along a chain of direct causal links, along
a directed path πX,Y. The length of the path (the number of intermediate components plus
one) is denoted by l = l X,Y = l(πX,Y). Such a path has a starting and ending time n, n + l
(for arbitrary n ≥ 0, l > 0), the difference is the time lag.

Assumption 6. We assume that, with some background information, the minimal lag between the
systems X and Y can be determined.
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We consider the smallest lag τ for which dependence can be detected in “direction” X
to Y:

τ = τX,Y = min
π
{l(πX,Y) > 0} (5)

2.1. The Decomposable Case

We introduce our notation. In order to save space, let (A, B) = (X, Y) or (Y, X). Let I
stand for the Shannon entropy/differential entropy based mutual information. We define
conditional mutual information between elements of time series an, bn and similarly for
other series. A segment from k to l of a time series an are denoted by Al

k. Such segments are
used in the condition representing a part or the full past. In order to investigate if there is
information transfer from B to A with a given time lag τb,a we use the conditional mutual
information between an+τb,a and bn given the full past of both series A0

n+τb,a−1 and Bn−1
0 ,

and we denote it by IB. We define the following conditional mutual information

IB = I
(

an+τb,a ; bn|A
n+τb,a1−1
0 , Bn−1

0

)
,

I(k)A,B = I
(

an; bn+k|An−1
0 , Bn+k−1

0

)
, for any 0 ≤ k < τA,B.

where we set Aq
p =

(
aq, . . . , ap

)
and similarly for B and other variables.

Proposition 1. Let for L, A, B ( (A, B) = (X, Y) or (Y, X) )

δ = δL,A,B = τL,B − τL,A ≥ 0.

Under Assumptions 1–6 for δL,A,B = k, 0 ≤ k < τA,B, the following implications hold.
IA IB A→ B B→ A
= c′ = 0 ⇔ ∃ @
= c′ = c′′ ⇔ ∃ ∃

 ×


I(k)A,B CD
= 0 ⇔ @
= c ⇔ ∃

,

Relation 1. Logical relations between conditional mutual information values and causal relations

where CD stands for Common Driver and c, c′, c′′ > 0. In the right part of the table, =0 means that
I(k)A,B = 0 holds for all 0 ≤ k < τA,B, while >0 means that there is at least one such k for which

I(k)A,B > 0.

The proposition summarizes the possible inferences in a concise way. In Relation 1,
the headers contain the list of possible combinations and the possible causal scenarios. We
have the direct product of two lists of cases collected in the two tables. The header of tables
contains, on the left, the quantities that are decisive and, on the right, the possible causal
scenarios. As an example, in the left table, the first row shows that if and only if we have
that IB = 0 but IA = c′ > 0 (significantly differ from zero) then B does not drive A but A
drives B. In the right table, if I(k)A,B = 0 holds for all 0 ≤ k < τa,b that means that there is no
common information between members of the series for k < τa,b, while, in the opposite
case, there should be a common driver, given, that there is shared information that cannot
be attributed to driving with a lag below τa,b. If δ = τx,y (or = τy,x) then, causation between
X and Y and a common driver may coexist, and we cannot separate those models. In the
next section we provide some observations in that situation.

2.2. The Confounder Case

We assume that δL,X,Y = τX,Y but τ > 0. If τ > 0, we can investigate the common infor-
mation between Xn+1 and Yn+τ . Unfortunately, the variables Xn, Yn+τ have a confounder;
therefore, we cannot tell which causal relation is behind the dependence. However, some
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internal structure can be revealed. In line with the assumptions δL,X,Y = τX,Y but τ > 0,
we assume that

I0 = I
(

Xn; Yn+τ |Xn−1
0 , Yn+τ−1

0

)
> 0 (6)

I1 = I
(

Xn+1; Yn+τ |Xn
0 , Yn+τ−1

0

)
= 0 (7)

Let b1 be the information that is passed from Xn to Yn+τ and bi for i = 1, 2 from an L to
both (if one or other information transfer takes place). We also let a1 be the information
passed from Xn to the Xn+1 as Figure 2 shows.

Figure 2. The lag τ and lag difference δ are equal.

From (7), we have that b1 is independent from a1 and b1 is independent from b2. Thus,
we have that the information bn injected to Xn and Yn from L is an i.i.d. sequence. A similar
argument shows that the information c1 passed from Yn+τ to Yn+τ+1 is independent from
b2. We still cannot decide if X drives Y or L drives both; however, in the latter situation, we
may say that L emits observational noise for X, and it does not influence its evolution (the
value of ai). Alternatively, we may consider bi as the “part” of X, which is injected to Y.
Let us note that L itself is not necessarily an i.i.d. sequence but, from the point of view of
its impact on X and Y, it is indifferent.

One may appeal to the Occam’s razor principle (if other background knowledge does
not dictate otherwise) that L itself is an i.i.d. process. If b is part of X or external noise that
cannot be decided without further knowledge, we may refer again to the Occam’s razor
principle and assume that there is no a third system, a common driver but X injects an i.i.d.
sequence to Y.

2.3. Geodesic Spaces

Now, we investigate the case when the subsystems of M are located in a geodesic
metric space with unique geodesics between any pair of points. We assume that the
information transfer speed is uniform, constant in the space regardless of the location of the
source and target. Under that assumption, we can speak interchangeably about distance in
space and time.

2.4. Strict Reversed Triangular Inequality

If δ = minL δL,X,Y and
δ > τ (8)

then we have
τL,Y > τL,X + τX,Y (9)
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the reversed, strict triangular inequality, and there is information share between Xn and
Yn+τ , then no L can be a common driver of Xn and Yn+τ (cf. Figure 3), so a direct driving
should take place from X to Y.

Figure 3. The causation has smaller time lag τ compared with the difference δ from the common
driver.

2.5. Strict Triangular Inequality

On the other hand, if for an L

δL X,Y < τX,Y (10)

then we have
τL,Y < τL,X + τX,Y (11)

and Xn and Yn+τ have positive conditional mutual information conditioned on the past,
then only L, the common driver can produce it, not causation (see Figure 4).

Figure 4. The causation has larger time lag τ compared with the difference δ from the common
driver.

2.6. The Equality, the Confounder Case

Finally, if
τX,Y = δL,X,Y,

τL,Y = τL,X + τX,Y (12)
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we have a confounder.
If the metric space has a unique geodesic from L to Y, then X should be on that

geodesic of L and Y, and this means that the information from L either enters X along the
path to Y or avoids it in in a tricky way by an infinitesimal detour as Figure 5 depicts.

Figure 5. The causation time lag τ equal to the lag difference δ.

In the former case, we have no confounder but the causal chain L→ X → Y. This is a
situation that, again, cannot be resolved without additional information about the actual
systems under scrutiny. Economists used to call such L an instrumental variable.

Now, let us recall that the inequalities (8) and (10) read as

τL,Y > τL,X + τX,Y, (13)

τL,Y < τL,X + τX,Y. (14)

The latter one is the strict triangular inequality and the former one is its converse (both with
strict inequality). Here, we arrive at the interpretation of causation in M. If it is a system in
an abstract space without metric properties, there is no point to speak about distances in it,
and there is no link between information transfer time (lag in short) and distances.

On the other hand, if

• the system M is located in a geodesic metric space,
• the geodesics are unique,
• the information propagates along the geodesics, and
• the information transfer has a constant speed,

then , distances are proportional to the delay with the same constant factor for all members.
Triangular inequality is inherited from distances to lags. In the case of a metric space,
like the Euclidean, hyperbolic and spherical with unique geodesic (except if X and Y are
the oppositely positioned on the sphere) the triangular inequality holds, and thus (13) is
impossible, and L cannot be a common driver that mimics driving or acts parallel to a
driving between X and Y. Let us note that the triangular inequality holds for space-like
vectors in the Minkovsky space, while the converse holds for time-like positions. Finally,
the case of strict equality needs further investigation.

In case of different transfer speed, the picture is more complex, and the above ge-
ometric consideration is applicable in particular settings only. In the human brain, the
information transfer has different speed depending on the transfer mode: via sequences of
neural cells, long axon bundles or volume of surface currents. The transfer speed depends
on the number of intermediate relay nodes of the network as well. Consequently, the
case of causality analysis of brain regions needs detailed information on the connection
type and speed between them. It is likely that many other topical areas, like climate and
geophysics, specific knowledge of the metric properties and transfer speed may contribute
to the success of causal discovery. In other areas, there is no information about the temporal
arrangement of the unobserved factors, and consequently revealing the perfect description
of the causal structure seems impossible.

2.7. Conditions and Mixing

Let us recall here that all the methods that are based on Pearl’s DAG analysis use
d-separation ( or causal Markovness) based on a conditional independence test (CIT) in
which parents are the conditioning variables. As such, they need access to the parents,
which is impossible if those are not observed, and the computation cost can be prohibitive
for large networks. Let us see that the d-separation uses the parents as cut set in the
DAG. In Section 2, we used the full past of both observed processes. In practice, it is
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impossible to put the whole past in the condition; therefore, we should work with a shorter
history. Let us consider, as an example, the case when 0 ≤ k < τxy, which means that there

is no information transfer from xn to yn+k and investigate I
(

xn ; yn+k|Xn−1
0 , Yn+k−1

0

)
. If

I
(

xn ; yn+k|Xn−1
0 , Yn+k−1

0

)
= 0, i.e., there is no hidden common driver. One can show that

I
(

xn ; yn+k|Xn−1
0 , Yn+k−1

0

)
≤ I(xn ; yn+k|Jd)→ 0

as d→ ∞, where Jd =
(

Xn−1
n−d, Yn+k−1

n −d

)
. For the proof, see Appendix A.

With this argument, we have that the convergence to a constant or to zero of the
conditional mutual information determines if there is a driving between X and Y and if
there is a common driver (as indicated in Relation 1). Under Assumption 5, it is evident that
if there is a hidden common driver, the information is passed along a fixed length path from
the common cause to X and Y, and its effect on dependency is not diminishing. If there is
no common driver, the exchanged information should traverse longer and longer paths,
and the Conditional Mutual Information (CMI) should go to zero as d goes to infinity.

The conditional independence test (and proper estimate of CMI) has recently been the
focus of research motivated by applications in machine learning and artificial intelligence.
This is known to be a challenging task (cf. [6,12,17–19]).

3. Related Works and Discussion

There are numerous extensions and refinements of the original PC algorithm that Pearl
developed [20]. This applies to the study of causal discovery of dynamic systems based on
observed time series. We mention some prominent works [4,6,12,21,22]and their bibliogra-
phy for further reading (see also the extended surveys [5,23]). The recent works [12,14] (see
also [23]) have a very similar approach to the present one. In particular, we also use the
structural modeling framework; however, we limit our focus to the discovery of a causal
relation between a pair of systems. The method can be extended to the study of many time
series by considering vector valued observations and/or many pairwise investigations.

The capabilities and limitations of the causal discovery algorithms were investigated
in detail in seminal works [15,16,20,24] and recently in [14,21]. The recent generalizations
are complete. They extend the labeling of edge ends of classical DAGs, while completeness
does not mean that all relations are well specified. Completeness means that all the possible
MAGs (Markov Equivalent Acyclic Graphs) can be created.

In this paper, we used an essential assumption and two unavoidable approximations.
First, we assumed that the continuous time process can be inferred using a discrete time
and limited resolution time series observation. Next, we assumed that the discrete time
process can be well approximated with an order-p SVAR model. Finally, if the processes
contain continuous variables, the condition is not restricted to a single state value but to a
set of them, and, as a consequence, it is not perfectly blocking the information flow between
the marginal variables. This deficiency might be eliminated by the local permutation
method proposed by Runge in [19].
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Appendix A

We show that if
I
(

xn ; yn+k|Xn−1
0 , Yn+k−1

0

)
= 0 (A1)

it can be confirmed by collecting evidence that

I
(

xn ; yn+k|Xn−1
n−d, Yn+k−1

n−d

)
→ 0

as d tends to infinity. Let us assume that (A1) holds. Since k < τx,y and there is no common
cause of any information, what is shared by xn and yn+k should come from their past.

Let us introduce the short notation Jd =
(

Xn−1
n−d, Yn−1

n −d

)
and estimate

I
(

xn ; yn+k|Xn−1
0 , Yn+k−1

0

)
from above using the monotonicity of the conditional

mutual information.

I
(

xn ; yn+k|Xn−1
0 , Yn+k−1

0

)
≤ I

(
xn ; yn+k|Xn−1

n−d, Yn+k−1
n−d

)
≤ I

(
Xn+k

n ; Yn+k
n |Jd

)
.

the first step, we use the monotonicity, then the two assumption and monotonicity again.
Next, we use that shared information comes from the past then monotonicity again in the
second steps:

I
(

Xn+k
n ; Yn+k

n |Jd

)
≤ I

(
Mn+k

n ; Mn−1−d
0 |Jd

)
≤ I

(
Mn+k

n ; Mn−1−d
0

)
.

Figure A1. The figure shows why the conditions do not block the common driver.

Now, we use the fact that m is a first order Markov chain, then that it is time homoge-
neous and finally that, from exactness, it follows that it is α-mixing.

I
(

xn ; yn+k|Xn−1
0 , Yn+k−1

0

)
≤ I

(
Mn+k

n ; Mn−1−d
0

)
= I(Md+1 ; M0) ≤ α(d + 2)→ 0

as d→ ∞ due to the strong mixing property, following from the exactness assumption (5).
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