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Abstract: The detection of rail surface defects is an important tool to ensure the safe operation
of rail transit. Due to the complex diversity of track surface defect features and the small size
of the defect area, it is difficult to obtain satisfying detection results by traditional machine vision
methods. The existing deep learning-based methods have the problems of large model sizes, excessive
parameters, low accuracy and slow speed. Therefore, this paper proposes a new method based on
an improved YOLOv4 (You Only Look Once, YOLO) for railway surface defect detection. In this
method, MobileNetv3 is used as the backbone network of YOLOv4 to extract image features, and at
the same time, deep separable convolution is applied on the PANet layer in YOLOv4, which realizes
the lightweight network and real-time detection of the railway surface. The test results show that,
compared with YOLOv4, the study can reduce the amount of the parameters by 78.04%, speed up
the detection by 10.36 frames per second and decrease the model volume by 78%. Compared with
other methods, the proposed method can achieve a higher detection accuracy, making it suitable for
the fast and accurate detection of railway surface defects.

Keywords: deep learning; rail surface defect detection; machine vision; YOLOv4; MobileNetV3

1. Introduction

With the prosperous development of the railway industry, the mileage, speed and
density of operations continue to increase, and the inspection requirements for railways are
further improved [1]. When it runs at high speed, the phenomena such as friction, rolling
contact and elastic deformation occur between the train and the track surface. With the
running time increasing, it will result in rail surface defects, such as rail wear, broken, peel-
ing and cracks, which seriously threaten the safety of the rail transit system [2]. Therefore,
it is particularly important to study the detection methods for railway surface defects.

As a traditional method for rail surface detection, manual inspection [3] is charac-
teristic of time-consuming, labor-intensive [4] and low detection efficiency [5]. With the
development of defect detection technology, many rail surface defect detection methods
have emerged, such as ultrasonic flaw detection [6], eddy current flaw detection [7], three-
dimensional detection [8], radar detection [9] and so on. The above methods are very
effective in detecting internal defects. However, the signals generated by the defects on
railway surfaces are very weak, and they are difficult to detect by the above methods. At
the same time, the defect signals are easily interfered with by the surrounding environment,
leading it difficult to achieve satisfying results. There is still a big margin for improvement
in the detection technology of rail surface defects.

With the development of computer technology, the machine vision [10] method is
applied to rail surface defect detection. Rail surface detection images are obtained by
linear array cameras, and the images are automatically synthesized according to the
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required length. Defect data are obtained by manual screening from actual detection
images for model training and testing. This method requires an analysis of rail surface
defect information, gray information [11] and background information [12]. It needs to
use a feature extraction algorithm [13] or to use an operator template and model-based
threshold segmentation method [14] to detect rail surface defects. However, these methods
are susceptible to defect characteristics that may lead to blind spot detection [15]. This
makes it difficult for machine vision methods to obtain good detection performances.

In recent years, with the development of target detection technology and the neural
network [16], deep learning frameworks have been proposed for the detection of various
railway components. Liu et al. [17] proposed a method based on image fusion features and
Bayesian compression image classification and recognition, which detected the status of
fasteners by extracting improved edge orientation histograms (IEOH) and macroscopic
local binary pattern (MSLBP) features. Cui et al. [18] segmented the fastener image into dif-
ferent parts to avoid the interference of the fastener fragments and tested the segmentation
model in a real-time deep learning module.

In the application of a deep learning framework for rail surface defect detection, Xu
et al. [19] proposed to improve the Faster R-CNN (Convolutional Neural Networks) for
railway subgrade defect recognition. The improved method can obtain good performance,
but it has disadvantages such as a slow detection speed and large detection model. Lu
et al. [20] proposed to apply the combined U-Net graph segmentation network and damage
location method for damage detection of high-speed railways. This method can obtain a
high detection accuracy but has the limitations of slow detection speed and large model
volume. Yuan et al. [21] proposed the application of MobileNetV2 to detect rail surface
defects, which achieved high-speed real-time detection, but the detection accuracy was low.
Faghih-Roohi et al. [22] proposed improved deep convolutional neural networks (DCNN)
to efficiently extract and recognize image features, and a small batch gradient descent
method was used to optimize the network for the automatic detection of track surface
defects. This method requires a long time for network training. Song et al. [23] proposed
a deep learning method where the YOLOv3 (You Only Look Once, YOLO) algorithm
was used to detect rail surface defects. This method has a fast detection speed but low
detection accuracy.

In order to solve the above problems, this paper proposes an improved YOLOv4 [24]
rail surface detection method. It studies the use of the MobileNetV3 lightweight network
as the backbone of YOLOv4. Depthwise separable convolution is applied for the PANet
layer in YOLOv4 to further reduce the amounts of the parameters. It treats rail surface
defect detection as an end-to-end regression problem and ensures the effectiveness of rail
surface defect detection with a simplified network, improving the detection speed and
accuracy. It provides a new idea for rail surface defect detection technology.

The main contributions of this paper are as follows: (1) The MobileNetV3 network
is proposed to optimize the YOLOv4 model for rail surface defect detection, using depth-
wise separable convolution for the PANet layer in YOLOv4. This method optimizes the
parameter quantity and model size and improves the detection speed. (2) Field tests are
conducted on the track to collect data, a dataset is created with Gaussian noise added, and
finally, a rail surface defect detection model is established. The test results show that the
method used in the study can effectively detect rail surface defects.

The rest of this article is organized as follows. The second part discusses the theoretical
background of YOLOv4 and depth separable convolution. The third part gives the technical
route of the proposed method. The fourth part verifies the effectiveness of the method
through practical application. Finally, the conclusion is drawn in Section 5.

2. Theoretical Background

The deep learning and machine vision-based object detection methods are widely
used in the current research. For the application of these methods, firstly, a large number
of images is collected to establish the image datasets, and secondly, image annotation is
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performed on the object to be detected in the dataset to obtain the object information; then,
a training dataset and the object information are trained by the deep network to obtain a
deep network model, and finally, the trained model is used for the object detection test.
Among them, the most important part is the training of the deep network model. At this
stage, the target detector is mainly composed of four parts: input, backbone, neck and head.
As shown in Figure 1, the structure of the one-stage network is simpler than the two-stage
one, in which a sparse prediction is added.
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Before the YOLO [25] algorithm was proposed, the R-CNN [26] algorithm was one
of the most popular algorithms in the two-stage field. CNN has been applied to target
detection and formed a relationship with R-CNN [27], the algorithm region. First, the
selective search [28] or edge box of the algorithm is used to generate candidate regions [29],
and then, each region is trained and classified in the CNN. Compared with the one-
stage algorithms, the detection speed of the two-stage ones is slower. Therefore, a YOLO
algorithm with the characteristics of the one-stage network structure is proposed. Its core
concept is to convert the target detection into a regression problem, and the target map
is used as the input of the network. Only through a neural network can the position of
the bounding box and the target category be obtained. A fast detection speed and high
precision can be realized through the feature information.

The YOLOv4 algorithm is improved from the basis of YOLOv3. As a powerful target
detection algorithm, a fast and accurate target detector can be trained by YOLOv4. As
shown in Figure 1, the network structure is mainly composed of a backbone network, a
neck network and a head network. CSPDarknet53 is applied in the backbone network, an
SPP add-on module and PANet path aggregation is performed in the neck network and
the YOLOv3 head network is used as the head network.

The PANet layer uses an instance segmentation algorithm. The network structure is
shown in the neck part of Figure 2. Compared with the feature pyramid networks (FPN)
network, the DownSample operation is added in PANet after UpSample to repeatedly
improve the features. Parameter aggregation is carried out on the different backbone layers.
It further improves the ability of feature extraction. In YOLOv4, the PANet structure is
mainly used in the three effective feature layers.
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3. Proposed Method
3.1. Technical Route

Figure 3 shows the technical route of rail surface defect detection. Firstly, feature ex-
traction is performed on the whole rail image. While retaining the rail surface information,
the invalid information is removed from the rail image to increase the network training
speed. Secondly, the processed rail surface dataset is input into the improved YOLOv4
network for training. Then, the trained model is used to predict the rail surface defects.
Finally, the rail surface defect detection results are obtained.
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3.2. YOLOv4 Backbone Network Adaptability Improvement

In practical engineering applications, the detection of rail surface defects has particu-
larities, including the accuracy, the speed and the model size of detection. The method in
this paper takes into account the particularity of rail surface defect detection, making it
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adaptable to YOLOv4. MobileNetV3 is used as the backbone network of YOLOv4. Mo-
bileNet is a lightweight deep neural network proposed by Google for embedded devices.
The core idea is the depthwise separable convolution. Compared with the traditional
convolution used in YOLOv4, the deep separable convolution in MobileNetV3 can further
reduce the amount of parameters and calculations, thus realizing the lightweight of the
network.

A lightweight attention (Squeeze-and-Excitation, SE) module is used in MobileNetV3.
Its advantage is that it can improve the performance of the algorithm with a negligible
increase in the calculations. The specific process of the SE module is implemented as shown
in Figure 4. First, the features of C′ × H′ ×W ′ are optimized to C× H ×W. Then, in the
process of squeeze, global average pooling is performed on the C × H ×W features to
obtain a global receptive field feature map of 1× 1× C in size. Then, a fully connected
neural network is used for nonlinear transformation in the process of excitation. Finally, the
input feature is weighted by the activation value of each feature layer from the SE module.
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3.3. Adaptability Improvement of PANet Layer in YOLOv4

PANet in YOLOv4 has the advantages of dynamic feature pooling, fully connected
layer fusion and bottom-up path enhancement but disadvantages such as a large amount
of parameters and complex calculations. To resolve this problem, the convolution structure
in PANet is modified, where the 3 × 3 and 5 × 5 standard convolutions are replaced by
depth separable convolutions.

Depth separable convolution [30] is a lightweight convolution module. It consists of
the following two parts: depthwise convolution (DW) and pointwise convolution (PW).
In DW, each dimension in the input information is convolved with a convolution block
separately. Then, PW applies a point convolution kernel to perform dimensional lifting of
the output maps from DW.

In the standard convolutional layer, assume that the size of the input feature map is
Dz ×Dz, the number of channels is M, the size of the convolution kernel is Di ×Di and the
number of convolution kernels is K. Then, the standard convolution calculation amount C1
can be calculated by Formula (1):

C1 = Dz × Dz ×M× K× Di × Di (1)

In depth separable convolution, DW and PW are performed separately, as shown in
Figure 5. The calculation amount C2 of the depth separable convolution can be calculated
as Formula (2):

C2 = Dz × Dz ×M× Di × Di + K×M× Dz × Dz (2)

The calculation amounts of the depth separable convolution and classic convolution
are compared as follows:

C2

C1
=

Dz × Dz ×M× Di × Di + K×M× Dz × Dz

Dz × Dz ×M× K× Di × Di
=

1
K
+

1
D2

i
(3)

In the equation, the channels number of the convolutional layer K is usually greater
than 1, and the commonly used sizes of the convolution kernel are 3 × 3 and 5 × 5, so
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the result of the formula is less than 1. The calculation amount of the depth separable
convolution is smaller than that of the standard convolution.

Entropy 2021, 23, x FOR PEER REVIEW 6 of 13 
 

 

+

...

...

...

M

1

1
1

M

Classic 
convolution

Depthwise separable 
convolution

iD

iD

iD
iD

K

M K

 
Figure 5. Classic convolution and depth separable convolution. 

The calculation amounts of the depth separable convolution and classic convolution 
are compared as follows: 

2
2

1

1 1z z i i z z

z z i i i

C D D M D D K M D D
C D D M K D D K D

× × × × + × × ×= = +
× × × × ×

 (3) 

In the equation, the channels number of the convolutional layer K  is usually 
greater than 1, and the commonly used sizes of the convolution kernel are 3 × 3 and 5 × 5, 
so the result of the formula is less than 1. The calculation amount of the depth separable 
convolution is smaller than that of the standard convolution. 

The PANet layer is improved, as shown in Figure 6. It can retain the advantages of 
PANet dynamic feature pooling, fully connected layer fusion and bottom-up path en-
hancement and also reduce the computation in PANet, so as to realize the lightweight of 
the network and, finally, achieve the optimization of YOLOv4. 

Concat+DWConv

Concat+DWConv 

Upsampling

Upsampling

Concat+DWConv

Downsampling

Downsampling

Concat+DWConv
 

Figure 6. Improved PANet layer. 

4. Case Studies 
4.1. Image Acquisition 

According to the technical route of the proposed method, a track inspection field test 
was carried out in this paper. As shown in Figure 7, the intelligent track inspection vehi-
cle used in the test was developed by Beijing Yinglu Technology Co., Ltd. (Beijing, Chi-
na). The vehicle is composed of two parts: an electric inspection vehicle and a track state 
inspection system. The electric inspection vehicle contains a car body, track wheels and 
seats; the track state inspection system is composed of a host and a high-definition linear 
image scanning module. In this test, a 15km track on the Beijing–Shanghai high-speed 
rail line is chosen as the test section. The travel speed of the inspection vehicle is 20 km/h, 
and the image resolution is 2048 × 2048. 

Figure 5. Classic convolution and depth separable convolution.

The PANet layer is improved, as shown in Figure 6. It can retain the advantages
of PANet dynamic feature pooling, fully connected layer fusion and bottom-up path
enhancement and also reduce the computation in PANet, so as to realize the lightweight of
the network and, finally, achieve the optimization of YOLOv4.
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4. Case Studies
4.1. Image Acquisition

According to the technical route of the proposed method, a track inspection field test
was carried out in this paper. As shown in Figure 7, the intelligent track inspection vehicle
used in the test was developed by Beijing Yinglu Technology Co., Ltd. (Beijing, China). The
vehicle is composed of two parts: an electric inspection vehicle and a track state inspection
system. The electric inspection vehicle contains a car body, track wheels and seats; the track
state inspection system is composed of a host and a high-definition linear image scanning
module. In this test, a 15 km track on the Beijing–Shanghai high-speed rail line is chosen
as the test section. The travel speed of the inspection vehicle is 20 km/h, and the image
resolution is 2048 × 2048.
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The specific collection equipment data is shown in Table 1.

Table 1. Track inspection vehicle camera parameters.

Camera Model TVI-LCM-01

Voltage input range 2-K linear array image acquisition module
power 20–30 V DC

Protection class 120 W
Working temperature −20 ◦C to + 70 ◦C
storage temperature −40 ◦C to + 85 ◦C

The specific configuration of the algorithm environment used in the test is shown in
Table 2.

Table 2. Test environment.

Project Environment

Development language Python 3.9
Development framework PyTorch1.2

CPU Intel(R) i7-9700 CPU @ 3.00 GHz
GPU NVIDIA GeForce RTX 2080 Ti

Running memory 16 GB
Hard disk size 1 TB

One thousand rail images collected in the field test are chosen for rail surface defect
detection; among which, 900 are randomly selected as the training dataset and 100 as the
test dataset. Before applying the improved YOLOv4, it needs to operate image annotation
to establish a dataset feature database. In this paper, LABELIMG software with version 1.0
was used for image annotation. LABELIMG is an image annotation tool that is written in
python and uses QT as a graphical interface. The rail surface in the image is regarded as
the target detection area, as shown in Figure 8.

After annotation, the coordinates of the rail surface defect area are obtained, and the
training algorithm and the defect detection test are performed on the coordinate dataset
generated by the image annotation.
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The CIOU calculation method in YOLOv4 will make the target frame regression stable.
It takes into account the distance, overlap, scale and penalty items between the target and
the anchor point, and there will be no training divergence problem. Figure 11 illustrates
the surface defects of the rail, and the red box indicates the target frame in which the rail
surface defects are surrounded. The green box is the prediction box, and the purple box is
the smallest rectangle that can cover the above two. d represents the center point distance
between the target box and the predicated one. c represents the diagonal distance of the
smallest area simultaneously covering the prediction box and the target box.
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CIOU calculation formula is as shown in Formulas (4)–(6):

v =
4

π2

(
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hgt − arctan
w
h
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(4)

α =
v

1− IOU + v
(5)

CIOU = IOU−
ρ2(b, bgt)

c2 − αv (6)

where ρ refers to Euclidean distance; b, w and h refer to the center coordinates, width and
height of the prediction box and bgt, wgt and hgt refer to the center coordinates, width and
height of the frame.

In the study, the CIOU threshold was set to 0.7. The detection image can be output
only when the result is greater than 0.7, which makes the bounding box more accurate.

In the establishment of the rail defect detection model, the learning rate and the step
size for each update is too large; thus, the model cannot converge on the extreme optimal
value. If the learning rate is too small, the convergence can be guaranteed, but the efficiency
of the model is sacrificed.

In order to avoid the above-mentioned problems, trade-offs have to be considered
by modifying the model parameters with the best performances. The adaptive learning
rate is used in the experiment to improve the optimization speed of the model, and the
initial value of the learning rate is set to 0.001. In the training process, after each epoch,
the current model loss and accuracy are evaluated in the training set, and the loss value
change is detected every other epoch. When it is less than 0.0001, the learning rate lr is
attenuated. The attenuation formula is expressed as Formula (7):

lr∗ = lr× 0.1 (7)
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4.3. Result Analysis

In the study, the same dataset is applied on the Faster R-CNN, YOLOv3 and YOLOv4
methods to compare and verify the effectiveness of the proposed method.

Figure 12 illustrates the comparison of the parameter quantity of each method. It
shows that the parameter quantity in the proposed method is the least, which is about 1/20
of the Faster R-CNN. Since YOLOv4 is improved from the basis of YOLOv3, the parameter
quantities of the two are not much different. Improved from the basis of YOLOv4, the
proposed method replaces lightweight MobileNetv3 as the backbone network and uses
deep separable convolution for PANet to further reduce the amounts of the parameters.
From Table 3, the parameter quantity in the proposed method is decreased by 78.04%
compared with YOLOv4, effectively reducing the amounts of the parameters.
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Table 3. Comparison of the detection results of rail defects.

Method Pr Re mAP FPS
(Hz)

Volume
(MB)

Faster R-CNN 89.36% 79.07% 87.32% 12.26 521.8
Mask R-CNN 90.62% 81.36% 89.18% 5.60 245.4

YOLOv3 87.23% 77.27% 86.74% 28.40 234.2
YOLOv4 92.48% 81.40% 90.98% 34.28 244.1
YOLOv5 93.06% 82.08% 92.16% 37.32 185.6

The proposed method 94.24% 82.56% 93.21% 44.64 53.6

In order to evaluate the detection results of rail defects, precision (Pr), recall (Re), mean
Average Precision (mAP), Frames Per Second (FPS) and volume are introduced. Among
them, mAP is a common parameter for accuracy evaluations of different target detection
models. Specifically, it is the mean of the average precision (AP) of each query. FPS refers to
the number of frames transmitted per second, and volume refers to the size of the memory
occupied by the model. The specific calculation formula is as follows:

Pr =
TP

TP + FP
× 100% (8)

Re =
TP

TP + FN
× 100% (9)

AP =
∫ l

0
p(r)dr (10)

mAP =
1
N ∑ APi (11)
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where True Positives (TP) and False Positives (FP) are the number of rail defects detected
correctly or not, respectively. False Negatives (FN) is the number of rail defects detected
incorrectly. N is the number of defects in all the rails.

From the detection results of rail surface defects by various methods in Table 3, it can
be seen that, as a popular traditional method in the two-stage field, Faster R-CNN has a
higher accuracy, recall and mAP than YOLOv3 but a lower detection speed. A slow, large
model size not suitable for lightweight real-time detection, YOLOv3 has the advantage
of a faster detection speed and smaller model size, but its accuracy, recall rate and mAP
and Faster R-CNN methods are small; YOLOv4 in the accuracy, recall rate, mAP and FPS
ahead of Faster R-CNN and YOLOv3, and its detection speed and model volume still have
room for improvement. The research method in this paper was improved from the basis
of YOLOv4. Due to the use of lightweight MobileNet V3 as the backbone network and
deep separable convolution to improve the PANet, the model volume was 0.22 times that
of YOLOv4, and the accuracy was improved by 1.64% compared to YOLOv4. Compared
with YOLOv4, the recall rate and mAP were increased by 1.16% and 2.54%, respectively.
At the same time, the detection speed of the research method exceeded YOLOv4 by 10.36
frames per second, which can better meet the requirement of rapidity.

Due to the complex environment of the rail, the algorithm is required to have a good
anti-noise performance. In order to test the noise resistance of the research, Gaussian noise
was added into the dataset. Tables 4 and 5 are the detection results of rail defects with 5%
and 10% Gaussian noise, respectively. It can be seen the proposed method has a higher
mAP than the other methods and has more superior performance when noise exists. As the
same models are used with slightly different test data, the FPS and volume of each method
are consistent with those in Table 3. The results of Tables 3–5 show that the proposed
method in this paper has good performance and can be applied to lightweight steel rail
surface defect detection.

Table 4. Comparison of the detection results of rail defects with 5% Gaussian noise.

Method Pr Re mAP FPS
(Hz) Volume (MB)

Faster R-CNN 82.61% 75.22% 85.08% 12.31 521.8
Mask R-CNN 88.26% 77.93% 86.92% 5.53 245.4

YOLOv3 80.02% 72.73% 83.10% 27.07 234.2
YOLOv4 90.48% 79.36% 87.23% 35.92 244.1
YOLOv5 91.62% 80.14% 90.08% 38.54 13.6

The proposed method 92.44% 80.27% 88.42% 42.78 53.6

Table 5. Comparison of the detection results of rail defects with 10% Gaussian noise.

Method Pr Re mAP FPS
(Hz) Volume (MB)

Faster R-CNN 79.35% 71.52% 80.65% 11.80 521.8
Mask R-CNN 85.48% 72.30% 81.23% 5.47 245.4

YOLOv3 75.36% 68.18% 74.40% 28.33 234.2
YOLOv4 88.89% 72.73% 83.02% 32.35 244.1
YOLOv5 91.62% 80.14% 90.08% 36.00 13.6

The proposed method 89.92% 79.63% 84.28% 43.42 53.6

5. Conclusions

The rapid, accurate and intelligent detection of rail surface defects is of great signifi-
cance for ensuring the safe operations of railway vehicles. According to the characteristics
of rail surface defect detection, a one-stage detection model based on deep learning was
constructed for the detection of rail surface defects. Through experimental verification and
comparative analysis, the following conclusions were drawn:

(1) In order to reduce the weight of the rail surface defect detection network, the YOLOv4
algorithm was improved. The backbone network of YOLOv4 was optimized, and
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the PANet layer in YOLOv4 was lightened and improved. It reduced the algorithm
parameters, increased the detection speed and reduced the model size.

(2) In order to solve the problem of small objects detection, the improved YOLOv4
method was used in rail surface defect detection. The test results verified the effec-
tiveness of the method.

(3) Establish training and test datasets and adding Gaussian noise processing to the
datasets let us conduct the detection case studies. The analysis results showed that,
compared with the traditional detection method, the proposed method had a higher
detection accuracy.

In addition to the above conclusions, with the rapid development of object detection
methods, the ideas proposed in this paper can be extended to different deep learning
networks. At the same time, in order to verify the effectiveness of the proposed method
and to avoid introducing more variables, image preprocessing was not introduced in this
paper. It can be inferred that the accuracy of the defect detection can be further improved if
the image is effectively preprocessed. Finally, if sufficient railway surface defect images
can be obtained to establish datasets, statistical tests can be performed to achieve a full
statistical analysis of the proposed deep learning approaches.
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