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Abstract: In this article, we propose the exponentiated sine-generated family of distributions. Some
important properties are demonstrated, such as the series representation of the probability density
function, quantile function, moments, stress-strength reliability, and Rényi entropy. A particular
member, called the exponentiated sine Weibull distribution, is highlighted; we analyze its skewness
and kurtosis, moments, quantile function, residual mean and reversed mean residual life functions,
order statistics, and extreme value distributions. Maximum likelihood estimation and Bayes esti-
mation under the square error loss function are considered. Simulation studies are used to assess
the techniques, and their performance gives satisfactory results as discussed by the mean square
error, confidence intervals, and coverage probabilities of the estimates. The stress-strength reliability
parameter of the exponentiated sine Weibull model is derived and estimated by the maximum
likelihood estimation method. Also, nonparametric bootstrap techniques are used to approximate
the confidence interval of the reliability parameter. A simulation is conducted to examine the mean
square error, standard deviations, confidence intervals, and coverage probabilities of the reliability
parameter. Finally, three real applications of the exponentiated sine Weibull model are provided. One
of them considers stress-strength data.

Keywords: sine-generated family; Weibull distribution; quantile; entropy; parametric estimation;
Bayes estimation; stress-strength reliability

1. Introduction

In statistics, probability models are essential tools for modeling random phenomena.
New flexible models were presented and examined in the literature in recent decades. This
allowed a more deep exploration of real-life phenomena. The advancement of research
in numerous domains, such as reliability, survival analysis, computer sciences, finance,
biomedical sciences, medicine, hydrology, etc., leads researchers to propose more flexible
distribution for better modeling of various kinds of data experience in practical applications.
Most of the probability distributions were proposed based on algebraic functions. Since
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the von Mises (VM) distribution (see [1]), circular Cauchy (CC) distribution (see [2]), and
Fisher distribution (see [3]), etc. However, there are very few distributions involving the
so-called trigonometric functions. The recent ones include the beta-trigonometric (BT)
distribution (see [4]), sine square (SS) distribution (see [5]), hyperbolic cosine-F (HC-F)
distribution (see [6]), and distributions of the sine-generated (SG) family (see [7]). Further,
ref. [8] introduced the cosine-sine-generated (CSG) family, ref. [9] provided the new-sine-
generated (NSG) distribution and highlighted some of the advantages of sine-generated
distributions in statistical studies, ref. [10] proposed the polyno-expo-trigonometric (PET)
distribution, ref. [11] elaborated the new exponential with trigonometric function (NET),
and [12] created the weighted-cosine exponential distribution. Due to the increase in
interest in data analysis, researchers are required to go further to have more choices in
terms of the availability of distributions that focus on trigonometric functions.

On the other hand, over the past decades, probability generators have greatly con-
tributed to distribution theory, leading to several important mathematical and statistical
tools useful in both theory and practice. Thus, we believe that involving trigonometric func-
tions in distribution theory through various viewpoints can solve several complex problems
in the future concerning the theoretical aspects and practice in various fields of study. The
purpose of this study is to provide another new flexible probability model/distribution
generator, called the exponentiated SG (ESG) family and provide several useful theoretical
and practical results. In addition, the modeling capabilities of the SG family in practice
draw our attention to further investigation and exploration of the SG family in its general-
ized form. The ESG family can be considered as a natural one-parameter extension of the
SG family and an alternative to many other power-exponential-logarithmic distributions. It
is defined by a cumulative distribution function (CDF) expressed as the power of the CDF
of the SG family. The additional tuning power parameter allows us to modulate the func-
tionalities, including the oscillatory amplitude, of the CDF of the SG family, opening some
new statistical perspectives for data fitting, among other things. Surprisingly, this very
intuitive concept did not appear to receive much attention in the literature. We investigate
the fundamental properties in a closed-form and real-world applications of the ESG family,
as well as some computational algorithms and techniques. Different distributions serve
different purposes and represent different data generation processes. The ESG strategy
provides other means of generating new probability models containing some trigonometric
functions. The exponentiated sine-Weibull (ESW) distribution is proposed as a particular
member of the ESG family and expresses closed-form expressions of several properties and
statistical measures, such as the moments, asymptotic residual life, and distributions of
extreme values. By presenting an estimation method and a real-world application of the
ESW distribution, the potential and applicability of the new family in the stress strength
reliability analysis are discussed. On the other hand, most statistical properties of dis-
tributions derived using trigonometric functions raised to a certain power are not fully
expressed analytically in the literature; here, we are able to express the series representation
of the sine and cosine functions to the power of a real number, which hopefully will be
useful. In addition, a result by [13] provides differentiation formulas and power expansions
for trigonometric functions to the power of positive integers and summation formulas. We
hope that these series representations will be the means of extending several mathematical
results in applied mathematics.

The following is the plan of the paper: In Section 2, the ESG family is specified.
Some of its key characteristics are discussed. In Section 3, the expression of a reliability
parameter is derived. In Section 4, the ESW distribution is defined. A few of its most
important properties are discussed. In Section 5, maximum likelihood estimation and Bayes
estimation for the ESW distribution are proposed and examined by simulation studies.
Among other things, the maximum likelihood estimation of the reliability parameter of the
ESW model is obtained. The nonparametric percentile bootstrap and Student’s bootstrap
are considered to approximate the reliability parameter confidence interval, also discussed
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in simulation studies. Three examples of application to real data sets can be found in
Section 6. In Section 7, conclusions are suggested.

2. The Exponentiated Sine-Generated Distributions
2.1. Presentation

The exponentiation technique [14] is one of the popular techniques that received
extensive consideration in extending classical distributions for better flexibility. In this
work, we apply the exponentiation technique to the SG family. To begin, the SG family,
introduced by [7], has the following CDF:

H(x) = H(x; α, ξ) = sin
(π

2
G(x; ξ)

)
, x ∈ R,

where G(x; ξ) is any valid CDF of a continuous distribution, and ξ is a vector of parameters.
Therefore, we propose the exponentiated sine-G (ESG) distribution with CDF given by

F(x) = F(x; α, ξ) =
[
sin
(π

2
G(x; ξ)

)]α
, α > 0. (1)

Notice that, if α = 1, the ESG family is reduced to the SG family.
The probability density function (PDF) connected to the SG family is

f (x) = f (x; α, ξ) =
απ

2
g(x; ξ) cos

(π

2
G(x; ξ)

)[
sin
(π

2
G(x; ξ)

)]α−1
, (2)

where g(x; ξ) is the PDF of G(x; ξ).
The related survival function (SF) and hazard rate function (HRF) are derived as

s(x) = s(x; α, ξ) = 1−
[
sin
(π

2
G(x; ξ)

)]α

and

h(x) = h(x; α, ξ) =
(απ/2)g(x; ξ) cos ((π/2)G(x; ξ))[sin ((π/2)G(x; ξ))]α−1

1− [sin ((π/2)G(x; ξ))]α
,

respectively.
As a first approach on the impact of the parameter α, we can notice that, for α ≥ 1,

F(x) ≤ F(x; 1, ξ). The contrary holds for 0 < α < 1. In addition, for a sufficiently small x,
i.e., as G(x; ξ)→ 0, F(x) ∼ (π/2)αGα(x; ξ) and f (x) ∼ α(π/2)αg(x; ξ)Gα−1(x; ξ). On the
other hand, for a sufficiently large x, i.e., as G(x; ξ)→ 1, then s(x) ∼ (απ2/8)(1−G(x; ξ))2,
and f (x) ∼ (απ2/4)g(x; ξ)(1− G(x; ξ)).

Let us now perform a basic quantile analysis of the ESG family. Firstly, we can use the
quantile function (QF) of the distribution to analyze its skewness and kurtosis; it also serves
as a means of parameter estimation. Moreover, it is used for generating random data that
follows a specified distribution. The QF aided in the computations of some distribution
properties and goodness-of-fit measures. After some developments, the QF of the ESG
family is given by

Q(p) = Q(p; ξ) = G−1
([

2
π

arcsin(p1/α)

]
; ξ

)
, 0 < p < 1,

where G−1(x; ξ) is the QF related to G(x; ξ). In particular, the median is

Q∗ = Q

(
1
2

)
= G−1

([
2
π

arcsin
(

2−1/α
)]

; ξ

)
.

Obviously, the definition of G(x; ξ) is crucial to the modeling capabilities of the ESG family.
A precise example will be presented later.
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2.2. Useful Expansion

In this part, we present the PDF of the ESG family in a series expansion form. To
achieve this aim, some preliminary results are required. First, we recall that the sine and
cosine series expansions are given by sin x = ∑∞

n=0 (−1)nx2n+1/(2n + 1)! and cos x =

∑∞
n=0 (−1)nx2n/(2n)!. We will also need the power series raised to the power of integer as

given by [15]. It is recalled in the following lemma.

Lemma 1 ([15]). For a given power series of the form ∑∞
k=0 akxk, where n denotes a positive integer,

we have (
∞

∑
k=0

akxk

)n

=
∞

∑
k=0

ckxk, (3)

where c0 = an
0 , cm = [1/(ma0)]∑m

k=1(kn−m + k)akcm−k for m ≥ 1.

The following lemma is for future technical purposes.

Lemma 2. We have

An =
∞

∑
n=1

(−1)n(π/2)2n

(2n + 1)!
=

2
π
− 1 ≈ −0.36338. (4)

Proof. We can prove that An is a convergent alternating series via standard convergence cri-
teria, and the value of An can be verified from https://www.wolframalpha.com/widgets/
gallery/view.jsp?id=d983db47634e1936eb568b79884012ac (accessed on 18 August 2021)
or https://www.emathhelp.net/calculators/calculus-2/series-calculator/ (accessed on
18 August 2021).

A series expansion of the exponentiated version of a sine term is provided below.

Lemma 3. Let α > 0 be real and noninteger, and x such that 0 < G(x; ξ) < 1, then[
sin
(π

2
G(x; ξ)

)]α−1
=
(π

2

)α−1
Gα−1(x; ξ) +

∞

∑
l=1

∞

∑
i=0

(
α− 1

l

)(π

2

)α−1
biG2(i+l)+α−1(x; ξ),

where b0 = al
0, bm = [1/(ma0)]∑m

i=1(il−m + i)aibm−i for m ≥ 1, and ai = (−1)i+1(π/2)2i+2/
(2i + 3)!.

Proof. We can write the sine series expansion by separating the first term as

[
sin
(π

2
G(x; ξ)

)]α−1
=

[
π

2
G(x; ξ) +

∞

∑
n=1

(−1)n(π
2 )

2n+1

(2n + 1)!
G2n+1(x; ξ)

]α−1

=
(π

2

)α−1
Gα−1(x; ξ)

[
1 +

∞

∑
n=1

(−1)n(π
2 )

2n

(2n + 1)!
G2n(x; ξ)

]α−1

.

By considering Equation (4), we can conclude that∣∣∑∞
n=1[(−1)n(π/2)2n/(2n + 1)!]G2n(x; ξ)

∣∣ < 1, since 0 < G2n(x; ξ) < 1 for all x. Let
n = i + 1, and i ≥ 0, then, n ≥ 1. Therefore,

[
sin
(π

2
G(x; ξ)

)]α−1
=
(π

2

)α−1
Gα−1(x; ξ)

[
1 +

∞

∑
i=0

aiG2i+2(x; ξ)

]α−1

,

https://www.wolframalpha.com/widgets/gallery/view.jsp?id=d983db47634e1936eb568b79884012ac
https://www.wolframalpha.com/widgets/gallery/view.jsp?id=d983db47634e1936eb568b79884012ac
https://www.emathhelp.net/calculators/calculus-2/series-calculator/
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where ai = (−1)i+1(π/2)2i+2/(2i + 3)!. By the generalized binomial expansion and some
algebra, we get

[
sin
(π

2
G(x; ξ)

)]α−1
=
(π

2

)α−1
Gα−1(x; ξ)

1 +
∞

∑
l=1

(
α− 1

l

)
G2l(x; ξ)

[
∞

∑
i=0

aiG2i(x; ξ)

]l
.

Since l ≥ 1 is an integer, we can apply Equation (3) to the series with the power l, thus,

[
sin
(π

2
G(x; ξ)

)]α−1
=
(π

2

)α−1
Gα−1(x; ξ)

[
1 +

∞

∑
l=1

∞

∑
i=0

(
α− 1

l

)
biG2(i+l)(x; ξ)

]
,

where b0 = al
0 and bm = [1/(ma0)]∑m

i=1(il −m + i)aibm−i for m ≥ 1. Hence,

[
sin
(π

2
G(x; ξ)

)]α−1
=
(π

2

)α−1
Gα−1(x; ξ) +

∞

∑
l=1

∞

∑
i=0

(
α− 1

l

)(π

2

)α−1
biG2(i+l)+α−1(x; ξ).

The stated result is obtained.

Now, we can apply Lemma 3 and the series expansion cos ((π/2)G(x; ξ)) = ∑∞
k=0

[(−1)k(π/2)2k/(2k)!]G2k(x; ξ) to represent the PDF in Equation (2) as

f (x) =
∞

∑
k=0

D(1)
k g(x; ξ)G2k+α−1(x; ξ) +

∞

∑
k,i=0

∞

∑
l=1

D(2)
i,k,l g(x; ξ)G2(i+l+k)+α−1(x; ξ), (5)

where D(1)
k = α(−1)k(π/2)2k+α/(2k)!, D(2)

i,k,l = α(−1)k(π/2)2k+α(α−1
l )bi/(2k)! and bi is

given in Lemma 3. Most of the important properties of the ESG family can be represented
in a closed form analytically. The PDF is now a series of PDFs of the exponentiated
baseline distribution.

2.3. Moments and Entropy

In this subsection, moments and Rényi entropy of the ESG family are derived. Let X
be a random variable (RV) with distribution belonging to the ESG family. Then, the rth
moment of X is traditionally obtained in the following way: µr = E(Xr) =

∫ ∞
−∞ xr f (x)dx.

By virtue of Equation (5), the following series expansion holds:

µr =
∞

∑
k=0

D(1)
k

∫ ∞

−∞
xrg(x; ξ)G2k+α−1(x; ξ)dx

+
∞

∑
k,i=0

∞

∑
l=1

D(2)
i,k,l

∫ ∞

−∞
xrg(x; ξ)G2(i+l+k)+α−1(x; ξ)dx. (6)

Specific moments can be determined by setting r = 1, 2, 3, . . . .
Entropy, on the other hand, is a measure of a system’s disorder or randomness. The

Rényi entropy of X is defined by

IR(ρ) =
1

1− ρ
log
[∫ ∞

−∞
f ρ(x)dx

]
, ρ > 0, ρ 6= 1.

Thus, to determine IR(ρ), it is enough to compute
∫ ∞
−∞ f ρ(x)dx, and to plug it into the

previous logarithmic-integral expression. To begin, we have

f ρ(x) =
(απ

2

)ρ
gρ(x; ξ) cosρ

(π

2
G(x; ξ)

)
sinρ(α−1)

(π

2
G(x; ξ)

)
. (7)

For an expansion of the exponentiated cosine term, the following lemma is useful.
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Lemma 4. Let ρ > 0 real and noninteger. Then, we have

cosρ
(π

2
G(x; ξ)

)
= 1 +

∞

∑
j=1

∞

∑
k=0

z∗∗k,jG
2(k+j)(x; ξ), (8)

where z∗∗k,j = (ρ
j)z
∗
k , z∗0 = zj

0, z∗m = [1/(mz0)]∑m
k=1(kj− m + k)zkz∗m−k for m ≥ 1, and zk =

(−1)k+1(π/2)2(k+1)/(2(k + 1))!.

Proof. Applying some algebra to the cosine series expansion with n ≥ 0 and replacing
n = k + 1, k ≥ 0, then n ≥ 1, as in previous lemmas, we have

cosρ
(π

2
G(x; ξ)

)
=

∞

∑
j=0

(
ρ

j

)[
cos

(π

2
G(x; ξ)

)
− 1
]j

= 1 +
∞

∑
j=1

(
ρ

j

)[ ∞

∑
n=0

(−1)n(π/2)2n

(2n)!
G2n(x; ξ)− 1

]j

= 1 +
∞

∑
j=1

(
ρ

j

)[ ∞

∑
k=0

(−1)k+1(π/2)2(k+1)

(2(k + 1))!
G2(k+1)(x; ξ)

]j

= 1 +
∞

∑
j=1

(
ρ

j

)
G2j(x; ξ)

[
∞

∑
k=0

zkG2k(x; ξ)

]j

,

where zk = (−1)k+1(π/2)2(k+1)/(2(k + 1))!. Since j ≥ 1, we can use Equation (3), which
yields

cosρ
(π

2
G(x; ξ)

)
= 1 +

∞

∑
j=1

(
ρ

j

) ∞

∑
k=0

z∗k G2(k+j)(x; ξ),

where z∗0 = zj
0 and z∗m = [1/(mz0)]∑m

k=1(kj−m + k)zkz∗m−k for m ≥ 1. Hence,

cosρ
(π

2
G(x; ξ)

)
= 1 +

∞

∑
j=1

∞

∑
k=0

z∗∗k,jG
2(k+j)(x; ξ),

where z∗∗k,j = (ρ
j)z
∗
k . The stated expansion is proved.

On the other hand, with a slight adaptation of Lemma 3, we have[
sin
(π

2
G(x; ξ)

)]ρ(α−1)
=
(π

2

)ρ(α−1)
Gρ(α−1)(x; ξ) +

∞

∑
l=1

∞

∑
i=0

Vi,lG2(i+l)+ρ(α−1)(x; ξ), (9)

where Vi,l = (ρ(α−1)
l )(π/2)ρ(α−1)bi and bi is similar to that of Lemma 3. Thus, by substitut-

ing Lemma 4 and Equation (9) in Equation (7), we can compute the integral of f ρ(x) to get
the Rényi entropy.

The Shannon entropy can be expressed in a similar series expansion manner.

3. Stress-Strength Reliability

The system performance parameter, known as the stress-strength parameter, is crucial
in the context of a system’s mechanical reliability. In practice, a good design ensures that
the strength exceeds the anticipated stress. If a component has stress modeled by an RV X
and is subjected to strength modeled by an RV Y, the stress-strength parameter defined
by R = P(Y < X) determines the system performance. The system will fail if and only
if the applied stress exceeds the system’s strength. On the other hand, R can be used to
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compare two populations. Engineering, biological sciences, and finance all have uses for
stress-strength reliability parameters. See [16] (Chapter 7), among others.

The parameter R was studied by many authors in literature through various view-
points. Assuming that X and Y are independent, the following distributions have been
considered: generalized logistic distribution (see [17]), normal distribution (see [18,19]),
exponential distribution with the common location parameter (see [20]), generalized ex-
ponential distribution (see [21]), generalized exponential Poisson distribution (see [22]),
Poisson-odd generalized exponential distribution (see [23]), beta-Erlang truncated exponen-
tial distribution (see [24]), Poisson-generalized half logistic distribution (see [25]), Poisson
half logistic distribution (see [26]), and Weibull (W) distribution (see [27–29]), among others

Here, we study the expression of R in the setting of the ESG family. Suppose that X has
the PDF f (x; α1, ξ), Y has the CDF F(y; α2, ξ), and X and Y are assumed to be independent.
Then, the stress-strength reliability parameter is then defined as follows:

R = P(Y < X) =
∫ ∞

−∞
f (x; α1, ξ)F(x; α2, ξ)dx.

Thus,

R = α1

∫ ∞

−∞

π

2
g(x; ξ) cos

(π

2
G(x; ξ)

)[
sin
(π

2
G(x; ξ)

)]α1+α1−1
dx =

α1

α1 + α2
. (10)

We see that R has some manageable form that can make it easy for statistical purposes,
and so on. In one of the next sections, we discuss the behavior of R with some particular
distribution of the ESG family for illustration.

4. The ES Weibull Distribution

In this section, we concentrate our attention on one special distribution of the ESG
family, called the ESW distribution or ESW(α, β, λ) distribution. In this case, the baseline in
Equation (1) is the W distribution with CDF and PDF given as

G(x; β, λ) = 1− e−λxβ
, β, λ, x > 0,

and

g(x; β, λ) = βλxβ−1e−λxβ
, x > 0,

respectively. Therefore, the CDF of the ESW distribution has the following expression:

F(x) = F(x; α, β, λ) =
[
sin
(π

2

(
1− e−λxβ

))]α
, α, β, λ, x > 0. (11)

If β = 1, the ESW distribution is reduced to the ES exponential (ESE) distribution. The
corresponding probability density, survival, and hazard rate functions are expressed by

f (x) = f (x; α, β, λ) =
π

2
αβλxβ−1e−λxβ

cos
(π

2

(
1− e−λxβ

))[
sin
(π

2

(
1− e−λxβ

))]α−1
, (12)

s(x) = s(x; α, β, λ) = 1−
[
sin
(π

2

(
1− e−λxβ

))]α
(13)

and

h(x) = h(x; α, β, λ)

=
(π/2)αβλxβ−1e−λxβ

cos
(
(π/2)

(
1− e−λxβ

))[
sin
(
(π/2)

(
1− e−λxβ

))]α−1

1−
[
sin
(
(π/2)

(
1− e−λxβ

))]α , (14)
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respectively. Figures 1 and 2 show the plot of the PDF given by Equation (12) and HRF
specified in Equation (14). In particular, Figure 2 shows that the failure rate is flexible
enough to accommodate monotonic (increasing and decreasing) shapes, and also bathtub
and upside-down bathtub shapes.
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Figure 1. Selected plots of PDF f (x) and HRF h(x).
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Figure 2. Selected plots of various kinds of bathtub shapes of HRF h(x).

The decreasing behavior of the PDF is formulated in the following result.

Theorem 1. The PDF of the ESW distribution given by Equation (12) is a decreasing function for
α ≤ 1 and β ≤ 1.

Proof. We have

{log[ f (x)]}′ = β− 1
x
− βλxβ−1 −

(π/2)αβλxβ−1e−λxβ
sin
(
(π/2)

(
1− e−λxβ

))
cos

(
(π/2)

(
1− e−λxβ

))
+

(α− 1)(π/2)αβλxβ−1e−λxβ
cos

(
(π/2)

(
1− e−λxβ

))
sin
(
(π/2)

(
1− e−λxβ

)) .

When α ≤ 1 and β ≤ 1, all the terms in the sum are negative, implying that {log[ f (x)]}′ ≤ 0,
so log[ f (x)] is decreasing, and the same for f (x). This ends the proof.

Proposition 1. The asymptotic behavior of F(x) in Equation (11), f (x) in Equation (12) and s(x)
in Equation (13) are as follows:
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• As x → 0, we have

F(x) ∼
(π

2

)α
Gα(x; β, λ) ∼

(π

2

)α
λαxαβ (15)

and

f (x) ∼ α
(π

2

)α
g(x; β, λ)Gα−1(x; β, λ) ∼

(π

2

)α
λααβxαβ−1.

• As x → ∞, we have

s(x) ∼ απ2

8
(1− G(x; β, λ))2 =

απ2

8
e−2λxβ

(16)

and

f (x) ∼ απ2

4
g(x; β, λ)(1− G(x; β, λ)) =

απ2

4
λβxβ−1e−2λxβ

.

Proof. Standard equivalency function findings are used in the proof. For this reason, the
details are omitted.

4.1. Quantile and Moments

The QF of the ESW distribution can be derived from Equation (11) as

Q(p) = Q(p; β, λ) =

[
− 1

λ
log
(

1− 2
π

arcsin(p1/α)

)]1/β

, 0 < p < 1. (17)

The median of the ESW distribution is

Q∗ = Q

(
1
2

)
=

[
− 1

λ
log
(

1− 2
π

arcsin(2−1/α)

)]1/β

.

The skewness and kurtosis properties of the ESW distribution can be determined using the
Bowley’s skewness and Moor’s kurtosis, among other quantile based measures. They are
defined by

B =
Q(3/4)− 2Q(2/4) +Q(1/4)

Q(3/4)−Q(1/4)
, M =

Q(7/8)−Q(5/8) +Q(3/8)−Q(1/8)
Q(6/8)−Q(2/8)

,

respectively. Equation (17) shows that both B and M are independent of λ. Figure 3 reveals
that these quantile skewness and kurtosis are decreasing with respect to α and β.

alpha beta

S
kew

ness

alpha beta

K
urtosis

Figure 3. Selected plots of B and M of the ESW distribution.
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The moments of the ESW distribution can be computed from µr =
∫ ∞
−∞ xr f (x)dx. By

letting u = sin
(
(π/2)

(
1− e−λxβ

))
, this integral is reduced to

µr = αλ−r/β
∫ 1

0

[
− log

(
1− 2

π
arcsin(u)

)]r/β

uα−1du. (18)

It is not known if the integral in Equation (18) can be derived analytically, but it can be
computed numerically by software such as R. Further, to obtain the moments of the ESW
distribution in a series form, we can use Equation (6), and the following lemma.

Lemma 5. Let ω1 ∈ R, ω2 > 0, ω3 > 0 real and noninteger. We define

ψ(ω1, ω2, ω3) =
∫ ∞

0
xω1 gω2(x; β, λ)Gω3(x; β, λ)dx.

Then,

ψ(ω1, ω2, ω3) =
∞

∑
s=0

λω2 βω2−1(ω3
s )(−1)s

[λ(ω2 + s)](1+ω1−ω2)/β+ω2
Γ
(

1
β
(1 + ω1 −ω2) + ω2

)
, (19)

where Γ(x) refers to the standard gamma function.

Proof. In an expanded form, we have

ψ(ω1, ω2, ω3) = λω2 βω2

∫ ∞

0
xω2(β−1)+ω1 e−λω2xβ

(1− e−λxβ
)ω3 dx

= λω2 βω2
∞

∑
s=0

(
ω3

s

)
(−1)s

∫ ∞

0
xω2(β−1)+ω1 e−λ(ω2+s)xβ

dx.

By setting u = λ(ω2 + s)xβ, we get

ψ(ω1, ω2, ω3) =
∞

∑
s=0

λω2 βω2−1(ω3
s )(−1)s

[λ(ω2 + s)](1+ω1−ω2)/β+ω2

∫ ∞

0
u(1+ω1−ω2)/β+ω2−1e−udu

=
∞

∑
s=0

λω2 βω2−1(ω3
s )(−1)s

[λ(ω2 + s)](1+ω1−ω2)/β+ω2
Γ
(

1
β
(1 + ω1 −ω2) + ω2

)
.

The stated result is obtained.

In fact, most of the features of the ESW distribution may be obtained in a series form
using this lemma. In particular, Equations (5) and (19) can be used to express the moments
of the ESW distribution in a series of the following form:

µr =
∞

∑
k=0

D(1)
k ψ(r, 1, 2k + α− 1) +

∞

∑
k,i=0

∞

∑
l=1

D(2)
i,k,lψ(r, 1, 2(i + l + k) + α− 1),

where D(1)
k and D(2)

i,k,l are given in Equation (5) and ψ(ω1, ω2, ω3) follows from Lemma 5.

4.2. Moments of Residual Life

Residual life functions are involved in a variety of fields, including engineering,
quality control, and life testing. They also aid in the determination of the asymptotic
distributions of order statistics. For an RV X with the ESW distribution, the related mean
residual life is defined by ζ(t) = E(X− t|X > t) =

∫ ∞
0 s(x + t)/s(t)dx. The reversed mean

residual life of X is defined by ζ̄(t) = E(t− X|X ≤ t) =
∫ t

0 F(x)/F(t)dx. Now, we derive
some asymptotic properties of ζ(t) for sufficiently large t, and asymptotic properties of
ζ̄(t) for very small t.
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Theorem 2. Let X be an RV with the ESW distribution. Then, for t→ ∞, the mean residual life
of X satisfies

ζ(t) ∼ e2λtβ

(2λ)1/ββ
Γ
(

1
β

, 2λtβ

)
,

where Γ(a, b) denotes the incomplete (upper version) gamma function.

Proof. From the asymptotic behavior of s(t) for t→ ∞ in Equation (16), we have

ζ(t) =
∫ ∞

0

s(x + t)
s(t)

dx ∼ e2λtβ
∫ ∞

0
e−2λ(x+t)β

dx.

By applying the change of variable u = 2λ(x + t)β, and after some algebra, we get

ζ(t) ∼ e2λtβ

(2λ)1/ββ

∫ ∞

2λtβ
u1/β−1e−udu =

e2λtβ

(2λ)1/ββ
Γ
(

1
β

, 2λtβ

)
.

The stated equivalence is obtained.

Theorem 3. Let X be an RV with the ESW distribution. Then, for t → 0, the reversed mean
residual life of X satisfies

lim
t→0

ζ̄(t) ∼ t
αβ + 1

.

Proof. From the asymptotic behavior of F(t) for t→ 0 in Equation (15), we have

ζ̄(t) =
∫ t

0

F(x)
F(t)

dx ∼
∫ t

0

xαβ

tαβ
dx =

t
αβ + 1

.

The desired outcome is demonstrated.

4.3. Order Statistics and Asymptotic

We now focus on the order statistics from the ESW distribution, and some of their
asymptotic properties. Let X1, X2, . . . , Xn, n ≥ 1, be a sample of independent RVs fol-
lowing the ESW distribution. Let us consider X1:n, X2:n, . . . , Xn:n the ordered versions of
X1, X2, . . . , Xn. Then, for any j = 1, 2, . . . , n, the PDF of Xj:n is given as

f j:n(x) =
n!

(j− 1)!(n− j)!
f (x)Fj−1(x)sn−j(x),

=
n−j

∑
m=0

n!(−1)m

(j− 1)!(n− j−m)!m!
f (x)Fj+m−1(x). (20)

Therefore, by expressing F(x) as in Equation (11), and f (x) as in Equation (12) into Equation
(20), we have

f j:n(x) =
n−j

∑
m=0

(−1)mαβλπn!xβ−1e−λxβ

2(j− 1)!(n− j−m)!m!
cos

(π

2

(
1− e−λxβ

))[
sin
(π

2

(
1− e−λxβ

))]α(j+m)−1
.

Also, we can express f j:n(x) as a series expansion depending on PDFs of the ESW distribu-
tion with parameters α(j + m), β and λ as

f j:n(x) =
n−j

∑
m=0

n!(−1)m

(j + m)(j− 1)!(n− j−m)!m!
f (x; α(j + m), β, λ).



Entropy 2021, 23, 1394 12 of 30

The asymptotic distributions for the minimum order statistic (X1:n) can be derived as
follows. For detail see [30] (Chapter 8).

Theorem 4. Let X1, X2, . . . , Xn, n ≥ 1, be a sample of independent RVs following the ESW
distribution. Let X1:n = inf(X1, . . . , Xn) and B∗n = (X1:n − a∗n)/b∗n. Then, for any x > 0,
we have

lim
n→∞

P(B∗n ≤ x) = 1− e−xαβ
.

We recognize the CDF of the W distribution with parameters 1 and αβ. The normalizing constant
can be derived from Equation (17) by following Theorem 8.3.6 of [30]. That is, we take a∗n = 0 and
b∗n = Q(1/n).

Proof. We aim to apply Theorem 8.3.6 of [30]. By Equation (15), we have

lim
ε→0

F(εx)
F(ε)

∼ lim
ε→0

(εx)αβ

εαβ
= xαβ.

It follows from Theorem 8.3.6 of [30] the desired result. This ends the proof.

5. Parameter Estimation

In this part, we use maximum likelihood and Bayes estimation approaches to estimate
the new model parameters. The maximum likelihood estimation of the ESG family is dis-
cussed in the general case, while the Bayes estimation is discussed for the ESW distribution
only. The estimation techniques are examined by simulation studies.

The expression of the reliability parameter R of the ESW distribution is derived
under a common scale parameter from two independent RVs with possibly different ESW
distributions. Subsequently, the maximum likelihood estimation of R is discussed, and the
nonparametric bootstrap confidence interval (CI) is used to determine the approximate CI
of R, and finally assessed by simulation studies.

5.1. Maximum Likelihood Estimation

The method of maximum likelihood can be used to estimate the parameters of the
models coming from the ESG family. To begin, let X1, X2, . . . , Xn, n ≥ 1, be a sample of
independent RVs whose distribution belongs to the ESG family. We denote by x1, x2, . . . , xn
the corresponding observations. Let θ = (α, ξ)T be a vector of parameters. Then, the
maximum likelihood estimate (MLE) vector of θ, say θ̂ = (α̂, ξ̂)T , is obtained by the
maximization of the log-likelihood function given by

L(θ) = n log α + n log
(π

2

)
+

n

∑
i=1

log g(xi; ξ) +
n

∑
i=1

log
[
cos

(π

2
G(xi; ξ)

)]
+ (α− 1)

n

∑
i=1

log
[
sin
(π

2
G(xi; ξ)

)]
,

with respect to θ. This maximization can be achieved by solving the following nonlinear
system of equations given as

∂L(θ)
∂α

=
n
α
+

n

∑
i=1

log
[
sin
(π

2
G(xi; ξ)

)]
= 0, (21)

and
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∂L(θ)
∂ξ

=
n

∑
i=1

gξ ′(xi; ξ)

g(xi; ξ)
− π

2

n

∑
i=1

Gξ ′(xi; ξ) tan
(π

2
G(xi; ξ)

)
+

π

2
(α− 1)

n

∑
i=1

Gξ ′(xi; ξ) cot
(π

2
G(xi; ξ)

)
= 0,

where gξ ′(xi; ξ) = ∂g(xi; ξ)/∂ξ and Gξ ′(xi; ξ) = ∂G(xi; ξ)/∂ξ. Now, we can analyze the
existence and uniqueness of the MLE of the parameter α. For more studies on the existence
and uniqueness of the MLEs for various models, one can see [25,31,32], among others.

Proposition 2. Let D(α; ξ) represent the right-hand side of Equation (21), and suppose that ξ are
true values of the parameters. Then, D(α; ξ) = 0 has a unique real root.

Proof. Equation (21) shows that limα→0 D(α; ξ) = ∞, from the other side, limα→∞ D(α; ξ) =

∑n
i=1 log [sin ((π/2)G(xi; ξ)]) < 0, thus, D(α; ξ) is a decreasing function runs from positive

to negative. Hence, D(α; ξ) = 0 has a unique real root since ∂L(θ)/∂α is negative.

By applying the plug-in technique, we can use the estimates of the model parameters
to provide estimates of the unknown distribution functions (PDF, SF, etc.).

For an in-depth statistical treatment on the parameters (interval estimations,
test procedures. . . ), the observed information matrix is required. Here, it is given by
I(θ) = −∂2L(θ)/(∂θ∂θT). Now, assume that ξ is a vector of m − 1 components, say
ξ = (ξ2, ξ3, . . . , ξm)T , and write ξ̂ = (ξ̂2, ξ̂3, . . . , ξ̂m)T . Then, the approximate distri-
bution of the random version of θ̂ is Nm(θ, I(θ̂)−1) under the usual regularity condi-
tions. The asymptotic CI for each parameter θ can be determine using 100(1− ε)% CI
as ACIα = (α̂ − Ωε/2T11, α̂ + Ωε/2T11), and ACIξk = (ξ̂k − Ωε/2Tkk, ξ̂k + Ωε/2Tkk) for
2 ≤ k ≤ m, where Trr is defined by the square root of the rth diagonal component of
I(θ̂)−1), for r = 1, 2, . . . m and Ωε/2 is the quantile (1− ε/2) of the N1(0, 1) distribution.
As a mathematical complement, the components of I(θ) are

Iαα =
n
α2 ,

Iαξ = −π

2

n

∑
i=1

Gξ ′(xi; ξ) cot
(π

2
G(xi; ξ)

)
,

Iξξ = −
n

∑
i=1

gξ ′(xi; ξ)

g(xi; ξ)
+

n

∑
i=1

(gξ ′(xi; ξ))2

g2(xi; ξ)
+
(π

2

)2 n

∑
i=1

(
Gξ ′(xi; ξ)

)2
sec2

(π

2
G(xi; ξ)

)
+

π

2

n

∑
i=1

Gξ ′′(xi; ξ) tan
(π

2
G(xi; ξ)

)
+ (α− 1)

(π

2

)2 n

∑
i=1

(
Gξ ′(xi; ξ)

)2
csc2

(π

2
G(xi; ξ)

)
− (α− 1)

π

2

n

∑
i=1

Gξ ′′(xi; ξ) cot
(π

2
G(xi; ξ)

)
,

where gξ ′′(xi; ξ) = ∂2g(xi; ξ)/(∂ξ∂ξT) and Gξ ′′(xi; ξ) = ∂2G(xi; ξ)/(∂ξ∂ξT).

5.2. Bayes Estimation

In this subsection, we discuss the Bayes estimation of the parameters of the ESW
distribution. In this setting, let θ = (α, β, λ)T . The Bayes estimate (BE) vector θ̂ = (α̂, β̂, λ̂)T

is constructed using the posterior distributions given the sample data. The procedure is
briefly described below. Let N be the number of iterations and K be the number of the burn
in. Then the square error loss (SEL) function for the assumed prior distribution is given as
S(θ̂, θ) = (θ̂− θ)2, and is minimized by the posterior mean, as θ̂ = [1/(N − K)]∑N

i=K+1 θ̂(i).
The highest posterior density (HPD) credible interval for θ̂ is determined using the pack-
age HDInterval (see [33]) in the R software. let X1, X2, . . . , Xn, n ≥ 1, be a sample of
independent RVs with the ESW distribution, and x1, x2, . . . , xn be the observations. We
recall that the unknown parameters are α, β, and λ. Adopting the Bayesian paradigm, we
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suppose that α, β, and λ are independent RVs that follow the gamma distribution with PDF
defined by

pi(x) =
ϑ

κi
i

Γ(κi)
xκi−1e−ϑix, x > 0, i = 1, 2, 3,

respectively, i.e., p1(x), p2(x), and p3(x) are the prior PDFs. Let L(θ|data) be the likelihood
function defined by

L(θ|data) =
(π

2

)n
αnβnλn

n

∏
i=1

xβ−1
i e−λ ∑n

i=1 xβ
i

n

∏
i=1

cos
(

π

2

(
1− e−λxβ

i

))

×
n

∏
i=1

[
sin
(

π

2

(
1− e−λxβ

i

))]α−1
.

Then, the joint posterior PDF of θ|data is specified by

π(θ|data) =
L(θ|data)p1(α)p2(β)p3(λ)∫ ∫ ∫

g(data; θ)dαdβdλ
, (22)

where g(data; θ) = L(θ|data)p1(α)p2(β)p3(λ) is the joint PDF associated with the data.
The marginal posterior PDF of α, β, and λ can be derived from Equation (22) as

π1(α) ∝ αn+κ1−1e−ϑ1α
n

∏
i=1

[
sin
(

π

2

(
1− e−λxβ

i

))]α−1
,

π2(β) ∝ βn+κ2−1e−ϑ2β−λ ∑n
i=1 xβ

i

n

∏
i=1

xβ−1
i

n

∏
i=1

cos
(

π

2

(
1− e−λxβ

i

))
×

n

∏
i=1

[
sin
(

π

2

(
1− e−λxβ

i

))]α−1

and

π3(λ) ∝ λn+κ3−1e−λ
(

ϑ3+∑n
i=1 xβ

i

) n

∏
i=1

cos
(

π

2

(
1− e−λxβ

i

)) n

∏
i=1

[
sin
(

π

2

(
1− e−λxβ

i

))]α−1
.

The related posterior distributions are not from well-known distributions. As a result,
we can obtain samples from posterior distributions using the Metropolis–Hastings (MH)
method and the Gibbs sampling technique, as detailed below (see [34–36]) (the normal
distribution is utilized as a suitable distribution for the MH method):

1. Start by initial guess (α(0), β(0), λ(0)),
2. Set t = 1,
3. Apply the MH algorithm to generate α(t) from π1(α),
4. Apply the MH algorithm to generate λ(t) from π3(λ),
5. Apply the MH algorithm to generate β(t) from π2(β),
6. Set t = t + 1,
7. Repeat step 3 to 6, T times.

For a very large value of T, the estimated vector value of θ can be obtained based on the
SEL, and also, the HPD credible interval can be constructed. An approximate 100(1− ε)%
HPD credible interval of θ can be computed using the idea derived by [37] as the smallest
length of the intervals for each parameter (θ̂1, θ̂(1−ε)T), (θ̂2, θ̂(1−ε)(T+1)), . . . , (θ̂εT , θ̂T).

5.3. Simulation Study I

The performance of maximum likelihood and Bayes estimations are evaluated using
simulation results. We generate 1000 samples of size n = (50, 60, 70, . . . , 300) from the ESW
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distribution for some selected parameter values using Equation (17). The bias, mean square
error (MSE), the average length of CI (ALCI), and coverage probability (CP) of the estimates
are computed using R3.5.3 developed by [38]. For the MLEs, we use the package called
maxLik developed by [39] in R-software by maxBFGS. This package allows us to obtain the
MLEs and information matrix, and the package matlib elaborated by [40] can be used to
get the inverse of the information matrix to compute the confidence interval. The resulting
simulations are given in Figures 4–7. For the Bayes estimation, we used N = 3000 number
of iterations and the first 30% as a burn-in sample. We notice that the estimation behaves
well when the all hyperparameters are greater than one and unimodal gamma PDF. It is
indicated that the MLE and BE perform consistently, the bias, MSE, and the ALCI decrease
as the sample size increases; the CP for each parameter is approaching 0.95 in all cases.
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Figure 4. Plots of the Bias, MSE, ALCI, and CP for the estimated α = 1.5, β = 0.5 and λ = 1.5.
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Figure 5. Plots of the Bias, MSE, ALCI, and CP for the estimated α = 1.5, β = 0.9 and λ = 0.9.



Entropy 2021, 23, 1394 16 of 30

50 100 150 200 250 300

0.
0

0.
1

0.
2

0.
3

0.
4

n

B
ia

s 
(θ̂

)

MLE
α
β
λ

BE
α
β
λ

α=1.0, β=1.0, λ= 1.2

50 100 150 200 250 300

1
2

3
4

n

A
LC

I (
θ̂)

MLE
α
β
λ

BE
α
β
λ

α=1.0, β=1.0, λ= 1.2

50 100 150 200 250 300

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

n

C
P

 (θ̂
)

MLE
α
β
λ

BE
α
β
λ

α=1.0, β=1.0, λ= 1.2

50 100 150 200 250 300

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

n

M
S

E
 (α̂

)

MLE
α
BE
α

α=1.0, β=1.0, λ= 1.2

50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

n

M
S

E
 (β̂

)
MLE
β
BE
β

α=1.0, β=1.0, λ= 1.2

50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

n

M
S

E
 (λ̂

)

MLE
λ
BE
λ

α=1.0, β=1.0, λ= 1.2

Figure 6. Plots of the Bias, MSE, ALCI, and CP for the estimated α = 0.8, β = 0.9 and λ = 0.5.
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Figure 7. Plots of the Bias, MSE, ALCI, and CP for the estimated α = 1.6, β = 0.6 and λ = 1.4.

5.4. Estimation of the Stress-Strength Reliability from the ESW Distribution

In this part, the expression of a reliability parameter of the ESW distribution is derived
when the parameter λ is common. The maximum likelihood estimation of R is obtained.
The nonparametric percentile bootstrap (Bp) and Student’s bootstrap (Bt) are used to
approximate the CI of R. Finally, we assessed the estimates through simulation studies.

In the setting of the ESW distribution, let X be an RV having the PDF f (x; α1, β1, λ)
and Y be an RV with the CDF F(x; α2, β2, λ). We assume that X and Y are independent.
Then, the stress-strength reliability parameter is given by
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R =
∫ ∞

−∞
f (x; α1, β1, λ)F(x; α2, β2, λ)dx

=
π

2
α1β1λ

∫ ∞

0
xβ1−1e−λxβ1 cos

(π

2

(
1− e−λxβ1

))[
sin
(π

2

(
1− e−λxβ1

))]α1−1

×
[
sin
(π

2

(
1− e−λxβ2

))]α2
dx.

Now, by considering the changes of variables u = (π/2)
(

1− e−λxβ1
)

and

ru = (π/2)
(

1− e−λ[−(1/λ) log(1−2u/π)]β2/β1
)

, we get

R = α1

∫ π/2

0
cos u(sin u)α1−1[sin(ru)]

α2 du. (23)

The parameter R above has no closed form expression, but it can be easily calculated
using mathematical software such as R and Matlab, among others. Moreover, when β1 = β2,
the expression of R can be deduced from Equation (10).

5.4.1. Maximum Likelihood Estimation of R

Assume that X1, X2, . . . , Xn, n ≥ 1, is a sample of independent RVs whose distri-
bution is the ESW(α1, β1, λ) distribution, and Y1, Y2, . . . , Ym, m ≥ 1, is a sample of inde-
pendent RVs whose distribution is the ESW(α2, β2, λ) distribution. We work with the
observations of these samples, denotes by x1, x2, . . . , xn and y1, y2, . . . , ym, respectively. Let
θ = (α1, α2, β1, β2, λ)T be the vector of unknown parameters, θ̂ = (α̂1, α̂2, β̂1, β̂2, λ̂)T be the
MLE of θ, and R̂ be the estimate of R. Then, the log likelihood function is given as

LR(θ) =

(m + n) log
(π

2

)
+ n log α1 + n log β1 + (m + n) log λ + (β1 − 1)

n

∑
i=1

log xi − λ
n

∑
i=1

xβ1
i

+
n

∑
i=1

log
[

cos
(

π

2

(
1− e−λx

β1
i

))]
+ (α1 − 1)

n

∑
i=1

log
[

sin
(

π

2

(
1− e−λx

β1
i

))]
+ m log α2 + m log β2 + (β2 − 1)

m

∑
j=1

log yj − λ
m

∑
j=1

yβ2
j

+
m

∑
j=1

log
[

cos
(

π

2

(
1− e−λyβ2

j

))]
+ (α2 − 1)

m

∑
j=1

log
[

sin
(

π

2

(
1− e−λyβ2

j

))]
.

It can be maximized with respect to θ to obtain θ̂. The above equation can equivalently be
maximized by the solution of the system of equations given below:

∂LR(θ)

∂α1
=

n
α1

+
n

∑
i=1

log
[

sin
(

π

2

(
1− e−λx

β1
i

)])
= 0,

∂LR(θ)

∂α2
=

m
α2

+
m

∑
j=1

log
[

sin
(

π

2

(
1− e−λyβ2

j

))]
= 0,
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∂LR(θ)

∂β1
=

n
β1

+
n

∑
i=1

log xi − λ
n

∑
i=1

xβ1
i log xi

− λ
π

2

n

∑
i=1

log
[

tan
(

π

2

(
1− e−λx

β1
i

))]
e−λx

β1
i xβ1

i log xi

+ (α1 − 1)λ
π

2

n

∑
i=1

log
[

cot
(

π

2

(
1− e−λx

β1
i

))]
e−λx

β1
i xβ1

i log xi = 0,

∂LR(θ)

∂β2
=

m
β2

+
m

∑
j=1

log yj − λ
m

∑
j=1

yβ2
j log yj

− λ
π

2

m

∑
j=1

log
[

tan
(

π

2

(
1− e−λyβ2

j

))]
e−λyβ2

j yβ2
j log yj

+ (α2 − 1)λ
π

2

m

∑
j=1

log
[

cot
(

π

2

(
1− e−λyβ2

j

))]
e−λyβ2

j yβ2
j log yj = 0

and

∂LR(θ)

∂β2
=

m + n
λ
−

n

∑
i=1

xβ1
i − λ

m

∑
j=1

yβ2
j

− π

2

n

∑
i=1

log
[

tan
(

π

2

(
1− e−λx

β1
i

))]
e−λx

β1
i xβ1

i

− π

2

m

∑
j=1

log
[

tan
(

π

2

(
1− e−λyβ2

j

))]
e−λyβ2

j yβ2
j

+ (α1 − 1)
π

2

n

∑
i=1

log
[

cot
(

π

2

(
1− e−λx

β1
i

))]
e−λx

β1
i xβ1

i

+ (α2 − 1)
π

2

m

∑
j=1

log
[

cot
(

π

2

(
1− e−λyβ2

j

))]
e−λyβ2

j yβ2
j = 0.

Once the MLE θ̂ is obtained, we can compute R̂ from Equation (23).

5.4.2. Bootstrap CIs for R

Here, we propose the use of two nonparametric CI, the percentile Bp CI, and the Bt CI,
as discussed in [41]. The following steps are required to obtain the bootstrap CIs:

1. We generate a sample of values x1, x2, x3, . . . , xn from the ESW(α1, β1, λ) distribu-
tion, and an independent sample of values y1, y2, y3, . . . , ym from the ESW(α2, β2, λ)
distribution.

2. We generate independent bootstrap samples of values x∗1 , x∗2 , x∗3 , . . . , x∗n and
y∗1 , y∗2 , y∗3 , . . . , y∗m using sampling with replacement from the first step in above. Based
on the bootstrap sample, we compute the MLE of θ, say θ̂∗ = (α̂∗1 , α̂∗2 , β̂∗1, β̂∗2, λ̂∗)T , then
compute the corresponding MLE of R, say R̂∗.

3. In order to get a set of bootstrap samples of R, repeat step 2 to 3 B-times. We consider
the samples ordered in an increasing order, say R̂∗j , j = 1, 2, . . . , B.

Then, bootstrap CIs of R can be obtained.

• Percentile bootstrap CI:
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Let R̂∗(δ) be the δ percentile of R̂∗j , j = 1, 2, 3, . . . , B. That is

1
B

B

∑
j=1

I{
R̂∗j ≤R̂∗δ

} = δ, 0 < δ < 1,

where I{.} denotes the standard indicator function. A 100(1− ε)% Bp CI of R is given as(
R̂∗(ε/2), R̂∗(1−ε/2)

)
.

• Student’s t bootstrap CI:

Let us set

¯̂R∗ =
1
B

B

∑
j=1

R̂∗j , se(R̂∗) =

√√√√ 1
B

B

∑
j=1

(
R̂∗j −

¯̂R∗
)2

,

and t̂∗δ be the δ percentile of (R̂∗j − R̂)/se(R̂∗), j = 1, 2, . . . , 3, such that

1
B

B

∑
j=1

I(R̂∗j −R̂)/se(R̂∗)≤t̂∗δ
= δ, 0 < τ < 1.

With these tools, a 100(1− ε)% Bt CI of R is given as

¯̂R∗ ± t̂∗(ε/2)se(R̂∗) =
(

¯̂R∗ − t̂∗(ε/2)se(R̂∗), ¯̂R∗ + t̂∗(ε/2)se(R̂∗)
)

.

5.4.3. Simulation Study II

Here, a simulation is conducted to study the performance of the MLE and boot-
strap CI of R. A simulated sample size of 1000 is obtained via Equation (17) for various
sample sizes and parameters from the ESW(α1, β1, λ) and ESW(α2, β2, λ) distributions.
Let n and m be these sample sizes, respectively. We consider various cases of (n, m) as
(20, 20), (30, 20), (40, 40), (40, 60) and (60, 60). In each case, the MLEs of R is obtained and
the standard deviation (SD), and bias and MSE of R are considered. A 95% CI of R is
obtained using the nonparametric percentile Bp and Bt CIs. The bootstrap is obtained using
B = 1000 replications. The result of the simulation studies is given in Table 1. It shows
that, as the two sample sizes increase, the SDs and MSEs decrease; the estimated value of
R converges to its actual value; the ALCI in the two bootstrap methods decreases as the
sample size increases. Also, the CP goes to the nominal level of 0.95.
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Table 1. Parameters’ values, actual value of R, estimated value of R with SD in parenthesis, MSE of R̂ with bias in
parenthesis, and ALCI with CP in parenthesis.

(α1, α2, β1, β2, λ) R (n, m) R̂(SD) MSE(bias) ALCIBp(CP) ALCIBt(CP)

(0.8, 0.7, 0.5, 0.6, 0.5) 0.5182 (20, 20) 0.5187 (0.0939) 0.0088 (0.0006) 0.4153 (0.93) 0.4971 (0.94)
(30, 20) 0.5233 (0.0778) 0.0061 (0.0052) 0.3238 (0.94) 0.3544 (0.94)
(40, 40) 0.5191 (0.0585) 0.0034 (0.0010) 0.2323 (0.94) 0.2341 (0.94)
(40, 60) 0.5181 (0.0544) 0.0030 (−7× 10−5) 0.2115 (0.95) 0.2108 (0.95)
(60, 60) 0.5189 (0.0496) 0.0025 (0.0007) 0.1871 (0.94) 0.1876 (0.94)

(0.8, 0.7, 1.2, 1.0, 0.6) 0.5555 (20, 20) 0.5080 (0.1827) 0.0356 (−0.0475) 0.6756 (0.94) 0.9333 (0.89)
(30, 20) 0.5263 (0.1411) 0.0208 (−0.0292) 0.6082 (0.94) 0.8711 (0.92)
(40, 40) 0.5511 (0.0792) 0.0063 (−0.0044) 0.4348 (0.94) 0.6333 (0.96)
(40, 60) 0.5546 (0.0665) 0.0044 (−0.0009) 0.3434 (0.94) 0.4769 (0.96)
(60, 60) 0.5564 (0.0509) 0.0026 (0.0008) 0.2636 (0.95) 0.3413 (0.95)

(0.9, 0.5, 0.6, 0.8, 0.7) 0.5972 (20, 20) 0.5970 (0.0893) 0.0080 (−0.0021) 0.4574 (0.94) 0.5967 (0.95)
(30, 20) 0.5988 (0.0748) 0.0056 (0.0015) 0.3406 (0.94) 0.4051 (0.95)
(40, 40) 0.5976 (0.0575) 0.0033 (0.0004) 0.2283 (0.95) 0.2408 (0.95)
(40, 60) 0.5986 (0.537) 0.0029 (0.0013) 0.2053 (0.93) 0.2081 (0.93)
(60, 60) 0.5997 (0.0479) 0.0023 (0.0025) 0.1784 (0.94) 0.1793 (0.94)

(0.6, 0.5, 0.9, 0.9, 0.7) 0.5455 (20, 20) 0.5278 (0.1235) 0.0155 (−0.0176) 0.5598 (0.94) 0.7735 (0.95)
(30, 20) 0.5378 (0.0882) 0.0078 (−0.0076) 0.4385 (0.94) 0.5898 (0.96)
(40, 40) 0.5467 (0.0618) 0.0038 (0.0012) 0.2780 (0.94) 0.3333 (0.94)
(40, 60) 0.5441 (0.0555) 0.0031 (−0.0013) 0.2554 (0.94) 0.3065 (0.94)
(60, 60) 0.5458 (0.0480) 0.0023 (0.0004) 0.1870 (0.93) 0.1940 (0.93)

(2.5, 1.3, 2.0, 1.1, 1.4) 0.7736 (20, 20) 0.7233 (0.2232) 0.05229 (−0.0503) 0.7678 (0.95) 1.1720 (0.88)
(30, 20) 0.7481 (0.1661) 0.0282 (−0.0256) 0.6759 (0.94) 1.0583 (0.93)
(40, 40) 0.7594 (0.1162) 0.0137 (−0.0142) 0.4909 (0.95) 0.7720 (0.95)
(40, 60) 0.7707 (0.0819) 0.0067 (−0.0030) 0.4094 (0.94) 0.6441 (0.93)
(60, 60) 0.7757 (0.0530) 0.0028 (0.0021) 0.2846 (0.92) 0.4186 (0.93)

(2.5, 0.5, 1.0, 2.6, 0.3) 0.9084 (20, 20) 0.9074 (0.0668) 0.0045 (−0.0010) 0.3645 (0.90) 0.5907 (0.91)
(30, 20) 0.9073 (0.0627) 0.0039 (−0.0011) 0.2843 (0.92) 0.4423 (0.93)
(40, 40) 0.9106 (0.0321) 0.0010 (0.0022) 0.1314 (0.90) 0.1574 (0.91)
(40, 60) 0.9108 (0.0305) 0.0009 (0.0024) 0.1111 (0.90) 0.1204 (0.90)
(60, 60) 0.9092 (0.0259) 0.0007 (0.0008) 0.0969 (0.93) 0.1029 (0.93)

(3.8, 1.2, 1.5, 1.2, 1.1) 0.7787 (20, 20) 0.7567 (0.1584) 0.0255 (−0.0219) 0.6621 (0.94) 1.0187 (0.92)
(30, 20) 0.7743 (0.1167) 0.0136 (−0.0044) 0.5471 (0.91) 0.8355 (0.91)
(40, 40) 0.7594 (0.1163) 0.0137 (−0.0142) 0.4909 (0.95) 0.7720 (0.95)
(40, 60) 0.7783 (0.0601) 0.0036 (−0.0004) 0.3099 (0.94) 0.4329 (0.95)
(60, 60) 0.7791 (0.0412) 0.0017 (0.0005) 0.1740 (0.93) 0.1969 (0.93)

(1.0, 1.0, 1.0, 1.0, 1.0) 0.5000 (20, 20) 0.4738 (0.1447) 0.0216 (−0.0262) 0.5975 (0.94) 0.8229 (0.92)
(30, 20) 0.4854 (0.1195) 0.0145 (−0.0146) 0.5135 (0.94) 0.7150 (0.94)
(40, 40) 0.4940 (0.0841) 0.0071 (−0.0060) 0.4511 (0.95) 0.6473 (0.96)
(40, 60) 0.4964 (0.0665) 0.0044 (−0.0036) 0.3099 (0.94) 0.4093 (0.95)
(60, 60) 0.4993 (0.0464) 0.0022 (−0.0007) 0.2297 (0.94) 0.2780 (0.96)

6. Application

Using three real data applications, we demonstrate the performance of the ESW model
in comparison to its submodels and several other existing models. Two data sets for stress-
strength reliability assessments make up one application. We estimate all the competing
model’s parameters by the maximum likelihood method. Also, the parameters of the
ESW model are further estimated by the Bayes techniques. We traditionally compare the
fitted models using the Akaike information criterion (AIC), Bayesian information criterion
(BIC), and consistent Akaike information criterion (CAIC), all are defined via the estimated
log-likelihood (L) as a main ingredient. Further, the goodness-of-fit statistics known as
the Kolmogorov-Smirnov (KS), Anderson-Darling (AD), and Cramér-von Mises (CvM)
are considered. As usual, the data are better represented by the model with the least
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value of these metrics than the other models. In the case of the MLEs and BEs of the
parameters of the ESW model, we compare them via the KS, AD, and CvM. The competing
models are generalized exponential (GE) model (see [42]), generalized Rayleigh (GR) model
(see [43]), generalized exponential Poisson (GEP) model (see [44]), half logistic Poisson
(HLP) model (see [45]), exponentiated Nadarajah-Haghighi (ENH) model (see [46,47]),
generalized inverse Weibull (GIW) model (see [48]), and W model.

6.1. Real Data Application I

This data set is constituted by the total milk production from the first birth of 107
cows of the SINDI race. The data can be found in [49]. They were also analyzed by [10].
Concretely, the data set is: 0.4365, 0.4260, 0.5140, 0.6907, 0.7471, 0.2605, 0.6196, 0.8781,
0.4990, 0.6058, 0.6891, 0.5770, 0.5394, 0.1479, 0.2356, 0.6012, 0.1525, 0.5483, 0.6927, 0.7261,
0.3323, 0.0671, 0.2361, 0.4800, 0.5707, 0.7131, 0.5853, 0.6768, 0.5350, 0.4151, 0.6789, 0.4576,
0.3259, 0.2303, 0.7687, 0.4371, 0.3383, 0.6114, 0.3480, 0.4564, 0.7804, 0.3406, 0.4823, 0.5912,
0.5744, 0.5481, 0.1131, 0.7290, 0.0168, 0.5529, 0.4530, 0.3891, 0.4752, 0.3134, 0.3175, 0.1167,
0.6750, 0.5113, 0.5447, 0.4143, 0.5627, 0.5150, 0.0776, 0.3945, 0.4553, 0.4470, 0.5285, 0.5232,
0.6465, 0.0650, 0.8492, 0.8147, 0.3627, 0.3906, 0.4438, 0.4612, 0.3188, 0.2160, 0.6707, 0.6220,
0.5629, 0.4675, 0.6844, 0.3413, 0.4332, 0.0854, 0.3821, 0.4694, 0.3635, 0.4111, 0.5349, 0.3751,
0.1546, 0.4517, 0.2681, 0.4049, 0.5553, 0.5878, 0.4741, 0.3598, 0.7629, 0.5941, 0.6174, 0.6860,
0.0609, 0.6488, 0.2747.

Figure 8 is the total time on test (TTT) plot of the data set. This shows that data
exhibiting an increasing HRF. The ESW model is a capable candidate to accommodate this
kind of HRF. The numerical values of the considered statistical measures for each model
are computed and presented in Table 2. The results show that the ESW model provides a
better fit than the other competing models. The Bayes estimation method shows a better fit
in terms of KS, while the maximum likelihood method shows a better fit in terms of AD
and CvM. Both of these techniques are sufficient choices for parameter estimation of the
ESW model. Figure 9 illustrates the plots of the histogram with the fitted PDF of the ESW
model and the empirical SF with the fitted SF of the ESW model. Figure 10 displays the
plots of the HRF of the ESW model for the data; empirical cumulative HRF (CHRF) with
the fitted CHRF of the ESW model, and quantile-quantile (QQ) plot of the ESW model. The
obtained fits are totally satisfying. Figure 11 illustrates the profile log-likelihood of each
parameter for the given data set. The uniqueness of the estimates can be seen. To show the
performance of the BEs, Figure 12 shows the iterations obtained from the MH algorithm
and the Gibbs sampling technique for each parameter, and Figure 13 shows the posterior
PDFs of each parameter based on the iterations.

We end this part by indicating the observed information matrix of the ESW model:

I(α̂, β̂, λ̂) =

1034.53601 90.1359 −19.22373
90.13590 −107836.9429 −107846.01301
−19.22373 −107846.0130 −107775.44190


and

I(α̂, β̂, λ̂)−1 =

 0.00113068 −0.00155187 0.00155269
−0.00155187 0.01467901 −0.01468834
0.00155269 −0.01468834 0.01468841

.
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Table 2. MLEs, BE with 95% CI in parenthesis, L, AIC, BIC, CAIC, KS with p-value in parenthesis, AD, and CvM for the data I.

Model α β λ θ L AIC BIC CAIC KS AD CvM

ESWMLE 0.3216 5.5424 4.7906 - 27.732 −49.464 −41.446 −49.231 0.0734 0.5305 0.0836
(0.2557, 0.3875) (5.3049, 5.7799) (4.5531, 5.0282) (0.6113)

ESWBE 0.5021 4.2903 4.0846 - - - - - 0.0573 0.5825 0.0871
(0.2604, 0.7447) (2.8145, 5.8670) (2.6074, 5.7682) (0.8744)

ESE 3.3101 - 2.1712 - 6.596 −9.191 −3.846 −9.076 0.1418 4.0970 0.6751
(2.3421, 4.2782) (1.8087, 2.5336) (0.0271)

SW - 2.4894 2.8311 - 22.378 −40.754 −35.409 −40.639 0.0766 1.3299 0.2003
(2.0912, 2.8857) (2.0695, 3.5926) (0.5559)

W - 2.6012 5.3818 - 21.348 −38.695 −33.349 −38.580 0.0832 1.5126 0.2307
(2.1896, 3.0128) (3.8514, 6.9122) (0.4487)

GE 3.7139 - 4.2007 - 5.039 −6.078 −0.732 −5.962 0.1477 4.3696 0.7257
(2.6102, 4.8176) (3.4729, 4.9284) (0.0188)

GR 2.1189 - - 1.2567 18.155 −32.311 −26.195 −32.195 0.1178 2.1579 0.3371
(2.6102, 4.8176) (3.4730, 4.9284) (0.1026)

GEP 4.2690 3.7540 4.1128 - 5.0158 −4.0316 3.9869 −3.7986 0.1544 4.3799 0.7276
(4.2439, 4.2947) (3.0422, 4.4662) (0, 0.0061) (0.0121)

HLP 5.7570 - −4.9618 - 17.877 −31.754 −26.409 −31.639 0.0916 1.9932 0.3015

(5.0236, 6.4923) (−6.4447,
−3.4788) (0.3302)

ENH 32.5264 2.3595 0.0608 - 21.0381 −36.076 −28.058 −35.843 0.2995 1.3831 0.2104
(0, 74.2789) (1.7901, 2.9288) (0, 0.1409) (9.3× 10−9)
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Figure 8. TTT plot for the data I.
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Figure 9. Plots of histogram with fitted PDF of the ESW model, and empirical SF with fitted SF of the ESW model for the
data I.
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Figure 10. Plots of empirical with fitted HRF of the ESW model, empirical CHRF with fitted CHRF of the ESW model, and
QQ plot for the data I.
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Figure 11. Plots of profile log-likelihood function of each parameter for the data I.
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Figure 12. Plots of iterations from the MH algorithm and Gibbs sampling technique for the data I.
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Figure 13. Plots of posterior PDFs of α, β and λ in the ESW model based on iterations for the data I.

6.2. Real Data Application II

This data set is provided by [50]. It consists of the remission times (in months) of a
random sample of 128 bladder cancer patients, also studied by [25,51]. The data set is: 0.08,
2.09, 3.48, 4.87, 6.94 , 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57,
5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46 , 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17,
7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39,
10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62,
10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25,
17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46,
4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03,
20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 22.69.

Figure 14 displays the TTT plot of the data set. It shows that the data exhibit an
upside-down-bathtub HRF, and the ESW model is a capable candidate to accommodate
such an HRF. The numerical values of these measures for all the models are computed and
given in Table 3; the results show that the ESW model captures the information of the data
better than the other competing models. Figure 15 gives the plot of the histogram with
the fitted PDF of the ESW model and empirical SF with the fitted SF of the ESW model.
Figure 16 shows the plot of the HRF of the ESW model, empirical CHRF with the fitted
CHRF of the ESW model, and QQ plot of the ESW model. Figure 17 is the plots of the
profile log-likelihood of each parameter. To illustrate the Bayes estimates performance,
Figure 18 shows the iterations obtained from the MH algorithm and the Gibbs sampling
technique for each parameter, and Figure 19 shows the posterior PDFs of each parameter
based on the iterations obtained.
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Table 3. MLEs, BE with 95% CI in parenthesis, L, AIC, BIC, CAIC, KS with p-value in parenthesis, AD, and CvM for the data II.

Model α β λ θ γ L AIC BIC CAIC KS AD CvM

ESWMLE 2.7619 0.6207 0.2668 - - −410.476 826.95 835.508 827.146 0.0435 0.2594 0.0394
(0.3971, 5.1267) (0.3765, 0.8649) (0.0132, 0.5204) (0.9688)

ESWBE 2.2475 0.6275 0.2614 - - - - - - 0.0507 0.2952 0.0468
(1.2466, 3.2377) (0.5272, 0.8899) (0.0752, 0.3236 ) (0.8967)

ESE 1.1164 - 0.0639 - - −413.915 831.830 837.535 831.926 0.0786 0.8107 0.1365
(0.8549, 1.3779) (0.0504, 0.0774) (0.4070)

SW - 0.9920 0.0611 - - −414.325 832.650 838.354 832.746 0.0699 0.8312 0.1400
(0.8644, 1.1196) (0.0377, 0.0844) (0.5581)

W - 1.0476 0.0939 - - −414.087 832.174 837.878 832.270 0.0699 0.7815 0.1308
(0.9152, 1.1800) (0.0565, 0.1314) (0.5123)

GR 0.0476 - - 0.3641 - −429.225 862.450 808.154 862.546 0.1551 2.7699 0.4729
(0.9255, 1.5082) (0.0945, 0.1477) (0.0042)

GIW 0.1988 0.7521 - - 8.1915 −444.000 894.002 902.558 894.195 0.1408 4.513 0.7414
(0, 0.6116) (0.6689, 0.8352) (0, 20.8093) (0.00125)

HLP 0.0555 - 4.0202 - - −413.171 830.342 836.046 830.438 0.0954 0.3620 0.0606
(0, 0.1237) (0, 9.4418) (0.1861)



Entropy 2021, 23, 1394 26 of 30

To end this portion, the observed information matrix of the ESW model is computed
as

I(α̂, β̂, λ̂) =

 16.71197 −72.64589 −220.8935
−72.64589 2307.67228 2847.1163
−220.89353 2847.11632 4766.8891


and

I(α̂, β̂, λ̂)−1 =

 1.4557178 −0.14214165 0.15235355
−0.1421417 0.01552620 −0.01586004
0.1523536 −0.01586004 0.01674243

.
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Figure 14. TTT plot for the data II.
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Figure 15. Plots of histogram with the fitted PDF of the ESW model, and empirical SF with fitted SF of the ESW model for
the data II.
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Figure 16. Plots of empirical HRF with fitted HRF of the ESW model, empirical CHRF with fitted CHRF, and QQ plot for
the ESW model for the data II.
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Figure 17. Plots of profile log-likelihood function of each parameter of the ESW model for the data II.
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Figure 18. Plots of iterations from the MH algorithm and Gibbs sampling technique for the data II.
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Figure 19. Plots of posterior PDFs of α, β and λ in the ESW model based on iterations for the data II.

6.3. Real Data Application III

In this subsection, we illustrate the performance of the ESW model in the stress
strength reliability studies by using real data sets. Also, we demonstrate the application
of the proposed estimation techniques in a practical scenario. We compute the value of R
by maximum likelihood approach and the 95% nonparametric Bp and Bt CIs of R using
B = 1000 replications. The KS is used to show how good the fit of the ESW model is for the
two data sets.

The reference [52] provides the following data sets. One data set represents single
fibers tested under tension at gauge lengths of 10 mm (data1), and the other represents
impregnated tows of 1000 fibers tested at gauge lengths of 20 mm (data2), of sizes n = 63
and m = 69, respectively.

They are given as:
Data1(X): 1.901, 2.132, 2.203, 2.228, 2.257, 2.350, 2.361, 2.396, 2.397, 2.445, 2.454, 2.474,

2.518, 2.522, 2.525, 2.532, 2.575, 2.614, 2.616, 2.618, 2.624, 2.659, 2.675, 2.738, 2.740, 2.856,
2.917, 2.928, 2.937, 2.937, 2.977, 2.996, 3.030, 3.125, 3.139, 3.145, 3.220, 3.223, 3.235, 3.243,
3.264, 3.272, 3.294, 3.332, 3.346, 3.377, 3.408, 3.435, 3.493, 3.501, 3.537, 3.554, 3.562, 3.628,
3.852, 3.871, 3.886, 3.971, 4.024, 4.027, 4.225, 4.395, 5.020.

Data2(Y): 1.312, 1.314, 1.479, 1.552, 1.700, 1.803, 1.861, 1.865, 1.944, 1.958, 1.966, 1.997,
2.006, 2.021, 2.027, 2.055, 2.063, 2.098, 2.14, 2.179, 2.224, 2.240, 2.253, 2.270, 2.272, 2.274, 2.301,
2.301, 2.359, 2.382, 2.382, 2.426, 2.434, 2.435, 2.478, 2.490, 2.511, 2.514, 2.535, 2.554, 2.566,
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2.57, 2.586, 2.629, 2.633, 2.642, 2.648, 2.684, 2.697, 2.726, 2.770, 2.773, 2.800, 2.809, 2.818,
2.821, 2.848, 2.88, 2.954, 3.012, 3.067, 3.084, 3.090, 3.096, 3.128, 3.233, 3.433, 3.585, 3.585.

The estimated values from the application are given in Table 4; it is quite clear that the
ESW model fits the two data sets well as measured by KS (i.e., KS1 for the ESW distribution
underlying Data1(X) and KS2 for the ESW distribution underlying Data2(X)), and its
performance indicates that the ESW model can be considered as a good candidate in stress
strength reliability analysis. Figure 20 displays the empirical and fitted CDF of the ESW
model, and the PDF of the estimated bootstrap values of R for the data sets. Figure 21
shows the profile log likelihood of the estimated parameters. It proves that the obtained
MLE is unique.

Table 4. MLEs, LR, R, KS with p-value in parenthesis, and 95% CI with confidence length below for stress strength data sets.

α1 α2 β1 β2 λ LR KS1 KS2 R CIBp CIBt

5.9420 3.7152 2.3651 2.7151 0.0877 106.265 0.0946 0.0485 0.7837 (0.7073, 0.8524) (0.7073, 0.8602)
(0.5921) (0.9944) 0.1451 0.1529
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Figure 20. Plots of empirical and fitted CDF of the ESW model, and PDF of estimated bootstrap values of R for stress-strength
data sets.
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Figure 21. Plots of profile log-likelihood function of each parameter for stress-strength data sets.

7. Conclusions

The exponentiated sine-generated family is a new family of distributions proposed in
this paper. Some important mathematical and statistical properties were derived, such as
the series representation of the probability density function, quantile function, moments,
stress-strength reliability parameter, and Rényi entropy. A special member of the fam-
ily, called the exponentiated sine Weibull (ESW) distribution, was derived and studied.
We analyzed its skewness and kurtosis, mean residual and reversed mean residual life
functions, order statistics, and extreme value distributions. The maximum likelihood
estimation and Bayes estimation under the square error loss function of the ESW model
were discussed. They were assessed using simulation studies via the mean square error
and confidence interval of the estimates, and they work well. The expression of a reliability
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parameter of the ESW distribution is derived when the scale parameter is common. The
maximum likelihood is used to estimate this special parameter, and nonparametric boot-
strap techniques were considered for the confidence interval. The estimation was assessed
by simulation studies and worked well by examining the mean square error, standard
deviations, confidence intervals, and coverage probability. In the end, three applications
of the ESW model to real data were provided for illustration, in which the ESW model
outperforms some other existing models in terms of fitting and is demonstrated as a good
candidate for stress-strength parameter analysis. The potential for new applications of the
ESW model in the applied field is huge, opening the door to new statistical analysis in
applied science dealing with important lifetime data. Also, another specific member of the
new family can be investigated for further applied perspectives.
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