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Abstract: In this paper, we analyze the classical capacity of the generalized Pauli channels generated
via memory kernel master equations. For suitable engineering of the kernel parameters, evolution
with non-local noise effects can produce dynamical maps with a higher capacity than a purely
Markovian evolution. We provide instructive examples for qubit and qutrit evolution. Interestingly,
similar behavior is not observed when analyzing time-local master equations.
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1. Introduction

In quantum information processing, it is crucial to understand how to transmit, manip-
ulate, and preserve quantum information sent through a noisy quantum channel [1,2]. Due
to scientific and technological advancements, logic gates and other electronic devices are
approaching atomic scales. Therefore, it is becoming increasingly hard to reliably transfer
information. This can be remedied if one can minimize the detrimental effects of noise
through error correction, error mitigation, or error suppression techniques [3,4].

However, removing errors is only one way to deal with undesirable effects of envi-
ronmental noise on quantum systems. Another approach to the problem is, instead of
reducing the noise, using it to one’s advantage. This perception of the role of environ-
mental noise was popularized by the observation that dissipation can be used to enhance
quantum information processing [5]. In this way, dissipation has become a quantum re-
source that is exploited to manipulate quantum systems and engineer specific properties of
quantum channels [6–8]. In particular, the memory effects caused by environmental noise
have been used for performing quantum information processing tasks, such as improving
channel fidelity or preserving quantum entanglement [9]. A decrease in error accumula-
tion was achieved for dissipative Markovian processes and their generalizations [10,11],
where adding noises to the Markovian evolution slows down the rate at which the system
approaches a steady state.

The goal of this paper is to show how to engineer quantum noise to improve the
channel capacity, which is a very important measure in quantum computation and quantum
information theory. Through the channel capacity, one can determine the amount of
information transmitted coherently through a quantum channel. However, in contrast to the
classical channels, which have a unique (Shannon) capacity, the concept of quantum channel
capacity is more complex, giving rise to a whole range of informational characteristics. If
quantum information is transferred through a noisy channel, then one must consider the
quantum capacity, whose lower and upper estimations were determined by Lloyd [12],
Shor [13], and Devetak [14]. In quantum cryptography, communication tasks often require
the use of private classical capacity [14]. Additionally, quantum correlations are essential
to the entanglement-assisted capacity [15], which is the highest rate of classical information
transition. The problem of simultaneously transferring classical and quantum information
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was investigated by Devetak and Shor [16]. More information about channel capacities is
available in review works, see e.g., [17,18].

The capacity that directly generalizes the notion of Shannon capacity for classical chan-
nels to the quantum scenario is classical capacity [19,20]. In this case, classical information
is sent through a quantum channel using separable input states and joint measurements of
the outputs. Recently, there has been significant interest in calculating the classical capacity
of quantum channels. Rehman et al. used the majorization procedure to provide lower
and upper estimations of the Holevo capacity of the Weyl channels [21,22]. Amosov calcu-
lated the classical capacity for deformations of classical-quantum Weyl channels [23] and
channels generated by irreducible projective unitary representations of finite groups [24].

In this paper, we analyze the time evolution of the classical capacity for the generalized
Pauli channels [25,26]. In particular, we compare the capacity for the dynamical maps
governed by the memory kernel

K(t) = Lδ(t) +K(t) (1)

with that of the Markovian generator L alone. In the above formula, K(t) is the part of
the kernel that does not include the local part with the Dirac delta function δ(t). With the
proper choice of parameters, we propose a number of cases where the classical capacity of
the map generated by K(t) is better than that of the Markovian semigroup ΛM(t) = etL.
Hence, it is shown that non-local memory effects can be effectively used to decrease the
error rate of a quantum channel. We also present a class of quantum evolution where the
generator L(t) is time-local. This implies that improving the channel capacity is possible
not only for the Markovian semigroup but for general Markovian dynamics.

2. Generalized Pauli Channels

An important class of quantum channels consists of mixed unitary channels, where
a unitary evolution is disrupted by classical errors [27,28]. The channel noise can be
corrected with the classical information obtained by measuring the environment [29]. For
qubit systems, one considers the Pauli channel [30,31]

Λ[ρ] =
3

∑
α=0

pασαρσα, (2)

where pα is a probability distribution and σ0 = I2, σ1, σ2, σ3 are the Pauli matrices. As
the Kraus representation of a quantum map is not unique, it is often more convenient to
work with its spectrum. One can find the eigenvalues of the Pauli channel through its
eigenvalue equations

Λ[σα] = λασα, λ0 = 1. (3)

An important property of σα, where α = 1, 2, 3, is that their eigenvectors {ψ(α)
0 , ψ

(α)
1 } form

three mutually unbiased bases (MUBs). Recall that two orthonormal bases are mutually
unbiased if and only if ∣∣〈ψ(α)

k

∣∣ψ(β)
l
〉∣∣2 =

1
d

(4)

for α 6= β and k, l = 0, . . . , d− 1, where d is the dimension of the underlying Hilbert space
(d = 2 for qubits).

The Pauli channels can be generalized in multiple ways [32–35], but only one general-
ization ensures that the MUB property of its eigenvectors carries over to d > 2. Consider
the d-dimensional Hilbert space H that admits the maximal number of d + 1 mutually
unbiased bases [36]. Using the rank-1 projectors P(α)

k = |ψ(α)
k 〉〈ψ

(α)
k |, one can define d2 − 1

unitary operators

Uk
α =

d−1

∑
l=0

ωkl P(α)
l , ω = e2πi/d. (5)
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The generalized Pauli channel is constructed as follows [25,26],

Λ[ρ] = p0ρ +
1

d− 1

d+1

∑
α=1

pα

d−1

∑
k=1

Uk
αρUk†

α , (6)

where the Pauli channel in Equation (2) is reproduced after setting d = 2. The eigenvalues
λα of Λ are real and (d− 1)-times degenerated. They satisfy the eigenvalue equations

Λ[Uk
α] = λαUk

α, k = 1, . . . , d− 1, (7)

and Λ[Id] = Id. In terms of the probability distribution pα,

λα =
1

d− 1
[d(p0 + pα)− 1], (8)

whereas the inverse relation reads

p0 =
1
d2

(
1 + (d− 1)

d+1

∑
α=1

λα

)
,

pα =
d− 1

d2

(
1 + dλα −

d+1

∑
β=1

λβ

)
.

(9)

The complete positivity of the generalized Pauli channel is fully controlled by its eigenval-
ues. Indeed, Λ is completely positive if and only if λα satisfies the generalized Fujiwara–
Algoet conditions [25,37,38]

− 1
d− 1

≤
d+1

∑
β=1

λβ ≤ 1 + d min
β>0

λβ. (10)

3. Classical Capacity of Generalized Pauli Channels

In the classical theory of information, there exists a unique measure for the amount
of information that can be reliably transmitted through a noisy channel. This measure
is known as the Shannon capacity, and it is a maximization of the mutual information
between the input and output states over all random variable probability distributions [39].
In quantum information theory, however, information can be transmitted in a number
of ways. Therefore, there exist many types of channel capacities, such as the quantum
capacity [12–14], private classical capacity [14], and entanglement-assisted capacity [15]. A
direct analogue of the Shannon capacity in the quantum scenario is the Holevo capacity. It
determines the maximal amount of classical information that can be reliably transferred,
provided that the input state is separable and the output state is measured via joint
measurements [17,40]. The Holevo capacity χ(Λ) is defined as the maximal value of an
entropic expression [19,20],

χ(Λ) = max
{pk ,ρk}

[
S

(
∑
k

pkΛ[ρk]

)
−∑

k
pkS(Λ[ρk])

]
, (11)

where Λ is a quantum channel and S(ρ) = −Tr(ρ ln ρ) denotes the von Neumann entropy.
Note that the maximum is calculated over the ensembles of separable states ρk with the
probability of occurrence pk. The optimal transition rate under infinitely many uses of a
channel is given by the classical capacity

C(Λ) = lim
n→∞

1
n

χ(Λ⊗n). (12)
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In general, C(Λ) ≥ χ(Λ). However, for a channel Λ with a weakly additive Holevo
capacity (χ(Λ⊗Λ) = 2χ(Λ)), one has C(Λ) = χ(Λ) [20].

In Reference [41], exact values of the classical capacity were found for certain families
of the generalized Pauli channels. Namely, if all λα ≤ 0 and moreover λ1 = . . . = λd ≡
λmax, λd+1 = λmin, then

C(Λ) =
1 + (d− 1)λmin

d
ln[1 + (d− 1)λmin] + (d− 1)

1− λmin

d
ln(1− λmin). (13)

In contrast, if all λα ≥ 0 and also λ1 = λmax, λ2 = . . . = λd+1 ≡ λmin, then

C(Λ) =
1 + (d− 1)λmax

d
ln[1 + (d− 1)λmax] + (d− 1)

1− λmax

d
ln(1− λmax). (14)

In addition, if all of the eigenvalues are equal to one another, meaning that λ1 = . . . =
λd+1 ≡ λ, then one recovers the capacity of the depolarizing channel [42]. For any other
combination of eigenvalues, one finds only the lower bound of the classical capacity [41],

Clow(Λ) = max
α>0

cα, cα =
1 + (d− 1)λα

d
ln[1 + (d− 1)λα] +

d− 1
d

(1− λα) ln(1− λα). (15)

In the special case of d = 2 (the Pauli channels), the above formula gives the exact value of
the capacity [21], meaning that C(Λ) = Clow(Λ).

Generators vs. Memory Kernels

The evolution ρ 7−→ ρ(t) = Λ(t)[ρ] of an open quantum system is described by a
family of time-parameterized quantum channels Λ(t), t ≥ 0, with the initial condition
Λ(0) = 1l. Such maps can be obtained as solutions to the master equations. In the simplest
scenario, the evolution equation Λ̇(t) = LΛ(t), where L is the Gorini–Kossakowski–
Sudarshan–Landblad (GKSL) generator [43,44]. The solution to this equation is the Marko-
vian semigroup Λ(t) = exp(tL). For the generalized Pauli channels, one has [26]

L =
d+1

∑
α=1

γαLα (16)

with the decoherence rates γα ≥ 0 and

Lα[ρ] =
1
d

[
d−1

∑
k=1

Uk
αρUk†

α − (d− 1)ρ

]
. (17)

Generators that are constant in time are sufficient for open system dynamics with a
weak coupling to the environment. When this coupling is relatively strong, however, it
becomes essential to consider the master equations that take non-Markovian memory effects
into account. One generalization of the semigroup master equation is Λ̇(t) = L(t)Λ(t),
where the constant generator is replaced with the time-local generator L(t). In the case of
the generalized Pauli channels, one simply has

L(t) =
d+1

∑
α=1

γα(t)Lα. (18)

The condition on the decoherence rates is relaxed, as they no longer have to be positive for
the dynamics to be legitimate. This time, γα(t) ≥ 0 is the necessary and sufficient condition
for the corresponding (invertible) Λ(t) to be Markovian in terms of divisibility [45,46]. A
dynamical map is CP-divisible if and only if it is decomposable into Λ(t) = V(t, s)Λ(s) for
any t ≥ s ≥ 0. The propagator V(t, s) is then a completely positive, trace-preserving map,
and the corresponding evolution is Markovian.
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By solving the evolution equation with the time-local generator, we find that the
eigenvalues of the associated dynamical map read [26]

λα(t) = exp[Γα(t)− Γ0(t)], (19)

where Γα(t) =
∫ t

0 γα(τ)dτ for α = 0, . . . , d + 1 and γ0(t) = ∑d+1
α=1 γα(t). Note that the

complete positivity conditions from Equation (10) reduce to

d+1

∑
α=1

eΓα(t) ≤ eΓ(t) + d min
β

eΓβ(t). (20)

Another generalization of the Markovian semigroup master equation is realized
using memory kernels. In this approach, the GKSL generator is replaced with an integral
expression. Now, the evolution of the system is governed by the Nakajima–Zwanzig
equation [47,48]

Λ̇(t) =
∫ t

0
K(t− τ)Λ(τ)dτ, (21)

where K(t) is the memory kernel. Observe that this is an integro-differential equation;
therefore, the evolved state ρ(t) depends on every earlier state ρ(τ), τ < t. The memory
kernel that corresponds to the generalized Pauli channels has a relatively simple form,

K(t) =
d+1

∑
α=1

kα(t)Lα. (22)

Note that K(t) and Λ(t) have common eigenvectors,

K(t)[Uk
α] = κα(t)Uk

α, K(t)[I] = 0, (23)

where
κα(t) = kα(t)− k0(t) (24)

with k0(t) = ∑d+1
β=1 kβ(t) are the eigenvalues of the kernel. Hence, one can rewrite the

Nakajima–Zwanzig equation as

λ̇α(t) =
∫ t

0
κα(t− τ)λα(τ)dτ. (25)

In the Laplace transform domain, the solution reads

λ̃α(s) =
1

s− κ̃α(s)
, (26)

where f̃ (s) =
∫ ∞

0 f (t)e−stdt is the Laplace transform of the function f (t).
The necessary and sufficient conditions for legitimate memory kernels are provided

in Reference [49]. First, one parameterizes the eigenvalues λα(t) of the dynamical map by
the real function `α(t) in such a way that

λα(t) = 1−
∫ t

0
`α(τ)dτ. (27)

Now, the associated kernel is legitimate if and only if its eigenvalues

κ̃α(s) = −
s ˜̀

α(s)
1− ˜̀

α(s)
, (28)
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where `α(t) satisfies the additional conditions∫ t

0
`α(τ)dτ ≥ 0, (29)

d
∫ t

0
`α(τ)dτ ≤

d+1

∑
β=1

∫ t

0
`β(τ)dτ ≤ d2

d− 1
, (30)

for α = 1, 2, . . . , d + 1.

4. Engineering Capacity through Kernel Manipulations

In this section, we analyze how the classical capacity of the generalized Pauli channels
changes in time for the evolution generated by Equation (21) with the memory kernel

K(t) = δ(t)L+K(t). (31)

Notably, in the formula above, L is a legitimate Markovian semigroup generator from
Equation (18) and K(t) is a legitimate, purely non-local memory kernel (i.e., it does not
involve the Dirac delta function δ(t)). It is shown that, by adding a non-local part K(t),
one can improve the classical capacity of the associated dynamical map Λ(t). The addi-
tion of purely local and non-local kernels has already been considered in [9,50], where
it was proven that the channel fidelity can be temporarily increased by the appropriate
engineering of the kernel parameters. In the following, we consider three types of dynam-
ical maps: the Markovian semigroup ΛM(t) = etL, the non-Markovian noise ΛN(t) that
solves Λ̇N(t) =

∫ t
0 K(t− τ)ΛN(τ)dτ, and finally the map Λ(t) that satisfies the Nakajima–

Zwanzig equation with K(t) = δ(t)L+K(t). The eigenvalues of the corresponding maps
are denoted by λM

α (t), λN
α (t), and λα(t), respectively. Interestingly, there is no simple

relation between the map eigenvalues, as in the Laplace transform domain

λ̃α(s) =
λ̃M

α (s)λ̃N
α (s)

λ̃M
α (s) + λ̃N

α (s)− sλ̃M
α (s)λ̃N

α (s)
. (32)

In the following examples, the map that describes the noise part is always non-
invertible and not kernel non-decreasing–that is,

∃0 ≤ τ ≤ t : kerΛN(τ) * kerΛN(t). (33)

In other words, there exists at least one eigenvalue λN
α (t) that reaches zero at some

finite time t∗ but does not remain zero for some t > t∗. Such dynamical maps are indivisible,
and hence the corresponding evolution is non-Markovian [51].

4.1. Constant Kernel

First, consider the qubit evolutions (d = 2) provided by the isotropic Markovian generator

L =
γ

2

3

∑
α=1
Lα (34)

with a positive decoherence rate γ and the memory kernel K(t) with constant eigenvalues

κN
1 (t) = κN

2 (t) = −ω2, κN
3 (t) = 0, (35)

where ω > 0. The corresponding solutions read

λM
1 (t) = λM

2 (t) = λM
3 (t) = e−γt, (36)

and
λN

1 (t) = λN
2 (t) = cos ωt, λN

3 (t) = 1, (37)
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respectively. Observe that the dynamical maps characterized via λM
α (t) and λN

α (t) are
always legitimate.

The Pauli dynamical map generated by K(t) = δ(t)L+K(t) is characterized by the
following eigenvalues,

λ1(t) = λ2(t) =
2ω

P
e−γt/2 cos

(
Pt
2

+ arctan
γ

P

)
, λ3(t) = e−γt, (38)

where P =
√

4ω2 − γ2. The eigenvalues λ1(t) and λ2(t) oscillate if and only if γ < 2ω.
Additionally, for Λ(t) to describe a legitimate evolution, it is sufficient that

2ω

P
≤ cosh

γt∗
2

, (39)

where
t∗ =

2
P

(
π − arctan

γ

P

)
(40)

is the time corresponding to the first local minimum of the cosine function. This is a direct
consequence of the Fujiwara–Algoet conditions from Equation (10). Hence, a combination
of two legitimate memory kernels does not necessary yield a physical dynamics. Now,
using Equation (15), we can calculate the classical capacity of Λ(t),

C[Λ(t)] = max
{

c1(t), c3(t)
}

, (41)

where c1(t) = c2(t) and c3(t) = C[ΛM(t)]. Therefore, whenever c1(t) > c3(t), one observes
an increase in capacity for the system with additional noise. An exemplary choice of
parameters is shown in Figure 1.

λM1
λ1

0 1 2 3 4
t

0

0.1

0.2

0.3

0.4

0.5

0.6

C

   (t)
   (t)

t

C

Figure 1. The functions c1(t) = c2(t) and c3(t) are for the qubit evolution with γ = 1/s and ω = 2/s.
The classical capacity of Λ(t) is greater than that of ΛM(t) whenever c1(t) > c3(t), or when the solid
line lies above the dashed line. The maximal increase in capacity that can be observed for this choice
of parameters is around 0.1.

4.2. Exponential Decay

Let us take the Markovian semigroup generated by

L =
γ

d

d+1

∑
α=1
Lα (42)
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and the exponentially decaying memory kernelK(t), similar to the one analyzed in [9,50], with

κN
α (t) = −ω2e−Zt; κN

α∗(t) = 0, α 6= α∗. (43)

Assume that the constants γ, Z, and ω are positive. By solving the master equations, one
can find the associated dynamical maps ΛM(t) and ΛN(t), whose eigenvalues are given by

λM
α (t) = e−γt (44)

and λN
α∗(t) = 1,

λN
α (t) =

2ω

P
e−Zt/2 cos

(
Pt
2
− arctan

Z
P

)
(45)

for α 6= α∗, where P =
√

4ω2 − Z2. Note that for Z = γ, Equation (45) is very similar to
λ1(t) from Equation (38) but differs in the sign before the arcus tangent. The map ΛM(t) is
always legitimate, whereas ΛN(t) describes a physical dynamics if

eZt∗/2 ≥ 2(d− 1)ω
P

, (46)

where

t∗ =
2
P

(
π + arctan

Z
P

)
(47)

corresponds to the first local minimum of the cosine function.
Now, we analyze the behavior of the dynamical map obtained using K(t) = δ(t)L+

K(t). Namely, after adding the non-Markovian noise to the semigroup, the eigenvalue
λα∗(t) = e−γt remains unchanged. On the other hand,

λα(t) =
2ω

R
e−(γ+Z)t/2 cos

(
Rt
2

+ arctan
γ− Z

R

)
, (48)

for α 6= α∗, where R =
√

4ω2 − (γ− Z)2. Note that Equation (48) is not a simple shift of
Equation (45) by Z 7−→ γ− Z, as there are two additional sign differences. For d = 2, a
sufficient condition for Λ(t) to produce a legitimate evolution is

2ω

R
≤ eZt∗/2 cosh

γt∗
2

, (49)

where this time

t∗ =
2
R

(
π − arctan

γ− Z
R

)
. (50)

Unfortunately, the complete positivity conditions for d ≥ 3 cannot be simplified in a similar
manner. Assuming that Λ(t) describes a qudit evolution, Equation (15) gives the following
formula for the lower bound of the classical capacity of Λ(t),

C[Λ(t)] = max
{

cα(t), cα∗(t)
}

. (51)

Observe that cα∗(t) = C[ΛM(t)]; hence, the channel capacity for Λ(t) is greater than for the
Markovian evolution if cα(t) > cα∗(t). Two examples of appropriate parameter engineering
are presented in Figure 2.
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0 1 2 3 4
t

0

0.2

0.4

0.6

C

   (t)
   (t)

C

t

cα(t)
cα*(t)

0 1 2 3 4
t

0

0.3

0.6

0.9

C

   (t)
   (t)

t

C

cα*(t)cα(t)

Figure 2. For the functions cα∗ (t) and cα(t), α 6= α∗ for the qubit evolution with γ = 1/s, Z = 1/(3 s),
and ω = 2/ s (top), as well as for the qutrit evolution with γ = 3/(5 s), Z = 1/(5 s), and
ω = 9/(10 s) (bottom). The introduction of noise into the Markovian evolution results in an
increased classical capacity for the time intervals in which cα(t) > cα∗ (t). This corresponds to the
situations when the solid line is above the dashed line. A greater enhancement is observed for the
lower-dimensional system.

4.3. Beyond the Semigroup

The classical capacity can also be enhanced in a more general case. Let us consider
the Markovian evolution characterized by a dynamical map ΛM(t) that is not a semi-
group. Instead, it is generated via the time-local generator LM(t) from Equation (18) with
γM

α (t) ≥ 0. Now, the most natural way to introduce noise is to add the generator LN(t) of
a non-Markovian evolution, where at least one decoherence rate γN

α (t) � 0. The resulting
dynamical map Λ(t) is provided via

L(t) = LM(t) + LN(t). (52)
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From a physical point of view, one can add two legitimate generators when the environ-
mental cross-correlations can be ignored [52]. Now, the eigenvalues of the generalized
Pauli map Λ(t) read

λα(t) = λM
α (t)λN

α (t), (53)

which means that Λ(t) = ΛM(t)ΛN(t) is a composition of two (commutative) generalized
Pauli dynamical maps. However, due to the fact that λα(t) ≥ 0 for any Λ(t) that arises
from a legitimate time-local generator, λα(t) ≤ λM

α (t). Therefore, there can be no increase
in the classical capacity. Hence, let us instead consider a more general form of the memory
kernel K(t). Namely, we can replace the semigroup generator L in Equation (31) with the
memory kernel K(t) that describes the same evolution as the time-local generator L(t).
Then, one has

K(t) = K(t) +K(t), (54)

where K(t) andK(t) correspond to a Markovian and non-Markovian dynamics, respectively.
As a case study, we analyze the evolution where the Markovian part is given by

the generator

LM(t) =
r

d + ert

d+1

∑
α=1
Lα (55)

with r > 0. The solution reads

λM
α (t) =

1 + de−rt

d + 1
, (56)

and ΛM(t) is always completely positive. One finds that the corresponding kernel has
the eigenvalues

κM
α (t) = − dr

d + 1

(
δ(t)− r

d + 1
e−

rt
d+1

)
. (57)

Therefore, from the kernel point of view, our generalization means that the Markovian part
of the kernel not only has terms proportional to the Dirac delta but also has some purely
non-local parts. The environmental noise is realized with κN

α (t) from Equation (43) for a
fixed Z = r

d+1 . The associated solution is λN
α∗(t) = 1 and

λN
α (t) =

2ω

P
e−

rt
2(d+1) cos

(
Pt
2
− arctan

r
P(d + 1)

)
(58)

for α 6= α∗, where P =
√

4ω2 − r2/(d + 1)2. For the complete positivity condition, see
Equation (46). Finally, the dynamical map generated by K(t) = K(t)+K(t) is characterized
by λα∗(t) = λM

α (t) and

λα(t) =
2X

(d + 1)Y
e−

rt
2 cos

(
Yt
2

+ arctan
r(d− 1)
Y(d + 1)

)
, (59)

where α 6= α∗, Y =
√

4ω2 − r2, and X =
√
(d + 1)2ω2 − dr2. For this map to describe a

physical evolution in d = 2 and d = 3, it is sufficient that

X
Y
≤ 1

d− 1
ert/2 +

1
2

e−rt/2 (60)

with the first minimum of the cosine function corresponding to

t∗ =
2
Y

(
π − arctan

(d− 1)r
(d + 1)Y

)
. (61)

Analogically to the previous example, the lower bound for the classical capacity of Λ(t) is
given by

C[Λ(t)] = max
{

cα(t), cα∗(t)
}

, (62)
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for cα(t) defined in Equation (15), where C[ΛM(t)] = cα∗(t) is the capacity of the Markovian
evolution. Again, we observe a temporary increase in the channel capacity for a certain set
of kernel parameters (see Figure 3 for the qubit evolution).

0 1 2 3 4 5
t

0

0.2

0.4

0.6

C

   (t)
   (t)

cα*(t)
cα(t)

C

t
Figure 3. For the functions cα∗ (t) and cα(t), α 6= α∗, for the qubit evolution with r = 1/(10 s), and
ω = 2/s. Observe that C[Λ(t)] > C[ΛM(t)] when cα(t) > cα∗ (t), or, in other words, when the dashed
line lies below the solid line. Contrary to the semigroup examples, the maximal capacity increase
does not occur during the first time range when the classical capacity is enhanced.

5. Conclusions

We analyzed the classical capacity of generalized Pauli channels generated via memory
kernel master equations. We compared the evolution of channel capacity for the Markovian
semigroup and for the dynamical map generated via a memory kernel that is a sum of the
Markovian part and the noise part. Note that the local part is legitimate and identical for
both maps. The non-local part, which corresponds to environmental noise, was chosen in
such a way that the dynamical map that solves the associated Nakajima–Zwanzig equation
describes a valid physical evolution. It was found that the introduction of noise into the
master equation could lead to a temporary increase in the classical capacity. In other
words, noise effects can be beneficial in quantum information processing, as they result
in the enhanced ability of a quantum channel to reliably transmit classical information.
Similar results were obtained after a generalization of the Markovian semigroup to a
Markovian evolution provided by a time-local generator. However, we showed that
analogical observations cannot be made for time-local master equations. A dynamical map
generated via the sum of two time-local generators never produces a classical capacity that
is higher than that of a map that arises from a single generator.

It would be interesting to further analyze this topic by considering the kernels for
noninvertible Markovian dynamical maps mixed with the noise kernels. Another open
question concerns the relation between quantum maps that increase classical capacity
and maps that increase the channel fidelity. One could expect that capacity enhancement
means higher fidelity, but not the other way around. A comparative analysis could also be
performed for other important measures, such as output purity, concurrence, logarithmic
negativity, and von Neumann entropy.
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