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Abstract: Sensor placement is an important factor that may significantly affect the localization
performance of a sensor network. This paper investigates the sensor placement optimization problem
in three-dimensional (3D) space for angle of arrival (AOA) target localization with Gaussian priors.
We first show that under the A-optimality criterion, the optimization problem can be transferred to
be a diagonalizing process on the AOA-based Fisher information matrix (FIM). Secondly, we prove
that the FIM follows the invariance property of the 3D rotation, and the Gaussian covariance matrix
of the FIM can be diagonalized via 3D rotation. Based on this finding, an optimal sensor placement
method using 3D rotation was created for when prior information exists as to the target location.
Finally, several simulations were carried out to demonstrate the effectiveness of the proposed method.
Compared with the existing methods, the mean squared error (MSE) of the maximum a posteriori
(MAP) estimation using the proposed method is lower by at least 25% when the number of sensors is
between 3 and 6, while the estimation bias remains very close to zero (smaller than 0.15 m).

Keywords: 3D angle of arrival (AOA) localization; Cramér–Rao lower bound (CRLB); optimal
sensor placement; covariance matrix; fisher information matrix (FIM)

1. Introduction

Tracking and localization using sensor networks have a wide range of applications in
radar, sonar, and wireless sensor networks [1,2]. There are several types of localization tech-
niques that have been developed in recent years: time difference of arrival (TDOA) or time
of arrival (TOA) [3,4], angle of arrival (AOA) [5–7], and received signal strength (RSS) [8,9].

AOA target localization has been an active research area during the past two decades.
It does not require synchronization with the signal target or among the different distributed
sensors, unlike TOA and TDOA localization. Many estimators have been developed for
AOA-based localization. A 3D one-step pseudolinear estimator (PLE) with a bias compen-
sation strategy was proposed in [10]. An asymptotically unbiased weight instrumental
variable (WIV) technique was presented in [11] to solve the bias problem, and then a
3D, improved WIV estimator was derived to break down the correlation between the
instrumental variable (IV) matrix and the error vector in [12]. Furthermore, a closed-form
solution for 3D AOA localization, which can handle the presence of sensor location errors,
was presented in [13]. Recently, an approximately unbiased estimator was proposed by
approximating the bias and subtracting it from the weighted least squares (WLS) solution
obtained using semidefinite relaxation (SDR) in [14].

Apart from the above localization methods, generating the target–sensor geometry
for localization is also a non-trivial task and attracts great interest in the localization area.
The optimization problem for sensor placement was usually formulated to minimize the
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Cramer–Rao lower bound (CRLB) or maximize the Fisher information matrix (FIM) [15–18],
and the differences between the above two methods were reported in [19]. In [20], the trace
of CRLB was adopted to find the optimal geometric configuration, which yielded the
minimum possible covariance of any unbiased target estimator in a constrained 3D space.
The optimal placement analysis for 3D AOA target localization using the A-optimality
criterion (minimize the trace of CRLB) appeared in [21]. In addition, a frame theory
was also presented that can handle the optimal sensor placement with three types of
sensor placement strategy in [22] as an identical parameter optimization problem in two-
dimensional (2D) and 3D space. In [23], the frame theory was used to derive an evaluation
function for optimal placement with random numbers of newly added sensors in AOA
target localization.

The majority of previous work on optimal sensor placement assumed that the target
location was known perfectly, which is impossible in actual scenarios. Therefore, it is
beneficial to solve the optimal sensor placement problem when the target location is uncer-
tain. The optimal sensor placement algorithm for TDOA localization with an unknown
target location was proposed in [24]. An equivalence between minimizing the estimation
mean squared error and minimizing the area of the estimation uncertainty ellipse was
established for the geometry optimization problem of target localization with Bayesian
priors in [25], which makes the optimal geometry conditions algebraically simple and
easy to be computed. However, the above proposed algorithms can only be used in 2D
space. In addition, an analysis of the performance measures of covariance and information
matrices in resource management for target state estimation was provided in [26]. Then the
analysis results were extended in [27] to find the optimal placement of heterogeneous sen-
sors for the target with Gaussian priors. Furthermore, the updated FIM was used to derive
optimal placement conditions for heterogeneous sensors tracking the unknown number of
targets in [28]. Nevertheless, the solutions in [27,28] were complicated, particularly in the
case of more than two sensors.

Several valuable conclusions have been obtained about the coordinate system rotation,
which provides a new path to solving target localization and optimal sensor placement.
As pointed out in [29], local coordinate translations and rotations do not influence the
PLE and maximum likelihood estimator (MLE) performance of the bearings-only target
localization algorithm. Furthermore, it was demonstrated that the trace of CRLB was
invariant in XY-coordinates and the AOA-based FIM was invariant to flipping a sensor
about the target in [21]. Lately, a TOA-based FIM invariant to sensor rotation about the
target in 3D space was shown in [30].

In this paper, we address the optimal 3D AOA sensor placement problem with Gaus-
sian priors. The key contributions of this paper are summarized as follows:

• A detailed 3D AOA optimal sensor placement problem with Gaussian priors is ana-
lyzed using the A-optimality criterion (minimizing the trace of the inverse FIM). We
show analytically that the problem can be transformed to diagonalize the AOA-based
FIM under the A-optimality criterion.

• The invariance property of the 3D rotation for the AOA-based FIM with Gaussian pri-
ors is deduced. Thus, the Gaussian covariance matrix of the FIM can be diagonalized
via 3D rotation.

• An optimal sensor placement method using 3D rotation is proposed for when prior
information exists as to the target location using the invariance property of the AOA-
based FIM and the A-optimality criterion.

• Simulation studies are presented to demonstrate the analytical findings. The compar-
ison results show that the proposed method significantly improves the localization
performance.

The rest of the paper is organized as follows: The 3D AOA sensor placement with
Gaussian priors optimization problem is formulated in Section 2. Section 3 derives the FIM
with Gaussian priors after the 3D rotation and then exploits the invariance property for
the 3D AOA-based FIM. Section 4 presents the optimal sensor-target geometric solutions
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with the help of a resistor network analogy. The main results are presented with simulation
examples in Section 5, and the conclusion and discussion of future work are in Section 6.

2. Problem Formulation

We consider a 3D AOA configuration with N sensors localizing a stationary target,
as depicted in Figure 1, and each sensor is assumed to be omnidirectional. s = (x, y, z)T is

the unknown location of the target with T denoting matrix transpose, pk =
(

pxk, pyk, pzk

)T
,

k = 1, 2, · · ·N is the location of the sensors. It is assumed that s is a Gaussian random
variable with a distribution as s ∼ N (s0, P0), where s0 and P0 represent the mean and
the covariance matrix of s. Note that the gray ellipse in Figure 1 illustrates the confidence
region corresponding to the Gaussian priors, and {θk, φk} denotes the bearing measurement
with the azimuth and elevation angle in spherical coordinates. Using s0 = (x0, y0, z0)

T as a
reference, the AOA measurement of the kth sensor can be expressed as

θk = tan−1 y0 − pyk

x0 − pxk
,−π < θ ≤ π,

φk = sin−1 z0 − pzk
rk

,−π

2
< φ ≤ π

2
,

(1)

where rk = ‖s0 − pk‖, tan−1 is the fourth quadrant arctangent, and ‖·‖ denotes the Eu-
clidean norm. In terms of azimuth and elevation angles, the unit bearing vector g0

k can be
given by

g0
k =

cos φk cos θk
cos φk sin θk

sin φk

, (2)

In the 3D localization system, the AOA measurements are always affected by multi-
path effects, the propagation environment, the transmitted power, and other unfavorable
factors. In order to focus our study on the sensor placement optimization problem itself,
in our paper, although we do not consider these inference factors explicitly, we take them
into account, as a whole, by modeling them as the additive Gaussian white noise on the
true angle measurements

{
θ̃k, φ̃k

}
as

θ̃k = θk+nθk , nθk ∼ N
(

0, σ2
θk

)
,

φ̃k = φk + nφk , nφk ∼ N
(

0, σ2
φk

)
.

(3)

where σ2
θk

and σ2
φk

are sensor-dependent noise variances [31].
The sensor measurement covariance matrix can be expressed as

Σ =

[
P0 02N×3

03×2N Σ0

]
, (4)

with
Σ0 = diag

{
σ2

θ1
, σ2

φ1
, . . . , σ2

θN
, σ2

φN

}
, (5)

Here we define e(s) and r(s)

r(s) = s− s0,

e(s) =
[
θ̃1 − θ1(s), φ̃1 − φ1(s), . . . , θ̃N − θN(s), φ̃N − φN(s)

]T .
(6)

The Jacobian matrix of measurement errors evaluated at the mean location s0 can be
written as

J =
[
J1 J2

]T , (7)
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where J1 is the 3× 3 Jacobian of r(s), given by

J1 = I3×3 , (8)

The Jacobian vector of the kth sensor measurement error evaluated at the true target
location s = (x, y, z)T as

J
′
k =

[
∂θk
∂sT ,

∂φk
∂sT

]T
∣∣∣∣∣
s

=


∂θk
∂x

∂θk
∂y

∂θk
∂z

∂φk
∂x

∂φk
∂y

∂φk
∂z


∣∣∣∣∣∣∣∣
s

=

 −
sin θk

rk cos φk

cos θk
rk cos φk

0

− sin φk cos θk
rk

− sin φk sin θk
rk

cos φk
rk

,

(9)

Therefore, we can obtain the Jacobian matrix of the 2N measurements as

J2 =



− sin θ1

r1 cos φ1

cos θ1

r1 cos φ1
0

− sin φ1 cos θ1

r1
− sin φ1 sin θ1

r1

cos φ1

r1
...

...
...

− sin θN
rN cos φN

cos θN
rN cos φN

0

− sin φN cos θN
rN

− sin φN sin θN
rN

cos φN
rN


, (10)

The FIM for 3D AOA localization with Gaussian problem yields

Φ = JTΣ−1J. (11)

For simplification, J is expressed as the following three vectors:

a =

[
− sin θ1

r1 cos φ1
,− sin φ1 cos θ1

r1
, · · · , − sin θN

rN cos φN
,− sin φN cos θN

rN

]T
,

b =

[
cos θ1

r1 cos φ1
,− sin φ1 sin θ1

r1
, · · · ,

cos θN
rN cos φN

,− sin φN sin θN
rN

]T
,

c =

[
0,

cos φ1

r1
, · · · , 0,

cos φN
rN

]T
,

(12)

Thus,
J =

[
a b c

]
(2N+3)×3 , (13)

Hence, the FIM is

Φ =

aT

bT

cT

Σ−1[a b c
]
=

 âT â âTb̂ âT ĉ
b̂T â b̂Tb̂ b̂T ĉ
ĉT â ĉTb̂ ĉT ĉ

, (14)

where â = Σ−1/2 a, b̂ = Σ−1/2 b, ĉ = Σ−1/2 c, and Σ−1/2 Σ−1/2 = Σ−1. Given â, b̂, and ĉ
in <2n, then |â|2 = 〈â, â〉 and

〈
â, b̂
〉
= |â|

∣∣∣b̂∣∣∣ cos
(
θâb̂

)
, from which it follows that the angle
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θâb̂ between vector â and b̂ is given by θâb̂ = cos−1
(〈

â, b̂
〉

/
(
|â|
∣∣∣b̂∣∣∣) ), θâĉ. θb̂ĉ are the

angle defined by vectors â; and ĉ, b̂, and ĉ [32]. With this notion, the FIM becomes

Φ =


|â|2 |â|

∣∣∣b̂∣∣∣ cos
(
θâb̂

)
|â||ĉ| cos(θâĉ)

|â|
∣∣∣b̂∣∣∣ cos

(
θâb̂

) ∣∣∣b̂∣∣∣2 ∣∣∣b̂∣∣∣|ĉ| cos
(
θb̂ĉ

)
|â||ĉ| cos(θâĉ)

∣∣∣b̂∣∣∣|ĉ| cos
(
θb̂ĉ

)
|ĉ|2

, (15)

The determinant of Φ is
|Φ| = |â|2

∣∣∣b̂∣∣∣2|ĉ|2λ, (16)

where

λ = 1− cos2(θâb̂

)
− cos2(θâĉ)− cos2(θb̂ĉ

)
+ 2 cos

(
θâb̂

)
cos(θâĉ) cos

(
θb̂ĉ

)
. (17)

Thus, the trace of CRLB is

tr(CRLB) = tr
(

Φ−1
)

=

∣∣∣b̂∣∣∣2|ĉ|2(1− cos2(θb̂ĉ

))
|Φ| +

|â|2|ĉ|2
(
1− cos2(θâĉ)

)
|Φ| +

|â|2
∣∣∣b̂∣∣∣2(1− cos2(θâb̂

))
|Φ|

=

(
1− cos2(θb̂ĉ

))
|â|2λ

+

(
1− cos2(θâĉ)

)∣∣∣b̂∣∣∣2λ

+

(
1− cos2(θâb̂

))
|ĉ|2λ

,

(18)

Thus, we can get

tr(CRLB) ≥ 1

|â|2
+

1∣∣∣b̂∣∣∣2 +
1

|ĉ|2
. (19)

The tr(CRLB) is minimum when cos
(
θâb̂

)
= cos(θâĉ) = cos

(
θb̂ĉ

)
= 0. Note that

when tr(CRLB) becomes minimum, the FIM becomes diagonal, so the optimal sensor
placement is obtained by diagonalizing the FIM [33].

 

z

x

y

0s

kp1p Np
k

k

 0 0,s s P

0

kg

Figure 1. 3D AOA localization sensor placement with Gaussian priors.

3. The Proposed Method

Under the Gaussian assumption, the prior covariance matrix P0 may be a diagonal
or non-diagonal matrix, which physically represents an ellipsoid bounding the uncertain
target measurement estimators. Since the rotation does not affect the size of the ellipsoid,
the covariance P0 should be invariant to any similarity transform UP0UT , where U is a
unitary matrix. Therefore, a proper 3D rotation provides a solution for diagonalizing the
non-diagonal matrix P0. Additionally, in this section, we derive the FIM for 3D AOA
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localization with Gaussian priors after the 3D rotation, and then the invariance property of
the 3D AOA-based FIM is exploited.

3.1. 3D Rotation Matrix

First, we define rotation matrices of the AOA measurement as follows:

Rx =

1 0 0
0 cos α − sin α
0 sin α cos α

, Ry =

 cos β 0 sin β
0 1 0

− sin β 0 cos β

, Rz =

cos γ − sin γ 0
sin γ cos γ 0

0 0 1

. (20)

Here α, β, and γ are counterclockwise rotation angles around the x, y, and z axes,
respectively, which is depicted in Figure 2. The rotation matrix is

R = RxRyRz. (21)

and satisfies RRT = RR−1 = I.
Next, when the rotation happens in the 3D space, we can get

sr = Rs, sr
0 = Rs0, pr = Rp, Pr

0 = RP0RT . (22)

where sr, sr
0, pr, and Pr

0 are the new measurements compared with s, s0, p, and P0 after
rotation.

z

x

y

z

x

y

z

x

y

 


Figure 2. The rotation angles α, β, γ around the x, y, and z axes.

3.2. Invariance to 3D Rotation for AOA-Based FIM

When the 3D AOA measurements are assumed to be corrupted by additive white
Gaussian noise with zero mean, the k-th sensor bearing unit vector in (2) is modified as

gk =

cos φ̃k cos θ̃k
cos φ̃k sin θ̃k

sin φ̃k

, (23)

From (20) and (22), the bearing unit vector after rotation is

gr
k = Rgk =

cos φ̃r
k cos θ̃r

k
cos φ̃r

k sin θ̃r
k

sin φ̃r
k

, (24)

Therefore, the azimuth and elevation angles are given by

θ̃r
k = tan−1

(
gr

k(2)
gr

k(1)

)
, φ̃r

k = sin−1(gr
k(3)). (25)

Here we define
θ̃r

k = g
(
θ̃k, φ̃k

)
, φ̃r

k = h
(
θ̃k, φ̃k

)
, (26)
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To compute the covariance matrix after rotation, we can adopt the First-order Taylor
series approximation for the rotated noisy angles using (θk, φk) in

(
θ̃k, φ̃k

)
with respect to

the noise variables nθk and nφk. Therefore, (26) can be rewritten as

θ̃r
k = g

(
θ̃k, φ̃k

)
= g

(
θk + nθk , φk + nφk

)
= g(θk, φk) +

[
∂g(θk, φk)

∂θk

∂g(θk, φk)

∂φk

][
nθk
nφk

]
,

φ̃r
k = h

(
θ̃k, φ̃k

)
= h

(
θk + nθk , φk + nφk

)
= h(θk, φk) +

[
∂h(θk, φk)

∂θk

∂h(θk, φk)

∂φk

][
nθk
nφk

]
.

(27)

According to the error propagation law [34], the noise covariance matrix for the k-th
sensor after 3D rotation can be written as

Kr
k =


∂g(θk, φk)

∂θk

∂g(θk, φk)

∂φk
∂h(θk, φk)

∂θk

∂h(θk, φk)

∂φk

× [σ2
θ 0

0 σ2
φ

]
×


∂g(θk, φk)

∂θk

∂g(θk, φk)

∂φk
∂h(θk, φk)

∂θk

∂h(θk, φk)

∂φk


T

, (28)

By substituting (26) into (27), the maximum likelihood (ML) covariance matrix of the
bearing measurement noise can be expressed as

Σr
0 =

Kr
1 0 0

0
. . . 0

0 0 Kr
N

, (29)

Using the prior covariance matrix after rotation Pr
0 given in (22) and the above equa-

tion, the covariance matrix after rotation is given by

Σr =

[
Pr

0 02N×3
03×2N Σr

0

]
. (30)

By substituting (22) into (8) and (10), Jr
1 and Jr

2 after rotation are computed. We
thus obtain

Jr =
[
Jr

1 Jr
2
]T , (31)

Hence, the FIM after three rotations becomes

Φ̂ = JrT(Σr)−1Jr. (32)

After the 3D rotations, the FIM becomes

Φ̂ = RΦR−1, (33)

Substituting (21) into the above equation yields

Φ̂ = RxRyRzΦRz
−1Ry

−1Rx
−1, (34)

By using (AB)−1 = B−1A−1, A and B are full rank square matrices. The inverse of
the new FIM Φ̂ is

Φ̂−1 = RxRyRzΦ-1Rz
−1Ry

−1Rx
−1, (35)

Based on the properties of the rotation matrix and the above expression, it can be seen
that Φ̂−1 and Φ−1 are similarity matrices. Thus,

tr
(

Φ̂−1
)
= tr

(
Φ−1

)
. (36)
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Thus, we can conclude that 3D rotations do not affect the tr
(
Φ−1) calculated from the

AOA-based FIM. In the next section, we will derive the optimal sensor placement with
Gaussian priors using the invariance of the trace of FIM to 3D rotations.

4. Optimal Sensor Placement with Gaussian Priors

In this section, we investigate the optimal sensor placement with Gaussian priors.
First, the FIM for 3D AOA localization with Gaussian priors is derived, and the solution
of minimizing the trace of CRLB is developed. Moreover, Section 3 provided a solution
for diagonalizing P0 with proper 3D rotation. The invariance property for 3D rotation of
the AOA-based tr

(
Φ−1) is used to diagonalize the non-diagonal covariance. Therefore, we

suppose that the coordinate system is rotated such that the covariance matrix is diagonal
P0 = diag([a, b, c]).

Based on (11), the FIM for the 3D AOA target localization problem is

Φ = P−1
0 + J2

TΣ−1J2 = P−1
0 +

N

∑
k=1

1
r2

kσ2
θk

cos2φk
ukuT

k +
N

∑
k=1

1
r2

kσ2
φk

vkvT
k , (37)

where uk and vk are unit vectors orthogonal to the 2D azimuth vector and 3D range vector,
respectively,

uk =

− sin θk
cos θk

0

, vk =

− sin φk cos θk
− sin φk sin θk

cos φk

. (38)

Following (19), we aim to determine optimal sensor locations, and the optimality crite-
rion is to minimize the trace of CRLB, which is also known as the optimality criterion [35].
This section first investigates the optimal palcement of one sensor and then expands to
multiple sensors.

4.1. Optimal Sensor Placement for One Sensor

Let us discuss the optimal placement for one sensor with Gaussian priors.
Substitute (38) into (37) and then use (19). Then we can see that the trace of CRLB satisfies

tr(CRLB) = tr(Φ−1) ≥
(

a−1 +
1
r2

(
sin2θ

σ2
θ cos2φ

+
1

σ2
φ

sin2φcos2θ

))−1

+

(
b−1 +

1
r2

(
cos2θ

σ2
θ cos2φ

+
1

σ2
φ

sin2φsin2θ

))−1

+

(
c−1 +

cos2φ

σ2
φr2

)−1

,

(39)

with equality if

− sin 2θ

σ2
θ cos2φ

+
1

σ2
φ

sin2φ sin 2θ = 0,

1
σ2

φ

sin 2φ cos θ = 0,
1

σ2
φ

sin 2φ sin θ = 0.
(40)

To satisfy the above expression, we compute the azimuth and elevation angle as follows:

{θ, φ} ∈ {{±π/2 , 0}, {±π/2 ,±π/2 }, {0, 0}, {0,±π/2 }}. (41)

Substituting the optimal angle {θ, φ} into (39), we can obtain different configurations,
as listed in Table 1. We set R1 = a, R2 = b, R3 = c, R4 = r2σ2

θ , and R5 = r2σ2
φ, then adopt

the resistor network model to find the minimum tr(CRLB), which depends on the prior
covariance matrices, the angle noise variances σθ and σφ, and the sensor-target ranges r.
The resistor network model for optimal sensor placement with different configurations is
shown in Figure 3.
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Table 1. Trace of CRLB with different optimal angles and configurations.

Configuration θ φ tr(CRLB)

1 ±π/2 0

(
a−1 +

1
r2σ2

θ

)−1

+ b +

(
c−1 +

1
r2σ2

φ

)−1

2 ±π/2 ±π/2

(
b−1 +

1
r2σ2

θ

+
1

r2σ2
φ

)−1

+ c

3 0 0 a +

(
b−1 +

1
r2σ2

θ

)−1

+

(
c−1 +

1
r2σ2

φ

)−1

4 0 ±π/2

(
a−1 +

1
r2σ2

θ

+
1

r2σ2
φ

)−1

+ c

R1

R5

R3

R2

R4

R2

R4 R5

R3

R2

R1

R5

R3

R4

Configuration 1:

Configuration 2:

Configuration 3:

Configuration 4:

R1

R4 R5

R3

Figure 3. Resistor network model for optimal sensor placement for one sensor.

Furthermore, the resistor networks can help determine the optimal geometry rapidly
using the analysis of different configurations, and the value of a, b, c with the prior covari-
ance matrix P0 mainly decides the optimal placement when r2σ2

φ and r2σ2
θ are fixed by

using the parallel resistor equation. The explanation of configurations in Table 1:

• Configuration 1: The values of resistors R1 and R2 can be reduced owing to the
parallel resistors R4 and R5. Thus, the angle is suited for a > c > b and c > a > b.

• Configuration 2: The value of resistor R1 is eliminated, so the angle is suited for
a > b > c.

• Configuration 3: The value of resistor R2, R3 can be reduced owing to the parallel
resistors R4 and R5. Thus, the angle is suited for b > c > a, c > b > a.

• Configuration 4: The value of resistor R2 is eliminated, so the angle is suited for
b > a > c.

In conclusion, when the maximum value is a, the optimal angle of {θ, φ} is {±π/2, 0},
{±π/2,±π/2}, and the line of sight (LOS)

{
[0, 1, 0]T , [0, 0, 1]T

}
is orthogonal to the largest

eigenvector of P0. A similar conclusion can be derived when the maximum value is b or c,
which has the same results as [26]. Moreover, the non-diagonal covariance placement can
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easily be attained using the above analytical finding. This method is much simpler than
the sensor update method in [26].

4.2. Optimal Sensor Placement for N = 2

In this subsection, we consider the case of two sensors and use the resistor network
model to determine the optimal sensor placement. Substituting N = 2 into (37), the trace
of inverse of FIM is written as

tr(CRLB) = tr(Φ−1) ≥
(

a−1 +
2

∑
k=1

1
r2

k

(
sin2θk

σ2
θk

cos2φk
+

1
σ2

φk

sin2φkcos2θk

))−1

+

(
b−1 +

2

∑
k=1

1
r2

k

(
cos2θk

σ2
θk

cos2φk
+

1
σ2

φk

sin2φksin2θk

))−1

+

(
c−1 +

2

∑
k=1

(
cos2φk

σ2
φk

r2
k

))−1

,

(42)

with equality if

2

∑
k=1

1
r2

k

(
1

σ2
φk

sin2φk sin 2θk −
sin 2θk

σ2
θk

cos2φk

)
= 0,

2

∑
k=1

1
r2

kσ2
φk

sin 2φk cos θk = 0,
2

∑
k=1

1
r2

kσ2
φk

sin 2φk sin θk = 0.

(43)

For azimuth angles, the two-sensor optimal placement in the 2D plane that mini-
mizes the tr(CRLB) is given by |θ1 − θ2| = π/2, regardless of noise variance and sensor
ranges [23]. Since we set {θ1, θ2} = {0,±π/2}, and the above equations can be satis-
fied when

{φ1, φ2} ∈ {{0, 0}, {0,±π/2}, {±π/2, 0}, {±π/2,±π/2}}. (44)

By substituting (44) into (42), we can obtain the tr(CRLB) for {θ1, θ2} = {0,±π/2}
with different elevation angles that listed in Table 2. Besides, we set R1 = a, R2 = b, R3 = c,
R4 = r2

1σ2
θ1, R5 = r2

2σ2
θ2, R6 = r2

1σ2
φ1, and R7 = r2

2σ2
φ2. The minimum trace of CRLB depends

on the prior covariance matrix, the angle noise variances, and the sensor-target ranges.
The resistor network model for optimal sensor placement with the different configurations
is shown in Figure 4.

Table 2. Trace of CRLB for {θ1, θ2} = {0,±π/2} and different elevation-angles.

Configuration φ1 φ2 tr(CRLB)

1 0 0

(
a−1 +

1
r2

2σ2
θ2

)−1

+

(
b−1 +

1
r2

1σ2
θ1

)−1

+(
c−1 +

1
r2

1σ2
φ1

+
1

r2
2σ2

φ2

)−1

2 0 ±π/2
(

b−1 + 1
r2

1σ2
θ1

+ 1
r2

2σ2
φ2

)−1
+

(
c−1 +

1
r2

1σ2
φ1

)−1

3 ±π/2 0

(
a−1 +

1
r2

1σ2
φ1

+ 1
r2

2σ2
θ2

)−1

+

(
c−1 +

1
r2

2σ2
φ2

)−1

4 ±π/2 ±π/2 c
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R1

R5

R2

R4

R3

R6

R7

R2

R4

R7

R3

R6

R1

R6

R5

R3

R7

R3

Configuration 1:

Configuration 2:

Configuration 3:

Configuration 4:

Figure 4. Resistor network model for optimal sensor placement for N = 2.

4.3. Optimal Sensor Placement for N ≥ 3

In this section, we consider the optimal placement of N sensors in 3D space with
different angle noises and distances. The trace of inverse of FIM is written as

tr(CRLB) = tr(Φ−1) ≥
(

a−1 +
N

∑
k=1

1
r2

k

(
sin2θk

σ2
θk

cos2φk
+

1
σ2

φk

sin2φkcos2θk

))−1

+

(
b−1 +

N

∑
k=1

1
r2

k

(
cos2θk

σ2
θk

cos2φk
+

1
σ2

φk

sin2φksin2θk

))−1

+

(
c−1 +

N

∑
k=1

(
cos2φk

σ2
φk

r2
k

))−1

,

(45)

subject to
N

∑
k=1

1
r2

k

(
1

σ2
φk

sin2φk sin 2θk −
sin 2θk

σ2
θk

cos2φk

)
= 0,

N

∑
k=1

1
r2

kσ2
φk

sin 2φk cos θk = 0,
N

∑
k=1

1
r2

kσ2
φk

sin 2φk sin θk = 0.

(46)

To diagonalize FIM, the azimuth and elevation angle can be shown to obey the
following equality [21]:

sin 2θk = 0, k = 1, . . . , N, sin 2φk = 0, k = 1, . . . , N. (47)

Define the subset of C as the optimal azimuth angles, which is given by

C={{θ1, θ2, . . . , θN}|θk ∈ {0,±π/2}, k = 1, . . . , N }, (48)

The elevation angles satisfy (45) form a set defined as

Z = {{φ1, φ2, . . . φN}|φk ∈ {0,±π/2}, k = 1, . . . , N }. (49)
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Thus, we can get the minimum trace of CRLB with the angle combination of C and Z.

tr
(

Φ−1
opt(θ1, . . . , θN , φ1, . . . , φN)

)
=

(
a−1 +

N

∑
k=1

1
r2

k

(
sin2θk

σ2
θk

cos2φk
+

1
σ2

φk

sin2φkcos2θk

))−1

+

(
b−1 +

N

∑
k=1

1
r2

k

(
cos2θk

σ2
θk

cos2φk
+

1
σ2

φk

sin2φksin2θk

))−1

+

(
c−1 +

N

∑
k=1

(
cos2φk

σ2
φk

r2
k

))−1

.

(50)

Therefore, (48) and (49) can be used to determine the optimal sensor placement N ≥ 3.
Based on the analysis above, we can get the optimal azimuth and elevation angles

subset. This conclusion is consistent with the literature [21]. In addition, it can be seen
that the parameters of P0 also affect the sensor placement with the analysis of the resistor
network models. Therefore, the minimum trace of CRLB depends on the angle noise
variances, the sensor-target distance, and the value of P0.

5. Simulation Studies
5.1. Gradient Descent Alogorithm Simulations

In this subsection, we adopt a gradient descent algorithm to verify the optimal sensor
placement conditions derived in the above section. Assume that the distribution of target
is given, and s0 = (0, 0, 0)T . The minimum distances between the target and sensors are
represented by dk. A group of mobile sensors is moving to minimize the trace of CRLB in
3D space [21]. This exact gradient descent simulation was run 10,000 steps.

• Example 1: For optimal sensor placement with one sensor

Case A: We used these simulation parameters: P0 =

500 0 0
0 200 0
0 0 100

, d = 150 m,

σ2
θ = σ2

φ = 1◦, and the initial sensor location was
[
200 −100 −100

√
2
]T

. The sensor
trajectory is shown in Figure 5a, and the final angles were θ = −91.34◦ and φ = −89.53◦,
which matches Configuration 2 (a > b > c) in Table 1, and the LOS was orthogonal to the
largest eigenvector of P0.

Case B: The simulation parameters were as follows: P0 =

100 0 0
0 200 0
0 0 500

, d = 200 m,

σ2
θ = 1◦, σ2

φ = 2◦, and the initial sensor location was
[
100 200 100

√
2
]T

. The sensor
trajectory is shown in Figure 5b and the final angles were θ = −0.03◦ and φ = −0.02◦,
which matches Configuration 3 (c > b > a) in Table 1, and the LOS was orthogonal to
the largest eigenvector of P0. Moreover, although the initial sensor location and d were
different in Cases A and B, it is shown that the final optimal sensor placement also matches
the analysis results in Figure 5a,b. The simulation results also can prove the proposed
method without any restriction on the sensor-target range and initial sensor locations.

Case C: We used the parameters of Case B except P0 =

100 50 20
50 200 30
20 30 500

. The rotation

angles were computed using (20) and (21), i.e., α = 7.10◦, β = 358.88◦, γ = 22.26, and P0

can be rewritten as Pr
0 =

79.17 0 0
0 216.31 0
0 0 504.52

. The rest of simulation parameters can

be obtained from (22), and the tr(CRLB) was computed using (33). The sensor trajectory is
shown in Figure 5c, and the final angles were θ = −0.03◦ and φ = −0.01◦, which matches
Configuration 3 (c > b > a) in Table 1. The LOS was orthogonal to the largest eigenvector
of P0.
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Case D: We used the parameters of Case B except P0 =

300 10 20
10 500 15
20 15 100

, and

Pr
0 =

301.46 0 0
0 501.13 0
0 0 97.41

 after the 3D rotation. As in Case C, the final angles were

θ=− 0.16◦ and φ=− 89.67◦, which matches Configuration 4 (b > a > c) in Table 1; and the
LOS was orthogonal to the largest eigenvector of P0, and the sensor trajectory is shown in
Figure 5d.

More specifically, the prior covariance matrices P0 in Cases A and B were diagonal
covariance matrices P0. We could quickly obtain the optimal placement through the
gradient simulation, and the results of Figure 5a,b match the findings in Section 4.1. Besides,
the prior covariance matrices P0 in Cases C and D were non-diagonal covariance matrices,
and the invariance property for 3D rotation of the AOA-based trace of CRLB was used
to diagonalize the non-diagonal covariance. Then, we obtained the optimal placement
using the gradient simulation, and the results of Figure 5c,d also match the findings in
Section 4.1.

• Example 2: Optimal sensor placement for two and three sensors:

Case A: The simulation parameters were as follows: P0 =

200 0 0
0 600 0
0 0 900

,

d1 = d2 = 200 m, σ2
θ1

= σ2
θ2

= 0.5◦, σ2
φ1

= σ2
φ2

= 1◦, and the initial sensor locations

were
[
200 −100 −100

√
2
]T

,
[
100 −100 200

]T . The sensors’ trajectories are shown
in Figure 6a, and the final angles were θ1 = −37.24◦, θ2 = −130.29◦, φ1 = −0.03◦, and
φ2 = 88.91◦, which matches Configuration 2 in Table 2.

Case B: We used the parameters of Case A except P0 =

200 20 15
20 600 50
15 50 900

, and

Pr
0 =

198.52 0 0
0 596.23 0
0 0 905.25

 after rotation. The sensors’ trajectories are shown in

Figure 6b, and the final angles were θ1 = − 27.95◦, θ2 = − 116.51◦, φ1= − 0.06◦, and
φ2 = 88.65◦, which also matches Configuration 2 in Table 2.

In Cases A and B, we adopted the same parameters except for the covariance matrix
P0. Similarly, the non-diagonal covariance matrix in Case B was diagonalized by the
3D rotation. It is shown that the sensor trajectories and the final optimal sensor-target
geometries were almost identical in Figure 6 a,b, which satisfies the results of Section 4.2.

Case C: For three sensors, we used the simulation parameters as follows:

P0 =

300 0 0
0 800 0
0 0 900

, d1 = d2 = d3 = 200 m, σ2
θ1

= σ2
θ2

= σ2
θ3

= 0.5◦, σ2
φ1

= σ2
φ2

= σ2
φ3

=

0.5◦, and the initial sensor locations were
[
−100

√
2 100 −200

]T
,
[
100 −100

√
2 0

]T
,[

−100
√

2 100 200
]T

. The sensors’ trajectories are shown in Figure 6c and the final angles
were θ1 = 118.51◦, θ2 = −61.49◦, θ3 = −155.64◦, φ1 = −0.01◦, φ2 = 0.01◦, and φ3 = 88.91◦.

Case D: We used the parameters of Case C except P0 =

300 15 20
15 800 30
20 30 900

, and

Pr
0 =

299.18 0 0
0 795.77 0
0 0 905.05

 after rotation. The sensors’ trajectories are shown in

Figure 6d, and the final angles were θ1 = 120.51◦, θ2 = −59.49◦, θ3 = −146.41◦, φ1 = 0.05◦,
φ2 = 0.01◦, and φ3 = 88.33◦.
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Similarly, we used the same parameters except for the covariance matrix P0 in Cases C
and D. The non-diagonal covariance matrix in Case D was diagonalized by the 3D rotation.
It is shown that the sensor trajectories and the final optimal sensor-target geometries were
almost identical in Figure 6c,d, which also satisfies the results of Section 4.3.

(a) (b)

(c) (d)

Figure 5. Optimal sensor placement for one sensor. (a) P0 is a diagonal matrix with a > b > c, (b) P0

is a diagonal matrix with c > b > a, (c) P0 is a non-diagonal matrix with c > b > a, (d) P0 is a
non-diagonal matrix with b > a > c.

For Cases A and B in Example 2, the tr
(

Φ−1
opt

)
computed by the gradient descent

algorithm were approximately the same; besides, we could obtain the theoretical minimum
trace of CRLB using (42) with the optimal sensor placement. The tr(Φ−1) from Case A
and tr

(
Φ̂−1) from Case B were equal, which is in agreement with the analytical result

of (36). Table 3 lists the tr
(

Φ−1
opt

)
, tr(Φ−1) and tr

(
Φ̂−1) for different cases of Example 2. It

is clear that the same conclusion was obtained for N = 3 in Example 2 for Cases C and
D. Furthermore, the tr

(
Φ−1

opt

)
is close to the theoretical minimum trace; i.e., tr(Φ−1) and

tr
(
Φ̂−1).

Table 3. Trace of CRLB for Example 2.

Example 2 tr(Φ–1
opt) (m2) tr(Φ–1) (m2) tr(Φ̂–1) (m2)

Case A 5.4678 5.4620 /
Case B 5.5156 / 5.4620
Case C 2.5389 2.5310 /
Case D 2.5680 / 2.5310



Entropy 2021, 23, 1379 15 of 20

(a) (b)

(c) (d)

Figure 6. Optimal sensor placement with two and three sensors. (a) P0 is a diagonal matrix with
N = 2, (b) P0 is a non-diagonal matrix with N = 2, (c) P0 is a diagonal matrix with N = 3, (d) P0 is a
non-diagonal matrix with N = 3.

5.2. The Comparison Results

This subsection demonstrates the optimal sensor placement with the maximum
a posteriori (MAP) estimation simulations, and the MAP is deduced in Appendix A.
In the example, the method in [21] and the method in [22] using the D-optimality cri-
terion are compared with the proposed method. In this paper, we use “the method
in [21]” and “the method in [22]” to denote the optimal placement methods in [21,22],

respectively. The parameters were as follows: s0 = (0, 0, 0)T , P0 =

100 0 0
0 200 0
0 0 800

,

and the initial sensor locations were
[
−200 −100 −100

√
2
]T

,
[
100 −100

√
2 −200

]T
,[

−100
√

2 100 200
]T

,
[
100
√

2 200 −100
√

2
]T

. We added different noise levels and
show the theoretical minimum trace of CRLBs and MSEs; i.e., σ2

θ1
= σ2

θ2
= σ2

θ3
= σ2

θ4
= 0.5◦,

and σ2
φ1

= σ2
φ2

= σ2
φ3

= σ2
φ4

, the value of σ2
φ from 0.2◦ to 1.8◦.

The theoretical trace of CRLBs and MSEs of different sensor placements are shown
in Figure 7. The MSEs of MAP were estimated using 10,000 Monte Carlo simulations.
The MAP estimator was implemented using the Gauss–Newton method and initialized to
the prior mean target location s0. The results showed that the optimal sensor placement
can always provide better MSEs than the other existing methods.

Next, we compare the localization accuracies of different methods. We fixed N = 3,
σ2

θ = 0.5◦ and increased the value of σ2
φ from 0.1◦ to 1◦. The settings of others parameters

were the same as in Case C of Example 2. The optimal angles in [21] are θ1 = 0◦, θ2 = 90◦,
θ3 = −90◦, φ1 = 0◦, φ2 = 0◦, and φ3 = 0◦. The correspondingly optimal angles were
adopted in Case C of Example 2 as θ1 = 118◦, θ2 = −62◦, θ3 = −152◦, φ1 = 0◦, φ2 = 0◦,
and φ3 = 90◦. Figure 8 shows the comparison of tr(CRLB)s computed by the method
in [21], the method in [22], and the final sensor locations in Case C of Example 2.
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Figure 7. Estimation comparison with σ2
θ = 0.5◦ and σ2

φ = 0.2◦ to 1.8◦.
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Figure 8. The comparison results with σ2
θ = 1◦ and σ2

φ = 0.1◦ to 1◦.

From Figure 8, it can be seen that the proposed method in this paper had better
estimation performance than the existing methods, even if both the proposed method and
the method in [21] contained optimal azimuth and elevation angles subsets. This result
also can confirm the analytical optimal sensor placement in Section 4.

Finally, we compare the method in [21,22] in terms of estimation performance for
different sensor numbers. The sensors started from different original locations, and we

set P0 =

200 0 0
0 500 0
0 0 700

, d = 200 m, σ2
θ = σ2

φ = 1◦. Table 4 lists the MSEs and bias

norms when the number of sensors is N = 3, 4, 5, 6. Due to the effect of the prior covariance
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matrix, the performance of the existing methods was worse than that of the proposed
method. The MSEs of our proposed method were much smaller than those of the existing
methods with the different sensor numbers. From Figure 8 and Table 4, we conclude that
the proposed method can achieve the optimal estimation performance.

Table 4. MAP estimation performances of three different methods with N = 3, 4, 5, 6.

Number Method MSE (m2) Bias Norm (m)

N = 3 The proposed method 6.12 0.1472
The method in [21] 12.35 0.8225
The method in [22] 14.67 1.3557

N = 4 The proposed method 4.32 0.0925
The method in [21] 9.97 0.4634
The method in [22] 11.43 0.8143

N = 5 The proposed method 1.54 0.055
The method in [21] 4.81 0.2415
The method in [22] 5.94 0.5468

N = 6 The proposed method 0.48 0.0123
The method in [21] 1.61 0.1022
The method in [22] 2.58 0.3967

6. Conclusions

In this paper, an optimal sensor placement method for an uncertain target with
Gaussian priors was presented. Our analysis was conducted based on minimizing the
trace of the inverse FIM. The invariance property for the 3D rotation of the AOA-based
FIM was provided, which can be used to diagonalize the non-diagonal covariance matrix.
An optimal sensor placement analysis for the 3D space with the diagonal covariance matrix
of the target was presented, and a resistor network was used to represent the optimal
sensor placement strategy. It was demonstrated that the optimal localization placements
have a similar geometric configuration, regardless of the diagonality of the covariance
matrix. Finally, the analytical results were verified via a series of numerical simulations.
The analytical and numerical findings coincide with the simulation results.

For future work, we will consider a case with multiple uncertain targets with different
Gaussian priors, which changes the optimization problem to a convex combination of FIMs.
In addition, the optimal trajectories also can be developed for the uncertain moving target
with Gaussian priors.
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Appendix A. The Deduction of MAP

The MAP estimation of the target was obtained from maximizing ŝMAP = (x̂, ŷ, ẑ)T to
maximize the posterior probability density function (PDF) and can be written as

ŝMAP = arg max
s

p(s|q̃), (A1)
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where q̃ = [θ̃1, φ̃1, θ̃2, φ̃2, · · · , θ̃N , φ̃N ]
T is the 2N × 1 vector of noisy angle measurements.

In maximizing p(s|q̃), we observe that

p(s|q̃) = p(q̃|s)p(s)
p(q̃)

, (A2)

Note that (A1) is equivalent to the maximization of p(q̃|s)p(s). This is reminiscent of
the maximum likelihood estimation (MLE) except for the presence of the prior PDF [36].
Hence, the MAP estimation can be rewritten as

ŝMAP = arg max
s

p(q̃|s)p(s), (A3)

Assuming that the target location has a prior distribution as s ∼ N (s0, P0), the prior
PDF for the target is given by

p(s) =
1

(2π)N/2 det (P0)
1/2

× exp
[
−1

2
(s− s0)

TP−1
0 (s− s0)

]
,

(A4)

The maximum likelihood function of s is given by

p(q̃|s) = 1

(2π)N/2 det (K)1/2

× exp
[
−1

2
(q̃− q(s))TK−1(q̃− q(s))

]
,

(A5)

where K = diag(σ2
θ1

, σ2
φ1

, σ2
θ2

, σ2
φ2

, . . . , σ2
θN

, σ2
φN

) is the 2N × 2N diagonal covariance matrix
of the angle noise.

By substituting (A4) and (A5) into (A3), ŝMAP is obtained by the log-likelihood func-
tion ln p(q̃|s)p(s) over s, which is equivalent to

ŝMAP = arg min
s

JMAP(s), (A6)

with
JMAP(s) = e(s)TK−1e(s) + r(s)TP−1

0 r(s), (A7)

and the JMAP(s) is the maximum A posterior cost function.
Here e(s) and r(s) are defined by

e(s) = q̃− q(s)

=
[
θ̃1 − θ1(s), φ̃1 − φ1(s), . . . , θ̃N − θN(s), φ̃N − φN(s)

]T ,

r(s) = s− s0,

(A8)

and the residual can be written as

Γ(s) = [e(s); r(s)], (A9)

Note that the error covariance matrix of ŝMAP is given by (A4) and (A5)

Q =

[
K 02N×3

03×2N P0

]
. (A10)
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J1i is the 2N × 3 Jacobian of e(s) with respect to s evaluated at s = ŝi, which can be
expressed as

J1i =



−
sin θ

(ŝi)
1

d̂i1

cos θ
(ŝi)
1

d̂i1
0

−
sin φ

(ŝi)
1 cos θ

(ŝi)
1

r̂i1
−

sin φ
(ŝi)
1 sin θ

(ŝi)
1

r̂i1

cos φ
(ŝi)
1

r̂i1
...

...
...

−
sin θ

(ŝi)
N

d̂iN

cos θ
(ŝi)
N

d̂iN
0

−
sin φ

(ŝi)
N cos θ

(ŝi)
N

r̂iN
−

sin φ
(ŝi)
N sin θ

(ŝi)
N

r̂iN

cos φ
(ŝi)
N

r̂iN


, (A11)

In the above expression
r̂ik = ‖ŝi − pk‖,
d̂ik = r̂ik cos φk(ŝi),

(A12)

J2i is the 3× 3 Jacobian of r(s) is given by

J2i = I3×3, (A13)

Combining (A11) and (A13), Ji is the Jacobian of (A9) defined by

Ji = −[Ji1; Ji2], (A14)

The MAP is calculated by the Gauss–Newton (GN) algorithm, as stated in [36], which
is defined as

t̂i+1 = t̂i −
(

JT
i Q−1Ji

)−1
JT

i Q−1Γ
(
t̂i
)
. (A15)
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