
entropy

Article

Lindblad Dynamics and Disentanglement in Multi-Mode
Bosonic Systems

Alexei D. Kiselev 1,* , Ranim Ali 2 and Andrei V. Rybin 3

����������
�������

Citation: Kiselev, A.D.; Ali, R.; Rybin,

A.V. Lindblad Dynamics and

Disentanglement in Multi-Mode

Bosonic Systems. Entropy 2021, 23,

1409. https://doi.org/

10.3390/e23111409

Academic Editor: Rosario Lo Franco

Received: 13 September 2021

Accepted: 21 October 2021

Published: 27 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Laboratory of Quantum Processes and Measurements, ITMO University, Kadetskaya Line 3b,
199034 Saint Petersburg, Russia

2 Faculty of Photonics, ITMO University, Kronverksky Pr. 49, bldg. A, 197101 Saint Petersburg, Russia;
ranimali19932014@hotmail.com

3 Center of Information Optical Technology, ITMO University, Birzhevaya Line 14a,
199034 Saint Petersburg, Russia; andrei.rybin@itmo.ru

* Correspondence: adkiselev@itmo.ru

Abstract: In this paper, we consider the thermal bath Lindblad master equation to describe the
quantum nonunitary dynamics of quantum states in a multi-mode bosonic system. For the two-mode
bosonic system interacting with an environment, we analyse how both the coupling between the
modes and the coupling with the environment characterised by the frequency and the relaxation rate
vectors affect dynamics of the entanglement. We discuss how the revivals of entanglement can be
induced by the dynamic coupling between the different modes. For the system, initially prepared
in a two-mode squeezed state, we find the logarithmic negativity as defined by the magnitude
and orientation of the frequency and the relaxation rate vectors. We show that, in the regime of
finite-time disentanglement, reorientation of the relaxation rate vector may significantly increase the
time of disentanglement.

Keywords: open quantum systems; Lindblad equation; disentanglement

1. Introduction

The theory of open quantum systems is very important for describing the transfer
and storage of quantum information. In quantum information theory, these processes are
generally described in terms of completely positive trace-preserving maps known as the
quantum channels (see, e.g., [1–5] for analysis of the mathematical structures related to the
quantum channels). There is also a variety of master equations for the reduced density
matrix derived using different assumptions and approximations [6–11].

In particular, within the Markov approximation, master equations can often be cast
into the well-known Lindblad form [12–14] which preserves complete positivity of the dy-
namics. This equation is also sometimes referred to as the Gorini–Kossakowski–Sudarshan–
Lindblad (GKSL) equation.

Though the general physics behind Lindblad-type master equations has been exten-
sively discussed (see, e.g., References [15–18]), the mathematical techniques developed
for the analysis of bosonic systems are mostly applicable to the single-mode Lindblad
equation [19–25] and cannot be employed to treat its multi-mode generalizations (the most
general form of the multi-mode Lindblad equation is described, e.g., in [26]).

In a recent paper [27], Fock-like eigenstates of a Lindbladian are constructed using Lie
algebras induced by the master equation for a linear chain of coupled harmonic oscillators.
The special case of two coupled oscillators presents a family of models that has been the
subject of intense studies [28–37] dealing with the dynamics of entanglement in open
continuous-variable systems (see, e.g., [38] for a review).

Typically, this model assumes that there is no interaction between the centre-of-mass
and relative-distance modes in the course of relaxation, so that the relaxation part of
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the Lindbladian is a sum of two commuting relaxation superoperators. By contrast to
mechanical systems, in photonic systems with quantised polarisation modes interacting
with an optically anisotropic environment, both the dynamical and environment-induced
intermode couplings can be important as they manifest themselves in the birefringence and
dichroism of absorption [39–41]. In this paper, we shall relax this assumption to explore the
effects induced by intermode couplings arising from the interaction between the system
and the environment. The effects related to the dynamics of entanglement will be our
primary concern.

Entanglement is known to be a resource of vital importance for rapidly develop-
ing quantum technologies, such as quantum communications and quantum computa-
tions [42,43], and its dynamics have been extensively studied during the last two decades
(a recent review can be found in [44]). For the cases of discrete and continuous variables,
which are typically represented by two interacting oscillators and qubits in the pioneering
papers [45,46], it was found that the decay time of entanglement (the time of disentangle-
ment) may be shorter than the time of decoherence and, under certain conditions, revivals
of entanglement may occur. Finite-time disentanglement, commonly known as the “sudden
death of entanglement”, is another important effect [47–52].

The structure of this paper is as follows: In Section 2, after introducing the GKSL
master equation for the multi-mode bosonic system interacting with the thermal bath, in
Section 2.1, we derive dynamical equations for the mean values of operators that preserve
their normal ordering. In Section 2.2, the method of characteristics is utilised to solve
the dynamical equation for the normally ordered characteristic function, χN . In Section 3,
the general theoretical results are applied to the important special case of a two-mode
bosonic system in the thermal bath. This system can be regarded as a model describing
the propagation of quantised polarisation modes in an optical fibre [41]. In Section 3.1, we
derive the analytical results needed to evaluate time dependence of the averages that entre
the elements of the covariance matrix. The logarithmic negativity of the Gaussian states
introduced in Section 3.2 is numerically studied in Section 3.3. Finally, in Section 4, we
discuss the results and make some concluding remarks.

2. Lindblad Dynamics
2.1. Master Equation

The starting point of our analysis is the Markovian thermal bath version of the Lind-
blad equation for the density matrix of an N-mode bosonic system:

∂ρ̂

∂t
= Lρ̂ = −i

N

∑
n,m=1

ΩnmCâ†
n âm

ρ̂

+
N

∑
n,m=1

Knm
(
Dâm â†

n
ρ̂ + e−zTDâ†

n âm
ρ̂
)

(1)

written in terms of two superoperators given by

CÂB̂ : ρ̂ 7→ CÂB̂ρ̂ = [ÂB̂, ρ̂], (2)

DÂB̂ : ρ̂ 7→ DÂB̂ρ̂ = 2Âρ̂B̂− B̂Âρ̂− ρ̂B̂Â

= [Â, ρ̂B̂] + [Âρ̂, B̂], (3)

where the dagger denotes Hermitian conjugation, ρ̂ is the density matrix representing the
quantum state; â†

n (ân) is the creation (annihilation) operator of the nth mode;
[Â, B̂] = ÂB̂− B̂Â stands for the commutator; Ωnm (Knm) is the element of the frequency
(relaxation) matrix, Ω (K); zT is the dimensionless inverse temperature parameter given by

zT =
h̄Ω0

kBT
, (4)



Entropy 2021, 23, 1409 3 of 13

where Ω0 is the bare frequency, h̄ is the reduced Planck constant, kB is the Boltzmann
constant and T is the temperature of the environment. The frequency and relaxation
matrices are both Hermitian: Ω = Ω† and K = K†. The relaxation matrix K with elements
giving the rates of thermalization is also positive definite: K > 0.

Note that the system (1) is conveniently rewritten in the following alternative form:

∂ρ̂

∂t
= −i[Ω̂, ρ̂]− (1 + e−zT )[K̂, ρ̂]

+ 2 ∑
n,m

Knm
(
[âm, ρ̂â†

n] + e−zT [â†
n, ρ̂âm]

)
, (5)

where the operators

Ω̂ = ∑
n,m

Ωnm â†
n âm, K̂ = ∑

n,m
Knm â†

n âm (6)

are determined by the frequency and relaxation matrices, Ω and Γ, through the Jordan
mapping that maps a Hermitian matrix J to the quadratic boson operator Ĵ as follows:

J 7→ Ĵ = ∑
n,m

Jnm â†
n âm. (7)

Our next step is to deduce the dynamic equation for the mean value of an operator Ŝ:
〈Ŝ〉 = Tr(Ŝρ̂). From Equation (1) combined with the algebraic identities

Tr(ŜCÂB̂ρ̂) = 〈[Ŝ, Â]B̂〉+ 〈Â[Ŝ, B̂]〉, (8)

Tr(ŜDÂB̂ρ̂) = 〈B̂[Ŝ, Â]〉 − 〈[Ŝ, B̂]Â〉 (9)

we have

∂〈Ŝ〉
∂t

= ∑
n,m

(iΩnm − Γnm)〈â†
n[âm, Ŝ]〉

−∑
n,m

(iΩnm + Γnm)〈[Ŝ, â†
n]âm〉

+ 2 ∑
n,m

ΓnmnT〈[âm, [Ŝ, â†
n]]〉, (10)

where Γnm = (1− e−zT )Knm and nT = (ezT − 1)−1 is the mean number of thermal photons.
An important point is that, for a normally ordered operator Ŝ with Ŝ =: Ŝ :, the

algebraic operations that entre the averages on the right hand side of Equation (10) preserve
normal ordering.

2.2. Characteristic Function

In this section, we concentrate on the normally ordered characteristic function given by

χN(α) = 〈e(α,â†)e−(α
∗ ,â)〉, (11)

where

(α∗, â) ≡
N

∑
i=1

α∗i âi, (α, â†) ≡
N

∑
i=1

αi â†
i , (12)

f (α) ≡ f (α1, . . . , αN , α∗1 , . . . , α∗N) and an asterisk will indicate complex conjugation.
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By using Equation (10), it is rather straightforward to deduce the following equation
for χN :

∂χN(α, t)
∂t

= L̂χN(α, t) (13)

L̂ = i
N

∑
n,m=1

ΩnmD̂(−)
mn

−
N

∑
n,m=1

Γnm(D̂(+)
mn + 2nTαmα∗n), (14)

where

D̂(±)
mn = αm

∂

∂αn
± α∗n

∂

∂α∗m
. (15)

The temporal evolution of the characteristic function χN is governed by the dynamical
Equation (13) supplemented with the initial condition

χN(α, 0) ≡ χini(α)

=
∫

dµ(β)e[(α
∗ ,β)−(α,β∗)]P(β, 0), (16)

dµ(β) =
N

∏
n=1

dµ(βi), dµ(βi) =
d2βi

π
, (17)

where

(α∗, β) ≡
N

∑
i=1

α∗i βi (18)

and χN is expressed in terms of the Glauber–Sudarshan P function (quasidistribution),
P(β, t), related to the P-representation of the density matrix as follows:

ρ̂(t) =
∫

dµ(β)P(β, t)|β〉〈β|. (19)

We can now employ the method of characteristics [53] to solve the above initial value
problem. According to this method, we begin with the system of characteristic equations

∂αn

∂t
= −

N

∑
m=1

Qnm αm, Q = iΩ− Γ (20)

and its solution written in the matrix form as follows:

α = e−Qtα0 ≡ A(−t)α0, A(t) = e(iΩ−Γ)t ≡ eQt, (21)

where α0 = α(0). It is not difficult to obtain the solution along the characteristic curves (21)
given by

χN(α0, t) = exp
[
−2nT

∫ t

0
(α∗0 , A†(−τ)ΓA(−τ)α0)dτ

]
× χini(α0). (22)
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We can now express α0 in terms of α with the help of Equation (21): α0 = A(t)α and
use the identity

d
dτ

A†(−τ)A(−τ) = 2A†(−τ)ΓA(−τ), (23)

to transform Formula (22) into the final expression for the characteristic function:

χN(α, t) = e−(α
∗ ,B(t)α)χini(A(t)α), (24)

B(t) = nT(IN −A†(t)A(t)), (25)

where IN is the identity N × N matrix. This formula is our central analytical result that
will be used in the subsequent sections.

3. Two-Mode System

In this section, we focus our attention on the task of computing the time dependence of
the averages that can be regarded as one-point correlation functions. One of the approaches
to this important problem is to derive and solve dynamical equations for the averaged
operators. For example, Equation (10) and the algebraic identities for the bosonic bilinear
forms (7)

∑
n,m

Γnm〈â†
n[âm, Ĵ]〉 = ∑

n,m
(JΓ)nm â†

n âm ≡ ĴΓ,

∑
n,m

Γnm〈[ Ĵ, â†
n]âm〉 = ∑

n,m
(ΓJ)nm â†

n âm ≡ Γ̂J (26)

can be utilised to deduce the equation for the mean value 〈 Ĵ〉 given by

∂〈 Ĵ〉
∂t

= −i〈[̂J, Ω]〉 − 〈{̂J, Γ}〉+ 2nTTr(JΓ), (27)

where {A, B} = AB + BA denotes the anticommutator.
For illustrative purposes, in what follows, we consider a photonic system with two

orthogonally polarised quantised modes [40,41,54], thus restricting our analysis to the
special case of the two-mode bosonic system with N = 2. Then, the above general result
can be applied to the so-called Stokes operators that can be expressed in terms of the
Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(28)

as follows [55]:

Ŝi =
2

∑
n,m=1

σ
(i)
nm â†

n âm, (29)

where 0 ≤ i ≤ 3 and σ0 = I2 is the 2× 2 identity matrix. The mean values of these
operators are known as the Stokes parameters and describe the state of polarization of
the photonic system (dynamical regimes of the Stokes parameters are studied in [54]).
These parameters, however, appear to be insufficient for complete characterization of the
quantum states that generally requires the knowledge of higher order moments of the
Stokes operators [55]. For such moments, the approach based on dynamical equations
quickly becomes rather involved and unnecessarily complicated.

3.1. Exact Dynamics of Averages and Covariance Matrix

An alternative method is to use a formula for the characteristic Function (24). The
derivatives of this function can be easily evaluated, giving the expressions for the mean val-
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ues of normally ordered operators. In particular, the second order moments are computed
as follows:

〈â†
i âj〉(t) = −

∂2χN(α, t)
∂αi∂α∗j

∣∣∣∣∣
α=0

= Bji(t) + ∑
n,m

Ani(t)A∗mj(t)〈â†
n âm〉(0) (30)

〈â†
i â†

j 〉(t) =
∂2χN(α, t)

∂αi∂αj

∣∣∣∣∣
α=0

= ∑
n,m

Ani(t)Amj(t)〈â†
n â†

m〉(0). (31)

These moments determine the elements of the covariance matrix of our two-mode
photonic system [56] and the relations (30) and (31) yield the starting point of our analysis
in the subsequent section.

For the two-mode system, the frequency and relaxation matrices can be written as a
linear combination of the Pauli matrices

iΩ− Γ =
3

∑
k=0

(iωk − γk)σk = (iω0 − γ0)σ0

+ (iω− γ, σ), (32)

where σ ≡ (σ1, σ2, σ3); ω ≡ (ω1, ω2, ω3) and γ ≡ (γ1, γ2, γ3) are the frequency and the
relaxation rate vector, respectively; and it is rather straightforward to obtain the matrix
exponential for A(t) in the following explicit form:

A(t) = e(iω0−γ0)t
{

cosh((γ− iω)t)σ0

+
sinh((γ− iω)t)

γ− iω
(iω− γ, σ)

}
, (33)

where

γ− iω =
√
(γ− iω, γ− iω) =

√√√√ 3

∑
k=1

(γk − iωk)2. (34)

We can now use Formulas (30)–(34) to evaluate the covariance matrix, Σ, of our two-
mode bosonic system. This matrix can be defined in terms of the quadrature operators
(quadratures), x̂i and p̂i, expressed in terms of the annihilation and creation operators, âi
and â†

i , as follows (see, e.g., references [38,56]):

r̂i ≡
(

x̂i
p̂i

)
= C

(
âi
â†

i

)
, C =

1√
2

(
1 1
−i i

)
. (35)

In our case, the block structure of the covariance matrix is given by

Σ =

(
Σ11 Σ12
Σ21 Σ22

)
, Σij = Σ

(0)
ij − 2〈r̂i〉 ⊗ 〈r̂j〉, (36)

Σ
(0)
ij =

(
〈{x̂i, x̂j}〉 〈{x̂i, p̂j}〉
〈{ p̂i, x̂j}〉 〈{ p̂i, p̂j}〉

)
, (37)
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where the diagonal and off-diagonal block matrices

Σ
(0)
ii =

(
2〈â†

i âi〉+ 1 + 2 Re〈â2
i 〉 2 Im〈â2

i 〉
2 Im〈â2

i 〉 2〈â†
i âi〉+ 1− 2 Re〈â2

i 〉

)
,

Σ
(0)
12 = 2C

(
〈â1 â†

2〉 〈â1 â2〉
〈â†

1 â†
2〉 〈â†

1 â2〉

)
C† =

(
x1 + x2 y1 + y2
−y1 + y2 x1 − x2

)
,

Σ21 = ΣT
12, 〈â†

1 â2〉 =
x1 + iy1

2
, 〈â1 â2〉 =

x2 + iy2

2
(38)

are expressed in terms of the averages: 〈â†
i âj〉 and 2〈âi âj〉.

3.2. Symplectic Eigenvalues and Logarithmic Negativity

In what follows, we shall restrict our analysis to the important special case of the Gaus-
sian states. These states are characterised by the symplectic eigenvalues of the covariance
matrix (36) that can be computed using the relations [38,56]:

2µ2
± = ∆±

√
∆2 − 4 det Σ, (39)

where ∆ = det Σ11 + det Σ22 + 2 det Σ12 is known as the “seralian” invariant.
The separability and entanglement criteria for bipartite continuous variable systems

formulated in terms of the covariance matrix [29,57,58] and more general criteria [59,60]
involving higher-order correlators provide a number of entanglement witnesses. For
example, such witnesses are used for the analysis of the experimental data presented in [61]
and the coherent state quantum key distribution suggested in [62,63].

For two-mode Gaussian states, different measures of entanglement have been pro-
posed. These include the entanglement of formation, the Bures distance and the Gaussian
measures of entanglement [64–66]. In this work, we deploy the logarithmic negativity [56]
as a useful quantifier of bipartite entanglement in Gaussian states given by

EN (ρ̂) = log2 ||ρ̂
PT ||1 = max{0,− log2 λ−}, (40)

where ||.||1 stands for the trace norm and ρ̂PT is the partial transpose of ρ̂. The right-hand
side of Equation (40) gives the expression for EN (ρ̂) in terms of the lowest symplectic eigen-
value λ− of the partially transposed density matrix, ρ̂PT , with the symplectic eigenvalues
given by

2λ2
± = ∆− ±

√
∆2
− − 4 det Σ, (41)

where ∆− = det Σ11 + det Σ22 − 2 det Σ12. The logarithmic negativity being an entangle-
ment monotone (a quantity which cannot be increased using local operations and classical
communication) is known to bound the distillable entanglement contained in ρ̂ [67]. Note
that, recently, the link between the logarithmic negativity and the quadrature coherence
scale introduced as a nonclassicality measure was studied in [68].

3.3. Numerical Results

We assume that the system is initially prepared in the two-mode squeezed state

|η〉sq = exp[ηK̂+ − η∗K̂−]|0〉, η = reiθ , (42)

where r is the squeezing parameter, K̂+ = â†
1 â†

2 (K̂− = â1 â2) is the raising (lowering)
generator of the su(1, 1) Lie algebra, with the covariance matrix given by

Σ11(0) = Σ22(0) = cosh(2r)σ0,

Σ12(0) = sinh(2r)[cos(θ)σ3 + sin(θ)σ1]. (43)
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According to Equation (33), the frequency and the relaxation rate vectors, ω and
γ, describe the dynamical and environment mediated intermode couplings, respectively.
These vectors determine the regime of the dissipative dynamics and will be parametrised
using the angular representation:

γ = Γ(sin θΓ cos φΓ, sin θΓ sin φΓ, cos θΓ),

ω = Ω(sin θΩ cos φΩ, sin θΩ sin φΩ, cos θΩ). (44)

In order to investigate the effects of the intermode couplings in the dynamics of entangle-
ment, we have computed the time dependencies of the logarithmic negativity for differently
oriented vectors γ and ω. The list of parameters used in our calculations is as follows:
nT = 0.1, r = 2.0, Γ/γ0 = 0.9 and θ = φΓ = φΩ = 0◦. At these parameters, we have the
initial values of the symplectic eigenvalues µ±(0) = 1, µ1,2(0) = cosh(2r) and λ−(0) = e−2r

giving the corresponding value for the logarithmic negativity, EN (ρ̂)|t=0 ≈ 5.77.
For the dynamics governed by the thermal bath Lindblad Equation (1), in the long

time limit with t → ∞, the density matrix approaches the equilibrium state ρ̂eq = ρ̂(∞)
with the covariance matrix given by

Σ(t) t→∞−−→ Σeq = (1 + 2nT)I4. (45)

The equilibrium density matrix, ρ̂eq ∝ exp[−zT(â†
1 â1 + â†

2 â2)], is the disentangled
mixed Gaussian state with EN (ρ̂eq) = I(1; 2)|t→∞ = 0 and S[ρ̂eq] ≡ Seq ≈ 0.56.

In Figure 1, we present the results on the temporal evolution of the logarithmic nega-
tivity computed at Ω = 0 for different values of the angle θΓ. The curves clearly indicate
the regime of finite-time disentanglement known as the “sudden death of entanglement”.
In this regime, EN vanishes at t ≥ td, where td is the time of disentanglement.

Figure 1. Time dependence of the logarithmic negativity computed at different angles θΓ with
γ = Γ(sin θΓ, 0, cos θΓ) for Γ/γ0 = 0.9, Ω/γ0 = 0, nT = 0.1, r = 2 and θ = 0◦.

Figure 2 shows the disentanglement time calculated as a function of θΓ. It can be seen
that td is sensitive to orientation of the relaxation rate vector describing the intermode
coupling induced by the interaction between the bosonic system and the environment.
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Figure 2. Time of disentanglement as a function of the angle θΓ computed at Γ/γ0 = 0.9, and
Ω/γ0 = 0 (other parameters are listed in the caption of Figure 1).

The curves plotted in Figure 3 are computed at different values of the angle θΩ that
specify the orientation of the frequency vector with Ω/γ0 = π and illustrate the effect of
the dynamical intermode coupling on entanglement dynamics. It is seen that oscillatory
behaviour of the logarithmic negativity at θΩ = 90◦ translates into sudden revivals of
entanglement as the angle θΩ decreases.

Figure 3. Time dependence of the logarithmic negativity computed at different angles θΩ with
ω = Ω(sin θΩ, 0, cos θΩ) for Γ/γ0 = 0.9, θΓ = 90◦, Ω/γ0 = π, nT = 0.1, r = 2 and θ = 0◦.

4. Conclusions

In this paper, we have studied the dynamics of a multi-mode bosonic system governed
by the thermal bath Lindblad master equation. Our general approach is based on an exact
solution for the characteristic function obtained using the method of characteristics.

We have applied this approach to the special case of the two-mode bosonic system.
In this case, the dynamics are determined by the intermode couplings that entre the
dynamical and relaxation parts of the Lindblad superoperator L (see Equation (1)) and can
be described in terms of the frequency and the relaxation rate vectors (see Equation (32)).
We have focussed our attention on the effects of the intermode couplings in the dynamics of
entanglement and have presented a number of the numerical results on time dependence
of the logarithmic negativity.

It is found that, for a vanishing frequency vector with Ω = 0, the logarithmic negativity
of the system initially prepared in the two-mode squeezed state monotonically decays,
reaching zero at the disentanglement point in time, t = td. In this regime of finite-time
disentanglement, the disentanglement time appears to be dependent on the orientation
of the relaxation rate vector. We have also shown that the presence of the dynamical
intermode coupling with Ω > 0 complicates the dynamics of the logarithmic negativity,
and its nonmonotonic behaviour results in revivals of entanglement.
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Our theoretical considerations were motivated by the model describing mixed polari-
sation quantum states propagating in an optically anisotropic lossy environment [40,41].
Interestingly, our results are formulated in terms of the covariance matrix that can, in
principle, be extracted from experimental data measured using either optical homodyne or
heterodyne detection techniques [69]. Qualitatively, our results on the regime of finite-time
disentanglement and revivals of entanglement are in agreement with the predictions for
oscillators interacting with the thermal bath previously published in [28,29,32,33]. It turns
out that the values of the disentaglement time reported in [29] and obtained in the limit of
negligible relaxation anisotropy where Γ = 0 are close to our estimate γ0td ≈ 0.6 evaluated
at θΓ = 0.

Our findings provide further insights about the protection techniques of entangled
states from the detrimental effects of surrounding environments by suitably manipulat-
ing the intermode interaction. Generally, revivals of quantum correlations in composite
quantum systems are a useful dynamical feature against these effects [70–73]. Different
experimental methods and theoretical approaches to protect quantum resources have been
put forward in [74–81].

We conclude with the remark that our analytical approach can be readily extended
to study a number of problems, such as Gaussian Einstein–Podolsky–Rosen steering for
two-mode squeezed states transmitted in lossy quantum communication channels [82] and
the problems related to controlled quantum dynamics in a realistic setup involving open
environments. Quantum navigation is an important class of controlled quantum dynamics
whereby the objective is to transport one quantum state into another, or to generate
quantum gates, in the shortest possible time under the influence of an uncontrollable
external field. Problems of this kind can be thought of as representing the quantum
counterpart of the classical Zermelo navigation problem of finding the time-optimal control
that takes a ship from one location to another, under the influence of external wind or
currents [83–85]. In a forthcoming publication, we will apply our results to the Zermelo
navigation problem for open multi-mode bosonic systems.
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