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Abstract: In this paper, I investigate a connection between a common characterisation of freedom
and how uncertainty is managed in a Bayesian hierarchical model. To do this, I consider a distributed
factorization of a group’s optimization of free energy, in which each agent is attempting to align
with the group and with its own model. I show how this can lead to equilibria for groups, defined
by the capacity of the model being used, essentially how many different datasets it can handle. In
particular, I show that there is a “sweet spot” in the capacity of a normal model in each agent’s
decentralized optimization, and that this “sweet spot” corresponds to minimal free energy for the
group. At the sweet spot, an agent can predict what the group will do and the group is not surprised
by the agent. However, there is an asymmetry. A higher capacity model for an agent makes it harder
for the individual to learn, as there are more parameters. Simultaneously, a higher capacity model
for the group, implemented as a higher capacity model for each member agent, makes it easier for
a group to integrate a new member. To optimize for a group of agents then requires one to make a
trade-off in capacity, as each individual agent seeks to decrease capacity, but there is pressure from
the group to increase capacity of all members. This pressure exists because as individual agent’s
capacities are reduced, so too are their abilities to model other agents, and thereby to establish
pro-social behavioural patterns. I then consider a basic two-level (dual process) Bayesian model
of social reasoning and a set of three parameters of capacity that are required to implement such a
model. Considering these three capacities as dependent elements in a free energy minimization for a
group leads to a “sweet surface” in a three-dimensional space defining the triplet of parameters that
each agent must use should they hope to minimize free energy as a group. Finally, I relate these three
parameters to three notions of freedom and equality in human social organization, and postulate a
correspondence between freedom and model capacity. That is, models with higher capacity, have
more freedom as they can interact with more datasets.

Keywords: free energy; uncertainty; POMDP; active inference; emotion; affect control theory; sociology

1. Introduction

My primary objective in this paper is to propose a computational model which may
give insights into the deep level of cooperation observed in human groups. While much
of economics and artificial intelligence have focussed on arbitrarily modifying a utility
function (e.g., with incentives for “fairness” [1], “influence” [2], “envy” [3], or “altru-
ism” [4,5]; see my review in [6]), this still requires an agent to solve an intractable social
coordination problem:

“[...] a rational-choice model of collective action, in which individuals calculate that they
will be better off cooperating with one another, vastly understates the degree of social
cooperation that exists in human societies and misunderstands the motives that underlie
it ([7], p. 439).

One possible explanation for how humans achieve this high level of cooperation is by
figuring out who predicts, explains and generates what in a group, or how the epistemic
labour is divided. While each individual can come up with some reasonable predictions,
many of these will have flaws that can be uncovered by an opposing viewpoint, or will be
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invalidated by data. However, each individual will be overtaxed if asked to come up with,
and compare, every possible solution. Therefore, the group will be more efficient if they
spread out, each member trying to push a different viewpoint. The more viewpoints, the
better. The search through epistemic space by the group to locate a position of minimal free
energy will be handled by fanning out, but not so far apart that they cease to be a coherent
group, as security is compromised. Intelligence, innovation, and learning therefore lie in
diversity [8].

In this paper, I propose a computational model of this cooperation mechanism based
on the management of uncertainty in a hierarchical Bayesian model. I show how agents
that manage their uncertainty in the same way will have a “sweet spot” at which they best
fit the group and the group best fits them. In order to make this more concrete, I use a two-
level Bayesian model in which the “higher” level in the model represents shared dynamic
models of state and action based on cognitive social emotions. These social emotional models are
based on processual symbolic interactionist ideas arising in sociology [9]. I argue that these
shared dynamics are useful to help a group of people find a free energy minimum, as they
would be expected to do under the free energy principle (FEP) [10]. At this minimum, they
are coordinated to the best degree possible: each individual fits the group and the group
fits each individual as well as possible given variations in a huge variety of attributes across
different group members. The inclusion of action (really, policy, or strategy) in these shared
dynamic models means that not only is this alignment across states of belief, but it is also
across intents, or what group members are planning to do in in the future. According to
FEP, at equilibrium, each agent suffers the least surprise in its social interactions with its
own group (which may have negative externality of an increase in free energy outside the
group). In order to keep the free energy of each individual and that of the entire group to a
minimum, a trade-off must be made, which is the primary subject of this paper.

I aim to show, in an upwards reduction, that a mathematical trade-off exists in the
structure of multi-agent system cooperative action problems. This trade-off is conjectured
in this paper to be externalized by people in their social econiches, in particular in their
beliefs about equality and freedom. I will start this by looking at a single-dimensional
space, and show that by factoring a free energy formulation of beliefs into two parts, an
information asymmetry arises between individual agents (who act as “principals” here)
and a group of agents (who act as “agent” here). The abstractions created in the mind,
such as the conscious experience of language, necessarily discard information. A family of
objects given a certain label must contain more information, or have higher capacity, than
any individual object in the family. This creates a tension between top-down prediction,
which is individually driven, and bottom up evidence, which is driven by a group. The
individual favours simple models, as they require less cognitive effort, but these come
with increased information hiding by the group. The group, on the other hand, favours
more complex models, as these are more flexible to changing inputs (they can model
more datasets). Therefore, a balance is sought in the complexity (or “capacity”) of the
model selected.

I also conjecture that diversity in a group can be translated into model capacity in each
agent’s mind because of the good regulator theorem: every operational system has to be a
model of its environment [11], which may be social (may include other agents). Thus, each
agent is both defined by, and defines, the group it interacts with. If agents are defined by
a group, yet agents must be diverse, this uncovers the trade-off. I make the simplifying
assumption in this paper of a single group, while in practice, people are simultaneously in
groups that span multiple scales of organization. Sitting with your friend in class is such a
situation, as you are in two groups: friends and classmates.

There are two ways of organizing a social group, and of organizing each agent’s model:
precise and homogeneous, or uncertain and diverse. These two ways lead to solutions
that are secure and static or insecure and innovative, respectively. Finally, I will claim
that these methods correspond to one possible definition of equality and freedom, also
respectively. They cannot be achieved at the same time, yet each has its advantages. The
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argument that the social structure is reflected in the human mind, and vice versa, lies at the
heart of this conjecture. Beyond the good regulator theorem, the “social construction of
reality” is precisely the idea that social structures (reality) are constructed in the mind, and
vice versa [12]. Diversity in a society for example, leads to more liberal political structures
emerging. It is precisely the increased uncertainty in each agent’s mind that leads to this
conclusion.

How will an agent choose between these two organizational methods? Being very
certain about things is good because it allows decisions to be made, as an agent’s certainty
in something needs to be raised above a threshold for action. Being uncertain about things
is also good because it allows an agent to be flexible towards changing situations and new
and different people. However, these extreme values are difficult to sustain a social order
over. The reason is that, in a state of perfect freedom, no cooperation is possible: there’s just
too much diversity. Similarly, a state of perfect equality will not succeed because everyone
has to be identical. In this case, while everyone is very secure, the system has become very
brittle to intrusions or exogenous changes, and remains stagnant (non-innovative).

I can plot a curve showing this trade-off by examining the free energy of the entire
group, which splits into two terms. Figure 1 shows these two terms on a graph of the
log(free energy) vs. this notion of equality and freedom I have explained in the previous
paragraph. That is, to the left are systems where all group members are similar, so each
individual has a minimal free energy (red curve), as it is really easy to predict everyone
else since they are identical to everyone else, but the group’s free energy (blue curve) is
maximal, because they are inflexible to exogenous events. To the right are systems where
all group members are diverse, which has minimal free energy for the group (blue curve),
because they can manipulate the division of epistemic labour, but maximal free energy
for the individual, because a more complex model is required. There is therefore a sweet
spot in the sum of these free energies (black curve), shown with a star in Figure 1, that
trades these two off optimally in the sense that each agent is able to accurately model the
group and the group is able to accurately model each agent. At this sweet spot, agent
and group share a model and are best able to predict and act cooperatively in the future
world. The group as a whole is functioning according to the free energy principle. Smaller
free energy configurations are better because they ensure there is less “surprise” for the
group and its members. It is nevertheless true that any particular group may look very
different to any other group, and so this sweet spot is only universal in an information
theoretic way. The precise circumstances surrounding any group may result in a different,
or non-decreasing, optimization.

This sweet spot is the configuration of both agent and group such that the free energy
of the group is minimized, and it arises from the group leveraging the second law of
thermodynamics for its own benefit by amassing orderly states (information) at the expense
of externalities [13]. In some sense, the group has transferred as much energy as possible
into maintaining a state of low entropy, that is, a state of as much order as is possible
given the various circumstances surrounding the group. The group and the individual are
aligned in this case, and the heightened collective consciousness, regardless of how it is
implemented, allows individuals to be more free to think, be and do [14].

In the next section, I derive the curves in Figure 1 for a one-dimensional parameter
space. I then generalize to three dimensions, by noting that three different (sets of) pa-
rameters are needed to implement a two-level (hierarchical or deep) Bayesian model. The
minimum free energy, however, requires the “participation” of all three sets as a change
by any one that increases free energy will have to be offset by a change in some other
set. Thus, in three dimensions, the “sweet spot” is really a “sweet surface.” The shape of
this surface can be derived based on further assumptions covered in Section 2.6. Then,
in Section 3, I discuss freedom and equality, and present a view of these quantities as
being three dimensional and ternary, derived from social and political theorizing. Finally,
in Section 4, I conjecture that the three dimensions of freedom and equality correspond
to three settings of parameters in a two-level Bayesian model embedded in a multi-agent
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system in which agents do not have to be decision theoretically rational, but do have the
capability to learn.

freedom/capacity

lo
g

(f
re

e 
en

er
g

y)

equality

individual (N=1)
group (N=1)
total (N=1)
group (N=100)
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Figure 1. Free energy as a function of model capacity and/or freedom/equality. I plot the log(free
energy) for clarity only. An arbitrary scaling of log(free energy) can be assumed, so only relative size
matters. Lower free energy is a preferable situation, but the energy created by the group trying to
match the individual (blue line) is balanced by that created by the individual trying to match the
group (red line) to give an overall free energy which has a “sweet spot” (minimum) at ?. The black
line shows the free energy if these are traded off equally. The dashed lines show the situation in
which the group is much less flexible because it is larger (N = 100 times larger than the N = 1 group).
Then, the “group” component of the free energy (individual stays fixed, group attempts to match,
blue dashed line) is much higher, since the group’s capacity is increased, and so plays a bigger role in
the resulting free energy (black dashed line), and shifts the “sweet spot” outwards towards more
freedom at ◦.

2. Free Energy
2.1. One-Dimensional Derivation

I now derive the curves in Figure 1 from free energy principles. I will start with the
free energy of the whole group of N agents. I will denote the ith agent’s parameters as θi and
the parameters of the whole group as θ ≡ {θ1, . . . , θN}. Thus, the task of the group at time
t, given data as observations (D = {o}t = {o1, o2, . . . , ot}), is to compute

P(θ|D,H) =
P(D|θ,H)P(θ|H)

P(D|H)
, (1)

whereH is the hypothesis space (the modeling space as defined by a Bayesian hierarchical
model, for example). The graphical model for these agents is shown in Figure 2a, with
a single latent variable ZZZ for the entire group. The difficult part here is the evaluation of
P(D|H) since it involves a summation over all values of θ. Further, each of these terms
involves sums over the hidden variables ZZZ.
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Figure 2. Simplified factor graph (Bayesian network) representing (a) a group with latent variables
ZZZ; and (b) the group without agent i with state ZZZg, and one representing agent i with state ZZZi.

The variational free energy, F̃, can be written as

F̃ =
∫

dθQ(θ) log
Q(θ)

P(D, θ)
. (2)

When the approximating distribution Q is chosen such that F̃ is minimized, then the
minimum of this F̃ as θ is varied is obtained when θ is the parameters of the best predictor
function for this domain and agent combination [15]. The minimization process may be
approximated by choosing Q for some fixed (current best-guess) θ, and then optimizing
θ with respect to that “discovered” Q, and repeating this process until convergence to a
local minimum, as in the expectation-maximization algorithm. By choosing the Q function
appropriately, a minimization over model parameters is possible, and this minimization
will not leave the parameters any worse off as far as relationship (fit) with the data goes.
In many cases, Q may be determined from the data, but in some it may only be possible
over some parameterized subset of the space of Q. For example, Q can be factored into
parts corresponding to each parameter, and then each such factored Q can be minimized
analytically one at a time, while keeping the others constant.

In order to move beyond the group to each individual agent, I will split the group into
two parts. One singleton set contains the ith agent, with parameters θi and latent variables
ZZZi, and the other set contains N − 1 agents {1, . . . , N}\i, with parameters θg and latent
variables ZZZg. I will consider this second set of agents as a single agent in what follows, and
the network model looks as in Figure 2b. Equivalently, I assume each agent in the second
set (the group) to be identical and act simultaneously and equally. In what follows, I will
assume this group is homogeneous and undifferentiated in their overall parameter settings
(which means they still may be using heterogeneous models), such that the group can be
treated as an individual. At this point, I encourage the reader to think of this as a dyadic
interaction, but it can also be viewed as an agent-group interaction, or even a group-group
interaction. The role of this single “group” agent is, in fact, taken by a single individual
from the group at any one time, but the statistics of interaction of the agent in question
with the whole group is what matters. I am assuming here that this variation is sufficiently
small, but in real human groups, I imagine it will be quite large.

I will now assume that the variational distribution for the group, Q, from the per-
spective of any agent i, can be factored into a piece for the agent, Qi(θi) and a piece for
the group, Qg(θg), such that Q(θ) = Qi(θi)Qg(θg). As explained above, a variational
solution will normally require some kind of iterative updating scheme like the expectation-
maximization algorithm, which operates by optimising one parameter at a time, while
holding the others fixed. This kind of iterative solution is achieved by factorizing the group
into individuals optimizing their own Q functions, based on everyone else’s Q functions,
assuming they are fixed. For the entire group I am considering, I am assuming that each
agent can separately and independently minimize some part of the variational free energy.
However, the minimization is actually performed by the whole group at the same time.

If each agent attempts to perform this maximization separately, the resulting joint
effort will result in a group pressure on each individual that reciprocates the pressure of the



Entropy 2021, 23, 1384 6 of 22

individual on the group, although magnified by the concentration of it. What this implies
is that each agent in a group, in attempting to manage its social network, will tend towards
solutions that combine the agent’s own free energy, with the agent’s contribution to the
free energy of the groups in which it its nested (here I consider only one level of nesting).
This means I can write

F̃ =
∫

dθQi(θi)Qg(θg) log
Qi(θi)Qg(θg)

Pi(D|θi)Pg(D|θg)
. (3)

Consider D, the total data “generated” (including actions performed) by the agent
and group. I will break this into three non-overlapping sets, D ≡ {Do, Di, Dg}, where Di is
the data generated during the interaction by the agent, i, while Dg is the data generated
by the group, g, and Do is the data generated by both simultaneously (or neither). For
example, such data may be spoken/written language, or facial expressions and gestures,
some of which are normally only be jointly expressed (like sharing a hug). Such data may
also include physical artifacts in a shared space. The goal of the optimization is to get Di to
be interpretable by the group, to get Dg to be interpretable by the agent, and to get Do to
be interpretable by both.

The denominator in Equation (3) is P(D, θi, θg), but since Di is being generated by i,
and assuming D0 = ∅, and constant priors P(θi) and P(θg), this is Pi(DiDg|θi)Pg(DgDi|θg)
(it is a “noisy or” or “mixture of experts” model) where Pi and Pg are the probabilistic
models of the individual and of the group. Looking a little further, we note that the
optimization in Equation (3) will favor Pi and Pg distributions with larger capacity, but
that such a larger capacity Pi requires a more difficult optimization by i, but a simpler
optimization for the group g. To see why, consider this exemplar based solution. Consider
that for g to model what i does, it suffices to have one member of g who is very similar to i.
If using a Monte-Carlo (sample-based) solver, this model’s predictive samples would take
most of the weight in the posterior distribution. The more diverse group with have larger
capacity overall and will therefore be more likely to easily assimilate i. However, larger
capacity agents work in the opposite way. For i to model what g does, it requires i to have
a model for every member of g, or at least a sufficient abstraction (learned from) of all data
from all group members. Should i not be able to do this, his free energy will increase very
rapidly, as he struggles to figure out how everyone works. Individuals aim for the stability
of homogeneity, while the group aims for the disorder of innovation. It is this asymmetry
that is the primary focus of this paper. In the discussion, I will further elaborate on the
connections between this and social and political freedom.

Agent and group will both be updating their models, θi and θg, respectively, during
the interaction. I will therefore simplify by assuming that each agent generates “its” data,
then observes Di and Dg, and then generates the shared data D0. Then I can factor

Pi(D|θi) =
∫

θ′i

Pi(Do, Di, Dg, θ′i |θi)

=
∫

θ′i

Pi(Do|Di, Dg, θ′i , θi)Pi(θ
′
i |Dg, Di, θi)Pi(Di|Dg, θi)P(Dg|θi)

=
∫

θ′i

Pi(Do|θ′i)Pi(θ
′
i |Dg, Di, θi)Pi(Di|θi)Pi(Dg|θi), (4)

and

Pg(D|θg) =
∫

θ′g
Pg(Do, Di, Dg, θ′g|θg)

=
∫

θ′g
Pg(Do|θ′g)Pg(θ

′
g|Di, Dg, θg)Pg(Dg|θg)Pg(Di|θg), (5)

where I have assumed that Do is generated from updated models in agent θ′i and group
θ′g after seeing Di and Dg. Further, I have assumed each agent computes its own P(D|θ)
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without considering the other’s data. That is, Pi(Di|Dg, θi) = Pi(Di|θi) and Pg(Di|Dg, θg) =
Pg(Di|θg). Putting Equations (4) and (5) into (3), and rearranging terms, I obtain:

F̃ =
∫

Qi(θi)Qg(θg) log
Qi(θi)

Pi(Di|θi)
∫

θ′i
Pi(Do|θ′i)Pi(θ

′
i |Dg, Di, θi)

(6)

+
∫

Qi(θi)Qg(θg) log
Qg(θg)

Pi(Dg|θi)Pg(Di|θg)Pg(Dg|θg)
∫

θ′g
Pg(Do|θ′g)Pg(θ′g|Di, Dg, θg)

.

Now I will evaluate this free energy at a fixed point where θ′g = θg and θ′i = θi, and
in the particular case where Do = ∅, ergo, the group and individual are at equilibrium
and do not jointly generate data. This means neither agent nor group changes parameters
based on the other’s data. However, at equilibrium, it allows me to compute the integrals
in closed form. Thus, in Equation (6), I can set Qg = Pg(Dg|θg) and set the integrals over θ′i
and θ′g in the denominators to identity (since one term picks out θ′ = θ, and the other is
P(Do = ∅|θ) = 1 they pick out the equilibrium point, which is the starting point).

With these assumptions in hand, I can rewrite Equation (6) as:

F̃ =
∫

θg
Qg(θg)

∫
θi

Qi(θi) log
Qi(θi)

Pi(Di|θi)

−
∫

θi

Qi(θi)
∫

θg
Qg(θg) log Pi(Dg|θi)Pg(Di|θg). (7)

The first term is the usual free energy for the agent, averaged over models of the group.
However, assuming the group is stationary, then the free energy of the agent then resolves
to its own free energy, which can be computed. The second term is the joint probability
that agent i will be able to generate data Di that are interpretable by the group, and that
the group will be able to generate data Dg that are interpretable by the agent. This is taken
in expectation over both models of agent and group parameters, Qi and Qg.

Note the symmetry in Equation (7), in which the dispersion of θi can be large if the
dispersion of θg is small, and vice-versa, but both cannot be large or small at the same time.
In fact, this symmetry is quite curious because it states that individuals operating in the
first regime will be well suited to interact with individuals operating in the second. That
is, although they are doing things differently, they in fact are complementary. There is a
trade-off between the capacity of these parameters with insufficient density if the two are
large, difficulty finding the other if the two are small, leaving the agents to find trade-offs
in the middle. The exact location of this trade-off is then something that must be negotiated.
It also determines the sets Do, Di, Dg defined above, since, e.g., if the dispersion of θg is
small, most of the data will be generated by the group, so Do = Dg. If the dispersion of θg
is large, the dispersion of θi is small, and so Do = Di.

Focusing on the second term in Equation (7) only, I can expand out the logarithm and
get two terms

−
∫

θi

Qi(θi)
∫

θg
Qg(θg) log Pi(Dg|θi)−

∫
θg

Qg(θg)
∫

θi

Qi(θi) log Pg(Di|θg),

which I can optimize separately. Holding the agent fixed at θ∗i and optimizing θg in the
first, and holding the group fixed at θ∗g and optimising θi in the second, then, this is

−
∫

θg
Qg(θg) log Pi(Dg|θ∗i )−

∫
θi

Qi(θi) log Pg(Di|θ∗g).
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Now, Dg = {dg0, dg1, . . . , dgN} and Di = {di0, di1, . . . , diN}, which means, assuming
all the data are independently and identically distributed given each model, we can write

−∑
j

[∫
θg

Qg(θg) log Pi(Dgj|θ∗i ) +
∫

θi

Qi(θi) log Pg(Dij|θ∗g)
]

.

I will assume that Qg is a “hat” function which has constant probability over [µ∗g − σ∗g , µ∗g +
σ∗g ] (so θ∗g = {µ∗g, σ∗g}). Similarly for Qi: replace all g subscripts with i. Next, I assume that
Pi and Pg are normal distributions with parameters θi = {µi, σi} and θg = {µg, σg}. The
assumption of normality for Pi and Pg is only to ease exposition here. In fact, these distri-
butions are more likely to be scalable, that is, operating similarly at very different scales
(non-Gaussian). With these assumptions in place, the integrals can be done analytically
to yield, for each data point, a contribution to the overall free energy of (note the extra
negative sign that came from the log(Normal) distributions):

(
µg + σg − µ∗i

)3

3σ∗2i
−
(
µg − σg − µ∗i

)3

3σ∗2i
+

(
µi + σi − µ∗g

)3

3σ∗2g
−

(
µi − σi − µ∗g

)3

3σ∗2g
. (8)

Assuming equilibrium, set arbitrarily at µ∗g = 0 and σ∗g = 1, I obtain two terms:[(
σg − µ∗i

)3

3σ∗2i
+

(
σg + µ∗i

)3

3σ∗2i

]
+

[
(µi + σi)

3

3
− (µi − σi)

3

3

]
. (9)

Now, I will assume at equilibrium that σ∗i = σi and that µ∗i = µi = 1.0. I deliberately
chooose µ∗i 6= µ∗g because each individual is not necessarily at the group mean and I
select unity arbitrarily. Holding all other parameters fixed (so µg = µ∗g and µi = µ∗i ),
Equation (10) results.[

1
σ2

i

]
+

[
(1 + σi)

3

3
− (1− σi)

3

3

]
=

[
1
σ2

i

]
+

[
2σi +

2σ3
i

3

]
. (10)

Equation (10) is plotted as a function of σi in Figure 1 (black solid line). Observe that
the two terms work in opposite directions, leading to a minimum shown as a ? in Figure 1.
The first term is the negative log probability (free energy) that the group will align with
the agent at fixed θ∗i , which will be lower (more probable, lower free energy) if the agent is
more “flexible” (can show a face the group will like, blue line in Figure 1). The second is
the negative log probability the agent will align with the group, which will be lower if the
agent is more precisely defined (i.e., more “findable,” red line in Figure 1). Although in
this case it is simply because I assumed we were at equilibrium, it will in general be true
because the individuals are more homogeneous.

There are numerous assumptions and shortcuts in the above analysis, but my objective
was to derive a first approximation to the free energy of a group. The assumption that group
and agent are fixed are quite restrictive, and the analysis above simplifies the simultaneous
change of agent to group and from group to agent by using the symmetry of the problem.
This simplification allows me to hold one agent fixed and modulate the other (or hold
the group fixed and modulate the agent). Nevertheless, any more complex and reciprocal
change would be characterised by the same equations, except with perhaps a coordinate
change. Thus, I have proceeded with loss of generality only in the assumptions made (such
as Do = ∅), but relaxing these assumptions would generate multiple interesting avenues
for future work. Using non-Gaussian distributions may be informative.

Generality is also reduced by the fact that I left out external forces altogether. However,
such forces could be added to the equations above, and would share responsibility for D
(along with the agent and group). Adding such elements may skew the overall structures
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shown in Figure 1, but will not change the core ideas I am presenting. This does, however,
remain for a topic of future research.

2.2. Bigger or Smaller Groups

Now I remind you that the first term in Equations (9) and (10) in fact represents the
entire group of N − 1 individuals. Therefore, by weighting the two terms equally (black
line in Figure 1), I have made an implicit assumption that the group is fully connected, so
that there are N − 1 terms like the first in Equations (9) and (10), that is, the individual
interacts with everyone. This is not likely to be the case, however. What is more likely is
that the newcomer interacts with only a dozen colleagues and managers, so his influence on
the group is small. If we approximate this linearly and weight the first term in Equation (10)
arbitrarily by N = 100, then the dashed curves in Figure 1 result. The optimal configuration
of parameters for free energy minimizing agents has shifted rightwards, and more individual
flexibility is called for in order to integrate the individual into the group. Note that there
is an arbitrary scaling: N = 1 means the arbitrary scaling factor being applied to the
group/individual trade-off.

Nevertheless, the individual may have to change more than the group, as the weight
of the population is in their favour (he is outnumbered). However, if the individual’s
parameters are substantially mis-aligned in general with the group’s but aligned with
some sub-group’s parameters, then if the social network is constructed in such a way
that this individual is mostly interacting with the sub-group, then these models may be
strengthened within the sub-group. Should the group become large enough, or socially
organised enough, their skepticism may be able ”to offer a challenge to the upholders of the
‘official’ tradition” ([12], p.121). This challenge may be handled by merger into the main
institution (internalization by the sub-group of the primary group), which then enriches and
differentiates this tradition, or by segregation of the skeptics, a process of objectivation that
possibly includes dehumanization (change of their agreed upon assigned identity). Finally,
the sub-group may gain sufficient strength to form a political party and trigger change, in
which case the existing traditions are thrown away and replaced with the new ideology,
and the sub-group externalises to the group, society is produced by this sub-group, who
define the new reality [12]. The definition and recognition of official sub-groups may be
able to steer this process from an institutional perspective (see Section 3.1).

2.3. Flashlight Allegory

I will present this balance problem using an allegory of two boys searching for each
other in the dark with a flashlights, as shown in Figure 3. The flashlights have an adjustable
beam width, from narrow and far to wide and close. The boys get rewarded for how much
light the other records, or the density of light falling on him. One can see that for certain
settings of flashlight beams, the boys have no hope. If one sets his beam on small and far,
but the other does as well, they will have trouble finding each other. If both beams are
wide, they can easily find each other, but the density of both together is low. Thus, they
can either both use medium beams, or one can use a small beam and the other a large one.

In the flashlight allegory above, consider the targets for each boy (the other boy) are
like the social world, and the flashlight is the boy’s predictions of how the social world will
behave on a level of “meaning.” Thus, I am treating a group of agents as a single agent here,
to simplify the presentation. The size of the target is the diversity of the social world, and
represents the variance in expected behaviours. The size of the flashlight is the strength of
the abstract social model the agent is building (his prior model). Therefore, the “allowable”
settings are those that combine high diversity with strong abstract predictions and those
that combine low diversity with weak abstract predictions. These settings may both work
well in a network of agents with the same settings, but this does not mean that the agents
are homogeneous. While their parameter settings may be the same, the parameter settings
define the space of possible models and agent can take on, and are more of a measure of a
social group’s expansiveness. Granted, boys with wider flashlight beams will have settings



Entropy 2021, 23, 1384 10 of 22

that rely less on abstract meanings. Also, individuals may conflict when put in groups
with different settings, as the existing models will necessarily break down (and not match).
The process of learning the new “fit” will be one that may be individual dependent. Such
“spotlight” metaphors have been deeply explored in the context of psychological (usually
visual) attention [16].

Figure 3. Allegorical example to demonstrate the uncertainty matching principle. Boy A (he can be
A-narrow or A-wide) and boy B (B-narrow or B-wide) attempt to find each other’s flashlights and are
rewarded by the density of light falling on the other boy’s flashlight.

If we also take into account how many connections link up the group members (the
density of the network, or the effective group for any agent), then the group component
becomes dominant and larger, it being harder for the whole group to shift towards the
agent (blue dashed line in Figure 1), and the resulting free energy has a sweet spot that
has shifted rightwards, towards more freedom, shown in Figure 1 with ◦. Such a shift may
also be caused by the intensity of the relationship to the group. Those relations formed in
primary socialization, for example, may have much more intensity, and therefore a much
bigger effect, than those formed in secondary socialization ([12], p.152).

Work on latent structure learning of groups has shown that the assignment of a
person to a group can be highly context dependent, as well as being dependent on dyadic
similarity. That is, if Agent A meets Agent B, then how agent A categorizes agent B is
dependent on how similar B is to each of A’s prototypes of groups or identities (e.g., a
“doctor” is an identity, part of the group “doctors,” which is part of the group “medical
professionals,” etc.), but also whether or not agent C is present, and their similarity and
group behaviour with B [17]. If group similarity is higher, then the group becomes more
fixed in its relationship with the new agent, and the agent is more likely to assign other
agents to the new group than to some other, more loosely defined group. That is, the larger,
tighter groups will have more “gravity” pulling people towards them. Such groups are
mobilizations of people into political parties, institutions embedded in the social fabric of
the group and capable of swaying public policy.

Finally, the flashlight allegory ties back to the division of epistemic labour mentioned
in the introduction. If we replace one of the boys with a group of boys, then we can see
the value in this matching process. Each boy is simultaneously playing the same game,
alone, trying to “match” the other N − 1 boys. The places where their flashlights meet (the
rewards they receive for playing the game properly) are in the innovations illuminated
by their crossing beams. As the location from which the beam emanates in some degree
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represents which particular boy is standing there, the bigger the group, the broader the
range of beams. A broader beam is easier for the group to find, but harder to make bright
enough to solve the problem.

2.4. Two-Level Models

The one-dimensional analysis in the previous sections is somewhat simplistic, but I
can generalize to a two-level model fairly easily, which is what this section will discuss.
Generalizing beyond two levels, or beyond one group, requires further study. Throughout
this section, do not lose sight of the fact that all probability distributions I refer to define
the relative likelihoods of state and of actions/behaviours.

Multilevel systems are interesting because they are both neurologically plausible and
information theoretically rich. Each level in such a model has a certain degree of uncertainty
to it, where uncertainty is really a characterization of degree of belief, following a Bayesian
view that puts the existentialism of the world into the mind itself [18]. Further, there must
be uncertainty in the connection between the levels, which turns out to be important. That
is, once we propose two different functional “levels” of processing in the brain, they must
be combined in some way to produce, in the end, motor signals for purposeful action. The
way this combination happens can be more or less precise, that is, the levels depend more
or less on each other. I will call the three types of uncertainty denotative (objective model),
connotative (subjective model), and connective (objective-subjective connection model).
There is no constraint on what the model actually is, so long as it has a use for these three
types of uncertainty. Further, since there are actually approximately five levels in the brain,
I would expect at least nine types of uncertainty. I focus here on three primary ones as
exemplary, where denotative corresponds roughly to language, while connotative to social
emotions or sentiments.

This type of “dual-process” model is known to have parallels in human brain function
and behaviour. However, it considers the role of abstract (some of it emotional) reasoning
as a group-level process, and that of deliberative thought as an individual one. This
is contrary to many modern views of deliberation and rationality as a group process
(e.g., the “rational” economy), while emotion is individual and causes irrational behaviour.
I make a distinction between action and behaviour in that the first describes linguistic labels
(propositions) denoting actions, such as give something to, while the second describes the
affective meanings of an action, say very positive and a bit powerful in this case.

Although these ideas generalize to other models, if using a probabilistic, two-level
model, the state of the top level can be viewed as representing the parameters of the
predictive model the next level down. Observations are then represented by the state at
this next level down, and its dynamics are represented by the state one level up. Inference
in this model is both state estimation and learning of the parameters of the low-level model,
and is the definition of Bayesian machine learning. In what follows, I consider a particular
type of two-level Bayesian model in which the “high” level is a continuous state parameter
which is taken a priori to be the dynamics of sentiment as measured in population surveys,
and the “low” level represents the dynamics of the objective, outside world. Such a model is
restrictive, but gives me an easier way to relate to models of political freedom in Section 3.

2.5. Bayesact

BayesAct is a two-level model of human intelligence and affective reasoning (individ-
ual and social) that explicitly represents the three types of uncertainty in a simple and
measurable way by leveraging the machinery of affect control theory (ACT) [9,19–22].
ACT is a model of emotional coherence based on language that was founded on the con-
trol principle of Powers [23], which states something very reminiscent of the free energy
principle: that people try to minimise incongruencies by controlling their perceptions.
Heise transposed this to the sentiment space of Osgood et al. [24], imposed a denotative
structure from symbolic interactionism [25], and added affective dynamics [26]. ACT is
a computational model that has been used to predict classes of human behaviour in a
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variety of settings [27]. ACT maintains a deterministic and static denotative model as
an actor-behaviour-object-setting state (e.g., “doctor advises patient in clinic”), and an
associated deterministic, but dynamic, connotative model. This connotative model is a a
dynamical system in Osgood’s three-dimensional space of affective meaning: evaluation,
potency and activity. This dynamical system represents values, or evaluative knowledge,
which can be contrasted with declarative and procedural knowledge that are represented in
the denotative model.

BayesAct combines these mechanics with a formal decision theoretic model, a partially
observable Markov decision process, or POMDP [28,29], extensively used in operations
research [30]. A POMDP instantiates a temporal frame or structural representation [31]. Frames,
as schemas, are a classic structure used in early artificial intelligence (AI), Knowledge
Discovery and Data Mining (KDD), and Information Retrieval (IR) research that assigns a
label and interpretation to each object, fact, relation and event that constitute a particular
situation. Such structures are typically logical and discrete-valued to enable ease of use
in a computer program. For example, we might label the positions of pieces on a chess
board, or predictions about how a game will turn out given a sequence of moves, or the
bids in a negotiation. The inclusion of the connotative meanings of ACT means the model
must be augmented with labels for identities and behaviours corresponding to ACT’s
denotative model, but with added noise modelling. These labels can then be interpreted
as distributions in a sentiment space using a measured dictionary. This sentiment space
thus complements the denotative state I have been describing so far, with a connotative state
(which in fact is 18 dimensional). The model is fundamentally based on the symbolic
interactionist idea that symbols (language) provide order for “the subjective apprehension
of biographical experience” ([12], p.97). Symbols are then reified elements of exactly these
same subjective apprehensions.

Thus, learning and being become one single experience. The combination of symbolic
and affective interpretations is what enables generalization: once the symbol “doctor” is
assigned to someone, expectations for her behaviour become defined as generally as
possible with respect to her occupation. That is, I expect her to do something good and
powerful, but I am open to a range of actual objective actions that could be in play in the
current situation. For example, if the current situation is a court-room, I still expect her to
do something good, such as testify honestly, and powerful, such as speak authoritatively. If
she is coaching my son’s hockey team, I also expect her to be honest, fair and caring. If my
son’s hockey coach is a policewoman, I may expect a more authoritarian and disciplinarian
experience for my son. Note that both my assumptions may be wrong as this individual
may be enacting a completely different identity while coaching.

Frames form the foundation of much knowledge representation work in AI, but
have been efficiently implemented using Bayesian networks (BNs), which can be used
to compute a distribution over all possible worlds modeled by a particular frame [18].
This probabilistic model then rests on the structural ontology and temporal logics that
are proposed in the frame. Bayesian decision networks generalise the goals in frames as
preference functions that rank all possible outcomes using a numeric scale, e.g., a utility
function [32]. BayesAct complements this denotative model (the variance of which is called
invalidity), with the ACT-based connotative model (the variance of which is called coherence),
and a model of the relationship between them, the somatic transform (the variance of which
is called dependence) [6,33]. For example, in a government policy decision, the facts may
include the amount of money spent or saved, and long-term estimates from potentially
complex predictive models, and the utility is financial or based on some index of social
well-being. The denotative temporal dynamics may describe immediate and longer-term
effects, enabled by adding more latent state, and allow for the construction of a policy
that optimises over some definition of utility based on the same features. The denotative
temporal dynamics may also encode norms of behaviour that indicate the normative choices
to make for any given identity-behaviour combination (e.g., a “citizen” should not “free
ride” on other “citizens”).
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The connotative dynamics are ACT-based, and will encode the relative freedom trade-
offs for whatever group they are applied to. That is, for some particular configuration of
the denotative state, including a definition of identities, a connotative distribution results
that may be used to compute how emotionally coherent various behaviours are. This
connotative coherence is one of “feeling” or “intuition,” which may override any norms. I
will call such coherence “prescriptive” rather than “normative.” A striking example is a
trolley problem, in which it is logical to throw the switch on a runaway trolley so that it kills
only one person instead of five, a strong connotative prescription against “killing someone”
may take over for many people and prevent this logical strategy. Another example is an
ultimatum game, in which one player is given $10, and can give any amount he wishes
to the other player. While logically the proper amount to give is $0 (or 1¢ if the game
is repeated and the other player has a choice not to play), most humans will fork over
approximately 20% to 40% of the amount they are given, with the amount being culturally
dependent [34].

2.6. Three Types of Uncertainty

The two-level model discussed in the last section has three sets of parameters gov-
erning denotative, connective, and connotative elements. The three parameters are de-
noted δ, γ, and α, respectively. I therefore project the overall freedom-equality dimension
from Figure 1 into a three-dimensional space.

Equation (9) is the free energy for a one-dimensional parameter space, under certain
assumptions. In a three-dimensional space, we can imagine this free energy curve, as shown
in Figure 1, varies along any ray emanating from the origin, and that the minimum point
defines the surface of the “simplex,” which is therefore revealed to be more of a “dome”
shape (assuming radial symmetry). I therefore plot the simplex by seeking the minimum
free energy along each ray from the origin. Plotting this as a function of − log θ ∝ θ−1)
yields Figure 4a, with an interpolated, smoothed version in (c). Figure 4b,d are the same
plotting θ directly.

Since free energy increases with an increase in any parameter of the three, in order to
be at equilibrium, it must decrease in at least one of the other two. What this implies is that
the three-dimensional parameter space is in fact a two-dimensional surface of equilibrum,
at each point of which the free energy is at a minimum. I have imposed a restriction here
by assuming the decrease is the same; however, there may be some arbitrary scaling that
may arise due to the physical nature of our environment. I make a radial assumption
in Figure 4, which presents the information in three dimensions with as little added bias as
possible (simply what this theoretical model is telling us). However, because of the assumed
arbitrary (relative) scaling of parameter sets in the BayesAct model, viewing this surface as
a simplex as in Figure 5 is easier to relate to theorizing about human freedom and equality,
as in Section 3. The exact shape of this surface may not be as shown in Figure 4 or 5, but
recall that a social system becomes increasingly difficult to arrange as you move out along
any dimension of freedom, and thus the actual range of operation of these parameters is
likely to be relatively small, centered around a region in center of the minimum free energy
manifold.



Entropy 2021, 23, 1384 14 of 22

(a) (b)

(c) (d)

Figure 4. Views of the minimum free energy points along each ray from the origin. (a,c): Axes
are -log(parameters), but correspond in scale to coherence (− log(f̂f)), dependence (− log(γ)), and
validity (− log(δ)). I plotted the negative logarithm of each parameter, and colored the surface in
(c), for visibility only. (b,d): Axes are the raw variance parameters (so larger is more dispersed,
more freedom).

3. Freedom in Social Groups

While the model in the last section boils things down to three complementary sets
of parameters, the non-determinism in social groups may be substantially more com-
plex. However, as I will show in this section, they can also be boiled down to three
complementary sets of parameters. First, consider what we mean by uncertainty. Often,
non-determinism can be reduced to an estimate of how likely some outcome is to occur,
given some policy of action: this is the risk. Risk is an important concept, because if one
can define risk, and one has fixed preferences, then one can make a decision-theoretically
optimal decision about behaviours that lead to this risky outcome. That is, an agent can
rationally decide whether or not to do something, and be right about it, only when the
risk is something she can estimate. However, if she cannot estimate the risk (perhaps she
has never tried the behaviour so has no statistics to learn from about the likelihood of the
outcomes), then her estimate of risk itself is uncertain, and we label this type of “meta-”
uncertainty as “ambiguity,” or the “unknown unknown” [35]. The reason ambiguity is
important as a separate concept, is that it is a factor determining when people rely more on
social than individual learning, alongside problem difficulty and learning cost ([36], p. 64).

There are two main reasons why an agent would no longer be able to estimate risk
properly. The first is there may be some unknown (to the agent) factors that influence the
outcome. These factors might be discovered should the agent try the behaviour, which
it cannot do reliably without an estimate of risk. The second is the agent may lose the
capacity to model an environment that has become too complex. There is a third reason risk
may be hard to estimate, which is essentially the same as the first: the cost of a behaviour
may be too high. This implies the agent cannot do the action, and so leaves the outcomes
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unknown as in the first reason for ambiguity. These three reasons are both known to be
important in gauging if an agent will favour social learning (learning by imitating others,
for example) over individual learning (e.g., learning by evaluating outcomes decision
theoretically) ([36], p. 64). In either case, I will call the resulting environment invalid [37],
which is synonymous with ambiguous, but less ambiguous.k

3.1. Three Freedoms

Ambiguity is handled by people in three complementary ways, which correspond to
three things at play: the group, the individual, and the connection between the individual
and the group. Another way of saying this is the objective (external, the group) the subjec-
tive (internal, the self) and the connective (membership in the group). The representations
of the social context in an agent’s brain or mind pervades reason and thought, and the way
in which each agent in each context trades off the social and individual contexts will be
defined by, and will define, the social order and thus reality: “the relationship between the
individual and the objective social world is like an ongoing balancing act” ([12], p. 134). Therefore,
these three locusses of ambiguity management lead to three concepts of freedom, Republican,
Positive, and Negative which I now explore using the framework of Anderson [38].

Republican freedom means people are not subject to anyone’s unaccountable will, and
is also known as independence. As republican equality is increased, then everyone becomes
equivalent and dependent. Normally this is done by making all dependent on a sovereign
or a monarch, such that all independence is removed by subjugation to the monarch’s
unaccountable will. However, a smart and honest monarch gives his subjects lots of
opportunities (positive freedoms) and lets them have free choices (negative freedoms) but
can intervene at any time to impose an arbitrary will to ensure everyone is steering in the
same direction.

Positive freedom implies opportunity, implemented by slackening constraints at the
group level, meaning uncertainty must be managed at levels lower down (individual) and
higher up (at the corporate or government level). Positive equality means that opportunity
is more constrained. Positive equality is a place where everyone is exactly acting in the
same way and the world is predictable and valid [37]. Therefore, if you could maximise
positive equality, then everyone would act according to a single plan. One such plan
could be a rational plan. By defining what is good and what is bad, a rational decision
maker can be used to set policy. This definition also equates to the ontologies used to
classify people and groups, as those considered “bad”, e.g., those labeled “madmen and
children” ([39], p. 33) can be excluded in order to preserve rationality. The power to make
this definition may be abused by a despot for personal gain.

Negative freedom is defined by the freedom an agent has to choose its own actions,
from whatever choices it is given. So moving towards negative equality means removing
people’s abilities to choose their own actions. One way to do this is by defining affec-
tive identities, and then making more stringent requirements on how actions should be
coherent with these identities, as explored in Section 2.4. These culturally approved dy-
namics become institutionalised, and they remove negative freedom of individuals to
act in whatever way their will directs them. Thus, an increase in emotional coherence
between (seemingly self-imposed) actions and behaviours, in an emotionally stratified
society, leads to a reduction in the space of actions under consideration, accompanied by
a corresponding increase in negative equality in which actions are constrained by social
prescriptions. A state of “world closedness,” extracted from a state of “world openness,” is
a result ([12], p. 51). The classic imposition on negative freedom is private property. I can
wall off a piece of ground for myself, and I have increased my negative freedom on my
property. Although I still require the law, and an enforcement component of government
to ensure this freedom is upheld, I have decreased the negative freedom of 7 billion people
(realistically, only a few hundred co-citizens of my rural town), and therefore overall have
increased negative equality.
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Negative and positive freedom can be easily confused. The important difference is
in where this freedom lies. Positive freedom is a property of the group of agents. The
more open the group is to new ideas, for example, the more positive freedom it affords its
members. Negative freedom is a property of the individual. As individuals are mostly
constrained by the presence of others, negative freedom is decreased when positive freedom
is increased through diversity, for example. Although I have the positive freedom in my
country to stand outside and shout my opinions, I do not have the negative freedom to do
that as I would be ashamed that my neighbors may see me. As more diverse preferences
surround me, there are more of such things that will reduce my negative freedom further.

3.2. Social Capital

Defining “social capital” as the emotional bonds in a network of people [40], I find
that it can be implemented in two ways. First, by restricting republican freedom but
allowing negative and positive freedoms, one gets a tight-knit group of homogeneous,
intolerant individuals devoted to the group. Such a group is rich in “bonding social
capital” and have low tolerance, e.g., a “sectarian community” ([40], p. 355). Second, by
restricting negative freedom but allowing positive and republican freedoms, one gets a
highly diverse and tolerant group, but one that must be trusting of others. Such a group
is rich in “bridging social capital” and has high tolerance for out-group members, e.g., a
“civic community” ([40], p. 355). Putnam [40] also discusses two other forms of societies,
those with high tolerance but low social capital (of either sort) are “individualistic” (every
man for himself), and those with low tolerance and low social capital (“anarchic”). While
the individualistic case implies no positive freedom but complete negative and republican
freedom, the anarchic case implies complete freedom across the board, and is not workable
as a societal solution given even natural diversity due to statistical fluctuations. Fukuyama
has also written extensively on the idea of trust [41,42], which he equates with social
capital [40] and cultural values ([41], p. 110).

3.3. Ternary “Simplex”

Anderson [38] presents these three freedoms as both distinct (in that they can be
individually varied) and valuable (in that all are worth something). There is evidence
that they vary inversely with respect to each other (e.g., gains in republican freedom are
usually traded off against losses in negative freedom in a social democracy). If we make
one assumption that an increase in one such freedom means an increase in overall freedom,
then a group at an equilibrium of trading off freedom and equality would tend to increase
equality in response, to restore equilibrium. What dimension is increased would not matter,
but all cannot be increased (or decreased) at once. Thus, these three freedoms form a
ternary structure (in which only one can be maximal at a time), and so I postulate three
freedom-equality dimensions as shown in Figure 5, and so that it appears as a dashed
green line in Figure 5. Freedoms increase down each axis towards the freedom pole at the
origin (�) in Figure 5. Each type of equality (freedom) is increased by moving away from
(towards) the origin along the corresponding axis.
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republican equality

negative equality

positive equality

republican freedom

negative freedom positive freedom

equality
freedom

Figure 5. Simplex on the three dimensions of freedom and equality. Also shown are poles of perfect freedom � and perfect
equality •, The star is in the most central position possible for a social agreement on the management of uncertainty.

4. Discussion

Politics, from the laws themselves to the people who make them, enforce them, and
evaluate them, are based on some degree of balance between freedom and equality. As ([43],
p. 96) points out, “every system of law [has] two main objects, freedom and equality.” However,
there are many ways to balance these two elements. For example, one group may value
everyone’s freedom to act (e.g., to carry a gun), while another may value everyone’s
equality of action. One can easily see that one cannot be free and be equal in a society of
others. If everyone is free, then there will be inequality. If everyone is equal, then no one is
free. In the words of ([44], p. 171): “The liberty of some must depend on the restraint of others.”
Freedom and equality are heavily discussed in the literature, of which I will barely skim
the surface. My primary objective with this paper is to show that the different kinds of
freedoms enjoyed by people are related in a non-trivial way to some information theoretic
principles about the management of uncertainty.

I can represent this definition of freedom and equality on a single axis, as shown
in Figure 1. On this figure, a society could be set up anywhere along the line between
freedom and equality. However, using free energy principles on a one-dimensional model,
I can show that there is a “sweet spot” at which the group functions most efficiently. This
sweet spot, shown in Figure 1 with a ?, is a minimum of free energy for the group, and is
defined by how uncertainty is managed in a group of agents (see Section 2). The natural
equilibrium of the group is when the group and its members are in harmony. Another
way to say this is that any group attempting to settle away from this sweet spot, will be
less efficient, and may be dominated by groups who are at their own sweet spot. Learning
where an agent should situate its own, internal model of the world is something non-self-
interested that an agent does, but it is something that benefits the group as a whole. Due
to a host of exogenous factors the group will be unlikely to be found at their “sweet spot,”
but rather would look like a small cloud in the three-dimensional space, with more density
somewhere along this simplex. To get a sense just how much variation is found in such
a cloud, one can consider how to implement collective intelligence through rewards, as
in [45], but seeing collective intelligence as a property of the group, not of the individual,
leads to a different interpretation in which the group prescription is the norm, and the
individual’s rational deliberations lead it astray.

I therefore conjecture that freedom is an estimate of the capacity of posterior belief
distributions in a hierarchical model which includes agent policies. Different types of
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freedom express themselves at different levels. Similarly, I define equality as the inverse of
this: an estimate of the precision of the same posterior belief distributions. Very precise
distributions require people to be less diverse, more similar, more equal. This conjecture
allows me to connect Figure 5, derived from social theory, to Figure 4, which is derived
here analytically from information theoretic principles, but could potentially be derived
from data by building artifacts that actually fit into and become members of a social group.

As a simple example, consider the diversity of a population. We can represent diversity
as a distribution over a range of human attributes, plotted along the x-axis in Figure 1
as model capacity. Higher capacity allows a wider range of attributes, leading to a more
diverse population with a lot of freedom. With reduced capacity (to the left) in Figure 1,
comes reduced diversity, so people are spread across a smaller number of attributes,
everybody is very much the same, and there is much more equality.

Those operating in the society of diversity are more often going to run into diverse
views of things, and therefore they will learn a more uncertain or “spread out” view of
their society. They will therefore be more free to choose their own actions as there will
be less constraint from the group level (as it is more spread out). Agents that live in the
homogeneous society are going to have very precise distributions over the other agents in
their group since everyone is similar. Actions are constrained, but equality and security are
guaranteed. Security is guaranteed because, if everyone is the same as you, then you can
be very certain about things, you are in a state of pure equality, and you get pure security
as a reward: you can predict what is going to happen next. If everyone is very different,
then you will be very uncertain about how people will act but you can be free to act in any
way you want because it will not stand out and people will know how to handle it.

Degrees of uncertainty are therefore intimately connected with freedom. What types of
freedom are associated with each of these three type of uncertainty? Denotative uncertainty
is the same as positive freedom, in that invalid environments are ones in which everyone
is doing different things, and so positive freedom is maximised. When all are “forced”
to behave in some way (e.g., rational), then positive equality is maximised (everyone is
following the same plan), but of course, positive freedom is minimised.

Connotative uncertainty is the same as negative freedom, as it releases people from
social norms and prescriptions that cause constraints on their actions. Note that I am
making this association primarily on the basis of using ACT as a model for the connotative
state. Seen from a strictly Bayesian model selection viewpoint, the connotative state is
the family of models that are being used to make predictions about the effects of action
on the world. Those using the same family of models, say Gaussian processes, will be
solving problems represented the same way (same perspectives [8]). They may be using
the same heuristics as well to solve their problems, at which point generating diverse
solutions will be difficult, and negative freedom is reduced. They may also be using
different heuristics, which gives them an advantage by allowing them to divide labour and
act cooperatively. Those working from different model families (different perspectives)
will find synchronization more difficult. However, they may also gain advantage from
their diversity due to the “diversity trumps ability theorem” [46], which leads to two
conclusions: “Diverse perspectives are more likely to lead to breakthroughs and to create
communication problems. Diverse heuristics are more likely to lead to smaller, more
iterative improvements” ([8], p. 239). In the first, putting together different models leads to
an increase in negative freedom, whereas in the second, shared model families lead to a
decrease in negative freedom, but may increase positive freedom.

Institutions, as a family of models, increase negative equality. An institution has
an organizational “culture” that increases social norms and prescriptions, and decreases
negative freedom. In my analysis above, I assume everything is in equilibrium, so that all
model families are the same. However, there is much to be gained from studying how this
system behaves out of equilibrium.

Finally, connective uncertainty is the same as republican freedom, as it releases people
from adherence to some externally defined reference point. A great deal of connective
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certainty requires a leader, who, since positive and negative freedoms are maximised in
this state, must be authoritarian. This leader must define what is “good” and “bad” for the
group to be cooperative, since everyone within the group has so much freedom to follow
their own definitions. Connotative certainty also requires a leader, but it can be defined as a
social contract, since this configuration requires people to give up their negative freedoms
to obtain this connotative security.

Therefore, the setting of parameters of uncertainty (variances) in a two-level Bayesian
model of each agent corresponds to the setting of political belief in the resulting group
and the placement on a three-dimensional simplex of freedoms. The primary insight
is that all such settings are equivalent in terms of their trade-offs between equality and
freedom in general, that is, along the dashed green axis in Figure 5, which is what we really
should care about. The precise way in which this balance is achieved matters less, and
conflicting mixtures of uncertainty management should be avoided. Narratives that can
give justifications for actions in line with one group or the other may be important to
guide marginalised groups towards fair solutions. Losses of republican freedom can be
compensated for by underlining the associated gains in positive freedom, for example.

As with the single-dimensional (linear) version in Section 2, there are numerous
different ways of achieving the same freedom-equality trade-off. The trade-off shown
in Figure 1 happens along all three freedom axes. In order to handle this, I assumed
that the trade-off in Figure 1 operates along any radial vector in this three-dimensional
space. Variations on this assumption may yield different results. The simplex gives us a
convenient way to discuss the manifold shown in Figure 4, so long as we remember that in
practice it has this particular scaling. Note that the minimum free energy goes to ∞ as any
parameter drops to zero, as Equation (9) blows up. It is therefore more difficult to plot the
simplex as a function of the inverses of the parameters (Figure 4a,b). Regardless of how we
talk about this space we have to end up on (or near to) this two-dimensional surface shown
outlined in blue in Figure 5. This surface is a simplex, and represents the “sweet surface”
of free energy. It may not actually be a plane, but rather a spherical shape or bowl shape,
see Section 2.6, but this planar approximation sweeps arbitrary scaling under the rug and
gives us a useful analytical tool.

The three freedoms that I have been describing can be related to the three different
ways of managing uncertainty in a two-level Bayesian model. More generally, I believe
these same three trade-offs in uncertainty will be happening across all levels of the brain,
and may be generalizable using the approach of Gilead et al. [47], in which each level
abstracts (is the “abstractrum”) from the level below (the complementary “concretum”,
which itself may be an “abstractum” of a further level). Such a hierarchy would vastly
increase the modelling capacity of each agent, and thus of the group. The parameter space
would, however, would have more dimensions, and so focussing on only two levels and
three dimensions may give us insights in the construction of such a more complex model,
while maintaining some explanatory validity.

5. Conclusions

In this paper, I have presented a highly abstracted model of a group optimization
of free energy. I have shown how, under certain assumptions, a group of agents jointly
minimizing free energy can be represented by a set of agents who learn from each other.
Such agents will tend towards models with similar levels of dispersion, which is related to
how much capacity for modelling the outside world they have. I further discuss a Bayesian
hierarchical model with a hybrid state space that I relate to sociological theorizing about
small group behaviours. I show how a trade-off in dispersion or capacity is present across
the levels in this model, and discuss how these trade-offs relate to common notions of
freedom in societies.

The model I am presenting is necessarily simplistic, and does not come close to
approaching the complete gamut of tools and techniques used by humans to coordinate
behaviour. In fact, one could view an entire society as a "cloud" of small distributions in
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this three-dimensional space, forming one large distribution. A cloud that is constantly
moving as situations change and agents interact with one another and learn. A society can
also likely be pulled forcefully into one or another configurations; however, their natural
tendencies might operate clandestinely to provide a countervailing force.

Nevertheless, I find it compelling that the properties of the parameter space of this
hierarchical Bayesian model seem to reflect some of the properties of people’s understand-
ing of freedom and uncertainty. This upwards reduction, if carried to its logical extreme,
leads to a somewhat different philosophical view that denies primacy of individual states,
or at least accords social states with equal status. In this view, everything is situational,
although part of the situation is the agent itself, including all its strategies, planning, and
decision making. However, these are not considered individual traits at all, but rather
social constructs that are learned and applied in a given situation. In this view, “personality”
is just a bag of tricks that a group has learned, and are not some inherent property of any
given person. This philosophical view denies the primacy and stability of “personality” as
a fixed and stable trait.

Individuals both try to make sense of the world they are in, and try to define it. They
are faced, however, with an information asymmetry (principal agent problem), in which
they cannot even represent, let alone understand, the complexity of their social groups.
Thus, individuals, as principals, are forced to offload some of that computation onto other
agents (as agents of the principal). The more they do this, the more similar to those other
agents they become, and the more homogeneous the society becomes. However, if they do
less of it, they become more independent, which the group favours as it leads to flexibility,
the ability to handle the unforeseen (the “Black Swans” [48]) and the ability to assimilate
new members. The derivation I have presented in this paper puts learning of “preferences”
(as predictive distributions) as central to the collective decision making process, and does
not assume individuals share predictive models (are all rational), violating two basic
assumptions of economic theory [49]. While the analysis was simplistic, any number of the
assumptions made could be lifted (such as radial symmetry) in order to see if and where
the connection breaks down. Using normally distributed models in BayesAct is restrictive
to allow for analysis, but I believe that using other distributions (e.g., with broader tails)
would yield similar results, and the three-way trade-off would still show through.

A number of directions are currently being pursued, mostly directed at explaining a
variety of so-called heuristics and biases in terms of this one unifying model. An initial paper
shows how dissonance and fairness may be related to socio-emotional reasoning [50]. Work
on confirmation and narrative biases is ongoing. Confirmation bias may function similarly
to narrative bias in that both have sharpened denotative models as a result of further
evidence (more other people opting for it, or more precise statements), and so these tend to
be rated as more likely. Non-normal probability models are also under consideration.
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