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Abstract: The purpose of this article is to establish some inequalities concerning the normalized
δ-Casorati curvatures (extrinsic invariants) and the scalar curvature (intrinsic invariant) of totally
real spacelike submanifolds in statistical manifolds of the type para-Kähler space form. Moreover,
this study is focused on the equality cases in these inequalities. Some examples are also provided.

Keywords: Casorati curvature; statistical manifold of type para-Kähler space form; totally real
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1. Introduction

One of the basic problems in information geometry is to study the geometric prop-
erties of a statistical manifold, a concept introduced by Amari [1]. There is great interest
in researching statistical manifolds with applications not only in information geometry
but also in differential geometry, physics, statistics, machine learning, etc. The natural
relationship between statistical manifolds and entropy has been investigated by many
researchers. Mishra and Kumar studied in [2] the structure of statistical manifolds with
respect to a relative α-entropy in a Bayesian framework to obtain a generalized Bayesian
Cramér-Rao inequality. The entropic dynamics on statistical manifolds of Gibbs distribu-
tions are investigated in [3], which can provide new insight in fields such as economics
and ecology. Very recently, the authors in [4] studied the information-geometric properties
of the statistical manifold to reduce predictive uncertainly via data assimilation. On the
other hand, statistical manifolds provide a setting for the theory of submanifolds, where a
basic problem is to find out simple relationships between the main intrinsic and extrinsic
curvature invariants of submanifolds [5]. In this regard, many geometers studied certain
types of geometric inequalities in (statistical) submanifolds. Comprehensive surveys on
such inequalities are provided by Chen in [5–7].

Recently, there has been growing interest in the study of optimal inequalities involving
the extrinsic δ-Casorati curvatures defined by Decu, Haesen, and Verstraelen in [8,9]. A long
time ago, Casorati introduced a new measure of curvature of a surface (now called the
Casorati curvature) following a common idea of curvature, more accurate than the Gauss and
mean curvature [10]. Only in modern times did mathematical models involving Casorati
curvature begin to be studied, e.g., in computer vision [11]. Furthermore, Verstraelen
described qualitatively geometrical models for human early vision [12]. In this respect, the
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corresponding (visual) perceptions can be defined as the surfaces M2 given by the Casorati
curvatures C = 1

2 (k
2
1 + k2

2) in E3, where k1 and k2 are the principal curvatures of M2 in
E3 [12]. A geometrical interpretation of this curvature for submanifolds in Riemannian
spaces was proved in [13]. In economics, the isotropical Casorati curvature of production
surfaces was investigated in [14]. Initially, the δ-Casorati curvatures were studied in
optimal inequalities for submanifolds in real space forms in [8,9]. Later, this topic was
extensively studied (e.g., see [5]). Recently, Suceavă and Vajiac established inequalities
involving some Chen invariants, mean curvature, and Casorati curvature for strictly convex
Euclidean hypersurfaces [15].

Para-Kähler geometry refers to the algebra of para-complex numbers (or hyperbolic
numbers) and, especially, to the study of para-Kähler structures and their derived forms.
Para-complex numbers were defined by Graves [16] in 1845 as a generalization of complex
numbers using the expression x + yj, where x and y ∈ R, and j satisfies j2 = 1 and j 6= 1.
Para-Kähler manifolds were first investigated as stratified spaces by Rashevskij [17] (1948).
These manifolds were explicitly defined independently in 1949 by Rozenfeld [18] and
Ruse [19]. This is a challenging topic now, related to many applications in mathematics,
physics, and mechanics [20]. Defever, Deszcz, and Verstraelen considered para-Kähler
manifolds that satisfy curvature conditions of the pseudosymmetric type, with applications
in the theory of general relativity [21]. Mihai and Rosca dealt with CR-submanifolds
of para-Kählerian manifolds, which carry skew-symmetric vector fields [22]. Recently,
Fei and Zhang introduced in [23] the notion of a Codazzi-para-Kähler structure and
studied the interaction of Codazzi couplings with para-Kähler geometry; essentially, a
Codazzi-para-Kähler structure is simultaneously a statistical structure and a para-Kähler
structure [23]. Very recently, Vîlcu investigated statistical manifolds endowed with almost
product structures and para-Kähler-like statistical submersions [24].

Totally real and, particularly, Lagrangian submanifolds in Kähler manifolds, complex
space forms, etc. have been explored widely (see, for instance, [25–31]). However, not much
is known about totally real and Lagrangian submanifolds in para-Kähler manifolds. Chen
proved general optimal inequalities involving the scalar curvature and mean curvature
for Lagrangian submanifolds of the flat para-Kähler manifold (E2n, g, P) [32]. In addition,
he studied Lagrangian H-umbilical submanifolds of para-Kähler manifolds [33]. Anci-
aux and Georgiou surveyed the Hamilton stability of Hamiltonian minimal Lagrangian
submanifolds in para-Kähler manifolds [34].

In this paper, we establish optimal inequalities between the intrinsic scalar curvature
and the extrinsic δ-Casorati curvatures of totally real spacelike submanifolds of statistical
manifolds of the type para-Kähler space form. Moreover, we investigate the equality cases
in these inequalities. We present also some examples.

2. Preliminaries

Let (M̄, ḡ) be a semi-Riemannian manifold, let ḡ be a semi-Riemannian metric on M̄,
and let ∇̃ be an affine connection on M̃.

In the following, we will denote by ∇̄∗ the conjugate (dual) affine connection of ∇̄,
expressed by

X1 g̃(X2, X3) = ḡ(∇̄X1 X2, X3) + ḡ(X2, ∇̄∗X1
X3),

for any X1, X2, X3 ∈ Γ(TM̄), where Γ(TM̄) is the set of smooth tangent vector fields on M̄.
If the torsion tensor field of ∇̃ vanishes and ∇̄ḡ is symmetric, then (∇̄, ḡ) is called a

statistical structure on M̄. Thus, (M̄, ḡ, ∇̄) is named a statistical manifold [35]. Clearly, if (M̄,
ḡ, ∇̄) is a statistical manifold, then (M̄, ḡ, ∇̄∗) is as well. Moreover, one easily can see that
∇̄ = (∇̄∗)∗ and ∇̄0 = ∇̄+∇̄∗

2 , where ∇̄0 is the Levi–Civita connection of M̄ [36].
Let N be an n-dimensional submanifold of a 2m-dimensional statistical manifold (M̄,

ḡ, ∇̄), with g as the induced metric on N and ∇ as the induced connection on N. (N, g,∇)
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is then also a statistical manifold. For any X1, X2 ∈ Γ(TN), we have the following formulas
of Gauss [35]:

∇̃X1 X2 = ∇X1 X2 + h(X1, X2),

∇̃∗X1
X2 = ∇∗X1

X2 + h∗(X1, X2),

where the (0, 2)-tensors h and h∗ (bilinear and symmetric) are said to be the imbedding
curvature tensor of N in M̄ with respect to ∇̄ and ∇̄∗, respectively.

The mean curvature vector fields of N for ∇̄ and ∇̄∗ are given by, respectively,

H =
1
n

trg(h), H∗ =
1
n

trg(h∗),

where trg is the trace with respect to g.
For the Levi–Civita connection ∇̄0, we denote by h0 = h+h∗

2 the second fundamental
form and by

H0 =
H + H∗

2
(1)

the mean curvature vector field of N.
Let {e1, ..., en} and {en+1, ..., e2m} be orthonormal bases of the tangent space Tx N and

T⊥x N, respectively, at a point x ∈ N. The squared mean curvatures of N for ∇ and ∇∗ then
satisfy

‖H‖2 =
1
n2

2m

∑
α=n+1

(
n

∑
i=1

hα
ii

)2

, ‖H∗‖2 =
1
n2

2m

∑
α=n+1

(
n

∑
i=1

h∗αii

)2

,

where hα
ij = g(h(ei, ej), eα) and h∗αij = g(h∗(ei, ej), eα) for i, j ∈ {1, ..., n}, α ∈ {n + 1, ..., 2m}.

Denote by C and C∗ the Casorati curvatures of the submanifold N, defined by the
squared norms of h and h∗, respectively, over the dimension n of N, as follows:

C = 1
n
‖h‖2 =

1
n

2m

∑
α=n+1

n

∑
i,j=1

(
hα

ij

)2
,

C∗ = 1
n
‖h∗‖2 =

1
n

2m

∑
α=n+1

n

∑
i,j=1

(
h∗αij

)2
.

We denote by C0 the following expression:

C0 =
C + C∗

2
. (2)

Consider V as an k-dimensional subspace of Tx N, k ≥ 2, and {e1, . . . , ek} as an or-
thonormal frame of V. Thus, the Casorati curvatures C(V) and C∗(V) of V are revealed by

C(V) =
1
k

2m

∑
α=n+1

k

∑
i,j=1

(
hα

ij

)2
, C∗(V) =

1
k

2m

∑
α=n+1

k

∑
i,j=1

(
h∗αij

)2
.

Denote by δC(r; n− 1) and δ̂C(r; n− 1) the generalized normalized δ-Casorati curvatures
of N, defined in [9] as

δC(r; n− 1)|x = r C |x +a(r) inf{C(V) | V a hyperplane of Tx N},

if 0 < r < n(n− 1), and

δ̂C(r; n− 1)|x = r C |x +a(r) sup{C(V) | V a hyperplane of Tx N},
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if r > n(n− 1), for an a(r) set as

a(r) =
(n− 1)(r + n)(n2 − n− r)

nr
,

where r ∈ R+ and r 6= n(n− 1).
Additionally, denote by δ∗C(r; n− 1) and δ̂∗C(r; n− 1) the dual generalized normalized

δ∗-Casorati curvatures of the submanifold N, defined as follows:

δ∗C(r; n− 1)|x = r C∗ |x +a(r) inf{C∗(V) | V a hyperplane of Tx N},

if 0 < r < n(n− 1), and

δ̂∗C(r; n− 1)|x = r C∗ |x +a(r) sup{C∗(V) | V a hyperplane of Tx N},

if r > n(n− 1), for the a(r) set above.
The normalized δ-Casorati curvatures δC(n− 1) and δ̂C(n− 1) of the submanifold N are

defined by

δC(n− 1)|x =
1
2
C |x +

n + 1
2n

inf{C(V)|V a hyperplane of Tx N}

and
δ̂C(n− 1)|x = 2C |x −

2n− 1
2n

sup{C(V)|V a hyperplane of Tx N}.

Furthermore, the dual normalized δ∗-Casorati curvatures δ∗C(n− 1) and δ̂∗C(n− 1) of the
submanifold N in M̄ can be written as

δ∗C(n− 1)|x =
1
2
C∗ |x +

n + 1
2n

inf{C∗(V)|V a hyperplane of Tx N}

and
δ̂∗C(n− 1)|x = 2C∗ |x −

2n− 1
2n

sup{C∗(V)|V a hyperplane of Tx N}.

A statistical submanifold (N, g,∇) of (M̄, ḡ, ∇̄) is said to be totally geodesic with respect
to ∇̄ if the second fundamental form of N vanishes identically [35].

Let R and R̄ be the (0, 4)-curvature tensors for the connections ∇ and ∇̄, respectively.
For the vector fields X1, X2, X3, X4 tangent to N, the equation of Gauss on the connection

∇̄ is then [36]

ḡ(R̄(X1, X2)X3, X4) = g(R(X1, X2)X3, X4) + ḡ(h(X1, X3), h∗(X2, X4)) (3)

− ḡ(h∗(X1, X4), h(X2, X3)).

Similarly, let R∗ and R̄∗ be the (0, 4)-curvature tensors for the connections ∇∗ and ∇̄∗,
respectively.

Next, for the vector fields X1, X2, X3, X4 tangent to N, the equation of Gauss on the
connection ∇̄∗ becomes [36]

ḡ(R̄∗(X1, X2)X3, X4) = g(R∗(X1, X2)X3, X4) + ḡ(h∗(X1, X3), h(X2, X4)) (4)

− ḡ(h(X1, X4), h∗(X2, X3)).

In general, g(R(X1, X2)X3, X4) is not skew-symmetric for X3, X4 [37], i.e.,

g(R(X1, X2)X3, X4) 6= −g(R(X1, X2)X4, X3). (5)
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In order to define the sectional curvature of a statistical manifold, the property (5) of R is
inconvenient. To overcome this, we define according to [35] the statistical curvature tensor
field denoted by S for the statistical manifold (N, g,∇):

S(X1, X2)X3 =
1
2
{R(X1, X2)X3 + R∗(X1, X2)X3}, (6)

for X1, X2, X3 ∈ Γ(TN). Naturally, S is skew-symmetric relative to X3, X4. Moreover, S
satisfies the first Bianchi identity. It follows that S is a Riemann-curvature-like tensor [37].

For a non-degenerate 2-dimensional subspace π of the tangent space Tx N, at a point
x ∈ N, we can define immediately the sectional curvature of (N,∇, g) [35] by

K(π) = K(X ∧Y) =
g(S(X, Y)Y, X)

g(X, X)g(Y, Y)− g2(X, Y)
, (7)

where {X, Y} is a basis of π.
The scalar curvature τ of (N,∇, g) at a point x ∈ N is defined by the following

expression:

τ(x) = ∑
1≤i<j≤n

K(ei ∧ ej) = ∑
1≤i<j≤n

g(S(ei, ej)ej, ei), (8)

where {e1, ..., en} is an orthonormal frame at x.
Moreover, the normalized scalar curvature ρ of N is defined as

ρ =
2τ

n(n− 1)
. (9)

An almost product structure on a smooth manifold M̄ is a (1, 1)-tensor field P 6= ±I,
such that

P2 = I,

where I is the identity tensor field of type (1, 1) on M̄. A manifold M̄ is called an almost
para-Hermitian manifold [7] if M̄ is endowed with an almost product structure P and a
semi-Riemannian metric ḡ such that

ḡ(PX1, PX2) = −ḡ(X1, X2), (10)

for all vector fields X1, X2 on M̄.
Hence, the dimension of an almost para-Hermitian manifold denoted by (M̄, P, ḡ) is

even, i.e., dim M̄ = 2m, and the metric is neutral. If ∇̄P = 0, then (M̄, P, ḡ) is named a
para-Kähler manifold [7], where ∇̄ is the Levi–Civita connection of M̄.

Next, a triple (M̄, P, ḡ) is said to be an almost para-Hermitian-like manifold [24] if a
semi-Riemannian manifold (M̄, ḡ) is endowed with an almost product structure P such
that

ḡ(PX1, X2) + ḡ(X1, P∗X2) = 0, (11)

for all vector fields X1, X2 on M̄, where P∗ is (1,1)-tensor field on M̄.
Let (M̄, P, ḡ) be an almost para-Hermitian-like manifold. If (∇̄, ḡ) is a statistical

structure on M̄ such that ∇̄P = 0, then (M̄, ∇̄, P, ḡ) is called a para-Kähler-like statistical
manifold [24].

Consequently, the notion of a para-Kähler-like statistical manifold is a generalization
of the notion of the para-Kähler manifold (when, in particular, we have P = P∗, i.e.,
Formula (11) reduces to Formula (10), and ∇̄ is the Levi–Civita connection).
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A para-Kähler-like statistical manifold (M̄, ∇̄, P, ḡ) is called a statistical manifold of a
type para-Kähler space form if the following formula holds [24]:

R̄(X1, X2)X3 =
c
4
{ḡ(X2, X3)X1 − ḡ(X1, X3)X2 + ḡ(PX2, X3)PX1 (12)

−ḡ(PX1, X3)PX2 + ḡ(X1, PX2)PX3 − ḡ(PX1, X2)PX3},

for any vector fields X1, X2, X3, where R̄ is the curvature tensor of the connection ∇̄, and c
is a real constant.

A submanifold N in an almost para-Hermitian (like) manifold (M̄, P, ḡ) is called totally
real if P maps each tangent space Tx N into its corresponding normal space T⊥x N. In the
particular case, when P interchanges each tangent space with its corresponding normal
space, then N is said to be Lagrangian.

Next, we consider the constrained extremum problem

min
x∈N

f (x), (13)

where N is a submanifold of a (semi)-Riemannian manifold (M̄, ḡ), and f : M̄ → R is a
function of differentiability class C2.

Theorem 1 ([38]). If N is complete and connected, (grad f )(x0) ∈ T⊥x0
N for a point x0 ∈ N, and

the bilinear form F : Tx0 N × Tx0 N → R defined by

F (X1, X2) = Hess( f )(X1, X2) + ḡ(h(X1, X2), grad f ) (14)

is positive definite in x0, then x0 is the optimal solution of the problem (13), where h is the second
fundamental form of N.

Remark 1 ([38]). If the bilinear form F defined by (14) is positive semi-definite on the submanifold
N, then the critical points of f |N are global optimal solutions of the problem (13).

3. Main Inequalities

It is well-known that one of the most fundamental problems in submanifold theory is
the following (see, e.g., [39]).

Problem. Establish a simple relationship between the main extrinsic invariants and the main
intrinsic invariants of a submanifold.

The following theorem provides an answer to this problem.

Theorem 2. Let N be an n-dimensional totally real spacelike submanifold of a 2m-dimensional
statistical manifold of a type para-Kähler space form (M̄, ∇̄, P, ḡ). The following inequalities
involving the generalized normalized δ-Casorati curvatures then hold:

(i)

δ0
C(r; n− 1) ≥ 2τ + 2n2‖H0‖2 − nC0 − n2 ḡ(H, H∗) +

c
4

n(1− n), (15)

where r ∈ R such that 0 < r < n(n− 1), 2δ0
C(r; n− 1) = δC(r; n− 1) + δ∗C(r; n− 1),

2C0 = C + C∗, and
(ii)

δ̂0
C(r; n− 1) ≥ 2τ + 2n2‖H0‖2 − nC0 − n2 ḡ(H, H∗) +

c
4

n(1− n), (16)

where r ∈ R such that r > n(n− 1), 2δ̂0
C(r; n− 1) = δ̂C(r; n− 1) + δ̂∗C(r; n− 1).
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Moreover, the equality sign of (15) and (16) holds identically at all points x ∈ N if and only if
we have

h + h∗ = 0, (17)

where h and h∗ are the imbedding curvature tensors of the submanifold associated to the dual
connections ∇̃ and ∇̃∗, respectively.

Proof. From Formulas (3), (4), and (6), it follows that

2ḡ(S̄(X1, X2)X3, X4) = 2g(S(X1, X2)X3, X4)− ḡ(h(X2, X3), h∗(X1, X4))

+ḡ(h(X1, X3), h∗(X2, X4))− ḡ(h∗(X2, X3), h(X1, X4)) + ḡ(h∗(X1, X3), h(X2, X4)), (18)

where X1, X2, X3, X4 ∈ Γ(TN).
For x ∈ N, let {e1, ..., en} be an orthonormal frame in Tx N, and let {en+1, ..., e2m}

be an orthonormal frame in T⊥x N. Considering X1 = X3 = ei and X2 = X4 = ej with
i, j ∈ {1, ..., n}, from Equation (18), we obtain

2τ(x) = n2 ḡ(H, H∗)− ∑
1≤i,j≤n

ḡ(h(ei, ej), h∗(ei, ej)) +
c
4

n(n− 1). (19)

Using notations H0 and C0 given by (1) and (2), then Equation (19) can be written as

2τ(x) =
c
4

n(n− 1) + 2n2‖H0‖2 − n2

2
‖H‖2 − n2

2
‖H∗‖2

−2nC0 +
n
2
(C + C∗). (20)

We choose Q, a quadratic polynomial expressed by

Q = rC0 + a(r) C0(V) +
n
2
(C + C∗)− n2

2
(‖H‖2 + ‖H∗‖2)

−2τ(x) +
c
4

n(n− 1), (21)

where V is a hyperplane of Tx N.
Let V be a hyperplane spanned by the tangent vectors e1, ..., en−1, without losing the

generality. We see that

Q =
2m

∑
α=n+1

2n + r
n

n

∑
i,j=1

(h0α
ij )

2 + a(r)
1

n− 1

n−1

∑
i,j=1

(h0α
ij )

2 − 2

(
n

∑
i=1

h0α
ii

)2
. (22)

Moreover, (22) becomes

Q =
2m

∑
α=n+1

{[2(2n + r)
n

+
2a(r)
n− 1

]
∑

1≤i<j≤n−1
(h0α

ij )
2 +

[
2(2n + r)

n
+

2a(r)
n− 1

] n−1

∑
i=1

(h0α
i n)

2

+

(
2n + r

n
+

a(r)
n− 1

− 2
) n−1

∑
i=1

(h0α
ii )

2

−4 ∑
1≤i<j≤n

h0α
ii h0α

jj +

(
2n + r

n
− 2
)
(h0α

nn)
2
}

≥
2m

∑
α=n+1

[
r(n− 1) + a(r)n

n(n− 1)

n−1

∑
i=1

(h0α
ii )

2 +
( r

n

)
(h0α

nn)
2 − 4 ∑

1≤i<j≤n
h0α

ii h0α
jj

]
.
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We choose qα, a quadratic form defined by qα : Rn → R for any α ∈ {n + 1, ..., 2m},

qα(h0α
11 , h0α

22 , ..., h0α
nn) =

n−1

∑
i=1

r(n− 1) + a(r)n
n(n− 1)

(h0α
ii )

2

+
r
n
(h0α

nn)
2 − 4 ∑

1≤i<j≤n
h0α

ii h0α
jj .

Our aim is to study the constrained extremum problem

min qα

with the condition
T : h0α

11 + h0α
22 + ... + h0α

nn = kα,

where kα is a real constant.
We solve the following system of first order partial derivatives:

∂qα

∂h0α
ii

= 2
r(n− 1) + a(r)n

n(n− 1)
h0α

ii − 4

(
n

∑
k=1

h0α
kk − h0α

ii

)
= 0

∂qα

∂h0α
nn

=
2r
n

h0α
nn − 4

n−1

∑
k=1

h0α
kk = 0,

for every i ∈ {1, ..., n− 1}, α ∈ {n + 1, ..., 2m}.
The above system solutions are

h0α
ii =

2n(n− 1)
(n− 1)(2n + r) + na(r)

kα

h0α
nn =

2n
2n + r

kα,

for any i ∈ {1, ..., n− 1}, α ∈ {n + 1, ..., 2m}.
For p ∈W, let F be a 2-form, F : TpW × TpW → R defined by

F (X1, X2) = Hess(qα)(X1, X2) + 〈h
′
(X1, X2), (gradqα)(p)〉,

where h′ is the second fundamental form of W in Rn+1, and 〈·,·〉 is the standard inner
product on Rn.

The Hessian matrix of qα is as follows:

Hess(qα) =


λ −4 . . . −4 −4
−4 λ . . . −4 −4

...
...

. . .
...

...
−4 −4 . . . λ −4
−4 −4 . . . −4 2r

n

,

where λ = 2 (n−1)(r+2n)+na(r)
n(n−1) is a real constant.

The hyperplane W is totally geodesic in Rn, so we have ∑n
i=1 Ui = 0, for a vector field

X1 ∈ TpW. We obtain
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F (X1, X1) = λ
n−1

∑
i=1

U2
i +

2r
n

U2
n − 8

n

∑
i,j=1(i 6=j)

UiUj

= λ
n−1

∑
i=1

U2
i +

2r
n

U2
n + 4

(
n

∑
i=1

Ui

)2

− 8
n

∑
i,j=1(i 6=j)

UiUj

= λ
n−1

∑
i=1

U2
i +

2r
n

U2
n + 4

n

∑
i=1

U2
i

≥ 0.

From Remark 1, the critical point (h0α
11 , ..., h0α

nn) of qα is the global minimum point of
the problem. We then achieve Q ≥ 0.

We have thus proved the inequalities (15) and (16), considering infimum and supre-
mum, respectively, over all tangent hyperplanes V of Tx N.

Similarly, we investigated the equality cases of the inequalities (15) and (16). The
critical points of Q denoted by

hc = (h0 n+1
11 , h0 n+1

12 , . . . , h0 n+1
n n , . . . , h0 2m

11 , . . . , h0 2m
n n )

are the solutions of the following system of linear homogeneous equations:

∂Q
∂h0α

ii
= 2

[
2n + r

n
+

a(r)
n− 1

− 2
]

h0α
ii − 4

n

∑
k 6=i,k=1

h0α
kk = 0,

∂Q
∂h0α

nn
= 2

r
n

h0α
nn − 4

n−1

∑
k=1

h0α
kk = 0,

∂Q
∂h0α

ij
= 4

[
2n + r

n
+

a(r)
n− 1

]
h0α

ij = 0, i 6= j,

∂Q
∂h0α

in
= 4

[
2n + r

n
+

a(r)
n− 1

]
h0α

in = 0.

We find that the critical points satisfy h0α
ij = 0, with i, j ∈ {1, ..., n} and α ∈ {n +

1, ..., 2m}. However, because of the conditions Q ≥ 0 and Q(hc) = 0, the critical point hc is
a minimum point of Q. Thus, both inequalities (15) and (16) satisfy the equality cases if
and only if hα

ij = −h∗αij , for i, j ∈ {1, ..., n}, α ∈ {n + 1, ..., 2m}.

Remark 2. The equality cases of inequalities (15) and (16) hold for all unit tangent vectors at
x if and only if x is a totally geodesic point with respect to the Levi–Civita connection. It is
argued that the submanifold N is totally geodesic with respect to the Levi–Civita connection ∇̄0 in
Equation (17).

Next, we consider the normalized δ-Casorati curvatures δC(n− 1) and δ∗C(n− 1), re-
spectively δ̂C(n− 1) and δ̂∗C(n− 1). We then see the following consequences of Theorem (2).

Corollary 1. Let N be an n-dimensional totally real spacelike submanifold of a 2m-dimensional sta-
tistical manifold of a type para-Kähler space form (M̄, ∇̄, P, ḡ). The following δ-Casorati curvatures
then satisfy
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(i)

ρ ≤ δ0
C(n− 1) +

1
n− 1

C0 − 2n
n− 1

‖H0‖2 (23)

+
n

n− 1
ḡ(H, H∗) +

c
4

n(n− 1),

where 2δ0
C(n− 1) = δC(n− 1) + δ∗C(n− 1) and 2C0 = C + C∗, and

(ii)

ρ ≤ δ̂0
C(n− 1) +

1
n− 1

C0 − 2n
n− 1

‖H0‖2 (24)

+
n

n− 1
g̃(H, H∗) +

c
4

n(n− 1),

where 2δ̂0
C(n− 1) = δ̂C(n− 1) + δ̂∗C(n− 1).

Moreover, the equality cases of (23) and (24) hold identically at all points if and only if h and
h∗ satisfy the condition (17), which implies that N is a totally geodesic submanifold with respect to
the Levi–Civita connection.

Corollary 2. Let N be a spacelike Lagrangian submanifold of the para-Kähler space form M̄2n
n . We

then have

(i)

δC(r; n− 1) ≥ 2τ + n2‖H‖2 − nC + c
4

n(1− n), (25)

where r ∈ R such that 0 < r < n(n− 1), and
(ii)

δ̂C(r; n− 1) ≥ 2τ + n2‖H‖2 − nC + c
4

n(1− n), (26)

where r ∈ R such that r > n(n− 1).

Furthermore, the equality sign of (25) and (26) holds identically at all points x ∈ N if and only if
N is a totally geodesic submanifold.

Remark 3. In a future article, we will investigate the optimality of the inequalities in the previous
corollary. Due to additional properties that the second fundamental form h has in the Lagrangian
case (see [33], Lemma 3.2), it is expected that the inequalities can be improved, and the case of
equality can be achieved for another class of submanifolds.

Remark 4. In the main inequalities demonstrated in this section, we established several elementary
relationships between some fundamental extrinsic and intrinsic curvature invariants of totally real
spacelike submanifolds in statistical manifolds of the type para-Kähler space form. The geometric
significance of these inequalities is as follows. It is known that curvature invariants play basic roles
in Riemannian geometry and in mathematical physics. It is worth mentioning that, due to the fact
that Riemannian invariants model the behavior of a Riemannian space, these invariants are called
Riemannian DNA [7]. The extrinsic curvature invariant that measures the shape of submanifolds
in the most natural, best agreement with our intuitive, common-sense idea or feeling of curvature
very likely is the Casorati curvature [40]. Obtaining elementary relationships between extrinsic and
intrinsic curvature invariants is a fundamental problem in modern Riemannian geometry, since it is
essential to be able to control the extrinsic quantities relative to intrinsic ones [41]. As inequalities
provide such elementary relationships, the relevance of the results stated in this paper is clear. By
carefully analyzing the nature of the terms in the main inequalities proved above, one can deduce
that the simplest intrinsic curvature invariant, namely, the (normalized) scalar curvature, has an
upper bound expressed in terms of some basic extrinsic curvature invariants.
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4. Examples

Example 1. We notice that any para-Kähler manifold is a para-Kähler-like statistical manifold,
while para-Kähler space forms provide particular examples of statistical manifolds of type para-
Kähler space forms. The prototype of flat para-Kähler spaces is given by the para-Kähler n-plane
E2n

n (see [42]). The complete classification of para-Kähler space forms of nonzero para-sectional
curvature was realized by Gadea and Montesinos-Amilibia [43]. In particular, any totally geodesic
totally real spacelike submanifold in such spaces provides examples of submanifolds satisfying the
equality case in the inequalities stated above at all points. In the case of non-totally geodesic points,
it is clear that the inequalities are strict. Both totally geodesic and non-totally geodesic examples of
spacelike Lagrangian submanifolds in E2n

n can be found in [32,33,44]. Next, we will present two
such examples of submanifolds in E2n

n .

Example 2. The spacelike n-dimensional plane provides a very natural example of a totally geodesic
spacelike Lagrangian submanifold of E2n

n . This submanifold satisfies the equality cases of the
inequalities stated above at all points.

Example 3. If (a1(t), an+1(t)) is a non-degenerate spacelike curve in E2
1, then the submanifold of

E2n
n defined by

f (t, x2, . . . , xn) = (a1(t), 0, . . . , 0, an+1(t), x2, . . . , xn),

is a spacelike Lagrangian submanifold without totally geodesic points. In this case, the inequalities
stated above are strictly satisfied at all points, and the case of equality cannot be reached.

Example 4. On R2n with the coordinates (x1, . . . , xn, y1, . . . , yn), we consider the flat affine
connection ∇ and the pseudo-Riemannian metric g expressed by

g =
n

∑
i=1

(−αdx2
i + dy2

i ),

where α 6= 0 is a real constant. Consider on R2n the almost product structure P given by

P(∂xi ) = ∂yi , P(∂yi ) = ∂xi , i = 1, . . . , n.

It is then easy to check that (R2n,∇, P, g) is a statistical manifold of the type para-Kähler
space form, being a flat para-Kähler-like statistical manifold. Note that the conjugate connection∇∗
is also flat, and P∗ is given by

P∗(∂xi ) = α∂yi , P∗(∂yi ) =
1
α

∂xi .

Let X be an open set of Rn, and define an isometric immersion u : X → R2n by

u(y1, . . . , yn) = (0, . . . , 0, y1, . . . , yn).

u then defines a spacelike Lagrangian submanifold of (R2n,∇, P, g). Moreover, we have
h = −h∗ and the equality case holds in the inequalities stated above at all points.

5. Conclusions

In this paper, we proved new inequalities between extrinsic and intrinsic invariants
(δ-Casorati curvatures and a scalar curvature) of totally real spacelike submanifolds in
statistical manifolds of the type para-Kähler space form. Furthermore, we investigated
the equality cases and obtained some examples. This research may be a challenge for new
developments focused on new relationships in terms of various invariants, for different
types of statistical submanifolds in this ambient space.
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