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Abstract: Topological physics in optical lattices have attracted much attention in recent years. The
nonlinear effects on such optical systems remain well-explored and a large amount of progress has
been achieved. In this paper, under the mean-field approximation for a nonlinearly optical coupled
boson–hexagonal lattice system, we calculate the nonlinear Dirac cone and discuss its dependence
on the parameters of the system. Due to the special structure of the cone, the Berry phase (two-
dimensional Zak phase) acquired around these Dirac cones is quantized, and the critical value can
be modulated by interactions between different lattices sites. We numerically calculate the overall
Aharonov-Bohm (AB) phase and find that it is also quantized, which provides a possible topological
number by which we can characterize the quantum phases. Furthermore, we find that topological
phase transition occurs when the band gap closes at the nonlinear Dirac points. This is different
from linear systems, in which the transition happens when the band gap closes and reopens at the
Dirac points.

Keywords: nonlinear energy band; nonlinear Berry phase; topological phase transition

1. Introduction

The topological concepts developed in condensed matter theory have a profound
impact on physics [1–7]. They have been now extended to study a variety of photonic
structures and, in turn, invoke a wide range of interest in condensed matter physics [8–12].
For systems with interactions, discussions on topological invariant [13–15] have become
an emerging topic, since the topological classification for systems of single particle was
studied extensively [16,17]. In these studies, topological invariants play an important role;
for example, quantized Hall conductances [18] are represented in terms of Chern numbers
associated with the Berry phase [19–22], while its extension to the case of four-dimensional
quantum Hall conductances is described by second Chern numbers [23].

Thanks to the development of emerging topological photonics [24–26], we can the-
oretically predict and experimentally observe many curious phenomena in optical sys-
tems, many of which are caused by nonlinearity [27–31]. For instance, a nonreciprocal
quantum-limited amplifier was designed in arrays of coupled resonators [32]; topolog-
ical polaritons and excitons in strong coupled microcavities [33–35] were proposed to
create an optomechanical system with Kerr nonlinearities [36,37]; and nonlinear arrays of
waveguides [38,39] were suggested for the observation of topological edge states. In such
systems, optical nonlinearities are closely related to the remarkable features of topological
photonics, resulting in novel observations being offered by strongly correlated states simi-
lar to the fractional quantum Hall effect in fermion systems. Stimulated by the potential
applications of photonic materials, topological quantum matter and topological transitions
in such systems have been widely explored and attracted increasing attention [40–43].
The theoretical technique for such systems is often within the mean-field approximation,
which reduces any many-body problem into an effective one-body problem and can be
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applied to a number of physical systems to study phenomena such as energy dispersion
and phase transitions. In the mean-field approximation, the discussions on the nonlinear
problem and the system solutions are reduced to nonlinear Schrödinger equation(NSE)
with state-dependent Hamiltonian, which is widely used to study various topics, such as
the Bose–Einstein condensate [44,45].

In this paper, we aim to study a bosonic version of hexagonal lattice model [46] with
nonlinear couplings (see Figure 1) by NSE. This interesting, two-dimensional hexagonal
lattice was first purposed in condensed matter physics [47,48] and is attractive for both
experimental and theoretical study due to the novel features of the system. The hexagonal
lattice can be experimentally realized in graphene, which is a popular system at present and
an amazing material in the frontier of physics and technology. Theoretically, the hexagonal
lattice is also amazing because it has two sites per unit cell (say, A-site and B-site), so this
system can be described by the two-band model. Earlier studies [49,50] have shown that a
self-crossing loop would exist in one-dimensional system and a nonlinear two-band model
would develop a looped band structure. In the following, we will discuss the dependence
of the looped structure [51,52] on the parameters of the system, and shed more light on the
nonlinear Dirac cone (NDC) [50] in this two-dimensional system. We find that there are
two NDCs in the Brillouin Zone (BZ), and the phase acquired by adiabatically transporting
the system on the lowest band around the two NDCs in the BZ is zero, while the phase
acquired in the same processing is quantized around only one of the NDCs. Taking the
nonlinear effect into account, we analytically calculate the Berry phase and find that the
Berry phase is exactly the Aharonov-Bohm phase in the 2D system. The quantized Berry
phase is reminiscent of the AB phase [50] and might be taken as a topological invariant for
topological materials.

This paper is organized as follows. In Section 2, we introduce a Hamiltonian to
describe the hexagonal lattice with effective nonlinear couplings. The NDCs and teh
effective Hamiltonian around the NDCs are given and discussed in this section. The
realization of this model in an experiment, for example, in a two-dimensional hexagonal
array of waveguides with refractive indices, nearest neighbor couplings and on-site Kerr
nonlinearity [53], is also suggested. In Section 3, we calculate the Berry phase acquired
when the system adiabatically transports around the NDCs of a two-dimensional system.
In Section 4, taking the nonlinearity into account, we numerically calculate the Aharonov-
Bohm(AB) phase acquired in an adiabatic evolution. We find that the Berry phase is exactly
the AB phase in this situation. This suggests that there is no difference between linear
and nonlinear systems at this point. In Section 5, we discuss the effect of extra nonlinear
interactions on the feature of the system, and examine the robustness of NDCs against
small perturbations and study the effect of random noise on the quantized phases. The
dependance of the AB phase on the site–site nonlinear coupling strength κ and the on-site
potential u is also studied in this section. Finally, in Section 6, we summarize our results.

2. Nonlinear Dirac Cones and Dynamical Stability

In this section, we first present a derivation for a non-linear two-band model, then
we discuss the Dirac cones and dynamical stability of this system. We start with the
realization of the Bose–Hubbard model in an optical lattice [54], which can be described by
the following Hamiltonian,

Ĥ =
∫

dx
∫

dyΨ̂†(x, y)[− h̄2

2m
∂2

∂x2 −
h̄2

2m
∂2

∂y2 + Vexternal(x, y)]Ψ̂(x, y)

+
1
2

∫
dx
∫

dy
∫

dx′
∫

dy′Ψ̂†(x, y)Ψ̂†(x′, y′)Vinternal(x− x′, y− y′)Ψ̂(x′, y′)Ψ̂(x, y), (1)

where Ψ̂(x, y) is the bosonic field operator, which can annihilate a boson at position (x, y). If
we expand this with the Wannier basis Ψ̂(x, y) = ∑l,m ĉl,mw(x− xl , y− ym), where operator
ĉl,m is defined to annihilate a particle in the Wannier state w(x− xl , y− ym). To shed light on
the effect of nonlinearity, we add on-site nonlinear interactions into the system and assume
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two-body interaction potential Vinternal(x− x′, y− y′) = κδ(x− x′, y− y′) with κ denoting
the interaction strength [55,56]. We further assume that only nearest-neighbor hopping
can occur and consider terms with on-site interactions in terms of their Wannier states. In
experiments, this optical external tilted potential in a 2D hexagonal lattice including two
sublattices, A and B, can be formed by three retro-reflected laser beams, and potential in
sublattices A and B is adjustable, with a phase between different beams [57,58]. Loading
bosons (BECs [55,59] is better) into this optical hexagonal lattice, we obtain a bosonic
hexagonal lattice model with two different lattices, denoted by A and B, respectively (see
Figure 1). Here, we need to replace ĉl,m with âl,m, b̂l,m. The site–site nonlinear couplings
between lattices A and B will be discussed later. With this consideration, the system
Hamiltonian reads,

Ĥ = ∑
l,m

ua â†
l,m âl,m + ub b̂†

l,m b̂l,m

+ ∑
l,m

J(â†
l,m b̂l,m + â†

l,m b̂l−1,m + â†
l,m b̂l,m−1) + h.c. (2)

+ ∑
l,m

κ/2(â†
l,m â†

l,m âl,m âl,m + b̂†
l,m b̂†

l,m b̂l,m b̂l,m),

where (l, m) labels the lattice site(l, m), which is an abbreviated representation of co-
ordinates, rA(B)(l,m)

= lc1 + mc2, rA(l,m) = rB(l,m) + c0, with c1 = (1/2)[3,
√

3], c2 =

(1/2)[3,−
√

3] and c0 = [−1, 0]. a(b)†
l,m(a(b)l,m) is the creation (annihilation) operators of

bosons on the lattice site (l, m) for A(B), ua and ub denotes the tilted on-site potential, J
is the hopping strength between lattice A and lattice B, and κ stands for the nonlinear
interaction strength, which is limited to positive throughout this paper.

Figure 1. Coupled bosonic hexagonal lattice. Here green (orange) dots denote lattice A(B), on-site
potential energy for lattice A(B) is u(−u), J is the hopping strength between lattice A and lattice B,
and the nonlinear on-site interaction constant of the lattice A(B) is κ. κ12 denotes site–site nonlinear
coupling constant between lattice A and lattice B.

Using the Heisenberg equation i∂t âl,m(b̂l,m) = [âl,m(b̂l,m), Ĥ], we can obtain a time-
dependent NSE in the real space regarding âl,m(b̂l,m),

i∂t â(l,m) = ua â(l,m) + Jb̂(l,m) + Jb̂(l−1,m)

+ Jb̂(l,m−1) + κâ†
(l,m) â(l,m) â(l,m),

i∂t b̂(l,m) = ub b̂(l,m) + Jâ(l,m) + Jâ(l+1,m) (3)

+ Jâ(l,m+1) + κb̂†
(l,m) b̂(l,m) b̂(l,m).
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And then we take the expectation value with Glauber coherent states 〈Φ|âl,m(b̂l,m)|Φ〉where
this coherent state has the form, |Φ〉 = ⊗

(l,m) |α(β)l,m〉, where |α(β)l,m〉 = e−|α(β)l,m |2/2

∑∞
n=0

(α(β)l,m)n
√

n!
|n〉. We get the coherent state amplitude α(β)l,m = 〈Φ|âl,m(b̂l,m)|Φ〉 in the

time-dependent form of NSE,

i∂tα(l,m) = uaα(l,m) + Jβ(l,m) + Jβ(l−1,m)

+ Jβ(l,m−1) + κ|α(l,m)|2α(l,m),

i∂tβ(l,m) = ubβ(l,m) + Jα(l,m) + Jα(l+1,m) (4)

+ Jα(l,m+1) + κ|β(l,m)|2β(l,m),

where we consider equation of motion in the mean-field approximation [60]. By the virtue
of periodical boundary condition (PBC) α(β)l,m = ψ1(2)(kx, ky)ei(lkx+mky) and within the
mean-field approximation [61,62], the time-independent NSE in the momentum space
takes the following form,

H(kx, ky)ψ(kx, ky) = E(kx, ky)ψ(kx, ky), (5)

with

H(kx, ky) =

(
ua + κ|ψ1|2 dx − idy

dx + idy ub + κ|ψ2|2
)

, (6)

where we obtain the mean-field Hamiltonian. To make this mathematical form more
intuitive, we can transform different on-site potentials ua, ub in A and B into potential
values with the opposite sign, where uaσ+ + ubσ− = [(ua − ub)/2]σz + [(ua + ub)/2]σ0
with σ+ = [1, 0; 0, 0], σ− = [0, 0; 0, 1], and σx,y,z, σ0 are Pauli matrices and identity matrix,
respectively. For convenience, we set dz = u = (ua − ub)/2 and ua = −ub. We obtain,

dx = J cos k · c0 + J cos k · 1 + J cos k · 2,

dy = J sin k · c0 + J sin k · 1 + J sin k · 2, (7)

dz = u,

with 1 = c0 + c1, 2 = c0 + c2, k = [kx, ky], and kx(ky) is the quasimomentum. ψ(kx, ky) =
[ψ1(kx, ky), ψ2(kx, ky)]T denotes complex amplitudes in the momentum space, and we
should address whether these complex amplitudes represent the eigenstate of the mean-
field Hamiltonian, so the system is nonlinear since the Hamiltonian is state dependent.

In the following, we will first numerically calculate and plot the energy band of this
nonlinear Hamiltonian, and show that around points k1 = 2π

3 (1, 1√
3
) and k2 = 2π

3 (1,− 1√
3
),

more than two eigenvalues will appear; these two special points are called nonlinear Dirac
points [50], and nonlinear Dirac cones (NDCs) can arise around them. Finally, in this section,
we analyze the dynamical stability of the system and derive a effective Hamiltonian around
the points. Throughout this paper, we assume that all physical variables, including J, κ, u,
time t, are of dimensionless, and h̄ = 1.

Figure 2 shows the first two energy band structures. In the previous studies of a
nonlinear system, some loop structures emerge in the energy spectrum [52]. In our case,
when the κ = 0, the system gets back to the linear one, which is an ordinary hexagonal
lattice with mass term u [46]. The ground energy band of this linear system is depicted
in Figure 2a. As κ gradually increases to a critical value κc, specifically, for κ = κc, the
ground energy band starts to produce a cone; see Figure 2b. This critical value κc is related
to on-site potential u, and we can obtain this relation from the approximate Hamiltonian
in the following. For κ > κc, the cone structure appears [50], and we find the following
difference between linear and nonlinear lattice models. Dirac points in the linear lattice
models can close and reopen, which corresponds to gapless points and gapped points as
parameters change. However, this cannot happen in our nonlinear lattice models. Namely,
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the nonlinear Dirac points fundamentally change their features, which are gapless points
for as long as the parameters reach, and reach beyond, the critical value, at which point no
reopening happens. Figure 2c shows the second energy band produced from the ground
energy band. This observation is useful for the calculations in Section 3 for the Berry phase
in nonlinear systems, and suggests that we need a new topological invariant to witness the
difference based on κ in the ground energy band. In other words, in our lattice model with
κ = 0, Chern number of the lowest band can distinguish different topological phases, but it
does not work for κ ≥ κc. This means we need a new topological invariant to characterize
the topological phase in this case. In the following, we will propose to use the Berry phase
around nonlinear Dirac point as the topological invariant and focus on the first two energy
bands and calculate the topological invariant for the ground energy band.

(a) (b) (c) (d)

Figure 2. The cone structure in the nonlinear bosonic hexagonal lattice model. Here, we only plot the
first two energy bands. The chosen parameters are J = 1, u = 1.5, (a) κ = 0, (b) κ = 3, (c) κ = 5. The
blue circle in (b) indicates that a cone structure will be produced. (d) Enlarged structure focusing on
the cone, the blue dot in this structure indicates nonlinear Dirac points.

We have already shown the energy bands; however, we do not know whether these
energy bands (eigenstates of the Hamiltonian) are stable in the presence of nonlinear
interactions. For nonlinear systems, solution stability is very important and if these
solutions are not stable, the Berry phase calculated in the next section is meaningless. For
the hexagonal lattice model with nonlinear interactions, the stability of eigenstates can be
analyzed by the method below, in the same manner as in [63] to analyze a 1D nonlinear
system. As we focus on the first two bands, which possess NDCs, we only provide a
stability analysis of these two bands.

To be specific, we add a small variation, described by

δψ(kx, ky, t) = [δψ1(kx, ky, t), δψ2(kx, ky, t)]T , (8)

which we can add into the states ψ(kx, ky, t) = ψ(kx, ky)e−iE(kx ,ky)t, (h̄ = 1) to solve the
time-dependent NSE with Hamiltonian Equation (6). Writing

δψj(kx, ky, t) = e−iEj(kx ,ky)tδφj(kx, ky, t), (9)

with Ej(kx, ky) denoting the j−th eigenvalue(the j-th energy band) of the system, we have

i
∂

∂t

(
δφ(kx, ky, t)
δφ∗(kx, ky, t)

)
= L

(
δφ(kx, ky, t)
δφ∗(kx, ky, t)

)
, (10)

where,

δφ(kx, ky, t) = [δφ1(kx, ky, t), δφ2(kx, ky, t)]T ,

δφ∗(kx, ky, t) = [δφ∗1 (kx, ky, t), δφ∗2 (kx, ky, t)]T , (11)

as well as,

L =

(
Hs + H1 H2
−H∗2 −H∗s − H1

)
, (12)
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with

Hs = H(kx, ky, ψ(kx, ky))− E(kx, ky)I, (13)

and

H1 = κ

(
|ψ1(kx, ky)|2 0

0 |ψ2(kx, ky)|2
)

,

H2 = κ

(
ψ2

1(kx, ky) 0
0 ψ2

2(kx, ky)

)
. (14)

Here, I represents identity matrix. Since the variation and its conjugate partner are coupled,
we need to add the conjugate variation to the equation. The time evolution of the variation
is governed by the operator e−iLt, which is not unitary; hence, the eigenvalues Ln of L
can be complex. By examining the eigenvalues of L, we can obtain information about the
stability of the eigenstates ψj(kx, ky), j = 1, 2. This means the system is stable against small
variations if the imaginary part of Ln ( for ∀n) is zero [64]. We have performed extensive
numerical simulations, and the numerical calculation shows that the ground energy band
is dynamically stabile throughout the BZ, while the second energy band is unstable, see
Figure 3, where we demonstrate the maximal imaginary value of Ln for the second band.

(b)(a)

Figure 3. max(Im(Ln)) for the second energy band as a function of kx and ky. (a) shows that the
second energy band is unstable, while the ground energy band is stable (not shown here). (b) is
an enlarged part of the area where the eigenvalues Ln are complex (not real). The chosen system
parameters are J = 1, u = 1.5 and κ = 5.

Before closing this section, we present an approximate Hamiltonian to describe the
system close to the nonlinear Dirac points. The Hamiltonian is valid up to the first order in
nonlinear Dirac points. To this end, we write E = E(0) + E(1), di = d(0)i + d(1)i , i = x, y, z,
where superscripts (0) and (1) represents zero-order and first-order in nonlinear Dirac
points, respectively. Around the nonlinear Dirac points k1 = 2π

3 (1, 1√
3
), k2 = 2π

3 (1,− 1√
3
),

we obtain an approximate Hamiltonian as

H(kx, ky) = d(1)x σx + d(1)y σy −
2uE(1)

κ
σz +

κ

2
σ0, (15)
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where

d(1)x = −3
√

3
4

J(kx −
2π

3
)∓ 3

4
J(ky ∓

2
√

3π

9
),

d(1)y =
3
4

J(kx −
2π

3
)∓ 3

√
3

4
J(ky ∓

2
√

3π

9
),

E(1) = ±κ

√
(d(1)x )2 + (d(1)y )2

κ2 − 4u2 . (16)

The first two energy bands are described by different Hamiltonian because the hexagonal
lattice Hamiltonian is eigenstate-dependent; hence, it is nonlinear. It should be worth
noting that this approximate Hamiltonian would lead to the appearance of nonlinear Dirac
points(κ > κc); meanwhile, we find that E(0) is real when κ > 2u so that we obtain more
than two eigenvalues; thus, κc = 2u is the critical point for appearance of NDCs.

3. Nonlinear Berry Phase

In this section, we will follow the idea in Ref. [65] to calculate the Berry phase [66,67]
acquired when the system adiabatically transports around the nonlinear Dirac points. The
idea is as follows. We assume that k is the parameter vector that changes slowly with
time. Introducing an adiabatic parameter ε ∼ dk

dt that can be viewed as the measure of how
slowly the parameters change and writing ψ(k(t)) = e−iΛφ(k(t)), with φ(k(t)) belonging
to the projective Hilbert space, we can expand φ(k(t)) and Λ in power of ε [63,65],

φ(k(t)) = ε0φ(0)(k(t)) + ε1φ(1)(k(t)) + · · · ,

Λ = Λ(0)(ε0) + Λ(1)(ε1) + · · · . (17)

When the adiabatic parameter ε tends towards zero, the adiabatic limit can be achieved.
Substituting this expansion into the time-dependent NSE, we obtain,

dΛ
dt

= γ(0)(ε0) + γ(1)(ε1) + · · · . (18)

In the adiabatic limit, φ(0)(k(t)) is the instantaneous eigenstate and φ(1)(k(t)) is induced
by the slow change, which depends on the adiabatic parameter ε and is proportional to ε.
After simple algebras, we have,

γ(0)(ε0) = E(0)(k(t)),

γ(1)(ε1) = ∑
α=1,2

−i(φ(0)
α )∗

∂

∂t
φ
(0)
α + κ|φ(0)

α |2Cα. (19)

Here, φ
(0)
α and φ

(1)
α represent the element of vector φ(0)(k(t)) and φ(1)(k(t)), respectively.

Cα = (φ
(0)
α )∗φ

(1)
α + φ

(0)
α (φ

(1)
α )∗ was defined, which can be obtained by solving the following

equations,

∑
α=1,2

Cα = 0,

∑
β=1,2

gφ
(0)
α |φ

(0)
β |

2Cβ − gφ
(0)
α Cα = ∑

β=1,2
i{φ(0)

α [(φ
(0)
β )∗

∂

∂t
φ
(0)
β ]− ∂

∂t
φ
(0)
α }, α = 1, 2. (20)

The equation on the first line of Equation (20) was derived from the normalization condition,
φ†φ = 1, with φ = φ(0) + φ(1) and setting (φ(0))†φ(0) = 1. The second line was obtained
by substituting φ = φ(0) + φ(1) into the time-dependent NSE with φ(0) being the solution
of the time-independent NSE.
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Now, we apply this theory to our system. First, we calculate the Berry phase by using
the eigenfunctions solved by the approximate Hamiltonian in Equation (15), acquired
around nonlinear Dirac points in the lower branch for κ > 2u. For κ < 2u, the approximate
eigenfunctions can be obtained in the same manner. These eigenfunctions read, for κ < 2u,

Φ =

(
φ
(0)
1

φ
(0)
2

)
=

(
cos θ

2
sin θ

2 eiϕ

)
, (21)

with

tan ϕ(kx, ky) =
d(1)y

d(1)x

,

tan θ(kx, ky) =

√
(d(1)x )2 + (d(1)y )2

u
, (22)

where d(1)x and d(1)y are defined in Equation (16), and ground energy E = E(0) + E(1), with

E(1) =
D0 −

√
D1((d

(1)
x )2 + (d(1)y )2) + D2

F
, (23)

with,

D0 = 4u3 − 4κu2 + 4κ2u,

D1 = 4(2u− κ)(10u− κ)u2,

D2 = (2u− κ)4u2, (24)

F = 20u2 − 12κu + κ2.

Using the expression derived for Λ as well as the equation of Cα in the last section, we
have,

Λ(1) =
∮

Γ
dk ∑

α=1,2
−i(φ(0)

α )∗∂kφ
(0)
α + κ|φ(0)

α |2Cα

= π(1− cos θ) +
∮

Γ
dk

1
2

cos2 θC1 +
1
2

sin2 θC2 (25)

= 0,

where C1 = C2 = 0, θ → 0 when κ < 2u, and we set a closed small loop, denoted by Γ in
the BZ, enclosing the suspicious nonlinear Dirac points. We find that tan θ ∼ Γ→ 0 when
this loop is small. As a result, in the Bloch sphere, this small loop reduces to a point located
at the north pole in Bloch sphere so that C1 = C2 = 0. The physics behind this results show
that when κ < 2u, the energy band is flat. In other words, there is no singular point on the
band, and hence the Berry phase is zero.

The situation changes when κ > 2u. The eigenfunction in this case takes the same
form as in Equation (21), but with different θ and ϕ,

tan ϕ(kx, ky) =
d(1)y

d(1)x

, tan θ =

√
κ2 − 4u2

2u
. (26)
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By the same equation, with C1 = −C2 = 1
2κ

∂ϕ
∂k and θ = const when κ > 2u, the Berry phase

follows,

Λ(1) =
∮

Γ
dk ∑

α=1,2
−i(φ(0)

α )∗∂kφ
(0)
α + κ|φ(0)

α |2Cα

= π(1− cos θ) +
∮

Γ
dk

1
2

cos2 θC1 +
1
2

sin2 θC2 (27)

= π.

Collecting these results, we obtain a relation between the Berry phase and the nonlinear
strength κ,

Λ(1) =

{
π, κ > 2u
0, κ < 2u

, (28)

where the critical value of κc is 2u. Notice that, the phase change at κ = 2u is very sharp,
ranging from 0 to π.

One may be curious about the Berry phase beyond the approximate Hamiltonian
approach. At the end of this section, we will calculate the Berry phase based on the exact
eigenstate of the nonlinear Hamiltonian Equation (6), which can be written in the following
form,

H(k) = dxσx + dyσy + dz(E)σz, (29)

with

dz(E) = u∆(E), (30)

where we have rewritten the state-dependent Hamiltonian as an energy-dependent Hamil-
tonian and define

∆(E) =
2E(k)− κ

2(E(k)− κ)
, (31)

dx, dy are given in Equation (7).
Similar to the last section, we can provide the eigenfunction as before, but with

different θ and ϕ,

tan ϕ(kx, ky) =
dy

dx
, tan θ =

√
d2

x + d2
y

dz(E)
. (32)

To make a comparison with the results in the last section, we separately discuss the case of
κ < 2u and κ > 2u. We establish a closed loop enclosing the nonlinear Dirac point k1(k2)
in the BZ, which is a gapless point when κ > 2u. Meanwhile, we obtain E(k1(k2)) whose
value is κ − u when κ < 2u and κ/2 when κ > 2u. This implies that if κ > 2u, the closed
loop would enclose a gapless point localized at k1(k2). As a consequence, we need to
obtain a complex connected closed curve to dig up a small circle including this gapless
point. Different from κ < 2u regime, namely, the case without gapless points, an extra
integral of the small circle including gapless point makes a contribution to the Berry phase,
so that we obtain π in the Berry phase. As a comparison to κ > 2u, the gapless point will
disappear in this area leading to a zero Berry phase for κ < 2u. We get the same result as in
the last section, where we use approximate analytical methods.

4. Aharonov-Bohm (AB) Phase Accumulated in Adiabatic Transport

In this section, we will examine how phase difference accumulates when the system
transports adiabatically along two paths. The two paths are depicted in Figure 4a and
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the phase difference can be viewed as the Aharonov-Bohm (AB) phase [68] in momentum
space [63]. This consideration is reminiscent of interference setup [69] in momentum space,
which might pave the way for the completion of experimentally topological optical lattice
systems. By virtue of this kind of setup, we can obtain the nonlinear Berry phase from
numerical results based on time-dependent NSE.

We restrict the study in the adiabatic limit. For this purpose, we use a slow variation in
angle dϕ/dt, which will be defined below to quantify the adiabatic evolution. Numerically,
we can check whether the system state is very close to the instantaneous eigenstate |E(t)〉
of H(t).
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Figure 4. (a) Two paths PA1B1C1D1Q and PA2B2C2D2Q that enclose the nonlinear Dirac points. The
start and end points are P(k1x,k1y+R+r) and Q(k2x,k2y-R-r), respectively, where r = 10−4. Dashed blue
circles indicate the position of NDCs, and blue dotes label the nonlinear Dirac points. Dashed blue
lines are the common paths and the dashed square denotes the Brillouin Zone(BZ). (b) is enlarged
area of A in (c), which show that the phase difference in the initial stage is zero and it finally comes
back to zero. (c) Phase difference between two adiabatic paths versus time t. All parameters are
chosen to be the same as before, J = 1, u = 1.5, κ = 5 and ωl = −0.5× 10−3.

The curves used to observe the phase difference in a complete adiabatic evolution
process are shown in Figure 4a. At the beginning of this process, these two time-dependent
states will start to separate from each other (point P in Figure 4a), and then they will
simultaneously experience two semicircles, including a nonlinear Dirac point and a straight
line (B1C1 or B2C2), which connects two semicircles. Next, they will reunite so that the AB
phase will be generated by these two paths in the momentum space (point Q in Figure 4a).
This circumstance is reminiscent of the Aharonov-Bohm effect.

To be specific, we choose the two paths of kx(t) = k1(2)x + R cos ϕ(t) and ky(t) =
k1(2)y + R sin ϕ(t), where k1(2)x, k1(2)y represents the positions of nonlinear Dirac points.
R = 10−4 and ω = dϕ/dt is a small parameter to enable the adiabatic evolution. Two
cases are considered: one is a full circle enclosing one of the NDCs as an A1B1 path and
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A2B2 path, depicted in Figure 4a. The other is two full circles enclosing all NDCs in BZ
as A1B1C1D1 path and A2B2C2D2 path in Figure 4a. We chose the total evolution time
T = 2π× 103 in the first case and T = 4π× 103 + (ky02 − ky01 + 2R)/ωl , with ωl being the
variance rate in B1C1 and B2C2 in the second case. The time step is set as dt = T × 10−3,
and the evolution ends at (kx, ky) = (kx(T), ky(T)), where the phase difference of two
paths can be directly located. The phase acquired in the first case is π with nonlinear Dirac
points, while it is zero in the absence of nonlinear Dirac points, see Figure 4.

For κ > 2u, the phase acquired in the second case is given in Figure 4c, where an
oscillation can be found in the phase difference. For κ < 2u, the phase difference in the
whole process is always zero, so we focus on the κ > 2u regime. The following observation
can be made: (1) The two states are initially set at start point P, and then these two states
experience path PA1 and path PA2, respectively, where they do not have a phase difference
in the initial paths, as shown in in area A of Figure 4c. (2) These two states travel along path
A1B1 and path A2B2, respectively. When they arrive at B1 and B2, the phase difference is
π; it remains unchanged in the B1C1 and B2C2 paths, as denoted in area B. (3) These two
states reach endpoint point Q and the phase difference returns to zero, as depicted in area
C. Finishing the paths in (1) and (2) together can be viewed as the system completing a
path that encloses only one NDC, which leads to the quantization of the acquired nonlinear
Berry phase on this path. The paths in (2) and (3) comprise a curve enclosing another NDC,
resulting in the quantization of the nonlinear Berry phase acquired around another NDC
but with teh opposite sign.

5. Site-Site Nonlinear Coupling, Perturbation and Noise

In the above analysis, the intersite nonlinear couplings are ignored. In this section, we
will analyze the effect of intersite nonlinear couplings and imperfection on the predicted
feature. For this goal, we consider how site-site nonlinear coupling influences the quanti-
zation of the Berry phase, and examine the robustness of the NDCs against perturbations
and noises.

Let us start from the Hamiltonian, describing hexagonal lattices with both intrasite
nonlinear couplings κ and intersite nonlinear couplings κ12 [70–72],

H = ∑
l,m

ua â†
l,m âl,m + ub b̂†

l,m b̂l,m

+ ∑
l,m

J(â†
l,m b̂l,m + â†

l,m b̂l−1,m + â†
l,m b̂l,m−1) + h.c.

+ ∑
l,m

κ/2(â†
l,m â†

l,m âl,m âl,m + b̂†
l,m b̂†

l,m b̂l,m b̂l,m) (33)

+ ∑
l,m

κ12 â†
l,m b̂†

l,m b̂l,m âl,m.

Following the same procedure as we did in the first section, we can obtain E(1) modified
by κ12,

E(1) = ±κ(κ − κ12)

√√√√ (d(1)x )2 + (d(1)y )2

(κ − κ12)2 − 4u2 . (34)

Similarly, the critical value is given by κc = κ12 + 2u, where κ12 is viewed as an extra
constant to change the critical value.

As shown in Figure 5a, it is necessary to discuss the relationship between the parame-
ters u and κ, as well as the phase difference that is obtained. In the noninteracting lattice
model, u is the mass term that can break down the symmetry in a hexagonal lattice model,
and u can open and close the band gaps. The nonlinear Dirac points are closed forever if
the gap starts to close at κ = κc. When the NDCs appear (κ > κc), the Berry phase remains
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quantized, in agreement with the phase difference (also known as the AB phase). It remains
quantized in our numerical calculations.
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Figure 5. Berry phase versus u and κ with (a) and without (b) the site-site nonlinear couplings.
κ12 = 3 was chosen for (b). The two dashed blue lines denote the boundary (critical lines) for the
system to have a 0 or π phase. Clearly, the line is shifted by κ12 in (b). (c) When κ12 = −1.4, 0, 1.4, AB
phase versus κ. (d) AB phase versus temporal random noise. The strength of the random noise Jr

is set eas 1.5× 10−4. AB phase with temporal random noise is vertically offset for clarity. System
parameters are fixed to be the same as before, J = 1, u = 1.5 in (c,d).

In general, u in the linear lattice model can be used to characterize different topological
phases, but in the system with nonlinear couplings κ, this does not work. Namely, the
system can be in the same topological phase with different values of u, while it can be in
two distinct phases with the same u. Nonlinear Dirac points are especially different from
its linear counterparts, in that the energy band gaps close and reopen in the linear case,
while the energy gaps close and do not reopen again.

The nonlinear site-site couplings κ12 can alter the position of topological transition;
see Figure 5b. Through the modulation of coupling parameters, such as κ, κ12, different
topological phases can be reached. From Figure 4d, we find that phase difference will come
back to zero if the two time-dependent states travel around all the nonlinear Dirac points
in the entire BZ, so we anticipate that it is possible for these two time-dependent states
to not produce a quantized phase difference in the whole evolution process in this case.
In realistic experiment, the two evolution paths may be separately influenced by noise.
To examine the effect of noise on the quantization of the phase, we introduce a random
Hamiltonian Hrandom(t) = Jrdrandom · σ to the system, where Jr denotes the strength of
random noise. In this case, the total Hamiltonian is the system Hamiltonian in Equation (6)
plus this random Hamiltonian. Here, drandom is a randomly created number in the interval,
0 < drandom < 1. The results can be obtained by averaging over the noises, and are shown
in Figure 5d, which suggests that we should keep the whole setup clean and try to avoid
any disturbance, because the quantization of the AB phase is sharply changed due to the
presence of noise. Thus, we claimed that the quantization of the phase is fragile; this means
that the quantization can be easily broken down by small random noises, as in Figure 5d.

From Figure 5c,d (especially (c)) we find that there are values between 0 and 1 around
κc. When we decrease the step of κ, we find that the phase continuously changes with κ
around κc.
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In topological insulators without nonlinear couplings, DCs are unstable due to their
extra mass term. One may wonder, if the stability condition changes when nonlinearity
is taken into account. In the following, we will examine that stability by introducing an
additional term of perturbation Hp = gxσx + gyσy + gzσz into the Hamiltonian Equation (6),
we find that these NDCs are robust against perturbations for this 2D system. The same
robustness was found in the 1D nonlinear Su–Schrieffer–Heeger(SSH) chain in [63]. The
nonlinear Dirac points in our system would be changed by the perturbation. This can be
understood by the approximate Hamiltonian with perturbations,

Ha = (d(1)x + gx)σx + (d(1)y + gy)σy −
2(u + gz)E(1)

κ
σz +

κ

2
σ0, (35)

where

E(1) = ±κ

√√√√ (d(1)x + gx)2 + (d(1)y + gy)2

κ2 − 4(u + gz)2 . (36)

Here, gx, gy and gz are perturbation parameters. In the Figure 6, a small shift in the NDCs
can be found; they are stable and robust against the perturbations. Note that in the whole
analysis, we set the parameters properly to make sure that NDCs exist.

(a) (b)

Figure 6. Robustness of NDCs with or without perturbation in (a) gx = 0, gy = 0, gz = 0 and (b)
gx = 0.35, gy = 0.3, gz = 0.22. Blue circles and spots denote position of NDCs and nonlinear Dirac
points respectively. Pertubation we choose is arbitrary and system parameters are fixed as before,
J = 1, u = 1.5 and κ = 5.

6. Discussion and Conclusions

The realization can be briefly summarized as follows. Firstly, our model with on-site
nonlinear coupling can be realized in coupled cavity arrays (where atoms and photons
are trapped) with on-site interaction [73], where the photons effectively interact with each
other inside a cavity via nonlinear medium (for example, Kerr medium). The strength of
the nonlinearity can be tuned. Secondly, our model with inter-site nonlinear coupling can
be realized in an array of QED cavities coupled with a nonlinear medium, and nonlinear
couplings lead to nearest-neighbor Kerr terms [71,72]. In this way, two types of couplings
can be characterized by two different parameters.

To summarize, we studied the nonlinear Dirac cone (NDC) in a hexagonal lattice with
on-site and site-site nonlinear interactions. Gapped or gapless nonlinear Dirac points were
found, with a boundary at the critical point given by κ = κc. This critical value is changed
when the site–site nonlinear coupling is taken into account. The Berry phase acquired
for a system transporting adiabatically around the nonlinear Dirac points is calculated,
which is π when the system possesses a looped band structure, while it is zero in another
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case. This phase can be calculated by means reminiscent of the interference in terms of the
Aharonov-Bohm phase.

This result suggests that the nonlinear Berry phase in this two-dimensional(2D) system
could be a kind of topological number to characterize the topology of 2D systems, as well
as it is characterized in 1D systems [63]. This stimulates further studies on the emerging
topological photonic structures and topological lasing cavities, such as gyromagnetic
photonic crystals, helical waveguides, array of ring waveguides, electric circuits with
nonlinear capacitance, etec. We hope that the special structures found in this paper can still
exist in the mentioned systems, and maybe we could find some more curious features in
these photonic structures. Without a doubt, pursuing these possible research avenues will
be the main concern in our future work.
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