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Abstract: When rolling bearings have a local fault, the real bearing vibration signal related to the
local fault is characterized by the properties of nonlinear and nonstationary. To extract the useful
fault features from the collected nonlinear and nonstationary bearing vibration signals and improve
diagnostic accuracy, this paper proposes a new bearing fault diagnosis method based on parameter
adaptive variational mode extraction (PAVME) and multiscale envelope dispersion entropy (MEDE).
Firstly, a new method hailed as parameter adaptive variational mode extraction (PAVME) is presented
to process the collected original bearing vibration signal and obtain the frequency components related
to bearing faults, where its two important parameters (i.e., the penalty factor and mode center-
frequency) are automatically determined by whale optimization algorithm. Subsequently, based on
the processed bearing vibration signal, an effective complexity evaluation approach named multiscale
envelope dispersion entropy (MEDE) is calculated for conducting bearing fault feature extraction.
Finally, the extracted fault features are fed into the k-nearest neighbor (KNN) to automatically identify
different health conditions of rolling bearing. Case studies and contrastive analysis are performed to
validate the effectiveness and superiority of the proposed method. Experimental results show that
the proposed method can not only effectively extract bearing fault features, but also obtain a high
identification accuracy for bearing fault patterns under single or variable speed.

Keywords: variational mode extraction; multiscale envelope dispersion entropy; rolling bearing;
fault diagnosis

1. Introduction

Rolling bearings are one of the important parts of mechanical transmission system,
which plays an extremely important role in wind power generation, rail transportation,
petrochemical engineering and other modern industries [1]. Due to the influence of the
harsh and high strength working environment, bearings are prone to various failures (e.g.,
inner race, outer race and ball fault). If a bearing local fault cannot be detected in a timely
manner, it will pose a serious threat to personal safety and have a significant impact on so-
cial and economic development [2]. Therefore, the high-efficiency fault diagnosis of rolling
bearings has the important practical significance for keeping a mechanical equipment in
good condition.

Because the practical bearing vibration signal has strong nonstationary and nonlin-
ear traits, traditional methods are very difficult to address this kind of problem. Hence,
many signal processing techniques have been presented to analyze and process the non-
stationary and nonlinear bearing vibration signal, such as empirical mode decomposition
(EMD) [3], empirical wavelets transform (EWT) [4], local mean decomposition [5], adaptive
local iterative filtering (ALIF) [6], symplectic geometry mode decomposition (SGMD) [7],
variational mode decomposition (VMD) [8], successive multivariate variational mode
decomposition (SMVMD) [9], the improved variational mode decomposition based on
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fractional Fourier transform (VMD-FRFT) [10] and so on. The above mentioned methods
have been successfully used in mechanical vibration signal processing and bearing fault
diagnosis. Kostopoulos [11] adopted EMD and Hilbert-Huang transform to extract bearing
fault features and applied the hybrid ensemble detector to identify bearing health condi-
tions. Yu et al. [12] employed EMD and principal component analysis (PCA) to extract
and select damage-sensitive features. Zhao et al. [13] proposed an enhanced empirical
wavelet transform (MSCEWT) based on a maximum-minimum length curve method to
diagnose the fault types of motor bearings. Liu et al. [14] proposed a time-frequency repre-
sentation method based on robust local mean decomposition to analyze multicomponent
amplitude-modulated and frequency-modulated signal and execute bearing fault diagno-
sis. Zhang et al. [15] combined the k-optimized adaptive local iterative filtering, improved
multiscale permutation entropy and BP neural network to achieve fault classification of
rolling bearings. Zheng and Xin [16] used symplectic geometry mode decomposition
(SGMD) and power spectral entropy (PSE) to extract fault feature information of a hy-
draulic pump signal. Jiang et al. [17] employed VMD and a multiresolution teager energy
operator to extract the fault-related impulses hidden in the raw bearing vibration signal.
Among the above methods, due to the solid theoretical foundation, strong noise robustness
and good antimodal aliasing ability, the application of VMD is most frequent in bearing
fault diagnosis. Nevertheless, VMD suffers from two serious problems [18]. Firstly, the
computational efficiency of VMD is relatively slow, which is not conducive to online
monitoring. Secondly, the performance of VMD is largely determined by its two input
parameters (i.e., the penalty factor and the number of decomposition mode). Focus on
these problems, a new signal processing method named variational mode extraction (VME)
is proposed by Nazari and Sakhaei [19] in 2018, which can avoid the disadvantages of
high computational burden existing in the VMD method. However, similar to VMD, in
the VME method, there are also two key parameters (i.e., the penalty factor and mode
center-frequency) that need to be artificially selected [20]. Therefore, to solve this issue, this
paper proposes a parameter adaptive variational mode extraction (PAVME) to process the
collected bearing vibration data by introducing a new parameter optimizer called whale
optimization algorithm (WOA) to automatically and effectively determine the important
parameters (i.e., the penalty factor and mode center-frequency) of VME.

According to the fault diagnosis process of rolling bearings, after vibration signal
processing using the VME method, the effective bearing fault feature extraction is critical
for obtaining a good fault diagnosis result. Currently, entropy-based feature extraction
has attracted more and more attention in bearing fault diagnosis. Common entropy meth-
ods have spectral entropy [21], sample entropy (SE) [22], permutation entropy (PE) [23],
fuzzy entropy (FE) [24], Deng entropy [25], symbolic entropy [26] and dispersion entropy
(DE) [27]. However, these entropies only extract bearing fault information at a single scale.
Hence, to extract more fault information over multiple scales, their multiscale versions
(e.g., multiscale sample entropy (MSE) [28], multiscale permutation entropy (MPE) [29],
multiscale fuzzy entropy (MFE) [30] and multiscale dispersion entropy (MDE) [31]) are also
developed for evaluating the complexity of a time series and revealing fault characteristic
information hidden in bearing vibration signal. Among these multiscale entropies, the
performance of MSE and MPE are influenced by data length, that is, they are easy to
generate the undefined entropy value for short-term time series. Compared with MSE
and MPE, MDE has less dependence on data length and faster running speed [32]. When
rolling bearing has a local fault, there are a series of periodic impulse trains in the result-
ing bearing vibration signal, the envelope demodulation method has been shown to be
effective in excavating periodic impulse feature information [33]. Therefore, considering
the advantages of MDE and envelope demodulation, this paper proposes a new signal
complexity evaluation method named multiscale envelope dispersion entropy (MEDE) by
integrating the envelope signal into MDE, which can more accurately describe complexity
and uncertainty of a time series. In a word, the main contributions and novelties of this
paper are summarized as follows:
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(1) A new signal processing method named parameter adaptive variational mode ex-
traction (PAVME) based on the whale optimization algorithm (WOA) is proposed,
which can avoid the shortcomings of empirical parameter selection of the original
VME. Concretely, the PAVME method is regarded as a preprocessor to process the
original collected bearing vibration signal, which is aimed at removing some sig-
nal interference components and highlighting the frequency components related to
bearing faults.

(2) A novel complexity index named multiscale envelope dispersion entropy (MEDE) is
presented by combining envelope analysis and MDE. Specifically, MEDE is regarded
as a feature extractor to extract the useful bearing fault feature information.

(3) A bearing fault diagnosis method based on PAVME and MEDE is proposed for
automatically identifying bearing fault categories.

(4) The comparison and analysis of experimental cases validate the effectiveness and
superiority of the proposed method in bearing fault identification.

The organization of this paper is as follows. Section 2 introduces the parameter
adaptive variational mode extraction and conducts the comparison among PAVME, VME,
VMD and EMD. Section 3 describes the theory of multiscale envelope dispersion entropy
and conducts the comparison among MEDE, MDE, MPE and MSE. Section 4 shows the
specific steps of the proposed fault diagnosis method. Section 5 validates the effectiveness of
the proposed method by using experimental data analysis. Section 6 draws the conclusion
part of this paper.

2. Parameter Adaptive Variational Mode Extraction
2.1. Variational Mode Extraction

Variational mode extraction (VME) is a new signal processing method, which can
effectively obtain the desired mode components by presetting the penalty factor and mode
center-frequency. The theoretical ideas of VME are similar to VMD, but it is faster than the
VMD because it only looks for the specified frequencies. Briefly speaking, in the VME, the
original time series f (t) can be split into two parts by the following equation:

f (t) = ud(t) + fr(t) (1)

where ud(t) is the desired mode components, fr(t) is the residual signal. Specifically, mode
extraction process of VME is established based on the following three conditions.

(1) The desired mode components have compactness around the center-frequency. To
achieve this goal, minimization problem of the following objective function is solved to
obtain the desired compact mode components.

J1 =

∥∥∥∥∂t

[(
δ(t) +

j
πt

)
∗ ud(t)

]
e−jωdt

∥∥∥∥2

2
(2)

where ωd denotes the center-frequency of mode components ud(t), δ(t) represents the
Dirac distribution, and the asterisk * represents the convolution operation.

(2) Spectral overlap of the residual signal fr(t) and the desired mode components
ud(t) should be as small as possible. That is, in the frequency band of the desired mode
components, the energy of the residual signal fr(t) should be minimized. Particularly,
when the energy of the residual signal fr(t) around the center-frequency is equal to 0, a
complete and accurate mode component will be obtained. To overcome these limitations,
the contents of the residual signal fr(t) are firstly found out via using a proper filter, and
then the energy of the residual signal fr(t) is regarded as the indicator to evaluate the
spectral overlap degree of fr(t) and ud(t). For this purpose, here a filter with frequency
response of β̂(ω) is designed:

β̂(ω) =
1

α(ω−ωd)
2 (3)
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where β̂(ω) is similar to the Wiener filter at the frequencies far away from ωd, this because
it has an infinite gain at ω = ωd. Hence, the following penalty function is adopted to
minimize the spectral overlap of fr(t) and ud(t).

J2 = ‖β(t) ∗ fr(t)‖2
2 (4)

where β(t) denotes the impulse response of the designed filter.
(3) The obtained mode components ud(t) should be meet the equality constraint listed

in Equation (1) to guarantee complete reconstruction. That is, the extraction problem
of the desired mode components can be expressed as solving the following constrained
minimization problem:

min
ud ,ωd , fr

{αJ1 + J2}

subject to : ud(t) + fr(t) = f (t)
(5)

where α is the penalty factor of balancing J1 and J2. To solve the above reconstruction con-
strained problem, the following augmented Lagrangian function is adopted by introducing
the quadratic penalty term and Lagrangian multiplier.

L(ud, ωd, fr, λ) := α
∥∥∥∂t

[(
δ(t) + j

πt

)
∗ ud(t)

]
e−jωdt

∥∥∥2

2
+‖β(t) ∗ fr(t)‖2

2 + ‖ f (t)− (ud(t) + fr(t))‖2
2

+〈λ(t), fr(t)− (ud(t) + fr(t))〉
(6)

where λ is the Lagrangian multiplier. According to the Parseval theorem, by using ω instead
of ω−ωd and adopting the equality ‖x̂(ω)‖2

2 = ‖x̂(ω−ωd)‖2
2, the above Equation (6) can

be rewritten as follows:

L(ud, ωd, fr, λ) = α‖j(ω−ωd)[(1 + sgn(ω))ûd(ω)]‖2
2

+
∥∥∥β̂(ω) f̂r(ω)

∥∥∥2

2
+
∥∥∥ f̂ (ω)−

(
ûd(ω) + f̂r(ω)

)∥∥∥2

2
+
〈

λ̂(ω), f̂r(ω)−
(

ûd(ω) + f̂r(ω)
)〉 (7)

To solve the minimization problem of augmented Lagrangian function, the alternate
direction method of multipliers algorithm (ADMM) is introduced. In ADMM, multiple
iteration suboptimizations are conducted to obtain the optimization variables (ud, ωd,
and fr). Hence, in the n + 1 iteration, the mode components ûn+1

d can be obtained by the
following equation:

ûn+1
d ← argmin

ud∈X
{α‖j(ω−ωd)[(1 + sgn(ω))ûd(ω)]‖2

2+

+‖β̂(ω) f̂r(ω)‖2
2 +

∥∥∥ f̂ (ω)−
(

ûd(ω) + f̂r(ω)
)
+ λ̂(ω)

2

∥∥∥2

2
}

(8)

To simplify the above Equation (8), according to Equation (3) and some algebraic
manipulations, the mode components ûn+1

d at the n + 1 iteration can be rewritten by:

ûn+1
d (ω) =

f̂ (ω) + α2(ω−ωn
d )

4ûn
d(ω) + λ̂(ω)

2

[1 + α2(ω−ωn
d )

4][1 + 2α(ω−ωn
d )

2]
(9)

To minimize the Equation (11) with respect to ωd, according to some approximate
calculations, in the n + 1 iteration, the mode center-frequency ωn+1

d can approximately be
expressed as:

ωn+1
d =

∫ ∞
0 ω

∣∣∣ûn+1
d (ω)

∣∣∣2dω∫ ∞
0

∣∣∣ûn+1
d (ω)

∣∣∣2dω

(10)
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Finally, the dual ascent method is used to update the Lagrangian multiplier λ of
ADMM, that is

λ̂n+1(ω) = λ̂n + τ
[

f̂ (ω)−
(

ûd(ω) + f̂ n
r (ω)

)]
(11)

where τ denotes the update parameter which amounts to time-step of the dual ascent. The
specific procedure of VME can be found in the original literature [19] and the VME code is
available on the Mathworks website.

2.2. Parameter Adaptive Variational Mode Extraction

When VME is used to process the collected bearing vibration signal, its two important
parameters (i.e., penalty factor α and mode center-frequency ωd) need to be artificially
selected in advance. Thus, it does not possess adaptive capability. In other words, the
parameter setting of VME has a big effect on its feature extraction performance. Due to
the penalty factor α controls the compactness of the obtained mode components, so the
smaller penalty factor α describes the larger bandwidth of mode components. The closer
the predefined mode center-frequency ωd is to the true center frequency of the desired
mode components, the better the feature extraction ability of VME is. Therefore, a suitable
method needs to be adopted to automatically select the important parameters of VME.
Whale optimization algorithm (WOA) [34] is a recently reported intelligent optimizer,
which can mimic bubble-net foraging behavior of humpback whales by applying a bubble-
net search mechanism. Compared with particle swarm optimization (PSO), cuckoo search
algorithm (CSA), firefly algorithm (FA) and grey wolf optimizer (GWO), WOA has a
faster convergence speed, higher convergence accuracy and stronger ability of extremum
optimization [35]. Hence, to avoid the problem of empirical selection of the key parameters
of VME, a parameter adaptive variational mode extraction (PAVME) is proposed in this
paper, where WOA is adopted to automatically determine two key parameters (i.e., penalty
factor α and mode center-frequency ωd) of VME, which can improve fault feature extraction
ability of VME. Figure 1 shows the flowchart of using WOA to optimize the parameters of
VME method. Detailed procedures of parameter optimization in the PAVME are described
as follows:

(1) Initialize the population of whales and define the parameters of WOA method.
Specifically, set the population size N = 50, maximum number of iterations T = 200 (i.e.,
epoch limits). Due to VME involves two key parameters to be optimized, so the position of
each whale is expressed by a vector Xi = [α, fd], where α is the penalty factor of VME, fd
denotes the initial mode center-frequency of VME and meets fd = ωd/2π. The upper and
lower bound of the vector Xi respectively is set as [200, 10,000] and [ fs/100, fs/2], where
fs is the sampling frequency of the raw bearing vibration signal.

(2) Calculate the fitness value of each whales and determine the current optimal
position of whales. In this step, inspired by signal-to-noise ratio (SNR) [36] and fault
feature ratio (FFR) [37], a new and effective sensitive index hailed as signal characteristic
frequency-to-noise ratio (SCFNR) is regarded as the fitness value to guide the parameter
optimization process of VME, and the SCFNR index is calculated by

SCFNR(i) = 10 log10

M
∑

i=1
A( fci)

N
∑

j=1
A( f j)−

M
∑

i=1
A( fci)

(12)

where fci means the i-th fault characteristic frequency of Hilbert envelope spectrum of the
extracted mode components ud, A( fci), i = 1, 2, · · · , M denotes the amplitude of Hilbert
envelope spectrum of the original bearing vibration signal at the i-th fault characteristic
frequency, A( f j), j = 1, 2, · · · , N represents the amplitude of Hilbert envelope spectrum
of the original bearing vibration signal at the j-th frequency f, N and M are the number
of all frequencies and fault characteristic frequencies of Hilbert envelope spectrum of the
original bearing vibration signal, respectively. The larger SCFNR value represents the
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better feature extraction ability of VME. That is, parameter optimization process of VME
can be understood as the process of maximizing the fitness value (SCFNR). Hence, the
objective function of parameter optimization process of VME can be defined as follows: argmax

i=(α, fd)

{SCFNRi}

s.t. α ∈ [200, 10000] and fd ∈ [ fs/100, fs/2]
(13)

where SCFNRi denotes the SCFNR value of the extracted mode components under dif-
ferent combination parameters i = (α, fd), fs represents the sampling frequency of the
original bearing vibration signal.
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(3) Before reaching the stop condition, update the parameters a, A, C, l and p under each
iteration. If p < 0.5, the position updating pattern of the shrinking encircling mechanism of
whales is adopted. Otherwise, the position updating pattern of the spiral model of whales
is adopted. That is, the probability of selecting the shrinking encircling mechanism or
the spiral model to update the position of whales is the same. Concretely, if p < 0.5 and
|A| < 1, update the position of the current whale according to Equation (14). If p ≥ 0.5,
update the position of the current whale according to Equation (15). If p < 0.5 and |A| ≥ 1,
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update the position of the current whale according to the randomly prey search mechanism
of Equation (16).

X(t + 1) = X∗(t)− A|C · X∗(t)− X(t)| if p < 0.5 and |A| < 1 (14)

X(t + 1) = |C · X∗(t)− X(t)| · ebl · cos(2πl) + X∗(t) if p ≥ 0.5 (15){
X(t + 1) = Xrand(t)− A · |C · Xrand(t)− X(t)| if p < 0.5 and |A| ≥ 1

D = |C · Xrand(t)− X(t)| (16)

where X is a position vector for all whales, t is the time or iteration metrics, X* is the current
optimal solution, A and C represent the coefficient vector and they meets A = 2a · r− a and
C = 2 · r, a is a convergence factor that linearly decays from 2 to 0 throughout all iterations,
r is a random vector between 0 and 1, b is a constant value that defines a logarithmic spiral
shape in terms of a particular path, l is a random value between −1 and 1, p is a random
value between 0 and 1, which can be used to switch Equations (14) and (15) when updating
the position of whales. Xrand represents the position vector for the randomly selected
whales in the current iteration, D denotes distance of the i-th whale to the prey, A and C
represent the coefficient vector.

(4) Calculate the fitness value of each whales and determine the global optimal position
of whales. If X̂i is better than Xi, X̂i is regarded as the global optimal position of whales.
Otherwise, keep Xi as the individual optimal position to continue to update.

(5) Check that the stop condition is met. Specifically, determine whether the largest
SCFNR value or maximum iteration number is reached. If it reaches the largest SCFNR
value or maximum iteration number, output the optimized results (i.e., the optimal param-
eters of VME). Otherwise, define t = t + 1, continue to conduct steps (3)–(4) until the stop
condition is met.

(6) Use the parameter optimized VME to extract the desired mode components of the
collected bearing vibration signal.

Briefly speaking, the proposed PAVME method mainly consists of two sub-blocks (i.e.,
parameter optimization process and mode component extraction process). Figure 2 shows
the block diagram of PAVME. Therein, the first sub-block is the parameter optimization
process based on WOA method, which is aimed at obtaining the optimal combination
parameters (i.e., penalty factor α and mode center-frequency ωd) of VME. The second
sub-block is mode component extraction process based on VME containing the optimal
combination parameters.

2.3. Comparison among PAVME, VME, VMD and EMD

To show the effectiveness of PAVME in extracting periodic impulse features of bearing
vibration signal, according to the literature [36], here we established one bearing fault
simulation signal x(t), which is mainly composed of three parts (i.e., x1(t), x2(t) and n(t)).
The specific expression of simulation signal is as follows:

x(t) = x1(t) + x2(t) + n(t)
x1(t) = 2 exp(−200t0) sin(4000πt), t0 = mod(t, 1/ f0)
x2(t) = 1.3 sin(2π f2t) + 1.5 sin(2π f3t)

(17)

where the first part x1(t) denotes the periodic impulse series related to bearing faults, fo
is the bearing fault characteristic frequency and meets fo = 30 Hz. The second part x2(t)
represents the harmonic component with the frequency of f 2 = 20 Hz and f 3 = 30 Hz.
The third part n(t) represents the Gaussian white noise generated by MATLAB function
randn(1, N). The sampling frequency and sampling length of simulation signal x(t) are
set as 8192 Hz and 4096 points, respectively. Figure 3 shows time domain waveform of
simulation signal x(t) and its corresponding components.
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Figure 3. Time domain waveform of simulation signal x(t) and its corresponding components.

The proposed PAVME and three standard methods (VME, VMD and EMD) are
adopted to process the simulation signal x(t). In PAVME, the penalty factor α and mode
center-frequency fd are automatically selected as 1680 and 2025 Hz by using WOA. In
the standard VME, the combination parameters (i.e., penalty factor α and mode center-
frequency fd) are artificially set as 2000 and 2500 Hz. In VMD, the decomposition mode
number K and penalty factor α are also automatically selected as 4 and 2270 Hz by using
WOA. Figure 4 shows the periodic mode components extracted by different methods (i.e.,
PAVME, VME, VMD and EMD). Seen from Figure 4, although three methods (PAVME,
VME and VMD) can all obtain the periodic impulse features of simulation signal, but their
obtained results are different. The periodic mode components extracted by EMD have a
big difference with the real mode component x1(t) of the simulation signal. Hence, for
a better comparison, fault feature extraction performance of the four methods (PAVME,
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VME, VMD and EMD) is quantitatively compared by calculating four evaluation indexes
(i.e., kurtosis, correlation coefficient, root-mean-square error (RMSE) and running time).
Table 1 lists the calculation results. Seen from Table 1, kurtosis and correlation coefficient of
the proposed PAVME method is higher than that of other three methods (i.e., VME, VMD
and EMD). The RMSE of the PAVME method is less than that of other three methods. This
means that the proposed PAVME has better feature extraction performance. However, the
running time of VMD is highest, the second is PAVME and the smallest running time is
EMD. This because the PAVME and VMD are optimized by WOA, so their computational
efficiency is reduced, but it is acceptable for most occasions. The above comparison shows
that the PAVME method is effective in bearing fault feature extraction.
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Figure 4. The periodic mode components extracted by different methods: (a) PAVME, (b) VME, (c) VMD and (d) EMD.

Table 1. The evaluation indexes obtained by different methods.

Different Methods Kurtosis Correlation Coefficient RMSE Running Time (s)

PAVME 5.7742 0.7966 0.2684 6.6552
VME 4.9841 0.7314 0.3130 0.1682
VMD 5.1330 0.7630 0.2916 99.528
EMD 2.4602 0.4023 0.8139 0.3704

3. Multiscale Envelope Dispersion Entropy
3.1. MEDE

On the one hand, envelope demodulation analysis of bearing vibration signals is an
effective method in extracting bearing fault feature information. The extracted envelope
signal can nicely reflect the characteristics of periodic impulse related to bearing local faults.
On the other hand, entropy has been proved to be an effective method to describe the
complexity and uncertainty of bearing vibration signal. Some studies [32,38] have shown
that multiscale dispersion entropy (MDE) has the superior performance for measuring the
complexity of a signal than MPE and MSE. MDE has a faster calculation efficiency. Hence,
this paper proposes a new complexity evaluation method named multiscale envelope
dispersion entropy (MEDE) by integrating the advantages of envelope demodulation
analysis and MDE. Figure 5 shows the flowchart of the MEDE method, where τm means
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the defined largest scale factor. For a given time series {x(i), i = 1, 2, · · · , N}, the specific
steps of MEDE are summarized as follows:
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(1) Conduct envelope demodulation analysis. Specifically, use the Equation (18) to
calculate the envelope signal of the original time series x(i).

xe(i) = |x(i) + j ·Hilbert[x(i)]| (18)

where x(i) represents the given original signal, xe(i) denotes the envelope signal of x(i),
Hilbert[·] represents the Hilbert transform operator.

(2) According to the Equation (19), calculate the composite coarse-grained time series
y(τ)k = {y(τ)k,j1

, y(τ)k,j2
, · · · , y(τ)k,jτ

} of the envelope signal xe(i). Specifically, when the scale factor

τ = 1, the obtained composite coarse-grained time series y(1)k , amounts to the original
envelope signal xe(i). When the scale factor τ = 2, we will obtain two composite coarse-
grained time series y(1)k and y(2)k .

y(τ)k,j =
1
τ

jτ+k−1

∑
i=(j−1)τ+k

xe(i), 1 ≤ j ≤
⌊

N
τ

⌋
, 1 ≤ k ≤ τ (19)

(3) Calculate the dispersion entropy value of each composite coarse-grained time
series y(τ)k (k = 1, 2, · · · , τ) at the scale factor τ. Moreover, the average operation of all
dispersion entropy is conducted to obtain the final MEDE results.

MEDE(x, m, c, d, τ) =
1
τ

τ

∑
k=1

DE(y(τ)k m, c, d) (20)

where m denotes the embedding dimension, c means the number of classes, d is the time
delay, τ represents the scale factor and DE(·) denotes the operator of dispersion entropy.
According to reference [33], without loss of generality, the embedding dimension m is
usually set as 3, the number of classes c is usually set as 5 or 6, the time delay d is usually
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set as 1, the largest scale factor τm is usually set as 20, which are enough for the practical
bearing vibration signal analysis and complexity evaluation.

3.2. Comparison among MEDE, MDE, MPE and MSE

To show the effectiveness of MEDE in evaluating the complexity and irregularity of
a time series, MEDE of two noise signals (i.e., white noise and 1/f noise) are calculated.
For a convenient comparison, three common entropies (i.e., MDE, MPE and MSE) of two
noise signals (i.e., white noise and 1/f noise) are calculated to measure the complexity
of the time series. Also, to compare the accuracy of complexity measures of different
entropies, 20 groups of white noise and 1/f noise are generated randomly. Figure 6 shows
time domain waveform and amplitude spectrum of a group of white noise and 1/f noise.
Figure 7a,b plot the error bar of different entropies (i.e., MEDE, MDE, MPE and MSE) of
white noise and 1/f noise, respectively. Seen from Figure 7a, as the scale factor τ increases,
mean value curve of three entropies (i.e., MEDE, MDE and MSE) of white noise have a
downward trend, whereas the mean value curve of MPE of white noise basically remains
unchanged. That is, the sensitivity of MEDE, MDE and MSE in detecting complexity
of white noise is better than MPE. As shown in Figure 7a, standard deviation of MEDE
of white noise at each scale factor τ is obviously smaller than MDE. That indicates that
MEDE has a better accuracy in complexity measures of white noise than MDE. Seen from
Figure 7b, as the scale factor τ increases, the mean value curve of three entropies (i.e., MDE,
MPE and MSE) of 1/f noise is relatively stable, whereas mean value curve of MEDE of
1/f noise decreases gradually, which means that MEDE is more sensitive for uncertainty
estimation of 1/f noise than other three entropies (i.e., MDE, MPE and MSE). Moreover, in
Figure 7b, standard deviation of MEDE of 1/f noise at each scale is less than that of MDE
and MSE. This further validates that MEDE can provide an accurate complexity estimation
for 1/f noise. That is, MEDE is effective in complexity measurement and feature extraction
of nonstationary signals.
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Figure 6. Time domain waveform and amplitude spectrum of two noise signals (i.e., white noise and
1/f noise).
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4. Proposed Fault Diagnosis Method

To effectively extract feature information associated with bearing local fault and
automatically realize the identification of bearing health status, this paper proposes a new
bearing fault diagnosis method based on PAVME and MEDE, which mainly consists of
four aspects (i.e., vibration data collection, periodic mode component extraction, fault
feature extraction and health condition identification). Figure 8 shows the flowchart of the
proposed method. The specific steps of the proposed method are summarized as follows:
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Step 1: vibration data collection. Collect the original bearing vibration signal by installing
the accelerometer on the bearing fault simulation test bench.

Step 2: speriodic mode component extraction. Use the PAVME method to extract the
periodic mode component related to bearing faults, where the WOA method is
adopted to automatically determine the optimal combination parameters of VME.

Step 3: fault feature extraction. Calculate the MEDE of the extracted periodic mode com-
ponent to construct multiscale fault feature vector set.

Step 4: health condition identification. In view of k-nearest neighbor (KNN) has the less
parametric influence and faster computing speed than support vector machine
(SVM) and artificial neural network (ANN), so the KNN classifier is selected in
this step. Concretely, the constructed multiscale fault feature vector set in step 3
is randomly divided into the training samples and testing samples, where the
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training samples are adopted to train the KNN model and the testing samples is
fed into the well-trained KNN model to automatically identify different health
conditions of rolling bearing. Note that, in the KNN classifier, based on the previous
studies [39], the Euclidean distance is adopted and the number of nearest neighbors
of KNN is set as 3. Of course, in the KNN classifier the Mahalanobis distance,
Chebyshev distance and the larger neighbor number can be also adopted, but too
large neighbor number tends to cause the low identification accuracy. Generally
speaking, the number of nearest neighbors should be less than the square root of
the training sample number.

5. Experimental Verification
5.1. Case 1: Bearing Data from Laboratory
5.1.1. Experimental Equipment Description and Data Collection

To validate the effectiveness of the proposed method, different bearing vibration
signals were collected on a bearing fault simulation test rig located in North China Electric
Power University (NCEPU). Figure 9 shows the photo and structural schematic diagram of
the bearing fault simulator, which mainly consists of a driving motor, transmission belt,
shaft support, coupling and bearing block. Within the experiment, three kinds of faults
(i.e., inner race fault (IRF), outer race fault (ORF) and ball fault (BF)) were manufactured
on normal bearings by electrospark wire-electrode cutting. The size of the outer and inner
race faults was set as 0.008 inches in width and 0.059 inches in depth. Figure 10 gives
the pictures of three faulty bearings. In the process of experiment, the spindle speed was
stable at 1470 r/min and the signal sampling frequency is set as 12.8 kHz. We used a PCB
accelerometer mounted on the vertical direction of the testing bearing to collect bearing
vibration data under four health conditions (i.e., normal, IRF, ORF and BF). The types
of the testing bearing is LYC6205E and Table 2 lists the specification of rolling bearings.
According to the spindle speed and the size parameter of bearing, different bearing fault
characteristic frequencies (e.g., inner race, outer race, ball and cage) are derived in Table 3.
One hundred data samples of each health condition were obtained by using a sliding
window with 80% overlap (i.e., 10,240 points) to conduct the data interception along the
original bearing vibration signal, and each sample has 12,800 points (i.e., the window size
is 12,800 data points), where 50 samples are randomly selected as the training samples and
the remainder 50 samples are regarded as the testing samples. Table 4 lists the detailed
description of bearing datasets. As shown in Table 4, there are 400 samples in total. That is,
a four-class identification problem needs to be solved in this experiment. Figure 11 shows
the time domain waveform and amplitude spectrum of different bearing vibration signals.
It can be seen from Figure 11 that the waveform and amplitude spectrum of the bearing
fault signal have a certain similarity, which indicates that it is not easy to directly judge the
bearing fault type by observing the waveform and amplitude spectrum. In other words,
there is an urgent need for exploring an effective method to identify bearing fault types.
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Table 2. Size parameters of bearings.

Bearing Type Roller Diameter
(mm)

Pitch Diameter
(mm)

Number of the
Roller Contact Angle

LYC6205E 7.94 39 9 0◦

Table 3. Bearing fault characteristic frequencies (Hz).

Rotating Frequency Inner Race Fault Outer Race Fault Ball Fault Cage Fault

fr = 24.5 fi = 132.7 fo = 87.8 fb = 57.7 fc = 9.76

Table 4. The detailed description of bearing datasets.

Condition
Label Bearing Fault Types Number of

Training Samples
Number of

Testing Samples
Class
Label

Condition 1 Normal 50 50 1
Condition 2 Inner race fault (IRF) 50 50 2
Condition 3 Outer race fault (ORF) 50 50 3
Condition 4 Ball fault (BF) 50 50 4
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Figure 11. Time domain waveform and amplitude spectrum of different bearing vibration signal.
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5.1.2. Periodic Mode Component Extraction Based on PAVME

According to the flowchart of the proposed method, the PAVME was firstly applied
to preprocess the original bearing vibration signal, where its two key parameters (i.e., the
penalty factor and mode center-frequency) were automatically determined by WOA. It
should be noted that normal bearing signals were not processed by PAVME. Table 5 lists
the optimal combination parameters of VME for different bearing fault signals. Figure 12
shows the time domain waveform and envelope spectrum of periodic mode components
obtained by PAVME for different bearing fault signals. As shown in the envelope spectrum
of Figure 12, when bearing fault signals were analyzed by PAVME, three kinds of bearing
fault feature frequencies (i.e., inner race fault feature frequencies fi, outer race fault feature
frequencies fo and ball fault feature frequencies fb) and their harmonics could be clearly
extracted, which indicates that the proposed PAVME is effective in extracting periodic
mode components related to bearing faults. For a comparison, three similar methods (i.e.,
VME, VMD and EMD) were also used to analyze the collected bearing fault signal. It needs
to be emphasized that periodic mode component with maximum kurtosis was selected for
fault feature extraction in the decomposition results of VMD and EMD. In VME and VMD,
the penalty factor was set as the same as PAVME. Meanwhile, for VME, the mode center-
frequency was always set as fd = 2500 Hz, whereas the decomposition mode number was
always set as K = 6 for VMD. Figures 13–15 show the time domain waveform and envelope
spectrum of periodic mode components obtained by three methods (i.e., VME, VMD and
EMD) for different bearing fault signals, respectively. As shown by Figures 13–15, although
three kinds of bearing fault feature frequencies (i.e., inner race fault feature frequencies
fi, outer race fault feature frequencies fo and ball fault feature frequencies fb) and their
harmonics could be found, their amplitudes were lower than that of Figure 12. That is,
compared with three similar methods (i.e., VME, VMD and EMD), PAVME had a better
extraction ability of periodic mode component and is more helpful for the subsequent
bearing fault feature extraction. Hence, the above comparison proves the advantages of
PAVME in processing bearing fault signals.

Table 5. The optimal combination parameters of PAVME for different bearing fault signals.

The Key Parameters IRF ORF BF

The penalty factor a 1236 1520 1138
The mode center-frequency fd 4352 4943 5113
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Figure 12. Time domain waveform and envelope spectrum of periodic mode components obtained
by PAVME for different bearing fault signals.
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Figure 13. Time domain waveform and envelope spectrum of periodic mode components obtained
by VME for different bearing fault signals.
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Figure 14. Time domain waveform and envelope spectrum of periodic mode components obtained
by VMD for different bearing fault signals.

5.1.3. Results and Comparisons of Bearing Fault Identification

In the proposed method, after conducting PAVME, the MEDE of the obtained periodic
mode component is calculated to extract bearing fault feature information. For a fair
comparison, the other three methods (i.e., MDE, MPE and MSE) were also adopted for
fault feature extraction. In these entropy methods, their main parameters were set to be the
same. Specifically, in MEDE and MDE, the embedding dimension m = 3, the number of
classes c = 5, the time delay d = 1, the largest scale factor τm = 20. In the MPE method, the
embedding dimension m = 3, the time delay d = 1, the largest scale factor τm = 20. In the MSE
method, the embedding dimension m = 3, the time delay d = 1, the tolerance r = 0.15 × σ,
the largest scale factor τm = 20, where σ represents the standard deviation of the signal.
Figure 16a–d) show entropy values obtained by combining PAVME and four entropies
(i.e., MEDE, MDE, MPE and MSE) for different bearing vibration signals. Apparently,
in Figure 16, the entropy value obtained using PAVME and MEDE has a good degree of
differentiation, whereas the entropy value obtained using other combination methods
(i.e., PAVME and MDE, PAVME and MPE, PAVME and MSE) has an obvious overlap,
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particularly for the entropy value of bearing fault signal. This verifies the effectiveness of
MEDE in bearing fault feature extraction to a certain extent.
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Figure 15. Time domain waveform and envelope spectrum of periodic mode components obtained
by EMD for different bearing fault signals.
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Figure 16. Entropy value obtained by four combination methods for different bearing vibration data: (a) PAVME and MEDE,
(b) PAVME and MDE, (c) PAVME and MPE, (d) PAVME and MSE.

According to the proposed method, finally, the above extracted bearing fault feature
information is input into KNN classifier for identifying bearing fault types. Figure 17 shows
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the identification results of the proposed method in the first trial. Seen from Figure 17,
the proposed method can obtain a high identification accuracy of 100%, which indicates
that all data samples can be correctly identified. To avoid the contingency of recognition
results of the algorithm, four combination methods (i.e., PAVME and MEDE, PAVME and
MDE, PAVME and MPE, PAVME and MSE) are conducted five trials to compare their
recognition results. Figure 18 shows the identification accuracy of different methods in the
five trials and Table 6 lists the detailed diagnosis results of different combination methods,
including maximum, minimum, mean and standard deviation of identification accuracy. As
shown Figure 18 and Table 6, the method of combining PAVME and MEDE can achieve the
average accuracy of 99.90%, which is apparently higher than that of other three combination
methods (i.e., PAVME and MDE, PAVME and MPE, PAVME and MSE), which are 94.50%,
88.05% and 92.15%, respectively. That is, the classification accuracy of the proposed method
was the highest. The standard deviation of the proposed method (i.e., PAVME and MEDE)
is 0.2108, which is obviously lower than that of other three combination methods (i.e.,
PAVME and MDE, PAVME and MPE, PAVME and MSE), which are 0.3333, 0.3689 and
0.3375, respectively. This indicates that the identification result of the proposed method
had better stability. In other words, when PAVME is combined with different entropies (i.e.,
MEDE, MDE, MPE and MSE) to identify bearing fault patterns, the superiority of MEDE
used in the proposed method is confirmed by the above comparative analysis. To further
investigate the influence of the number of training samples on the recognition performance
of the proposed method, for different training sample ratio (i.e., 10%, 20%, 30%, 40%, 50%,
60%, 70%, 80%, 90%), that is, when the number of training samples was respectively set as
40, 80, 120, 160, 200, 240, 280, 320 and 360, the identification results of four combination
methods (i.e., PAVME and MEDE, PAVME and MDE, PAVME and MPE, PAVME and
MSE) were calculated. Note that the training samples were randomly selected from the
collected whole sample set. Also, each combination of methods had 10 trials to avoid
volatility in the identification results. Figure 19 shows the average identification accuracy
of four combination methods under different proportion of training samples. Seen from
Figure 19, the identification accuracy of the proposed method was still bigger than that of
other combination methods, even if the proportion of training samples were set as 10%.
In addition, as the proportion of training samples increased, the identification accuracy
of various methods had a slow upward trend. Theoretically, the more training samples
there are, the better the training of the classification model is, the higher the obtained
identification accuracy is. However, more training samples represents more training time
and lower computational efficiency. Therefore, to strike a balance between the identification
accuracy and training time, the proportion of training samples was set as 50% in this paper.
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Figure 17. Identification results of the first trial of the proposed method in case 1.
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Figure 18. Identification accuracy obtained by different methods for 10 trials in case 1.

Table 6. Diagnosis results of combining PAVME and different entropies in case 1.

Different Methods
Identification Accuracy Obtained Using Different Methods (%)

Maximum Minimum Mean Standard Deviation

PAVME and MEDE 100 99.50 99.90 0.2108
PAVME and MDE 95.00 94.00 94.50 0.3333
PAVME and MPE 88.50 87.50 88.05 0.3689
PAVME and MSE 92.50 91.50 92.15 0.3375
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Figure 19. Identification accuracy obtained by combining PAVME and different entropies under
different proportion of training samples.

To show the effectiveness and superiority of PAVME used in the proposed method,
we calculated the identification results of combining four signal processing methods (i.e.,
PAVME, VME, VMD and EMD) and MEDE. Similarly, 10 trials were executed for each
method. Table 7 gives the detailed identification results of various methods, including
maximum, minimum, mean and standard deviation of identification accuracy. It can be
found in Table 7 that average identification accuracy of the four combination methods (i.e.,
PAVME and MEDE, VME and MEDE, VMD and MEDE, EMD and MEDE) was respectively
99.90%, 96.85%, 97.85% and 95.25%, where average accuracy of the proposed method was
highest and average accuracy of the fourth combination method (i.e., EMD and MEDE)
was the smallest. From a standard deviation point of view, the proposed method had
the smallest standard deviation (0.2108), which means that the proposed method had not
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only a good recognition performance but also good stability in analyzing bearing fault
data. That is, this indirectly proved that the PAVME is better than the other three similar
methods (i.e., VME, VMD and EMD) in processing bearing fault signals. In like manner,
to analyze the identification ability of the proposed method under different number of
training samples, we calculated the identification accuracy of four combination methods
(i.e., PAVME and MEDE, VME and MEDE, VMD and MEDE, EMD and MEDE) under
different proportions of training sample, and 10 trials were conducted for each method.
Figure 20 plots the identification results of various combination methods under different
proportion of training samples. As shown in Figure 20, although the number of training
samples gradually increased, average identification accuracy of the proposed method was
still greater than that of other three combination methods (i.e., VME and MEDE, VMD
and MEDE, EMD and MEDE). It is worth mentioning that accuracy of each combination
method was greater than 95.00%, which indicates that all four combination methods can
be applied in the identification of actual bearing fault types if the training samples are
sufficient. Nevertheless, a lot of training samples will lead to a lot of calculations, so this
paper adopts 50% of training samples to extract bearing fault feature information and finish
bearing health condition identification, which can ensure a compromise between accuracy
and training time.

Table 7. Diagnosis results of combining different signal processing methods and MEDE in case 1.

Different Methods
Identification Accuracy Obtained Using Different Methods (%)

Maximum Minimum Mean Standard Deviation

PAVME and MEDE 100 99.50 99.90 0.2108
VME and MEDE 97.00 96.50 96.85 0.2415
VMD and MEDE 98.00 97.50 97.85 0.2415
EMD and MEDE 95.50 95.00 95.25 0.2635
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Figure 20. Identification accuracy obtained by combining different signal processing methods and
MEDE for different proportions of training samples.

In order to evaluate the influence of Gaussian white noise on the proposed method,
according to the literature [40], we added different levels of noises into the original bearing
data and calculated the identification results of the proposed method at different noise
levels (i.e., SNR = 0, −5, −10, −15, −20 and −25 dB), as shown in Figure 21. Seen from
Figure 21, as the SNR decreases, the identification accuracy of the proposed method has a
downward trend. However, when Gaussian white noise with SNR = −15 dB was added
into the collected original bearing vibration signal, the proposed method could still achieve
identification accuracy of more than 95%, which indicates that the proposed method has
good robustness in identifying bearing fault patterns.
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Figure 21. Identification accuracy of the proposed method at different SNR conditions in case 1.

5.2. Case 2: Bearing Data from CWRU
5.2.1. Experimental Equipment Description and Data Collection

Bearing vibration data from Case Western Reserve University (CWRU) were adopted
to prove the effectiveness of our proposed approach. Experimental equipment consisted
of driving motor, testing bearing, torque transducer and load motor. Figure 22 shows the
photos of the experimental equipment and its corresponding structure. Size parameters of
the testing bearing are presented in Table 8. In the experiment process, three single-point
faults (i.e., inner race fault (IRF), outer race fault (ORF), ball fault (BF)) were manufactured
on normal bearings by using electric sparks. One accelerometer with sampling frequency
of 12 kHz was mounted on the bearing block of the drive end of the driving motor to
collect bearing vibration data. Bearing vibration data of four health conditions (i.e., Normal,
IRF, ORF and BF) were collected at the rotating speed of 1797, 1772, 1750 and 1730 r/min,
respectively. Specifically, in this example, normal bearing data under 1797 r/min, IRF data
of different fault sizes under 1772 r/min, ORF data of different fault sizes under 1750 r/min,
and BF data of different fault sizes under 1730 r/min were adopted, which indicates that
the experimental equipment operated at variable speed. There were 10 bearing health
conditions in total. Fifty samples of each bearing health conditions were obtained via a
nonoverlapping sliding window with the length of 2048 points. That is, each sample had
2048 points. Twenty-five samples of each bearing health conditions are randomly selected
as the training set and the remainder 25 data samples are regarded as the testing set. That is,
the ratio of training samples to testing samples is 1:1. Table 9 lists the detailed description
of bearing vibration data used in this case. Figure 23 plots the time domain waveform of
bearing vibration data under different health conditions. Obviously, due to the presence of
signal interference and noises, it is very difficult to identify the bearing fault category and
severity by directly observing the time domain waveform.

5.2.2. Comparison and Analysis

The proposed method was used to analyze bearing vibration data under the variable
speed and variable fault sizes from CWRU. The optimal combination parameters of PAVME
are listed in Table 10. In the MEDE, the embedding dimension m = 3, the number of classes
c = 5, the time delay d = 1, the largest scale factor τm = 20. Due to the space limitation, here
the separate analysis results of PAVME or MEDE were not plotted. Figure 24 shows the
direct recognition result of the first trial of the proposed method. As seen in Figure 24, the
proposed method can obtain identification accuracy of 100% (250/250) for the training set
or testing set. To evaluate the identification performance of the proposed method more
reliably, a comparison among different methods (i.e., PAVME and MEDE, PAVME and
MDE, PAVME and MPE, PAVME and MSE) was conducted and each method was operated
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10 times to objectively evaluate their diagnostic results. The MDE, MPE and MSE had the
same parameter setting as case 1. Figure 25 plots the identification results of 10 trials of
different methods and Table 11 lists the detailed diagnosis results of different combination
methods. It can be found from Figure 25 and Table 11 that average accuracy of the proposed
method (i.e., PAVME and MEDE) was 99.96%, which is significantly higher than that of
the other three methods (i.e., PAVME and MDE, PAVME and MPE, PAVME and MSE).
Moreover, the standard deviation of the proposed method was 0.1265, which is smaller
than that other three methods. That is, compared with the above-mentioned comparison
methods, the proposed method had better ability and stability in identifying bearing fault
categories and fault sizes. Meanwhile, the effectiveness and necessity of MEDE used in the
proposed method were verified by this comparison.
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Figure 22. (a) The experimental equipment and (b) its corresponding structure diagram.

Table 8. Size parameters of testing bearing in case 2.

Bearing Type Roller Diameter
(mm)

Pitch Diameter
(mm)

Number of the
Roller

Contact Angle
(◦)

SKF6205-2RS 7.94 39.04 9 0

Table 9. The detailed description of bearing dataset in case 2.

Bearing Health
Conditions

Rotating Speed
(r/min)

Fault Size
(inches)

Number of
Training Samples

Number of
Testing Samples Class Label

Normal 1797 0 25 25 1
Inner race fault 1 (IRF1) 1772 0.007 25 25 2
Inner race fault 2 (IRF2) 1772 0.014 25 25 3
Inner race fault 3 (IRF3) 1772 0.021 25 25 4

Outer race fault 1 (ORF1) 1750 0.007 25 25 5
Outer race fault 2 (ORF2) 1750 0.014 25 25 6
Outer race fault 3 (ORF3) 1750 0.021 25 25 7

Ball fault 1 (BF1) 1730 0.007 25 25 8
Ball fault 2 (BF2) 1730 0.014 25 25 9
Ball fault 3 (BF3) 1730 0.021 25 25 10

To further show the effectiveness of the proposed method and explain the necessity of
PAVME in the proposed method, the same bearing vibration data were analyzed by the
combination method of different signal processing techniques (i.e., PAVME, VME, VMD
and EMD) and MEDE and 10 trials of each method were conducted. Detailed diagnosis
results are given in Table 12. As seen in Table 12, the average recognition accuracy (99.96%)
of the proposed method was still higher than that of other combined methods, which
indirectly indicates that PAVME has a superiority in improving fault identification accuracy.
The standard deviation (0.1265) of the proposed method was also less than that of the other
combined methods, which means that the proposed method has a good stability. This
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shows that PAVME used in the proposed method was effective and necessary in bearing
fault identification under variable conditions.
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Figure 23. Time domain waveform of bearing vibration data under different health conditions.

Table 10. The optimal parameters of PAVME for different bearing fault signals in case 2.

Bearing Health Conditions The Penalty Factor a The Mode Center-Frequency fd

Inner race fault 1 (IRF1) 835 1973
Inner race fault 2 (IRF2) 799 1991
Inner race fault 3 (IRF3) 958 2397

Outer race fault 1 (ORF1) 944 1889
Outer race fault 2 (ORF2) 1023 2763
Outer race fault 3 (ORF3) 1049 2854

Ball fault 1 (BF1) 1024 1998
Ball fault 2 (BF2) 1061 2717
Ball fault 3 (BF3) 1018 1913

To further consolidate the identification results and evaluate the robustness of the
proposed method, the identification accuracy of the proposed method at different noise
levels (i.e., SNR = 0, −5, −10, −15, −20 and −25 dB) was calculated and the detailed
diagnosis results are plotted in Figure 26. It can be clearly observed from Figure 26 that
the recognition performance of the proposed method decreases with the increase of the
added noises. Nevertheless, the proposed method can still obtain identification accuracy
of 90% above, even if SNR = −15 dB. Therefore, according to the relationship between
identification accuracy and SNR, it can also be concluded that the proposed method has a
good robustness in identifying bearing faults under variable working conditions.
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Figure 24. Identification results of the first trial of the proposed method in case 2.
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5.3. Further Discussion

It is a fact that the reliability verification of the proposed method is very important
for its future real applications. In this paper, from the perspective of the robustness of the
algorithm and the comparison of different methods, the effectiveness and superiority of the
proposed method are demonstrated by using the above experimental cases under constant
and variable speed. However, the proposed method also has some limitations. Specifically,
it can be summarized into three aspects:

(1) In the periodic mode component extraction stage of the proposed method, due to the
parameter optimizer (WOA) is adopted in PAVME, so it increases the elapsed time
of mode component extraction. That is, one limitation of the proposed method can
be regarded as the computational speed problem. To address this problem, in future
work, some sensitive sparsity indicators (e.g., harmonic-to-noise ratio, kurtosis, L2/L1
norm, Hoyer measure and Gini index) will be adopted to replace the complicated
parameter optimizer to automatically select the important parameters of VME. Similar
to some traditional optimization algorithms (e.g., particle swarm optimization (PSO),
genetic algorithm (GA) and gravitational search algorithm (GSA)), when WOA is
used to solve complex optimization problems, it also is affected by the local opti-
mum problem. Therefore, to solve this problem, in the original WOA, the stochastic
mechanism or restart strategy will be adopted in our future work.

(2) In the fault feature extraction stage of the proposed method, the performance of MEDE
is easily affected by its parameter settings. In this paper, some empirical parameters of
MEDE were set to extract bearing fault feature information. Although these empirical
parameters have been shown to be effective in bearing fault feature extraction, the
prior knowledge is particularly required, so it is not suitable for ordinary technicians
with no experience. To address this problem, in future work, some assisted indicators
(e.g., Euclidean distance, Mahalanobis distance and Chebyshev distance) could be
introduced to automatically select the key parameters of MEDE.

(3) In the bearing fault identification stage of the proposed method, although a KNN
model with high efficiency and few parameters was adopted, it had a lot of de-
pendence on the labels of the data sample. That is, this classification process was
equivalent to a supervised learning process. Hence, to get rid of the dependence of
data labels and achieve the goal of unsupervised learning, in future work, we will
adopt clustering algorithms (e.g., k-means, fuzzy c-means, or self-organizing-map
clustering) to replace the KNN model to obtain bearing fault identification results.
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6. Conclusions

This paper proposes a new bearing fault diagnosis method based on parameter adap-
tive variational mode extraction and multiscale envelope dispersion entropy. Simulation
and experimental signal analysis are conducted to validate the effectiveness of the proposed
method. Experimental results show that the proposed method has a higher identifica-
tion accuracy than other combined methods mentioned in this paper. The prominent
contributions and novelties of this paper are summarized as follows:

(1) An improved signal processing method named parameter adaptive variational mode
extraction based on whale optimization algorithm is presented, which can overcome
the problem of artificial selection of the key parameters (i.e., penalty factor and mode
center-frequency) existing in the original variational mode extraction.

(2) An effective complexity evaluation method called multiscale envelope dispersion
entropy is proposed for bearing fault feature extraction by integrating the advantages
of envelope demodulation analysis and multiscale dispersion entropy.

(3) A bearing intelligent diagnosis method is developed by combining parameter adap-
tive variational mode extraction and multiscale envelope dispersion entropy.

(4) The experimental results and comparison analysis prove the effectiveness and superi-
ority of the proposed method in identifying different bearing health conditions.

It should be pointed out that this paper focuses on the identification of single bearing
faults, but the identification of compound bearing faults is not considered in the paper.
Therefore, compound fault identification of rolling bearing will be regarded as the key
emphasis in our future work, where advanced deep learning models (e.g., deep convolu-
tional network [41,42] and variational autoencoder [43]) will be combined with PAVME to
identify bearing fault patterns.
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