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Abstract: In this investigation, we study a model of a charged anisotropic compact star by assuming a
relationship between the metric functions arising from a conformal symmetry. This mechanism leads
to a first-order differential equation containing pressure anisotropy and the electric field. Particular
forms of the electric field intensity, combined with the Tolman VII metric, are used to solve the
Einstein–Maxwell field equations. New classes of exact solutions generated are expressed in terms of
elementary functions. For specific parameter values based on the physical requirements, it is shown
that the model satisfies the causality, stability and energy conditions. Numerical values generated
for masses, radii, central densities, surface redshifts and compactness factors are consistent with
compact objects such as PSR J1614-2230 and SMC X-1.
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1. Introduction

An interesting suggestion to gain a deeper understanding of self-gravitating systems
is to apply the idea of complexity in theories of gravity. An approach that was suggested
in this direction is due to Herrera [1] characterized by a minimal complexity factor. This
approach is also applicable to the study of compact objects and neutron stars in general
relativity. Several studies have been made involving complexity in models arising in
general relativity [2–10]. Note that the idea of complexity may be applied to extended
theories of gravity [11,12]. Recently Jasim et al. [13] showed that a strange star in Einstein–
Gauss–Bonnet gravity can be developed which is consistent with complexity. A general
geometric concept that may also be used to study relativistic self-gravitating fluids is a
symmetry on the manifold. The conformal Killing vector symmetry has been applied to
particular stellar models in the past. Therefore, in this paper, we consider the existence of
a conformal Killing vector for a static spacetime with a charged matter distribution. Our
results show that a conformal symmetry is indeed useful in generating a relativistic stellar
model. This may assist in producing a general relationship between a conformal symmetry,
and possibly a general symmetry, and complexity of a gravitating model.

In the search for interior exact solutions to the Einstein field equations in static spher-
ically symmetric spacetimes, several results have been generated since the first interior
solution was found by Schwarzschild. Tolman [14] proposed an innovative method of
treatment for the Einstein field equations which resulted in a variety of new solutions,
known as the Tolman I, II, III, IV, V, VI, VII and VIII cases. Many of these solutions have
been studied in the past to obtain stellar models by imposing an equation of state in the
field equations. Some of these models are physically significant. Special interest has been
paid to the Tolman VII metric function because the most desirable features of this solution
result from regularity inside the star which is free of singularity at the center. Delgaty and
Lake [15] discussed families of exact solutions to the Einstein field equations and pointed
out the most important criteria to be satisfied for a realistic stellar model. Hensh and Stuch-
lik [16] obtained a new anisotropic model with the help of the Tolman VII metric function
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and the minimal geometric deformation approach, satisfying all physical requirements for
a realistic relativistic star. The Tolman VII metric function has been used in a number of
works, including the case when the interior of static spherically symmetric spacetime is
anisotropic or admits the presence of charge. Physically reasonable models with Tolman
VII geometry admitting linear and quadratic equations of state have been investigated by
Bhar et al. [17,18]. Singh et al. [19] discussed the effects of exotic matter in the compact
object by using the Tolman VII solution with a generalized nonlinear equation of state. The
presence of anisotropy and charge in the stellar interior influences the physical properties,
stability and equilibrium of the model. Recently solutions of the Einstein–Maxwell field
equations have been found with Tolman VII spacetime for charged anisotropic fluid dis-
tributions by Singh et al. [20], Malaver [21,22] and Kiess [23]. Note that Raghoonundun
and Hobill [24] revisited the Tolman VII solution by providing a set of parameters which
provides a class of equations of state in closed form.

Historically the search for exact solutions of the Einstein field equations involved
many mathematical techniques, imposing an equation of state, specifying the gravitational
potentials and imposing a spacetime symmetry. Recently, it has been shown that the
presence of a conformal symmetry can also lead to a stellar model. The conformal symmetry
requires the existence of a conformal Killing vector on the spacetime manifold. It is
interesting to note that the resulting conformal factor is purely geometric and independent
of the form of the energy momentum tensor. Remarkably, the solutions obtained via
this geometric method describe compact objects such as strange stars to a very good
approximation. In particular, the conformal symmetry vector places restrictions on the
gravitational potentials which can be used to generate exact solutions of the Einstein field
equations. It is an alternative approach where the gravitational metrics are used rather
than restricting the energy momentum. Detailed studies involving conformal motions in
static spherically symmetric spacetimes have been performed recently by Tupper et al. [25]
and Maartens et al. [26,27]. Manjonjo et al. [28,29] used the Weyl tensor for conformally
flat and non-conformally flat spacetimes to establish a relationship between the static
metric potentials. An extensive investigation of exact models for compact objects has
been performed by Mafa Takisa et al. [30] and Kileba Matondo et al. [31,32] with the help
of this conformal relationship. Some other authors such as Maurya et al. [33], Esculpi
and Aloma [34], Singh et al. [35], Rahaman et al. [36], Shee et al. [37] and Deb et al. [38]
emphasized the importance of conformal invariance in compact stars.

The Einstein–Maxwell equations for a spherically symmetric spacetime are nonlinear,
and they cannot be solved in general without simplifying assumptions. In many treatments
a specific choice for the gravitational potentials or matter variables are made; the field
equations are then solved. This approach is arbitrary. An alternative approach is to impose
a spacetime symmetry requirement on the manifold. An interesting symmetry that exists
is generated by a conformal Killing vector which maps null geodesics to null geodesics
and produces conserved quantities for massless particles. The existence of a spacetime
symmetry provides a geometric characterization of the model. In addition, the conformal
Killing vector produces models which are physically realistic [30–38]. The existence of a
conformal Killing vector in spherically symmetric spacetimes gives a relationship between
the gravitational potentials [28,29].This provides a systematic approach of generating new
exact solutions to the Einstein–Maxwell field equations. Stellar models generated in this
approach, characterized by a spacetime symmetry, are physically acceptable and produce
values for masses and radii corresponding to observed relativistic stars.

In this investigation, we aim to generate a new class of charged anisotropic solutions
for compact stars invariant under conformal symmetry via the generalized condition of
anisotropic pressure established in Manjonjo et al. [29]. Most of the solutions for compact
stars found with conformal symmetry are not regular at the center. The Tolman VII metric
function can be used to integrate the conformal Killing condition of anisotropic pressure
with the help of particular forms of the electric field functions to generate new classes of
exact solutions which are free from singularities. This work is structured as follows. In
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Section 2, we provide the Einstein–Maxwell field equations for charged anisotropic matter
distribution. New classes of exact solutions to the Einstein–Maxwell system are generated
with the help of the condition of anisotropic pressure in Section 3. Physical quantities
arising from one of the classes of solutions selected are presented in Section 4. Geometrical
and matter variables are plotted for both PSR J1614-2230 and SMC X-1 in Section 5 and
detailed physical features are also studied. In Section 6 the work is concluded.

2. Field Equations

The line element describing the interior of a static relativistic star can be written as

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2 θdφ2), (1)

where λ(r) and ν(r) represent gravitational potential functions. The matter distribution
in the stellar interior is assumed to be charged and anisotropic with the energy momen-
tum tensor

Tab = diag
(
−ρ− 1

2
E2, pr −

1
2

E2, pt +
1
2

E2, pt +
1
2

E2
)

, (2)

where the quantities ρ, pr, pt and E denote the energy density, radial pressure, tangential
pressure and electric field intensity, respectively. With the help of (1) and (2), we get the
Einstein–Maxwell system of equations

1
r2

[
r(1− e−2λ)

]′
= ρ +

1
2

E2, (3a)

− 1
r2 (1− e−2λ) +

2ν′

r
e−2λ = pr −

1
2

E2, (3b)

e−2λ

(
ν′′ + ν′2 +

ν′

r
− ν′λ′ − λ′

r

)
= pt +

1
2

E2, (3c)

σ2 =
1
r2 (r

2E)′e−λ, (3d)

in terms of the radial coordinate r, and primes denote the derivative with respect to r. Here,
we assume units in which 8πG = c = 1.

We introduce the following transformation:

x = Cr2, Z(x) = e−2λ(r),A2y2(x) = e2ν(r), (4)

where A and C are constants. Then, the metric (1) becomes

ds2 = −A2y2dt2 +
1

4CxZ
dx2 +

x
C

(
dθ2 + sin2 θdφ2

)
. (5)

The above expressions are due to Durgapal and Bannerji [39] and can be used to
obtain an equivalent form of the system (3) with new variables. We now rewrite the
Einstein–Maxwell field Equation (3) as

ρ

C
= −2Ż +

1− Z
x
− E2

2C
, (6a)

pr

C
= 4Z

ẏ
y
+

Z− 1
x

+
E2

2C
, (6b)

pt

C
= 4xZ

ÿ
y
+ (4Z + 2xŻ)

ẏ
y
+ Ż− E2

2C
, (6c)

σ2

C
=

4Z
x
(xĖ + E)2, (6d)
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where dots now denote differentiation with respect to x. The mass contained within a
radius x of the relativistic anisotropic compact star is

M(x) =
1

C3/4

∫ x

0

√
ω
(

ρunch(ω) + E2
)

dω, (7)

in the presence of charge. Here, ρunch can be found from (6a) with E = 0, and the dummy
variable ω has to replaced with x after integration in (7).

3. Exact Solutions

In this section, we introduce a new physical quantity ∆ known as the measure of
pressure anisotropy inside the stellar configuration. When we substract (6b) from (6c), we
obtain the condition of anisotropic pressure

4xZ
(

ÿ
y

)
+ 2xŻ

(
ẏ
y

)
+ Ż− Z− 1

x
− E2

2C
=

∆
C

, (8)

where ∆ = pt − pr is the measure of anisotropy. If we assume that the spacetime admits a
one-parameter group of conformal symmetries, then the Lie derivative LX along the vector
field X for the metric (1) is given by

LXgab = 2ψgab, (9)

where gab is the metric tensor field and ψ(xa) is the conformal factor. Taking into account
the static spherically symmetric spacetime (1), the vector field X can be written as

X = α(t, r)
∂

∂t
+ β(t, r)

∂

∂r
, (10a)

ψ = ψ(t, r). (10b)

The restrictions on the form of the vector X and conformal factor ψ provide a new
integrability condition associated to the Weyl tensor, and this is given by the expression

LXCa
bcd = 0, (11)

where Ca
bcd are the nonzero components of the Weyl tensor. Recently, it was showed

by Manjonjo et al. [29] that the existence of a conformal symmetry (9) in the spacetime
manifold, together with the integrability condition (11), lead to a relationship between the
gravitational potentials y and Z known as the conformal condition

y = Ax
1
2 exp

(
1
2

√
−(2n− 1)

∫ dx

xZ
1
2

)
+ Bx

1
2 exp

(
−1

2

√
−(2n− 1)

∫ dx

xZ
1
2

)
, (12)

where A, B are arbitrary constants and n < 1
2 is a constant related to the Weyl tensor.

Note that this generates a non-conformally flat spacetime. The conformally flat spacetime
corresponds to the potential

y = Ax
1
2 exp

(∫ dx

xZ
1
2

)
+ Bx

1
2 exp

(∫ dx

xZ
1
2

)
. (13)

When we substitute (12) into (8), the condition of anisotropic pressure becomes

Ż− Z
x
+

1− n
x

=
1

2C

(
∆ + E2

)
, (14)

with n < 1
2 . The Einstein–Maxwell system of equations can be solved by making a specific

forms for the potential Z and the electric field intensity E.
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We consider the Tolman VII ansatz

Z = 1− ax + bx2, (15)

where a and b are arbitrary constants. The choice (15) is physically reasonable as Z is
regular at the centre (Z(0) = 1) and remains positive inside the stellar body. Therefore, the
potential y in (12) takes the form

y = Ax
1
2

(
Kx

2− ax + 2
√

1− ax + bx2

) 1
2

√
−(2n−1)

+ Bx
1
2

(
Kx

2− ax + 2
√

1− ax + bx2

)− 1
2

√
−(2n−1)

, (16)

where K is a constant of integration which should satisfy the boundary conditions. A
choice of the electric field intensity is required to generate a new class of exact solutions to
the Einstein–Maxwell field equations. We make the following choices for the electric field
function, which combined with (14) and (15), leading to expressions for the anisotropic
pressure reported in Table 1.

Table 1. Electric field and anisotropy.

Case E2

C
∆
C

I ax + dx2 2bx− 2n
x − (ax + dx2)

II ax
(b+ax)2 2bx− 2n

x −
ax

(b+ax)2

III ax
1+bx+dx2 2bx− 2n

x −
ax

1+bx+dx2

Note from (16) that the model is singular at the center for arbitrary n. However, for a
particular value of n, we can obtain a regular model. For n = 0, the sphere becomes regular
at the center and the gravitational potential can be written as

y =
2B + (AK− aB)x + 2B

√
1− ax + bx2

√
K
√

2− ax + 2
√

1− ax + bx2
, (17)

where at the center x = 0 and y(0) = 2B√
K

. We observe that with n = 0 the electric field E
and anisotropy ∆ are regular, and also vanish at x = 0.

Taking into account the square roots contained in the expression (17), some conditions
must be imposed on the constants a and b for the regularity of the potential. Therefore, the
following condition,

2− ax + 2
√

1− ax + bx2 > 0, (18)

must be satisfied. Equation (18) places a restriction on the variable x. We show the various
conditions on a and b in terms of six cases which give the possible ranges of x in Table 2.
We consider in particular the range in Case E where a > 0 and 0 < b < a2

4 . It is possible to
generate classes of exact solutions in terms of a and b for Case E.
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Table 2. Conditions on a and b for the range of x.

Case Conditions and Range

A a < 0, b < 0
− 1

2b

(√
a2 − 4b− a

)
≤ x ≤ 1

2b

(√
a2 − 4b + a

)
B a < 0, 0 < b < a2

4
x ≥ 1

2b

(√
a2 − 4b + a

)
C a < 0, b = a2

4
x > − 1

2b

(√
a2 − 4b− a

)
D a > 0, b < 0

− 1
2b

(√
a2 − 4b− a

)
≤ x ≤ 1

2b

(√
a2 − 4b + a

)
E a > 0, 0 < b < a2

4
x ≤ − 1

2b

(√
a2 − 4b− a

)
F a > 0, b = a2

4
x < − 1

2b

(√
a2 − 4b− a

)

Then, expression (14) can be solved with the help of (15) and (17) to obtain the
anisotropic pressure as a function of x with the assumption n = 0. Then, the exact solutions
to the Einstein–Maxwell system of equations can be written in terms of three classes
according to the choice of the electric field intensity.

3.1. Class I Solutions: E2

C = ax + dx2

When the electric field intensity corresponds to Case I reported in Table 1, we have
an expression for the anisotropy function which vanishes at the center. The electric field
vanishes at the centre and reaches a maximal value E2

C = − a2

4d at the point x = − a
2d . The

exact solution is given by

e2λ =
1

1− ax + bx2 , (19a)

e2ν =
A2

K

[
2B + (AK− aB)x + 2B

√
1− ax + bx2

]2

2− ax + 2
√

1− ax + bx2
, (19b)

ρ

C
= 3a−

( a
2
− 5b

)
x−

(
d
2

)
x2, (19c)

pr

C
= 2

√
1− ax + bx2

[
2bF1x2 + F2x + F3 + (F3 + F4x)

√
1− ax + bx2

][
F4x2 + F5x

+8B + 2(F1x + 4B)
√

1− ax + bx2
]−1
− a +

(
b +

a
2

)
x +

d
2

x2, (19d)

pt = pr + ∆, (19e)
∆
C

= (2b− a)x− dx2, (19f)

E2

C
= ax + dx2, (19g)

σ2

C
=

C
(
1− ax + bx2)(3a + 4dx)2

a + dx
, (19h)
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where we set

F1 = AK− 2aB, (20a)

F2 = 3a2B− 3aAK + 4bB, (20b)

F3 = 4(AK− aB), (20c)

F4 = a2B− aAK + 4bB, (20d)

F5 = 2(AK− 4aB), (20e)

as new constants.

3.2. Class II Solutions: E2

C = ax
(b+ax)2

When the electric field intensity corresponds to the Case II reported in Table 1, we
have another expression for the anisotropy function which also vanishes at the center.
The electric field is also a vanishing quantity at the center and reaches the maximal value
E2

C = 1
4b at the point x = b

a . In this case, the exact solution is given by

e2λ =
1

1− ax + bx2 , (21a)

e2ν =
A2

K

[
2B + (AK− aB)x + 2B

√
1− ax + bx2

]2

2− ax + 2
√

1− ax + bx2
, (21b)

ρ

C
=

2(3a− 5bx)(b + ax)2 − ax
2(b + ax)2 , (21c)

pr

C
= 2

√
1− ax + bx2

[
2bF1x2 + F2x + F3 + (F3 + F4x)

√
1− ax + bx2

][
F4x2 + F5x

+8B + 2(F1x + 4B)
√

1− ax + bx2
]−1

+
2(bx− a)(b + ax)2 + ax

2(b + ax)2 , (21d)

pt = pr + ∆, (21e)

∆
C

=
2bx(b + ax)2 − ax

(b + ax)2 , (21f)

E2

C
=

ax
(b + ax)2 , (21g)

σ2

C
=

aC(3b + ax)2(1− ax + bx2)
(b + ax)4 , (21h)

which is a simple form.

3.3. Class III Solutions: E2

C = ax
1+bx+dx2

For this category of models, the electric field intensity corresponds to the Case III
reported in Table 1, we obtain an expression for the anisotropy function which vanishes
at the center. The electric field also vanishes at the center, and it reaches a maximal value
E2

C = a
2
√

d+b
at the point x = 1√

d
. Therefore, the exact solution has the form
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e2λ =
1

1− ax + bx2 , (22a)

e2ν =
A2

K

[
2B + (AK− aB)x + 2B

√
1− ax + bx2

]2

2− ax + 2
√

1− ax + bx2
, (22b)

ρ

C
=

[
6a + (6ab− 10b− a)x + 2

(
3ad− 5b2

)
x2 − 10bdx3

][
2
(

1 + bx + dx2
)]−1

, (22c)

pr

C
= 2

√
1− ax + bx2

[
2bF1x2 + F2x + F3 + (F3 + F4x)

√
1− ax + bx2

][
F4x2 + F5x

+8B + 2(F1x + 4B)
√

1− ax + bx2
]−1
−
[
2a− (a− 2ab + 2b)x− 2

(
b2 − ad

)
x2

−2bdx3
][

2
(

1 + bx + dx2
)]−1

, (22d)

pt = pr + ∆, (22e)
∆
C

=
2bx(x(b + dx) + 1)− ax

x(b + dx) + 1
, (22f)

E2

C
=

ax
1 + bx + dx2 , (22g)

σ2

C
=

aC(1− (a− bx)x)
(
3 + 2bx + dx2)2

(1 + x(b + dx))3 , (22h)

where F1 − F5 are defined above.
The three classes of exact solutions found are given in terms of elementary functions.

This helps in performing a physical analysis. All three classes of models have ∆ = 0 and
E = 0 at the stellar center which are desirable features.

4. Physical Quantities

In this section, we select one of the three classes of solutions obtained in this paper to
generate physical quantities in terms of the coordinate r. The physical quantities correspond
to the Class III models and the Equation (22).

4.1. Mass, Compactness Factor and Redshift

The exact solution (22) allows us to generate the total mass of the charged anisotropic
star by inserting (22c) and (22g) into (7). Then, the following result is produced:

M(r) =
2
3

C
7
4

[
a
(

Cr2

bCr2 + dC2r4 + 1
+ 3
)
− 5bCr2

]
r3. (23)

The compactness factor is defined by the dimensionless quantity µ = M
r which gives

µ(r) =
2
3

C7/4r2
[

a
(

Cr2

bCr2 + dC2r4 + 1
+ 3
)
− 5bCr2

]
. (24)

The surface redshift for a static spherically symmetric compact star is given by Zs =
1√

1−2µ(r)
− 1 which takes the form

Zs =

[
1− 4

3
aC7/4r2

(
Cr2

bCr2 + dC2r4 + 1
+ 3
)
+

20
4

bC11/4r4
]− 1

2

− 1, (25)

for the model (22).
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4.2. Tolman–Oppenheimer–Volkoff Equation

The relativistic equation of hydrostatic equilibrium for the interior structure of the
neutron star in the presence of charge and anisotropy is given by the so-called generalized
Tolman–Oppenheimer–Volkoff (TOV) equation [32]:

−(ρ + pr)
dν

dr
− dpr

dr
+

2
r
(pt − pr) +

E
r2

d
(
r2E
)

dr
= 0. (26)

This equation describes the equilibrium conditions of a charged anisotropic body un-
der the interaction of gravitational (Fg = −(ρ + pr)

dν
dr ), hydrostatic (Fh = − dpr

dr ), anisotropic
(Fa =

2
r (pt − pr)) and electrostatic (Fe =

E
r2

d
dr
(
r2E
)
) forces. They take the explicit form

Fg = −(ρ + pr)
dν

dr
, (27a)

Fh = −dpr

dr
, (27b)

Fa =
C3/2r

(
2b
(
1 + Cr2(b + Cdr2))− a

)
1 + Cr2(b + Cdr2)

, (27c)

Fe =
aC3/2r

(
3 + 2bCr2 + dC2r4)

2(1 + Cr2(b + Cdr2))
2 . (27d)

4.3. Equation of State

It is possible to generate an equation of state with the help of the exact solution in the
system of Equations (22a)–(22h). The Equation (22c) can be rewritten in terms of x as

x3 +

(
dρ− 3ad + 5b2

5bd

)
x2 +

(
2bρ− 6ab + 10b + a

10bd

)
x +

ρ− 3a
5bd

= 0. (28)

This is a cubic equation, but the goal is to provide a real root. The only real solution
x = f (ρ) when bd 6= 0 is

f (ρ) =
(

30× 2
1
3

)−1
2
(

f2(ρ)− 4 f1
2(ρ)

)
2

1
3 bd

−
(

f3(ρ) +

√
f3

2(ρ) + 4
(

f2(ρ)− 4 f1
2(ρ)

)3
) 2

3


×
[

f3(ρ) +

√
f3

2(ρ) + 4
(

f2(ρ)− 4 f1
2(ρ)

)3
]− 1

3

, (29)

where

f1(ρ) = 5b2 − 3ad + dρ, (30a)

f2(ρ) = −180ab2d + 30abd + 300b2d + 60b2dρ, (30b)

f3(ρ) = −432a3d3 − 1080a2b2d2 + 540a2bd2 + 1800ab4d− 900ab3d− 10800ab2d2 + 2000b6 − 9000b4d (30c)

+
(

432a2d3 + 720ab2d2 − 180abd2 − 600b4d + 3600b2d2
)

ρ−
(

144ad3 + 120b2d2
)

ρ2 + 16d3ρ3.

Substituting (29) into (22d), we obtain the analytic expression

pr

C
= 2

√
1− a f (ρ) + b f 2(ρ)

[
2bF1 f 2(ρ) + F2 f (ρ) + F3 + F4 f (ρ)

√
1− a f (ρ) + b f 2(ρ)

][
4 f 2(ρ) + F5 f (ρ)

+8B + 2[F1 f (ρ) + 4B]
√

1− a f (ρ) + b f 2(ρ)

]−1

−
[
2a− (a− 2ab + 2b) f (ρ)− 2

(
b2 − ad

)
f 2(ρ)− 2bd f 3(ρ)

][
2
(

1 + b f (ρ) + d f 2(ρ)
)]−1

. (31)



Entropy 2021, 23, 1406 10 of 19

Therefore, we have the relationship pr = pr(ρ) and the model satisfies a barotropic
equation of state which is nonlinear in ρ.

4.4. Matching Conditions

The junction of the conformally symmetric interior solution to the outside solution
occurs at the boundary r = R of the star. The line element for the exterior solution for a
charged sphere can be written with the help of Reissner–Nordström metric

ds2 = −
(

1− 2M
r

+
Q2

r2

)
dt2 +

(
1− 2M

r
+

Q2

r2

)−1

dr2 + r2(dθ2 + sin2 θdφ2), (32)

where M = M(R) represents the total mass of the star and Q is the charge. From (1) and (32)
we get

A2

K

[
2B + (AK− aB)CR2 + 2B

√
1− aCR2 + bC2R4

]2

×
[
2− aCR2 + 2

√
1− aCR2 + bC2R4

]−1
=

(
1− 2M

R
+

Q2

R2

)
, (33a)

1− aCR2 + bC2R4 =

(
1− 2M

R
+

Q2

R2

)
, (33b)

at the boundary r = R. For the matching of interior and exterior solutions, the metric
potentials e2λ and e2ν must be continuous at the boundary of the star where the radial
pressure vanishes pr(r = R) = 0. These conditions allow us to determine the constants A
and B and the total mass M as

A =
√

KR

(
aC

9
4 R

3

) 1
2
[

20bC
1
2

aR
− 12C2dR4 + C(4(3b + 1)− 3C−

3
4 )R2 + 12

CR2(b + CdR2) + 1

] 1
2

×
[
2− aCR2 + 2

√
1− aCR2 + bC2R4

] 1
2
[
2B + (AK− aB)CR2 + 2B

√
1− aCR2 + bC2R4

]−1
, (34a)

M(R) =
[
CR3(a− bCR2)

√
1 + bCR2 + dC2R4 +

√
aCR

][
2
√

1 + bCR2 + dC2R4
]−1

, (34b)

B
A

= K
[
3aCR2 − 2bC2R4 − 4 +

(
aCR2 − 4

)√
1− aCR2 + bC2R4

]
×
[
CR2

(
3a2 + 4b

)
− 4abC2R4 − 4a +

(
(a2 + 4b)CR2 − 4a

)√
1− aCR2 + bC2R4

]
. (34c)

The mass–radius ratio M
R is now easily calculated. Buchdahl [40] showed that the

mass–radius ratio provides important information about the physical characteristics of
stellar structure.

5. Physical Analysis

To conserve the dimensional homogeneity and units in the physical variables, we
introduce the transformation

r = T 2r̃, ρ = T 2ρ̃, pr = T 2 p̃r, pt = T 2 p̃t,

where the parameter T has the dimension of length. The parameters a = ã/T 2, b = b̃/T 2

and d = d̃/T 2 are explicitly expressed in dimensions of length in km−2. The classes of
solutions obtained in Section 4 are regular and well behaved in the interior of the star. We
select the Class III solution to illustrate the physical acceptability of the model with the
help of a particular choice of parameter values. Stellar masses and radii are generated for
specific pulsars including: PSR J1614-2230, Vela X-1, PSR J1946+3417, 4U 1820-30, Cen X-3
and SMC X-1. For a better understanding of the nature of the matter variables throughout
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the stellar interior, we select PSR J1614-2230 and SMC X-1 for further study, which are the
highest and the lowest in terms of numerical mass, respectively.

The gravitational potentials e2λ and e2ν are well behaved at the center and regular
throughout the stellar configuration as shown in Figure 1 for PSR J1614-2230 and SMC X-1,
with the central values e2λ(0) = 1 and e2ν(0) = 4A2B2

K . The energy density, the radial and
tangential pressures are plotted in Figures 2 and 3. The density function and the radial and
tangential pressures function are positive, and monotonically decreasing with the radius.
The central density ρ(0) = ρc and the central pressure pr(0) = pt(0) = pc are finite and
given by

ρc = 3aC,

pc =
C(AK + aB)

B
,

0 2 4 6 8 10

(km)0.0

0.5

1.0

1.5

2.0

2.5

(e2 �, e2 ν)

e
2 �

e
2 ν

(a) PSR J1614−2230
0 2 4 6 8 10

(km)0.0

0.5

1.0

1.5

2.0

(e2 �, e2 ν)

e
2 �

e
2 ν

(b) SMC X−1

Figure 1. Variation of the potentials versus the radius.
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(a) PSR J1614−2230
0 2 4 6 8 10

 km)

0.5

1.0

1.5
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(b) SMC X−1

Figure 2. Variation of energy density versus the radius.
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(b) SMC X−1

Figure 3. Variation of radial and tangential pressures versus the radius.

The radial pressure vanishes at the boundaries r = 10.584 km for PSR J1614-2230
and r = 7.198 km for SMC X-1. The central density ρc = 1.55× 1015 gcm−3 and central
pressure pc = 1.76 × 1034 dyne/cm2 of the compact object SMC X-1 with lower mass
M = 1.04 M⊙ are greater compared with the numerical values ρc = 8.4× 1014 gcm−3

and pc = 1.235× 1034 dyne/cm2 associated to PSR J1614-2230 as reported in Table 3. This
behaviour has also been observed in the works of Singh et al. [35], Sharma and Ratanpal [41]
and Kileba Matondo et al. [42]. The anisotropic pressure function is plotted in Figure 4 and
the profiles show for both stellar candidates that it is an increasing function with increasing
radius r and attains a maximum value at the surface. The electric field intensity presented
in Figure 5 is positive and monotonically increasing for both stars selected and reaches
the maximum value at the stellar surface as we observe in Table 4. The variation of mass
function against the radius is reported in Figure 6 for both cases and the graph shows
that it is increasing continuously throughout the star. The numerical quantities for six
selected candidates presented in Table 3 are consistent with observed stars. The variation
of compactness mass and redshift function are presented in Figures 7 and 8 respectively,
where the profiles for PSR J1614-2230 as well as SMC X-1 indicate that they are increasing
with increasing radius. Referring to the Buchdahl [40] limit 2M(r)

r < 8
9 , the compactness

factor should satisfy the inequality µ = M(r)
r < 4

9 . The results presented in Table 4 illustrate
that µ = 0.1865 < 4

9 for PSR J1614-2230 and µ = 0.1792 < 4
9 for SMC X-1. The numerical

values of the surface redshift for the objects PSR J1614-2230 and SMC X-1, as detailed in
Table 4, are Zs = 0.2629 and Zs = 0.2485, respectively. These results satisfy the upper
limit Zs ≤ 0.9 established by Lindblom [43] for strange stars as well as the Buchdahl [40]
condition Zs ≤ 2.
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Figure 4. Variation of anisotropic pressures versus the radius.
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Figure 5. Variation of electric field versus the radius.
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Figure 6. Variation of the mass versus the radius.
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Figure 7. Variation of compactness factor versus the radius.
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Figure 8. Variation of surface redshift versus the radius.

The radial and tangential speeds of sound have a maximum value at the stellar centre
and they are decreasing monotonically throughout. The causality condition restricts them
to be less than 1 (0 ≤ vr, vt ≤ 1) as reported in Figure 9 for both PSR J1614-2230 and SMC
X-1. Heintzmann and Hillebrandt [44] suggested that when the pressure anisotropy is
positive for a relativistic star then the stability condition satisfies the inequality Γ > 4/3.
The variation of the adiabatic index is plotted in Figure 10 and the profiles for both PSR
J1614-2230 and SMC X-1 shows that Γ remains greater than 4/3 everywhere inside the
stellar object. This allows us to confirm that our model is indeed stable. The generalized
Tolman–Oppenheimer–Volkoff (TOV) equation [14,45] established above in the case of
anisotropic charged fluid spheres is plotted in Figure 11. The profile shows that the static
equilibrium condition is satisfied with the help of the combined effects of anisotropic,
hydrostatic, electric and gravitational forces.
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Figure 9. Variation of the speed of sound versus the radius.
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Figure 10. Variation of adiabatic index versus the radius.
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Figure 11. Variation of the forces versus the radius.

The energy conditions play an important role in the better understanding of the nature
of matter distribution inside the star. In this work, we present all the energy conditions
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namely: null energy condition (NEC), weak energy condition (WEC) and strong energy
condition (SEC):

• NEC: ρ + pi ≥ 0,
• WEC: ρ ≥ 0, ρ + pi ≥ 0,
• SEC: ρ + ∑i pi ≥ 0,

where the index i ≡ [r, t] corresponds to the radial and tangential components. Figure 12
illustrates that the null energy condition, the weak energy condition and the strong energy
condition are satisfied inside the stellar object for PSR J1614-2230 and SMC X-1 [46].

0 2 4 6 8 10

(km)0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

Energy Conditions

ρ+pr

ρ+pt

ρ+pr+pt
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2 4 6 8 10
(km)0.0000

0.0005

0.0010

0.0015

Energy Conditions

ρ+pr

ρ+pt

ρ+pr+pt

(b) SMC X−1

Figure 12. Variation of the energy conditions versus the radius.

The region corresponding to the interior (r < R), the exterior (r > R) and the boundary
(r = R) are reported in Figure 13. The profiles indicate that e2λ and e2ν are finite at the
centre, regular inside the star and matches smoothly to the exterior Reissner–Nordström
solution at r = 10.584 km.

e-2 �

e2 ν

1-
2M

R

Q2

R2

0 5 10 15 20
R(km)0.0

0.2

0.4

0.6

0.8

1.0

1.2

Metrics

Figure 13. Smooth matching of the interior potentials with the Reissner–Nordström exterior for
PSR J1614-2230.
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Table 3. Masses for d = −8, A = 15.10, B = 3.5, A = 0.2, and K = 4.

a b C R r(km) M(M⊙) Star

2
√

12 8.00 0.179 15.40 10.584 1.974 PSR J1614-2230
2
√

12.5 7.90 0.184 15.20 9.823 1.77 Vela X-1
2
√

12.8 8.00 0.186 15.00 9.400 1.657 PSR J1946+3417
2
√

13.1 8.50 0.200 14.65 8.716 1.585 4U 1820-30
2
√

13.12 8.13 0.199 14.13 8.329 1.49 Cen X-3
2
√

13.15 8.18 0.200 12.26 7.198 1.29 SMC X-1

Table 4. Values of the physical quantities at the center and surface.

Star ρc(gcm−3) ρs(gcm−3) pc(dyne/cm2) E(V/cm) µ Zs

PSR
J1614-2230 0.84× 1015 0.6964× 1015 0.1235× 1035 0.22× 1020 0.1865 0.2629

PSR
J1946+3417 0.95× 1015 0.8138× 1015 0.1170× 1035 0.21× 1020 0.1763 0.2429

SMC X-1 1.55× 1015 1.3380× 1015 0.1760× 1035 0.17× 1020 0.1792 0.2485

6. Conclusions

In this paper, we generated three new classes of exact solutions to the Einstein–
Maxwell field equations arising from the integrability of the condition of anisotropic
pressure. We assumed the existence of a conformal symmetry in spacetime. This is made
possible for the Tolman VII metric which has been widely studied, and shown to be well
defined at the center and regular throughout the star. We have also chosen three functional
forms for the electric field. We selected one of three exact solutions to perform a physical
analysis. Stellar masses and radii are generated for the objects such as PSR J1614-2230, Vela
X-1, PSR J1946+3417, 4U 1820-30, Cen X-3 and SMC X-1. Particular attention has been paid
to the stellar objects PSR J1614-2230 and SMC X-1, which are the highest and the smallest
in terms of mass, respectively, to perform a physical analysis. For particular parameter
values the matter variables were plotted, and they reveal that:

• The energy density, radial and tangential pressures are monotonically decreasing
functions with increasing radius, and they are positive functions inside the stellar
object. The positive nature of the anisotropic pressure helps to construct a compact
stellar structure.

• The causality condition is satisfied and the stability of the model is verified via the
adiabatic index (Γ > 4/3). The stability of the model is also verified by the equilibrium
of the compact structure under the effect of anisotropic, hydrostatic, electric and
gravitational forces.

• The energy conditions are satisfied everywhere inside the star.
• The masses, surface redshifts and compactness factors correspond to observed astro-

nomical objects.

The results provided in this work reveal that our model can be used to describe a
stellar interior for a charged anisotropic fluid sphere. The conformal symmetry requirement
is consistent with a physically acceptable star.
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