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Abstract: Information theory provides an interdisciplinary method to understand important phe-
nomena in many research fields ranging from astrophysical and laboratory fluids/plasmas to bio-
logical systems. In particular, information geometric theory enables us to envision the evolution of
non-equilibrium processes in terms of a (dimensionless) distance by quantifying how information
unfolds over time as a probability density function (PDF) evolves in time. Here, we discuss some
recent developments in information geometric theory focusing on time-dependent dynamic aspects
of non-equilibrium processes (e.g., time-varying mean value, time-varying variance, or tempera-
ture, etc.) and their thermodynamic and physical/biological implications. We compare different
distances between two given PDFs and highlight the importance of a path-dependent distance for a
time-dependent PDF. We then discuss the role of the information rate Γ = dL

dt and relative entropy
in non-equilibrium thermodynamic relations (entropy production rate, heat flux, dissipated work,
non-equilibrium free energy, etc.), and various inequalities among them. Here, L is the information
length representing the total number of statistically distinguishable states a PDF evolves through over
time. We explore the implications of a geodesic solution in information geometry for self-organization
and control.

Keywords: information geometry; entropy; information rate; information length; fluctuations;
Langevin equations; Fokker-planck equation; time-dependent probability density functions;
self-organization

1. Introduction

Information geometry refers to the application of the techniques of differential geom-
etry to probability and statistics. Specifically, it uses differential geometry to define the
metric tensor that endows the statistical space (consisting of probabilities) with the notion
of distance [1–31]. While seemingly too abstract, it permits us to measure quantitative
differences among different probabilities. It then makes it possible to link a stochastic
process, complexity, and geometry, which is particularly useful in classifying a growing
number of data from different research areas (e.g., from astrophysical and laboratory
systems to biosystems). Furthermore, it can be used to obtain desired outcomes [6–10,15]
or to understand statistical complexity [4].

For instance, the Wasserstein metric [6–10] was widely used in the optimal transport
problem where the main interest is to minimize transport cost which is a quadratic function
of the distance between two locations. It satisfies the Fokker-Planck equation for gradient
flow which minimizes the entropy/energy functional [7]. For Gaussian distributions, the
Wasserstein metric space consists of physical distances—Euclidean and positive symmetric
matrices for the mean and variance, respectively (e.g., see [8]).
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In comparsion, the Fisher (Fisher-Rao) information [32] can be used to define a di-
mensionless distance in statistical manifolds [33,34]. For instance, the statistical distance ds
represents the number of indistinguishable states as [5,33]

(ds)2 ≡∑
j

dp2
j

pj
= ∑

j
pj(d ln pj)

2 = ∑
j,α,β

pj
∂ ln pj

∂λα

∂ ln pj

∂λβ
dλαdλβ = ∑

α,β
dλαgαβdλβ. (1)

Here the Fisher information metric gαβ = 〈 ∂ ln pj
∂λα

∂ ln pj

∂λβ 〉 = ∑j pj
∂ ln pj
∂λα

∂ ln pj

∂λβ provides
natural (Riemannian) distinguishability metric on the space of probability distributions.
λα’s are the parameters of the probability pj and the angular brackets represent the en-
semble average over pj. Note that Equation (1) is given for a discrete probability pj. For a
continuous Probability Density Function (PDF) p(x) for a variable x, Equation (1) becomes
(ds)2 =

∫
dxp(x)[d ln (p(x)]2 = ∑α,β dλαgαβdλβ where gαβ =

∫
dx p(x) ∂ ln (p(x))

∂λα
∂ ln (p(x))

∂λβ .
For Gaussian processes, the Fisher metric is inversely proportional to the covariance

matrices of fluctuations in the systems. Thus, in thermodynamic equilibrium, strong
fluctuations lead to a strong correlation and a shorter distance between the neighboring
states [34,35]. Alternatively, fluctuations determine the uncertainty in measurements,
providing the resolution (the distance unit) that normalizes the distance between different
thermodynamic states.

To appreciate the meaning of fluctuation-based metric, let us consider the (equilibrium)
Maxwell-Boltzmann distribution p(Ej) = βe−βEj for the energy state Ej

p(Ei)

p(Ej)
= e−β(Ei−Ej). (2)

Here β = 1/kBT is the inverse temperature; kB is the Boltzmann constant; T is the tem-
perature of the heat bath. In Equation (2), the thermal energy kBT = 〈E〉 of the heat bath
(the width/uncertainty of the probability) provides the resolution to differentiate different
states ∆E = Ei − Ej. The smaller is the resolution (temperature), the more distinguishable
states (more accessible information in the system) there are. It agrees with the expectation
that a PDF gradient (the Fisher-information) increases with information [32].

This concept has been generalized to non-equilibrium systems [36–43], including the
utilization for controlling systems to minimize entropy production [38,40,42], the measure-
ment of the statistical distance in experiments to validate theoretical predictions [41], etc.
However, some of these works rely on the equilibrium distribution Equation (2) that is
valid only in or near equilibrium while many important phenomena in nature and labo-
ratories are often far from equilibrium with strong fluctuations, variability, heterogeneity,
or stochasticity [44–52]. Far from equilibrium, there is no (infinite-capacity) heat bath that
can maintain the system at a certain temperature, or constant fluctuation level. One of the
important questions far from equilibrium is indeed to understand how fluctuation level
β(t)−1 changes with time. Furthermore, PDFs no longer follow the Maxwell-Boltzmann
nor Gaussian distributions and can involve the contribution from (rare) events of large
amplitude fluctuations [53–62]. Therefore, the full knowledge of time-varying PDFs and
the application of information geometry to such PDFs have become of considerable interest.

Furthermore, while in equilibrium [63,64], information theoretical measures (e.g., Shan-
non information entropy) can be given thermodynamic meanings (e.g., heat), in non-
equilibrium such interpretations are not always possible and equilibrium thermodynamic
rules can break down locally (e.g., see [65,66] and references therein). Much progress
on these issues has been made by different authors (e.g., [65–82]) through the develop-
ment of information theory, stochastic thermodynamics, and non-equilibrium fluctua-
tion theorems with the help of the Fisher information [32], relative entropy [83], mutual
information [84,85], etc. Exemplary works include the Landauer’s principle which links
information loss to the ability to extract work [86,87]; the resolution of Maxwell’s de-
mon paradox [88]; black hole thermodynamics [89,90]; various thermodynamic inequal-
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ity/uncertainty relations [65,68,91–97]; and linking different research areas (e.g., non-
equilibrium processes to quantum mechanics [98–100], physics to biology [101]).

The paper aims to discuss some recent developments in the information geometric
theory of non-equilibrium processes. Since this would undoubtedly span a broad range of
topics, this paper will have to be selective and will focus on elucidating the dynamic aspect
of non-equilibrium processes and thermodynamic and physical/biological implications.
Throughout the paper, we highlight that time-varying measures (esp. variance) introduces
extra complication in various relations, in particular, between the information geometric
measure and entropy production rate. We make the efforts to make this paper self-contained
(e.g., by including the derivations of some well-known results) wherever possible.

The remainder of this paper is organized as follows. Section 2 discusses different
distances between two PDFs and the generalization for a time-dependent non-equilibrium
PDF. Section 3 compares the distancs from Section 2. Section 4 discusses key thermody-
namic relations that are useful for non-equilibrium processes. Section 5 establishes relations
between information geometric quantities (in Section 2) and thermodynamics (in Section 4).
In Section 6, we discuss the concept of a geodesic in information geometry and its impli-
cations for self-organization or designing optimal protocols for control. Conclusions are
provided in Section 7.

2. Distances/Metrics

This section discusses the distance defined between two probabilities (Section 2.1)
and along the evolution path of a time-dependent probability (Section 2.2). Examples and
comparisons of these distances are provided in Section 3.1. For illustration, we use a PDF
p(x, t) of a stochastic variable x and differential entropy S = −

∫
dx p(x, t) ln (p(x, t)) by

using the unit kB = 1.

2.1. Distance Between Two PDFs

We consider the distance between two PDFs p1 = p(x, t1) and p2 = p(x, t2) of a
stochastic variable x at two times t1 and t2, respectively where t1 = t2 or t1 6= t2 in general.

2.1.1. Wootters’ Distance

The Wootters’ distance [5,33] is defined in quantum mechanics by the shortest distance
between the two p1 and p2 that have the wave functions ψ1 and ψ2 (p1 = |ψ1|2 and
p2 = |ψ2|2), respectively. Specifically, for given p1 and p2, the distance s(p1, p2) between p1
and p2 can be parameterized by infinitely many different paths between p1 and p2. Letting
z be the affine parameter of a path, we have

s(p1, p2) =
∫ 2

1
ds =

∫
dz

ds(z)
dz

=
∫

dz

√√√√∑
α,β

dλα

dz
gαβ

dλβ

dz
, (3)

where ds is given in Equation (1). Among all possible paths, the minimum of s(p1, p2) is
obtained for a particular path that optimizes the quantum distinguishability; the (Hilbert-
space) angle between the two wave functions provides such minimum distance as

W[p1, p2] = cos−1
[∫

dx [p(x, t1)]
1
2 [p(x, t2)]

1
2

]
. (4)

Equation (4) is for a pure state and has been generalized to mixed states (e.g., see [37,102]
and references therein). Note that the Wootters’ distance is related to the Hellinger dis-
tance [43].
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2.1.2. Kullback-Leibler (K-L) Divergence/Relative Entropy

Kullback-Leibler (K-L) divergence between the two PDFs [83], also called relative
entropy, is defined by

K(p1|p2) =
∫

dx p(x, t1) ln

(
p(x, t1)

p(x, t2)

)
. (5)

Relative entropy quantifies the difference between a PDF p1 and another PDF p2. It
takes the minimum zero value for identical two PDFs p1 = p2 and becomes large as p1 and
p2 become more different. However, as it is defined in Equation (5), it is not symmetric
between p1 and p2 and does not satisfy the triangle inequality. It is thus not a metric in a
strict sense.

2.1.3. Jensen Divergence

The Jensen divergence (also called Jensen distance) is the symmetrized Kullback–
Leibler divergence defined by

J (p1|p2) =
1
2

[
K(p1|p2) +K(p2|p1))

]
. (6)

While the square root of the Jensen-Shannon divergence
√
J (p1|p2) is a metric [4,103],

J (p1|p2) itself has also been used in examining statistical complexity (e.g., see [43,104,105]).

2.1.4. Euclidean Norm

In analysis of big data, the Euclidean norm [5,106] is used, which is defined by

|p1 − p2|2 =
∫

dx
[
p(x, t1)− p(x, t2)

]2.

(7)

While Equation (7) has a direct analogy to the physical distance, it has a limitation
in measuring statistical complexity due to the neglect of the stochastic nature [5]. For
instance, the Wootters’ distance in Equation (4) was shown to work better than Equation (7)
in capturing complexity in the logistic map [5].

2.2. Distance along the Path

Equations (4)–(7) can be used to define the distance between the two given PDFs
p(x, t1) and p(x, t2) at times t1 and t2 (t2 > t1). However, p(x, t) at the intermediate time
t = (t1, t2) can take an infinite number of different values depending on the exact path
that a system takes between p(x, t1) and p(x, t2). One example would be i) p(x, t1) =
p(x, t2) = p(x, t) for all t = (t1, t2) and x, in comparison with ii) p(x, t1) = p(x, t2) but
p(x, t) 6= p(x, t1) and p(x, t) 6= p(x, t2). What is necessary is a path-dependent distance that
depends on the exact evolution and the form of p(x, t) for t = (t1, t2).

2.2.1. Information Rate

Calculating a path-dependent distance for a time-dependent PDF p(x, t) requires the
generalization of the distance in Section 2.1. To this end, we consider two (temporally) ad-
jacent PDFs along the trajectory, say, p(x, t) and p(x, t + dt) and calculate the (infinitesimal)
relative entropy between them in the limit dt→ 0 to the leading order in O(dt):

lim
dt→0

1
(dt)2K[p(x, t + dt)|p(x, t)] = lim

dt→0

1
(dt)2K[p(x, t)|p(x, t + dt)]

= lim
dt→0

1
(dt)2J [p(x, t + dt)|p(x, t)] =

1
2

∫
dxp(x, t)(∂t ln p(x, t))2 ≡ 1

2
Γ2. (8)
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Here, we used p(x, t + dt) = p(x, t) + (dt)∂t p + 1
2 (dt)2(∂t p)2 + O((dt)3), ln(1 + r) =

r − 1
2 r2 + O(r3) for r � 1, and

∫
dx∂t p(x, t) =

∫
dx∂tt p(x, t) = 0 because of the total

probability conservation
∫

dxp(x, t) = 1. Due to the symmetry of K[p(x, t + dt)|p(x, t)] to
leading order O((dt)2), K[p(x, t + dt)|p(x, t)] = J [p(x, t + dt)|p(x, t)] to O((dt)2).

In Equation (8), the information rate Γ is defined by [15–29]

Γ2(t) = lim
dt→0

2
(dt)2 J[p(x, t + dt)|p(x, t)] =

∫
dxp(x, t)(∂t ln p(x, t))2 = 4

∫
dx (∂tq(t))2.

(9)
Here, q =

√
p, and Γ ≥ 0 by definition. We note that the last term in terms of q

in Equation (9) can be used when q = p = 0. The dimensions of Γ2 ≡ E and Γ are
(time)−2 and (time)−1, respectively. They do not change their values under nonlinear, time-
independent transformation of variables (see Appendix A). Thus, using the unit where the
length is dimensionless, E and Γ can be viewed as the kinetic energy per mass and velocity,
respectively. For this reason, Γ was called the velocity (e.g., in [15,17]).

Note that E can be viewed as the Fisher information [32] if time is interpreted as
a parameter (e.g., [97]). However, time in classical mechanics is a passive quantity that
cannot be changed by an external control. Γ is also called the entropy production rate in
quantum mechanics [107]. However, as shown in Sections 4.1 and 4.4, the relation between
Γ and thermodynamic entropy production rate is more complicated (see Equation (28)).

Γ in Equation (9) is the information rate representing how quickly new information
is revealed as a PDF evolves in time. Here, Γ−1 = τ is the characteristic time scale of this
information change in time. To show that Γ is related to fluctuation’s smallest time scale [97],
we assume that λα’s are the estimators (parameters) of a p(x, t) and use the Cramér-
Rao bound on the Fisher information gαβ =

∫
dxp(x, t)∂λα [ln p(x, t)]∂λβ [ln p(x, t)] ≥ C−1

αβ

where Cαβ ≡ 〈δλαδλβ〉 is the covariance matrix (e.g., see [32]); δλα = λα − 〈λα〉 denotes
fluctuation. Using d ln p

dt = ∂ ln p
∂λα

dλα

dt then leads to

Γ2 = ∑
αβ

dλα

dt
gαβ

dλβ

dt
≥∑

αβ

dλα

dt
C−1

αβ

dλβ

dt
. (10)

For the diagonal gαβ = gαδαβ, Equation (10) is simplified as

∑
α

1
〈(δλα)2〉

(
dλα

dt

)2
≤ Γ2. (11)

Equation (11) shows how the RMS fluctuation-normalized rate at which the parameter
λα can change is bounded above by Γ. If there is only α = 1 (λα = λδα,1), Equation (11) is
further simplified:

1√
〈(δλ)2〉

∣∣∣∣dλ

dt

∣∣∣∣ ≤ Γ, (12)

clearly showing that λ normalized by its RMS fluctuations cannot change faster than the
information rate.

Finally, it is worth highlighting that Equation (9) is general and can be used even when
the parameters λα’s and gαβ in Γ2 in Equation (10) are unknown. Examples include the
cases where PDFs are empirically inferred from experimental/observational data. Readers
are referred to Refs. [21,23,28] for examples. It is only the special case where we have a
complete set of parameters λα’s of a PDF that we can express Γ using the Fisher information
as in Equation (10). For instance, for a Gaussian p(x, t) that is fully described by the mean
value 〈x〉 and variance 1

2β , (λ1, λ2) = (〈x〉, β).
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2.2.2. Information Length

Since Γ ∝
√
J [p(x, t + dt)|p(x, t)] is a metric [103] as noted in Section 2.1, Γ is also a

metric. Thus, we sum Γ along the trajectory to define a finite distance. Specifically, starting
with an initial PDF p(x, t = 0), we integrate Γ(t) over time to obtain the dimensionless
number as a function time as

L(t) =
∫ t

0
dt1Γ(t1). (13)

L is the information length [15–31] that quantifies the total change in information along
the trajectory of p(x, t) or the total number of statistically distinguishable states it evolves
through over time. [We note that different names (e.g., statistical length [108], or statistical
distance [97]) were also used forL.] It is important to note that unlike the Wootters’ distance
(the shortest distance among all possible paths between the two PDFs) in Equation (3)
(e.g., [5]), L(t) in Equation (13) is fixed for a given time-evolving PDF p(x, t).

By definition in Equation (13), L(t = 0) = 0 and L(t) monotonically increases with
time since Γ ≥ 0 (e.g., see Figure A2 in [22]). L(t) takes a constant value only in a stationary
state (Γ = ∂t p = 0). One of its important consequences is that when p(x, t) relaxes into a
stationary PDF in the long time limit t→ ∞, Γ(t)→ 0 and L(t)→ L∞ as t→ ∞ where L∞
is a constant depending on initial conditions and parameters. This property of L∞ was used
to understand attractor structure in a relaxation problem; specifically, Refs. [15,16,18,22,28]
calculated L∞ for different values of the mean position x0 of an initial PDF and examined
how L∞ depends on x0. Furthermore, Γ and L were shown to be useful for quantifying
hysteresis in forward-backward processes [19], correlation and self-regulation among
different players [23,25], and predicting the occurrence of sudden events [27] and phase
transitions [23,25]. Some of these points are illustrated in Section 3.1.

3. Model and Comparison of Metrics

For discussing/comparing different metrics in Section 2 and statistical measures in
Section 4, we use the following Langevin model [109]

dx
dt

= f (x, t) + ξ = −∂xV(x, t) + ξ. (14)

Here, V(x, t) is, in general, a time-dependent potential which can include an internal
potential and an external force; ξ is a short (delta)-correlated Gaussian noise with the
following statistical property

〈ξ(t)ξ(t′)〉 = 2Dδ(t− t′). (15)

Here, the angular brackets represent the ensemble average over the stochastic noise ξ;
D ≥ 0 is the amplitude of ξ. It is important to note that far from equilibrium, the average
(e.g., 〈x(t)〉) is a function of time, in general.

The exact PDFs can be obtained for the Ornstein-Uhlenbeck (O-U) process which has
V = γ

2 (x − v(t))2 and f = −γ(x − v(t)) in Equation (14). Here, v(t) is a deterministic
function of time. Specifically, for the initial Gaussian PDF p(x, 0)

p(x, 0) =

√
β0

π
e−β0(x−x0)

2
, (16)

a time-dependent PDF remains Gaussian at all time:

p(x, t) =
∫

dx1 p(x, t; x1, 0)p(x1, 0) =

√
β

π
e−β(x−〈x〉)2

, (17)

1
2β(t)

=
e−2γt

2β0
+

D(1− e−2γt)

γ
, (18)
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〈x(t)〉 = x0e−γt + γ
∫ t

0
dt1 e−γ(t−t1)v(t1). (19)

In Equations (16)–(19), x0 = 〈x(t = 0)〉, β0 = β(t = 0), and 〈(δx)2〉 = 1
2β = σ2. Here,

β, σ and σ2 are the inverse temperature, standard deviation, and variance, respectively;
β0 and x0 are the values of β and 〈x〉, respectively, at t = 0. Equation (18) shows that as
t→ ∞, β(t→ ∞) = γ

2D . Note that we use both β and σ here to clarify the connections to
the previous works [15,17,22,26–28].

3.1. Geometric Structure of Equilibrium/Attractors

To elucidate the main difference between the distances in Equations (4)–(6) and (13),
we consider the relaxation problem by assuming v(t) = 0. In the following, we compare
the distance between p(x, 0) and p(x, t→ ∞) by using p1(x, t1) = p(x, 0) and p2(x, t2) =
p(x, t → ∞) in Equations (4)–(6) and Equation (13). Analytical expressions for these
distances are given in [22].

Each curve in Figure 1 shows how each distance depends on the initial mean position
x0. The four different curves are for L∞ (in blue), Wootters’ distance (in orange), K-L
relative entropy (in green), and Jensen divergence (in red), respectively. The relative
entropy and Jensen divergence exhibit similar behavior, the red and green color curves
being superimposed on each other. Of note is a linear relation between L∞ and x0 in
Figure 1. Such linear relation is not seen in other distances. This means that the information
length is a unique measure that manifests a linear geometry around its equilibrium point
in a linear Gaussian process [28,30]. Note that for a nonlinear force f , L∞ has a power-law
relation with x0 for a sufficiently large x0 [18,28]. These contrast with the behaviour in a
chaotic system [16,28] where L∞ depends sensitively on the initial condition and abruptly
changes with x0. Thus, the information length provides a useful tool to geometrically
understand attractor structures in relaxation problems.

Figure 1. The distance against x0 between p(x, 0) and p(x, t → ∞) for the O-U process. (Figure 1
in [22]).

3.2. Correlation between Two Interacting Components

We next show that the information length is also useful in elucidating the correla-
tion between two interacting species such as two competing components relaxing to the
same equilibrium in the long time limit. Specifically, the two interacting components
with the time-dependent PDFs P1(x, t) and P2(x, t) are coupled through the Dichoto-
mous noise [110,111] (see Appendix B) and relax into the same equilibrium Gaussian PDF
P1(x, t → ∞) = P2(x, t → ∞) = 1

2 P(x, t → ∞) around x = 0 in the long time limit. Here,
P(x, t) = P1(x, t) + P2(x, t) is the total PDF. For the case considered below, P(x, t) satisfies
the O-U process (see Appendix B for details). We choose the initial conditions where
P1(t = 0) = P1(t→ ∞) with zero initial mean value while P2(t = 0) takes an initial mean
value x0. These are demonstrated in the cartoon figure, Figure 2a,c.



Entropy 2021, 23, 1393 8 of 24

P1 P1P1

P2 P2 P2

x

xxx

x x

x0
(a) t=0 (c) t=∞(b) 0 < t < ∞

Figure 2. P1 (top) and P2 (bottom) at time t = 0 in panel (a), t = (0, ∞) in panel (b), and t → ∞ in
panel (c). Note that P1(0 < t < ∞) 6= P1(t = 0) (= P1(t→ ∞)).

Although P1(t = 0) = P1(t→ ∞), at the intermediate time t = (0, ∞), P1(x, t) evolves
in time due to its coupling to P2 and thus P1(x, t) 6= P1(x, t = 0), as shown in Figure 2b.
Consequently, L(t) calculated from P1 monotonically increases to its asymptotic value
L∞ until it reaches the equilibrium (see Figure A2 in [22] for time-evolution of L from P1
and P2). On the other hand, P2 with an initial mean value x0 undergoes a different time
evolution (unless x0 = 0) until it reaches the equilibrium.

The distances in Equations (4)–(7) and (13) can be calculated from the total P =
P1 + P2, P1 and P2 for different values of x0. Results are shown in Figure 3a–c, respec-
tively; (a) P(x, 0) and P(x, t → ∞), (b) P1(x, 0) and P1(x, t → ∞), and (c) P2(x, 0) and
P2(x, t → ∞), respectively. Specifically, for each value of x0, we calculate the distances
in Equations (4)–(7) and (13) by using p1(x, t1) = P(x, 0) and p2(x, t2) = P(x, t → ∞) for
Figure 3a; p1(x, t1) = P1(x, 0) and p2(x, t2) = P1(x, t → ∞) for Figure 3b; p1(x, t1) =
P2(x, 0) and p2(x, t2) = P2(x, t → ∞) for Figure 3c. The same procedure above is then
repeated for many other x0’s to show how each distance depends on x0.

(a) (b) (c)

Figure 3. The distance between P(x, 0) and P(x, t→ ∞) against in x0 in (a); P1(x, 0) and P2(x, t→ ∞) in (b); P2(x, 0) and P2(x, t→ ∞)

in (c). (Figure 4 in [22]).

For the total P, a linear relation between L∞ and x0 is seen in Figure 3a (like in
Figure 1). This linear relation is not seen in L∞ calculated from either P1 or P2 in Figure3b
or Figure 3c; a non-monotonic dependence of L∞ in Figure 3b,c is due to large-fluctuations
and strong-correlation between P1 and P2 during time-evolution for large x0. What is
quite remarkable is that in contrast to other distances, L∞ calculated from P1 and P2 in
Figure 3b,c exhibits a very similar dependence on x0. It means that despite very different
time-evolutions of P1 and P2 (see Figure 2), they undergo similar total change in information.
These results suggest that strong coupling between two components can be inferred from
their similar information length (see also [24,25]).
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4. Thermodynamic Relations

To elucidate the utility of information geometric theory in understanding
non-equilibrium thermodynamics, we review some of the important thermodynamic
measures of irreversibility and dissipation [112] and relate them to information geometric
measures Γ and K [29]. For illustration below, we use the model in Equations (14) and
(15) unless stated otherwise. Corresponding to Equations (14) and (15) is the following
Fokker-Planck equation [109]

∂p(x, t)
∂t

= − ∂

∂x

[
f (x, t)p(x, t)

]
+ D

∂2 p(x, t)
∂x2 = −∂x J(x, t), (20)

where J = f p− D∂x p is the probability current.

4.1. Entropy Production Rate and Flow

For non-equilibrium thermodynamics, we need to consider the entropy in the system
S and the environment Sm, and the total entropy ST = S + Sm. To clarify the difference
among these, we go over some derivation by using ∂t p = −∂x J and J = f p − D∂x p
to obtain

Ṡ =
dS(x, t)

dt
= −

∫
dx∂t p ln p =

dST(x, t)
dt

− dSm(x, t)
dt

, (21)

where,

ṠT =
dST
dt

=
∫

dx

(
1

Dp
J2

)
, Ṡm =

dSm

dt
=
∫

dx
(

1
D

J f
)

. (22)

Here, we used integration by parts in t and x. ṠT denotes the (total) entropy production rate,
which is non-negative ṠT ≥ 0 by definition, and serves as a measure of irreversibility [112].
The sign of Ṡm in Equation (22) represents the direction in which the entropy flows between
the system and environment. Specifically, Ṡm > 0 (Ṡm < 0) when the entropy flows from the
system (environment) to the environment (system). Ṡm is related to the heat flux Q = DSm
from the system to the environment. The equality ṠT = 0 holds in an equilibrium reversible
process. In this case, Ṡ = −Ṡm = −Q

D , which is the usual equilibrium thermodynamic
relation. In comparison, when Ṡ = 0, ṠT = Ṡm ≥ 0.

For the O-U process with V = γ
2 (x− v(t))2 and f = −γ(x− v(t)) in Equations (14),

(17)–(19), (21) and (22) lead to (see [29] for details)

S(t) =
1
2

[
1 + ln

π

β

]
, (23)

DṠT = =
(∂tβ)2

8β3 + (∂t〈x〉)2 = (∂tσ)
2 + (∂t〈x〉)2, (24)

Ṡ = −∂tβ

2β
=

∂tσ

σ
, (25)

Ṡm = ṠT − Ṡ. (26)

Here, we used J =
[

f + 2Dβ(δx)
]
p =

[
− ∂t β

2β (δx) + ∂t〈x〉
]

p, ∂x p = −2β(δx)p, f =

−γ(x− v(t)), ∂t〈x〉 = 〈 f 〉, 2Dβ− γ = − ∂t β
2β , and ∂t β

β = −2 ∂tσ
σ .

In order to relate these thermodynamical quantities ṠT and Ṡ above to the information
rate Γ, we recall that for the O-U process [15,17,26–28],

E = Γ2 = 2β(∂t〈x〉)2 +
(∂tβ)2

2β2 =
1
σ2

[
2(∂tσ)

2 + (∂t〈x〉)2
]
. (27)
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Equations (24) and (27) then give us

Γ2 =
D
σ2 ṠT + Ṡ2. (28)

Interestingly, Equation (28) reveals that the entropy production rate needs be normal-
ized by variance σ2. This is because of the extensive nature of ṠT unlike Γ or Ṡ. That is, ṠT
changes its value when the variable x is rescaled by a scalar factor, say, α (> 0) as y = αx.
Furthermore, Equation (28) shows that the information rate Γ in general does not have a
simple relation to the entropy production rate (c.f., [107]).

One interesting limit of Equation (28) is the case of constant β(t) with Ṡ = 0. In that
case, Equation (24) becomes DṠT = (∂t〈x〉)2 while Equations (13), (27) and (28) give us

L(t) =
〈x(t)〉 − 〈x(t = 0)〉

σ
, (29)

Γ2 =
1
σ2 (∂t〈x〉)2 =

D
σ2 ṠT . (30)

Equation (29) simply states that L measures the total change in the mean value
normalized by fluctuation level σ. Equation (30) manifests a linear relation between Γ2

and ṠT when ∂tσ = 0, as invoked in the previous works (e.g., [107]). Furthermore, a
linear relation between Γ2 and ṠT in Equation (30) implies that minimizing the entropy
production

∫ t dt1ṠT along the trajectory corresponds to minimizing
∫ t

0 dt1Γ2(t1), which, in
turn, is equivalent to minimizing L(t) (see Section 5 for further discussions).

Finally, to demonstrate how entropy production rate and thermal bath temperature
(D) are linked to the speed of fluctuations c = σΓ [97], we rewrite Equation (28) as

c = σΓ =
[

DṠT + σ2Ṡ2
] 1

2 . (31)

For constant variance β̇ = 0, Equation (31) gives a simple relation c = σΓ =
√

DṠT .

4.2. Non-Equilibrium Thermodynamical Laws

To relate the statistical measures in Section 4.1 to thermodynamics, we let U (inter-
nal energy) be the average potential energy U = 〈V〉 and obtain (see also [66,113] and
references therein)

dU
dt

=
d
dt
〈V〉 ≡ Ẇ − Q̇, (32)

where

Ẇ =
∫

dx(∂tV)p = 〈∂tV〉, (33)

Q̇ = −
∫

dxV(∂t p) =
∫

dxJ f = 〈 f ẋ〉 = DṠm. (34)

The power Ẇ represents the average rate at which the work is done to the system
because of time-varying potential; the average work during the time interval [t0, t] is
calculated by W =

∫ t
t0

dt′Ẇ(t′). On the other hand, Q̇ represents the rate of dissipated heat.
Equation (32) establishes the non-equilibrium thermodynamic relation U̇ = Ẇ − Q̇.

Physically, it simply means that the work done to the system Ẇ increases U while the
dissipated heat to the environment Q̇ decreases it. Equations (21), (32), and (34) permit
us to define a non-equilibrium (information) free energy F (t) = U(t)− DS(t) [92] and
its time-derivative

Ḟ = U̇ − DṠ = Ẇ − DṠT , (35)
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where Ḟ = dF
dt and U̇ = dU

dt . Since ṠT ≥ 0, Equation (35) leads to the following inequality

DṠT = Ẇ − Ḟ ≡ ẆD ≥ 0, (36)

where the non-negative dissipated power (lost to the environment) ẆD is defined. Fi-
nally, the time-integral version of Equation (36) provides the bound on the average work
performed on the system as W − ∆F = WD ≥ 0 (e.g., [68]).

4.3. Relative Entropy as a Measure of Irreversibility

The relative entropy has proven to be useful in understanding irreversibilities and
non-equilibrium thermodynamic inequality relations [91–94,114–116]. In particular, the
dissipated work WD = W−∆F (in Equation (36)) is related to the relative entropy between
the PDFs in the forward and reverse processes

WD = DK[pF(γF(t))|pR(γR(t))]. (37)

(e.g., see [91–94].) Here, pF(γF(t)) and pR(γR(t)) are the PDFs for the forward and reverse
processes driven by the forward γF(t) and reverse γR(t) protocols, respectively. Using
Equation (36) in Equation (37) immediately gives

ṠT =
d
dt
K[pF(γF(t))|pR(γR(t))] ≥ 0, (38)

which is a proxy for irreversibility (see [115,116] for a slightly different expression of
Equation (38)). It is useful to note that forward and reversal protocols are also used to
establish various fluctuations theorems for different dissipative measures such as entropy
production, dissipated work, etc. (see, e.g., [80] for a nice review and references therein).

However, we cannot consider forward and reversal protocols in the absence of a
model control parameter that can be prescribed as a function of time. Even in this case,
the relative entropy is useful in quantifying irreversibility through inequalities, and this is
what we focus on in the remainder of Section 4.3.

To this end, let us consider a non-equilibrium state p(x, t) which has an instantaneous
non-equilibrium stationary state ps(x, t) and calculate the relative entropy between the two.
Here, ps(x, t) is a steady solution of the Fokker-Planck equation ∂t ps = 0 in Equation (20)

(e.g., see [29]). Specifically, one finds ps(x, t) = e−
V(x,t)−Fs(t)

D by treating the parameters to
be constant (being frozen to their instantaneous values at a given time). Here, V and Fs are
the potential energy and the stationary free energy, respectively. For clarity, an example of
ps(x, t) is given in Section 4.4.

The average of ln ps(t) in the non-equilibrium state p(x, t) can be expressed as follows:∫
dxp(x, t) ln ps(x, t) = − 1

D

∫
dxp(x, t)(V(x, t)−Fs(t)) = −

1
D
(U(t)−Fs(t)). (39)

Equations (35) and (39) then give us

F (t)−Fs(t) = D
∫

dxp(x, t) ln

[
p(x, t)
ps(x, t)

]
≡ DK[p(x, t)|ps(x, t)] ≥ 0. (40)

Here, we used the fact the relative entropy is non-negative. Equation (40) explicitly
shows that non-equilibrium free energy is bounded below by the stationary one F ≥ Fs
(see also [1,92] and references therein for open Hamiltonian systems).

Equation (40) together with Equation (35) then lead to the following irreversible work
Wirr [29,92]:

Wirr ≡W − ∆Fs = D∆ST + ∆(F −Fs) = D∆ST + D∆K[p(x, t)|ps(x, t)]. (41)
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Here, ∆K[p(x, t)|ps(x, t)] = K[p(x, t)|ps(x, t)]−K[p(x, t0)|ps(x, t0)], etc. The deriva-
tion of Equation (41) for open-driven Hamiltonian systems is provided in [92] (see their
Equation (38)).

On the other hand, we directly calculate the time-derivative of K[p(x, t)|ps(x, t)] in

Equation (40) by using ps(x, t) = e−
V(x,t)−Fs(t)

D , ṠT = Ṡ + Ṡm,
∫

dxp∂tV = Ẇ and Q̇ =
−
∫

dx ∂t pV = DṠm, and Wirr = W − ∆Fs:

d
dt
K[p(x, t)|ps(x, t)] = −Ṡ +

1
D

d
dt

[∫
dxVp−Fs

]
= −ṠT +

1
D

[
Ẇ − d

dt
Fs

]
. (42)

One can see easily that equating Equation (42) to 1
D [Ḟ − Ḟs] (from Equation (40))

simply recovers Ẇ − d
dtF = DṠT in Equation (35).

Finally, we obtain a differential form of Equation (41) by using Ẇirr = Ẇ − d
dtFs in

Equation (42) as follows

Ẇirr = DṠT + D
d
dt
K[p(x, t)|ps(x, t)]. (43)

4.4. Example

We consider v(t) = ut with a constant u so that V = − γ
2 (x− ut)2 in Equation (14).

While the discussion below explicitly involves v(t), the results are general and valid for
the limiting case v(t) = 0. The case with v(t) = 0 is an example where the forward and
reversal protocols do not exist while a non-equilibrium stationary state does.

For f = −γ(x− ut), Equation (19) is simplified as follows

〈x(t)〉 = x0e−γt + ut− u
γ

(
1− e−γt

)
. (44)

For the non-equilibrium stationary state with fixed γ and D, βs =
γ

2D is also constant
( d

dtFs = 0). Therefore, we have

ps(x, t) =

√
βs

π
e−βs(x−ut)2

. (45)

Then, we can find (see [29] for details)

K[p(x, t)|ps(x, t)] =
1
2
[
−1 + ln (β/βs)

]
+ βs

(
(〈x〉 − ut)2 +

1
2β

)
, (46)

DṠT =

[(
−γ〈x0〉e−γt + u

(
1− e−γt

))2
+

1
2β

(2βD− γ)2

]
, (47)

Q̇ =

[
−γ〈x0〉e−γt + u

(
1− e−γt

)]2
− γ

2β

(
2βD− γ

)
, (48)

Ẇ = −u
∫

dxγ(x− ut)p = −uγ〈x− ut〉 = u2
(

1− e−γt
)

, (49)

d
dt
K[p(x, t)|ps(x, t)] = − 1

D

[
(∂t〈x〉)2 + (∂tσ)

2 − u∂t〈x〉
]
= −ṠT +

1
D

Ẇ. (50)

Here, we used Equations (23)–(26), 〈x〉 and β in Equations (44) and (18), respectively, and
Ẇ = 〈−γu(x− ut)〉 = u∂t〈x〉.

It is worth looking at the two interesting limits of Equations (46)–(50). First, in the
long time limit as t→ ∞, the following simpler relations are found:

〈x〉 → u(t− γ−1), 2β→ γ

D
= 2βs,

DṠT = Q̇ = Ẇ = (σΓ)2 → u2,
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Ṡ→ 0,
d
dt
K[p(x, t)|ps(x, t)]→ 0. (51)

Equation (51) illustrates how the external force v(t) = ut 6= 0 keeps the system out of
equilibrium even in the long time limit, with non-zero entropy production and dissipation.
When there is no external force u = 0, the system reaches equilibrium as t → ∞, and all
quantities in Equation (51) apart from β become zero.

The second is when the system is initially in equilibrium with β(t = 0) = β(t→ ∞) =
γ

2D and 〈x0〉 = 0 and evolve in time as it is driven out of equilibrium by u 6= 0. As u does
not affect variance, β(t) = β0 = γ

2D (∂tσ = 0) and Ṡ = 0 for all time. In this case, we find

DṠT = Q̇ = u2(1− e−γt)2 = (σΓ)2, Ẇ = u2(1− e−γt),

DK[p(x, t)|ps(x, t)] =
u2

2γ
(1− e−γt)2,

D
d
dt
K[p(x, t)|ps(x, t)] = u2(1− e−γt)e−γt. (52)

Equation (52) shows that ṠT , Q̇, Γ2, Ẇ, and K start with zero values at t = 0 and monotoni-
cally increase to their asymptotic values as t→ ∞.

Finally, both cases considered above in Equations (51) and (52) have ∂tσ = 0 and thus
recover Equation (30):

Γ2 =
DṠT

σ2 =
Q̇
σ2 . (53)

5. Inequalities

Section 4 utilized the average (first moment) of a variable (e.g., 〈V〉) and the average
of its first time derivative (〈∂tV〉 = Ẇ) while the work W =

∫
dt Ẇ is defined by the time

integral of Ẇ = 〈∂tV〉 in Equation (33). This section aims to show that the rates at which
average quantities vary with time are bounded by fluctuations and Γ. Since the average
and time derivatives do not commute, we pay particular attention to when the average
is taken.

To this end, let us first define the microscopic free energy µ = V + D ln p (called
the chemical potential energy in [113]). In terms of µ, we have J = −p∂xµ and 〈µ〉 =
U − DS = F . On the other hand,

∂tµ = ∂tV + D
ṗ
p

, 〈∂tµ〉 = 〈∂tV〉 = Ẇ. (54)

〈∂tµ〉 = Ẇ means that the average rate of change in the microscopic free is the power.
From Equation (54), it follows

〈(∂tµ− ∂tV)2〉 = D2
∫

dx
ṗ2

p
= D2Γ2. (55)

Equation (55) establishes the relation between the microscopic free energy and Γ.
Next, we calculate the time-derivative of F

d
dt
F =

d
dt
〈µ〉 = 〈µ̇〉+

∫
dxµ ṗ = Ẇ +

∫
dxµ ṗ. (56)

Using d
dtF = Ẇ − DṠT in Equation (56) gives ṠT in terms of µ as

Ẇ − d
dt
F = DṠT = −

∫
dxµ ṗ. (57)

Equation (57) is to be used in Section 5.1 for linking ṠT to Γ through an inequality.
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5.1. General Inequality Relations

We now use
∫

dxṗ = 0,
∫

dxṗ〈A〉 = 〈A〉
∫

dxṗ = 0 for any A = A(x, t) and apply the
Schwartz inequality |

∫ t dt1 A(t1)B(t1)| ≤ [
∫ t dt1 A2(t1)]

1
2 [
∫ t dt1B2(t1)]

1
2 to Equations (21),

(34) and (57) to obtain

|Ṡ| = |
∫

dxṗ ln p| ≤ Γ
[∫

dxp(δ ln p)2
]1/2

, (58)

|Q̇| = |
∫

dxVṗ| ≤ Γ
[∫

dxp(δV)2
]1/2

, (59)

DṠT =

∣∣∣∣∫ dxµ ṗ
∣∣∣∣ ≤ Γ

[∫
dxp(δµ)2

]1/2
. (60)

Equation (60) (Equation (59)) establishes the inequality between entropy production
rate (heat flux) and the product of the RMS fluctuations of the microscopic free energy
(potential energy) and Γ. Since δµ = δV + D(δ ln p), we have

〈(δµ)2〉 = 〈(δV)2〉+ D2〈(δ ln p)2〉+ 2D〈δVδ ln p〉. (61)

These relations are to be used in Section 5.2 below.

5.2. Applications to the Non-Autonomous O-U Process

For a linear O-U process with V = γ
2 (x− v(t))2 and f = −γ(x− v(t)) in Equation (14),

we use 〈(δx)2〉 = 1
2β , 〈(δx)4〉 = 3〈(δx)2〉 = 3

4β2 and ∂t〈x〉 = −γ〈x− v(t)〉 to show

δV = −∂t〈x〉δx +
γ

2

[
(δx)2 − 1

2β

]

〈(δV)2〉 = (∂t〈x〉)2σ2 + γ2 σ4

2
,

δ ln p =
1
2
− β(δx)2,

〈(δ ln p)2〉 =
1
2

,

〈(δ ln p)(δV)〉 = − γ

4β
. (62)

Using Equations (61)–(62) in Equations (58)–(60) together with 2Dβ− γ = − ∂t β
2β and

∂t β
β = −2 ∂tσ

σ leads to

|Ṡ| ≤ 1√
2

Γ,

|Q̇| ≤ Γσ

[
(∂t〈x〉)2 +

γ2σ2

2

] 1
2

,

DṠT ≤ Γσ

[
(∂t〈x〉)2 +

1
2
(∂tσ)

2
] 1

2
. (63)

Finally, it is useful to examine the extreme cases of Equation (63). First, when ∂tσ = 0,
Equation (63) holds as an equality as DṠT = (∂t〈x〉)2 = σ2Γ2 (see Equation (27)), recovering
Equation (28) with ∂tσ = 0. Second, when ∂t〈x〉 = 0, Equation (63) again holds as an

equality since DṠT = (∂tσ)2 and Γ
√

1
2 σ2(∂tσ)2 = (∂tσ)2.
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6. Geodesics, Control and Hyperbolic Geometry

The section aims to discuss geodesics in information geometry and its implications
for self-organization and control. To illustrate the key concepts, we utilize an analytically
solvable, generalized O-U process given by

dx
dt

= −γ(t)[x− v(t)] + ξ, (64)

where γ(t) > 0 is a damping constant; v(t) is a deterministic force which determines
the time evolution of the mean value of x; ξ is a short (delta)-correlated noise with the
time-dependent amplitude D(t) in general, satisfying Equation (15).

For the initial condition in Equation (16), the mean value 〈x〉 ≡ y(t) and β(t) are given by

y(t) = 〈x〉 = x0e−
∫ t

0 dt1γ(t1)dt1 +
∫ t

0
dt1e−

∫ t
0 dt1[γ(t1)−γ(t)]dt1 γ(t1) f (t1) , (65)

1
2β(t)

= 〈(x− 〈x〉)2〉 = e−2
∫ t

0 dt1γ(t1)dt1

2β0
+
∫ t

0
dt1e−2

∫ t
0 dt1[γ(t1)−γ(t)]dt1 2D(t1), (66)

where x0 = 〈x(t = 0)〉.

6.1. Geodesics–Shortest-Distance Path

A geodesics between the two spatial locations is a unique path with the shortest
distance. A similar concept can be applied to information geometry to define a unique
evolution path between the two given PDFs, say, p(x, t1) and p(x, t2) in the statistical
space. The Wootters’ distance in quantum mechanics in Equation (4) is such an example.
For time-varying stochastic processes, there is an infinite number of different trajectories
between the two PDFs at different times. The key question that we address in this section
is how to find an exact time evolution of p(x, t) when initial and final PDFs [15] are given.
This is a much more difficult problem than finding a minimum distance between two PDFs
(like the Wootter’s distance). In the following, we sketch some main steps needed for
finding such a unique evolution path (the so-called geodesics) between given initial and
final PDFs by minimizing L (see [15] for detailed steps).

For the O-U process in Equation (64), a geodesic solution does not exist for constant γ,
v(t) and D. Thus, finding a geodesic solution boils down to determing suitable functions
of γ(t), v(t) or D(t) [15]. To be specific, let p(x, t0) and p(x, tF), respectively, be the PDFs
at the time t = t0 and tF (> t0) and find a geodesic solution by minimizing L(t) =∫ tF

t0
dt′ Γ(t′). The latter is equivalent to minimizing

∫ tF
t0

dt′ E(t′) and to keeping Γ constant.
(This geodesics is also called an optimal path (e.g., see [107]).) We rewrite E in Equation (27)
for the O-U process in terms of y = 〈x〉

E =
1

2β2

(
dβ

dt

)2
+ 2β

(
dy
dt

)2
. (67)

The Euler-Lagrange equation

0 =
dE
dβ
− d

dt
dE
dβ̇

, 0 =
dE
dy
− d

dt
dE
dẏ

(68)

(β̇ = dβ
dt and ẏ = dy

dt ) then gives us

d2β

dt2 −
1
β

(
dβ

dt

)2
− 2β2

(
dy
dt

)2
= 0 , (69)

d
dt

[
β

dy
dt

]
= 0→ β

dy
dt

= c , (70)
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where c is constant. An alternative method of obtaining Equations (69) and (70) is provided
in Appendix C. The following equations are obtained from Equations (69) and (70) [15](

dβ

dt

)2
= −4c2β + αβ2 , (71)

Γ2 =
1

2β2 β̇2 + 2c2β =
α

2
, (72)

where α is another (integration) constant. General solutions to Equations (70) and (71) for
c 6= 0 were found in terms of hyperbolic functions as [15]

β(t) =
4c2

α
cosh2

[
1
2
√

α(t− A)

]
, y(t) =

√
α

2c
tanh

[
1
2
√

α(t− A)

]
−
√

α

2c
+ B, (73)

where A and B are constant.
Equation (73) can be rewritten using σ = (2β)−

1
2 and z = y√

2
as follows

(z− zc)
2 + σ2 = R2, zc =

B√
2
− sR, R =

Γ
2c

, (74)

where s denotes the sign of c so that s = 1 when c > 0 while s = −1 when c < 0.
Equation (74) is an equation of a circle for the variables z and σ with the radius R and the
center zc, defined in the upper-half plane where σ ≥ 0. Thus, geodesic motions occur along
the portions of a circle as long as c 6= 0 (as can be seen in Figure 4). A geodesic moves
on a circle with a larger radius for a larger information rate Γ and speed and vice versus.
This manifests the hyperbolic geometry in the upper half Poincaré model [13,117] where
the half-plane represents z and σ 6= 0 (see also Appendix D). The constants c, α, A, and
B determine the coordinate of the center and the radius of the circle R. These constants
should be fixed by the fixed conditions at the initial t = 0 and final time tF.

Having found the most general form of the geodesic solution for y(t) and β, the
next steps require finding the values of constant values c, α, A, B to satisfy the boundary
conditions at t = t0 and tF, and then finding appropriate γ(t), D(t), and v(t) that ensure
the geodesic solutions. This means the O-U process should be controlled by γ(t), D(t) and
v(t) to ensure a geodesic solution.

time (β
0
=0.3)

0 0.2 0.4 0.6 0.8
0

0.5

1

1.5

2
(a) 

y

β
-1/2

y
0.2 0.4 0.6 0.8

β
-1

/2

1.82

1.83

1.84

1.85

1.86

1.87
(b)

time (β
0
=3)

0 0.2 0.4 0.6
0

0.2

0.4

0.6

0.8
(c)

y

β
-1/2

y
0.2 0.4 0.6 0.8

β
-1

/2

0.55

0.6

0.65

0.7
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Figure 4. y and β−1/2 against time for β0 = 0.3 and 3 in (a,c), respectively; the corresponding
geodesic circular segments in the (y, β−1/2) upper half-plane in (b,d), respectively. In both cases,
y0 = 5

6 and yF = 1
30 . (Figure 3 in [15]).
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Figure 4 shows an example of a geodesic solution in the upper half-plane y and
β−1/2 when γ(t) = 1 is constant while D(t) and v(t) are time-dependent. The boundary
conditions are chosen as y(t0) = y0 = 5

6 and y(tF) = yF = 1
30 in all panels (a)–(d).

β(t0) = β0 = β(tF) = βF = 0.3 in panels (a) and (b) while β0 = βF = 3 in panels (c) and
(d). Interestingly, circular-shape phase-portraits are seen in panels (b) and (d), reflecting
hyperbolic geometry noted above (see also Appendix D) [13,117]. The speed at which the
geodesic motion takes place in the phase portrait is determined by the constant value of

Γ =
√

α
2 (i.e., the larger α, the faster time evolution).

Figure 5a,b are the corresponding PDF snapshots at different times (shown in different
colors), demonstrating how the PDF evolves from the initial PDF in red to the final PDF
in blue. In both cases, it is prominent that the PDF width (∝ β−1/2) initially broadens and
then becomes narrower.

Figure 5. Time evolution of PDFs against x: (a) β0 = 0.3 corresponding to Figure 4a,b; (b) β0 = 3
corresponding to Figure 4c,d. In both cases, y0 = 5

6 and yF = 1
30 . The initial and final PDFs are

shown by thick red and blue lines, respectively. (Figure 4a,b in [15]).

6.2. Comments on Self-Organization and Control

Self-organization (also called homeostasis) is the novel phenomena where order
spontaneously emerges out of disorder and is maintained by different feedbacks in complex
systems [45,52,53,118–123]. The extremum principles of thermodynamics such as the
minimum entropy production (e.g., [119,121]) or maximum entropy entropy production
(e.g., [122,123]) have been proposed by considering a steady state or an instant time in
different problems.

However, far from equilibrium, self-organization can be a time-varying non-equilibrium
process involving perpetual or large fluctuations (e.g., see [52–54]). In this case, the extreme
of entropy production should be on accumulative entropy production over time rather
than at one instant time nor in a steady state. That is, we should consider the time-integral
of the entropy production ṠT , or equivalently, the time-integral of

√
ṠT . As seen from

Equations (24) and (53), for a linear O-U process with a constant variance, there is an exact
proportionality between

√
ṠT and Γ. In this case, the extreme of L(t) =

∫ t dt1Γ(t1) would
be the same as the extreme of

∫ t dt1
√

ṠT . However, as noted previously, Γ ∝
√

ṠT does
not hold in general (e.g., see Equation (28)).

With these comments, we now look at the implications of a geodesic for self-organization,
in particular, in biosystems. For the very existence and optimal functions of a living organiss,
it is critical to minimize the dispersion of its physical states and to maintain its states within
certain bounds upon changing conditions [124]. How fast its state changes in time can be
quantified by the surprise rate ∂t[ln (p(x, t)]. Since

∫
dxp(x, t)∂t ln (p(x, t)) = 0, we use

its RMS value
√
〈(∂t ln p)2〉 = Γ (see Equation (9)) and realize that the total change over

a finite time interval [t0, tF] is nothing more than L(t) =
∫ tF

t0
dt1 Γ(t1). Thus, minimizing

the accumulative/time-integral of the RMS surprise rate is equivalent to minimizing L.
Envisioning surprise rate as biological cost associated with changes (e.g., needed in updating
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the future prediction based on the current state [124,125]), we can then interpret L as an
accumulative biological cost. Thus, geodesic would be an optimal path that minimizes such
an accumulative biological cost.

Ref [15] addressed how to utilize this idea to control populations (tumors). Specifically,
the results in Section 6.1 were applied to a nonlinear stochastic growth model (obtained
by a nonlinear change of variables of the O-U process), and the geodesic solution in
Equation (73) was used to find the optimal protocols v(t) and D(t) in reducing a large-
size tumor to a smaller one. Here, in this problem, D(t) represents the heterogeneity of
tumor cells (e.g., larger D for metastatic tumor) that can be controlled by gene reprogram-
ming while v(t) models the effect of a drug or radiation that reduces the mean tumor
population/size.

7. Discussions and Conclusions

There has been a growing interest in information geometry from theoretical and
practical considerations. This paper discussed some recent developments in information
geometric theory, focusing on time-dependent dynamic aspects of non-equilibrium pro-
cesses (e.g., time-varying mean value, time-varying variance, or temperature) and their
thermodynamic and physical/biological implications.

In Sections 2 and 3, by utilizing a Langevin model of an over-damped stochastic
process x(t), we highlighted the importance of a path-dependent distance L in describing
time-varying processes. In Sections 4 and 5, we elucidated the thermodynamic meanings of
the relative entropy and the information rate Γ by relating them to the entropy production
rate (ṠT), Ṡ, heat flux (Q = DṠm), dissipated work (ẆD), etc., and demonstrated the role of
Γ in determining bounds (or speed limit) on thermodynamical quantities.

Specifically, in the O-U process, we showed the exact relation

Γ =
√

D
σ2 ṠT + Ṡ2 (Equation (28)), which is simplified as σΓ =

√
DṠT when ∂tσ = 0

(σ =
√
〈(δx)2〉 is the standard deviation of x). Finally, Section 6 discussed geodesic and

its implication for self-organization as well as the underlying hyperbolic geometry. It
remains future works to explore the link between Γ and the entropy production rate in
other (e.g., nonlinear) systems consisting of three or more interacting components or data
from self-organizing systems (e.g., normal brain).
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Appendix A

In this Appendix, we show the invariance of Equation (9) when x changes as y = F(x).
Using the conservation of the probability, we then have

p(y, t) = p(x, t)

∣∣∣∣∣dx
dy

∣∣∣∣∣ = p(x, t)

∣∣∣∣∣dF(x)
dx

∣∣∣∣∣
−1

, (A1)

Since dF(x)
dx is independent of time t, it follows that ∂t p(y, t) = [∂t p(x, t)]

∣∣∣ dF(x)
dx

∣∣∣−1
.

Using this and dy = dx
∣∣∣ dF(x)

dx

∣∣∣, we have

∫
dy

1
p(y, t)

[
∂p(y, t)

∂t

]2

=
∫

dx
1

p(x, t)

[
∂p(x, t)

∂t

]2

. (A2)
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This shows that p(x, t) and p(y, t) give the same Γ2(t).

Appendix B. The Coupled O-U Process

The coupled O-U process for Figure 3 in Section 3.1 is governed by the Fokker-Planck
equation [22]

∂P1

∂t
=

∂

∂x
[γ1(x− µ)P1] + D

∂2P1

∂x2 − f0P1 + g0P2, (A3)

∂P2

∂t
=

∂

∂x
[γ2(x− µ)P2] + D

∂2P2

∂x2 + f0P1 − g0P2. (A4)

Here, D is the strength of a short-correlated Gaussian noise given by Equation (15).
These equations are the coupled O-U processes with the coupling constants f0 and g0
through the Dichotomous noise [110,111].

For simplicity, we use γ1 = γ2 = γ and f0 = g0 = ε and the following initial conditions

P1(x, 0) =
1
2

√
β10

π
exp [−β10x2], (A5)

P2(x, 0) =
1
2

√
β20

π
exp [−β20(x− x0)

2]. (A6)

The solutions are given by

P1(x, t) =
1
4

[√
β1

π
(1 + e−2εt)e−β1x2

+

√
β2

π
(1− e−2εt)e−β2(x−e−γtx0)

2

]
, (A7)

P2(x, t) =
1
4

[√
β1

π
(1− e−2εt)e−β1x2

+

√
β2

π
(1 + e−2εt)e−β2(x−e−γtx0)

2

]
, (A8)

where
1

2βm
=

e−2γt

2βm0
+

D
γ

(
1− e−2γt

)
, (A9)

for m = 1, 2. In the limit of t→ ∞, P1 and P2 in Equations (A7) and (A8) approach the same
equilibrium distribution

Pm(x, t) =
1
2

√
βm(t→ ∞)

π
e−βm(t→∞)x2

, (A10)

where βm(t → ∞) = γ
2D . We note that the total PDF P = P1 + P2 satisfies the single O-U

process where the initial PDF is given by the sum of Equations (A5) and (A6).
Figure 3 is shown for the fixed parameter values γ = 0.1, D = 1 and ε = 0.5,

β20 = β10 = 0.05 = β(t→ ∞) = γ
2D = 0.05. Different values of the initial mean position x0

of P2 are used to examine how metrics depend on x0. As noted in Section 2.2, P1 at t = 0 is
chosen to be the same as the final equilibrium state which has the zero mean value and
inverse temperature β10 = 0.05.

Appendix C. Curved Geometry: The Christoffel and Ricci-Curvature Tensors

A geodesic solution in Section 6.1 can also be found by solving the geodesic equation
in general relativity (e.g., [31,107]). To this end, we let the two parameters be λ1 = 〈x〉 = y
and λ2 = β and express Equation (A11) in terms of the metric tensor gij as follows (see also
Equation (10))

E = ∑
ij

dλi

dt
gij

dλj

dt
, (A11)
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where

gij =

(
1

2β2 0
0 2β

)
, λi =

(
β
y

)
. (A12)

Note that while gij is diagonal, the 1-st diagonal component depends on β (the
second parameter). That is, gii is not independent of j-th parameter for j 6= i in gen-
eral. From Equation (A12), we can find non-zero components of connection tensor
Γijk =

1
2

[
∂igjk + ∂jgik − ∂kgij

]
(Γi

jk = gimΓjkm)

Γ1
11 = − 1

β
, Γ1

22 = −2β2, Γ2
12 = Γ2

21 =
1

2β
. (A13)

A geodesic equation d2λi

dt2 + Γi
mk

dλm

dt
dλk

dt = 0 in terms of the Christoffel tensors becomes

β̈ + Γ1
11 β̇2 + Γ1

22ẏ2 = 0, (A14)

ÿ + Γ2
12 β̇ẏ + Γ2

21 β̇ẏ = 0. (A15)

Equations (A13)–(A15) give Equation (70). Note that if gii is independent of the λj (j 6= i)
for all i and j, the Christoffel tensors have non-zero values only for Γi

ii, leading to a much
simpler geodesic solution (e.g., see [31]).

Finally, to appreciate the curved geometry associated with this geodesic solution,
we proceed to calculate the Riemann curvature tensor Ri

kmn = ∂mΓi
nk + Γi

mpΓp
nk − ∂nΓi

mk −
Γi

npΓp
mk and the Ricci tensor Rij = Rk

ikj from Equation (A13) and find the following non-zero
components [15]

R1
212 = −R1

221 = −β, R2
112 = −R2

121 =
1

4β2 . (A16)

Non-zero curvature tensors represent that the metric space is curved with a finite
curvature. Specifically, we find the Ricci tensor Rij = Rk

ikj and curvature R:

R11 = − 1
4β2 , R22 = −β, R12 = R21 = 0, (A17)

R = gijRij = −1 (A18)

The negative curvature is typical of hyperbolic geometry. Finally, using R = −1, we
calculate the Einstein field equation

Gij = Rij −
1
2

R gij =

(
− 1

4β2 0
0 −β

)
+

1
2

(
1

2β2 0
0 2β

)
= 0 . (A19)

Since Gij = 8πTij where Tij is the stress-energy tensor, we see that Tij = 0 for this problem.

Appendix D. Hyperbolic Geometry

The Hyperbolic geometry in the upper-half plane [13,117] becomes more obvious
when Equation (A12) is expressed in terms of the two parameters 〈x(t)〉 and σ(t) where x
and y axes represent 〈x(t)〉 and σ(t) with the metric tensor

gH
ij =

(
2

σ2 0
0 1

σ2

)
. (A20)
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