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Abstract: Wind turbine gearboxes operate in harsh environments; therefore, the resulting gear
vibration signal has characteristics of strong nonlinearity, is non-stationary, and has a low signal-to-
noise ratio, which indicates that it is difficult to identify wind turbine gearbox faults effectively by
the traditional methods. To solve this problem, this paper proposes a new fault diagnosis method
for wind turbine gearboxes based on generalized composite multiscale Lempel–Ziv complexity
(GCMLZC). Within the proposed method, an effective technique named multiscale morphological-
hat convolution operator (MHCO) is firstly presented to remove the noise interference information
of the original gear vibration signal. Then, the GCMLZC of the filtered signal was calculated to
extract gear fault features. Finally, the extracted fault features were input into softmax classifier for
automatically identifying different health conditions of wind turbine gearboxes. The effectiveness of
the proposed method was validated by the experimental and engineering data analysis. The results
of the analysis indicate that the proposed method can identify accurately different gear health
conditions. Moreover, the identification accuracy of the proposed method is higher than that of
traditional multiscale Lempel–Ziv complexity (MLZC) and several representative multiscale entropies
(e.g., multiscale dispersion entropy (MDE), multiscale permutation entropy (MPE) and multiscale
sample entropy (MSE)).

Keywords: morphological filtering; multiscale Lempel–Ziv complexity; softmax; wind turbine
gearbox; fault diagnosis

1. Introduction

Wind turbines are widely used in the power system field, and are mainly composed
of an impeller, rotor, gearbox, generator, bearing and coupling. The gearbox is one of the
parts of the wind turbine most vulnerable to damage. The safe and steady operation of
wind turbine gearboxes is directly related to the health condition of the whole mechanical
system [1]. When a wind turbine gearbox exhibits local faults, the generated vibration
signal is nonlinear and non-stationary. Furthermore, the generated vibration signal contains
complicated and coupled vibration characteristic information (e.g., the periodic impulse,
multiple harmonic interference and environment noise of signal transmission path), which
indicates that it is difficult to identify wind turbine gearbox faults by common methods [2].
Therefore, to ensure the safe and steady operation of wind turbines, it is of great significance
to develop a new and effective method to identify the local faults of wind turbine gearboxes.

Many methods have been successfully applied for diagnosing faults of contemporary
wind turbine gearbox, such as wavelet transform (WT) [3], ensemble empirical mode
decomposition (EEMD) [4], empirical wavelet transform (EWT) [5], variational mode de-
composition (VMD) [6], minimum entropy deconvolution (MED) [7] and their improved
versions [8]. However, these methods require considerable prior knowledge and experience
of fault diagnosis, especially for the skilled calculation of fault characteristic frequencies;
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thus, they are not suitable for ordinary workers without practical experience. To solve
this problem, an effective and popular technique is the intelligent fault diagnosis method,
where the fault feature extraction is its most critical step [9]. At present, multiscale complex-
ity index-based methods have been proven effective for fault feature extraction and have
attracted more and more attention in the intelligent fault diagnosis of rotating machinery.
Common complexity indexes have Lempel–Ziv complexity (LZC) [10], sample entropy
(SE) [11], permutation entropy (PE) [12], dispersion entropy (DE) [13] and their multiscale
versions [14]. LZC has fewer parameters compared with other complexity indexes (e.g., SE,
PE and DE); therefore, it is widely used in many fields (e.g., biological signal and mechani-
cal vibration signal analysis). Hu et al. [15] used LZC and its variants to characterize the
irregularity and uncertainty of biological signals. Bai et al. [16] adopted the ordinal patterns
and LZC for quantifying and describing the dynamical changes of electroencephalogram
(EEG) data. Borowska [17] introduced a method named multiscale permutation Lempel–
Ziv complexity (MPLZC) to evaluate the complexity of EEG signals in different temporal
scales. Cui et al. [18] combined the double-dictionary matching pursuit and LZC index
to realize fault extent evaluation of rolling element bearing. Yin et al. [19] used symbolic
aggregate approximation and LZC to extract fault information and finish bearing fault
diagnosis. Xia et al. [20] utilized the improved Hilbert vibration decomposition (HVD) and
LZC to assess early damage severity for rolling bearings. Yu et al. [21] combined multiscale
Lempel–Ziv complexity (MLZC) and the Mahalanobis distance criterion to identify the
fault types of rolling bearings. Hong et al. [22] used LZC and continuous wavelet transform
to assess the fault severity of rolling element bearings. Unfortunately, the abovementioned
LZC methods have some disadvantages. On the one hand, some of the above LZC methods
describe signal complexity only at a single scale, which indicates that the feature informa-
tion of other scales is ignored, i.e., some of the above LZC methods cannot comprehensively
extract the useful feature information. On the other hand, in the coarse-grained process of
the abovementioned MLZC method, the data length of the generated coarse-grained time
series will be shortened as the scale factor increases; thus, the accuracy of feature extraction
will be affected. Therefore, to avoid the calculation deviation of MLZC brought by data
length shortening and improve the integrality and veracity of fault feature extraction,
by integrating generalized composite coarse-grained process into LZC, this paper proposes
a new complexity index named generalized composite multiscale Lempel–Ziv complexity
(GCMLZC) to extract more accurately and efficiently fault feature information and identify
fault categories.

Of particular note, because wind turbine gearboxes operate in harsh and variable
conditions, the periodic impulse features of vibration signals induced by wind turbine
gearbox faults will be obscured by noise interference, which means that it is necessary to
preprocess the raw vibration signal collected from wind turbine gearboxes before feature
extraction. Morphological filtering (MF) is a nonlinear signal processing method containing
the structuring element (SE), which has been successfully applied in signal noise reduction
and is receiving increasing attention in mechanical fault diagnosis [23]. However, the noise
reduction ability of existing single-scale MF methods (e.g., the dilation, erosion, opening
and closing operator) is finite, and the scale selection of the structuring element (SE) of MF
highly depends on human experience [24]. Hence, to address this issue, by combining the
merits of multiscale morphological analysis and convolution operation in noise reduction,
this paper presents a morphological convolution filtering technique named multiscale
morphological-hat convolution operator (MHCO) to preprocess the collected original
vibration signal, where the SE scale is determined automatically by introducing the assisted
index named the signal characteristic frequency-to-noise ratio (SCFNR). In brief, main
contributions of this paper include:

(1) Morphological convolution filtering with a multiscale morphological-hat con-
volution operator (MHCO) is presented through integrating convolution operation into
morphological filtering, which can improve signal noise reduction ability;
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(2) A novel complexity index called generalized composite multiscale Lempel–Ziv
complexity (GCMLZC) is proposed by combining the generalized composite coarse-grained
process and LZC, which can obtain more accurate and useful fault features;

(3) An intelligent fault diagnosis scheme for wind turbine gearboxes based on MHCO
and GCMLZC is proposed;

(4) The effectiveness and superiority of the proposed method are validated by the
experimental and engineering data analysis.

This paper is organized as follows. Section 2 describes the concept of morphological
convolution filtering. Section 3 introduces the Lempel–Ziv complexity, multiscale Lempel–
Ziv complexity and generalized composite multiscale Lempel–Ziv complexity. In addition,
in Section 3, the superiority of generalized composite multiscale Lempel–Ziv complexity is
validated by using simulation signals. Section 4 illustrates the specific procedure of the
proposed fault diagnosis scheme. The effectiveness of the proposed method is proved in
Section 5. The conclusions are given in Section 6.

2. Morphological Convolution Filtering
2.1. Morphological Filtering

Morphological filtering (MF) is a nonlinear signal processing method, which can effec-
tively match and capture the details of non-stationary signals by using a probe named the
structuring element (SE). Morphological filtering usually consists of four basic morphologi-
cal operators (i.e., the dilation, erosion, opening and closing). If x(n)(n = 0, 1, 2, · · · , N− 1)
is a one-dimensional discrete signal, g(m)(m = 0, 1, 2, · · · , M− 1) is the structuring ele-
ment and N >> M, the morphological dilation, erosion, opening and closing operators are
defined as:

(x⊕ g)(n) = max{x(n−m) + g(m)} (1)

(xΘg)(n) = min{x(n + m)− g(m)} (2)

(x ◦ g)(n) = (xΘg⊕ g)(n) (3)

(x•g)(n) = (x⊕ gΘg)(n) (4)

where ⊕, Θ, ◦ and • represent the dilation, erosion, opening and closing operation, re-
spectively. On the one hand, through the cascading of the four abovementioned basic
morphological operators, the opening–closing (OC) and closing–opening (CO) operator
are expressed as:

OC(x(n)) = (x ◦ g•g)(n) (5)

CO(x(n)) = (x•g ◦ g)(n) (6)

On the other hand, through the arithmetic operation of four basic morphological
operators, two kinds of combined morphological operators (i.e., morphological gradient
operator and morphological average-hat operator) are expressed as:

GDE(x(n)) = (x⊕ g)(n)− (xΘg)(n) (7)

GCO(x(n)) = (x•g)(n)− (x ◦ g)(n) (8)

GCOOC(x(n)) = CO(x(n))−OC(x(n)) (9)

AHDE(x(n)) = x(n)− (x⊕ g)(n) + (xΘg)(n)
2

(10)

AHCO(x(n)) = x(n)− (x•g)(n) + (x ◦ g)(n)
2

(11)

AHCOOC(x(n)) = x(n)− CO(n) + OC(n)
2

(12)
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where three operators (i.e., GDE, GCO and GCOOC) belong to the morphological gradient
operator, whereas another three operators (i.e., AHDE, AHCO and AHCOOC) belong to
the morphological average-hat operator.

2.2. Morphological Convolution Filtering

Considering the advantages of convolution operation in signal noise reduction, mor-
phological convolution filtering, termed as a morphological gradient convolution operator
(MGCO), was proposed by Li et al. [25] in 2018, which is defined as follows:

MGCO(x(n)) = GCO(x(n)) ∗ GCOOC(x(n)) (13)

where the asterisk, *, denotes the convolution operation.
Inspired by the concept of the MGCO, an alternative morphological convolution filter-

ing method hailed as the morphological-hat convolution operator (MHCO) is formulated
as follows:

MHCO(x(n)) = AHCO(x(n)) ∗ AHCOOC(x(n)) (14)

Due to fault feature information of practical wind turbine gearboxes, vibration sig-
nals are distributed over a wide frequency band; thus, excavating gear fault features by
only using single-scale morphological filtering is inadequate. Therefore, the multiscale
morphological-hat convolution operator is further defined as follows:

MHCO(x(n)λg) = AHCO(x(n)λg) ∗ AHCOOC(x(n)λg) (15)

where g is the single-scale SE, λg is the multiscale SE at scale λ, which can be obtained by
dilation operation of λ− 1 times of g. Specifically, the multiscale SE λg can be expressed as
follows [26]:

λg = g⊕ g⊕ · · · ⊕ g
}

λ−1 times

= (( g⊕ · · · ⊕ g)⊕ g)⊕ g
}

λ−1 times

(16)

Through the introduction and application of multiscale SE λg, the proposed mor-
phological convolution filtering (MHCO) process can successfully realize multi-resolution
signal analysis and more accurately extract the fault feature information of wind turbine
gearbox vibration signals than traditional morphological filtering. Theoretically, if fault
feature frequency can be extracted by AHCO and AHCOOC, MHCO can also extract the
same fault feature frequency, and the amplitude extracted by MHCO is larger than that
AHCO and AHCOOC. Nevertheless, the existing related studies have shown that selection
of the SE scale has a certain impact on the noise reduction performance of morphological
filtering, which indicates that an effective selection strategy needs to be introduced in
morphological convolution filtering.

At present, the research on selection method of SE scale of morphological filtering
mainly focuses on two aspects. Firstly, many intelligent optimization algorithms (e.g.,
particle swarm optimization, genetic algorithm and differential evolution algorithm) are
adopted to automatically select the SE scale of morphological filtering, but they will
consume a lot of computational time under the iteration process. Secondly, some sensitive
indexes (e.g., kurtosis, signal-to-noise ratio (SNR) [27] and fault feature ratio (FFR) [28]) are
presented for the auxiliary selection of the SE scale of morphological filtering. Although
these indexes had been proven effective in selecting the SE scale of morphological filtering,
they also suffer from some disadvantages. For instance, kurtosis can detect periodic
impulse characteristics of the vibration signal, but it is susceptible to random impulses
with a large amplitude. Moreover, due to the influence of a complex environment, the fault
signatures in the real gear vibration signal are indistinct and dispersive, which are difficult
to detect through the kurtosis index. SNR can efficaciously evaluate stochastic noise
interference of the vibration signal, but its robustness is weak for the impact property of the
vibration signal. FFR can effectively characterize repetitive transients of the signal, but it
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is insensitive to stochastic noise of the vibration signal. Therefore, considering the merits
and demerits of SNR and FFR, this paper introduces a synthetic sensitive indicator called
the signal characteristic frequency-to-noise ratio (SCFNR) to automatically determine the
optimal SE scale of MHCO, which is defined as follows [29]:

SCFNR = 10 log10

M
∑

i=1
S( fci)

N
∑

j=1
S( f j)−

M
∑

i=1
S( fci)

(17)

where fci is the ith fault characteristic frequency of Hilbert envelope spectrum of the orig-
inal signal x(n), S( fci), i = 1, 2, · · · , M is the amplitude of Hilbert envelope spectrum of
the original signal x(n) at the ith fault characteristic frequency, S( f j), j = 1, 2, · · · , N is the
amplitude of Hilbert envelope spectrum of the original signal x(n) at the jth frequency f,
and N and M are the number of all frequencies and fault characteristic frequencies of the
Hilbert envelope spectrum of the original signal x(n), respectively. The SCFNR indicator is
derived from the theoretical ideas of SNR and FFR; therefore, it inherits the advantages
of SNR and FFR. The greater the SCFNR indicator, the better the noise reduction perfor-
mance of MHCO, i.e., MHCO has better fault feature extraction performance. Therefore,
the optimal SE scale of MHCO can be determined based on the largest SCFNR value.

2.3. Simulation Analysis

To verify the validity of MHCO in extracting periodic impulse features of vibration
signals, a gear fault simulation signal y(t) is formulated as:

y(t) = s1(t) + s2(t) + r(t)
s1(t) = 2 exp(−at0) cos(2π f1t)

s2(t) = 1.1 sin(2π f2t) + 1.2 sin(2π f3t)
(18)

where t0 = mod(k/ fs, 1/ fo), k = 0, 1, 2, · · · , 2047. The simulation signal y(t) consists of
three parts (s1(t), s2(t) and r(t)). s1(t) is a periodic impulse sequence with the amplitude
of 2, carrier frequency of f 1 = 200 Hz, modulation frequency (i.e., gear fault characteristic
frequency) of fo = 16 Hz and attenuation coefficient of a = −100, which is used to simulate
the impact signal generated by gear faults. Thus, the signal period of s1(t) is equal to
0.0625 s. s2(t) is a sinusoidal superimposed signal with the frequency of f 2 = 20 Hz and
f 3 = 30 Hz, which is used to simulate the harmonic interference signals in gear vibration
signals. r(t) is the Gaussian white noise with a signal-to-noise ratio (SNR) of 3 dB, which is
used to simulate the background noise in gear vibration signal. The sampling frequency
f s and sampling length of the simulation signal y(t) are set as 2048 Hz and 2048 points,
respectively. Figure 1 shows the time domain waveform, amplitude spectrum and envelope
spectrum of simulation signal y(t). Seen from the spectrum of Figure 1, due to the harmonic
interference and background noise, the fault feature frequency fo = 16 Hz cannot be
extracted by using directly the amplitude spectrum and envelope spectrum.

The proposed MHCO method and seven representative morphological filtering (i.e.,
GDE, GCO, GCOOC, AHDE, AHCO, AHCOOC and MGCO) are adopted to process the
simulation signal y(t), respectively. In the comparison, all morphological filtering selected
the widely used flat SE and the optimal SE scale was determined by the largest SCFNR.
According to the literature [30], the maximal length of the flat SE is recommended as
b fs/ foc, which represents the number of sampling points in one fault repetition period,
i.e., the value of b fs/ foc can completely cover one fault repetition period. In addition,
the length L and scale λ of the flat SE satisfy the relationship L = λ + 2. Therefore,
the search range of the flat SE scale λ is set as 1 to b fs/ foc − 2, where f s is the sampling
frequency, fo is the fault feature frequency and b·c denotes the down round operation.
In other words, in the simulation signal, the flat SE scale λ = 1, 2, · · · , 126. According
to the SE scale selection criterion, the SCFNR of different morphological filter methods
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are first calculated to determine their optimal SE scale. Figure 2 plots the SCFNR value
obtained by all methods at different SE scales, and Table 1 lists the largest SCFNR obtained
with different methods and their corresponding optimal SE scale. Then, different methods
with the optimal SE scale are used to analyze the simulation signal y(t). Figure 3 shows the
filtered signal obtained by different methods and their corresponding envelope spectrum.
Seen from the envelope spectrum of Figure 3, the MHCO, AHDE and AHCO can effectively
extract the fault characteristic frequency fo = 16 Hz and its harmonics. In addition, the fault
characteristic frequency fo can also be found in the GCO, GCOOC and MGCO, but the fault
characteristic frequency fo is invisible in the GDE and AHCOOC. Overall, compared with
the seven other methods (i.e., GDE, GCO, GCOOC, AHDE, AHCO, AHCOOC and MGCO),
the amplitude of the fault characteristic frequency obtained by the proposed MHCO is the
largest, which indicates that the proposed MHCO has better noise reduction performance.
Therefore, it can be seen from the simulation analysis results that the proposed MHCO is
effective in eliminating the noise interference of gear vibration signals.
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Table 1. The largest SCFNR obtained by different methods and its corresponding optimal SE scale.

Different Methods The Largest SCFNR Value The Optimal SE Scale

GDE 0.5913 15
GCO 0.5661 18

GCOOC 0.5328 18
AHDE 0.3011 6
AHCO 0.2384 18

AHCOOC 0.2849 40
MGCO 2.5142 29
MHCO 57.8993 8
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Figure 3. (a) The filtered signal obtained by different morphological filtering methods and (b) their
corresponding envelope spectrum.

To study the influence of the added noises on the MHCO method, we calculated the
results of the MHCO method under different noise levels (i.e., SNR = 0 dB, SNR = −2 dB
and SNR = −4 dB), as shown in Figure 4. From Figure 4, when the SNR of Gaussian white
noise of gear fault simulation signal y(t) is set as 0 to −4 dB, the proposed MHCO is still
effective in extracting the gear fault characteristic frequency fo. However, when the SNR
of Gaussian white noise is −5 dB, the proposed MHCO and other morphological filtering
cannot effectively extract the gear fault characteristic frequency fo (see Figure 5). Hence,
in the first example, the limit of SNR of simulation signal is empirically considered as −5 dB.
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Figure 4. The results obtained by the MHCO method under different noise levels (i.e., SNR = 0 dB,
SNR = −2 dB and SNR = −4 dB).
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Figure 5. The results obtained by different morphological filtering methods under SNR = −5 dB.

3. Generalized Composite Multiscale Lempel–Ziv Complexity

To overcome the shortcoming of information loss of coarse-grained process existing
in the traditional MLZC method, a new complexity index named generalized composite
multiscale Lempel–Ziv complexity (GCMLZC) is presented in this section.

3.1. Lempel–Ziv Complexity

Lempel–Ziv complexity (LZC) is a widely used tool which can effectively describe
the randomness and uncertainty of time series. Figure 6 shows the flowchart of the
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LZC method. For a given time series {x(i), i = 1, 2, · · · , N}, the specific steps of LZC are
described as follows:
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(1) According to Equation (19), the binary coarse-grained analysis is used to process
the original time series, i.e., according to the 0–1 binary encoding, the original time series is
reconstructed to obtain the symbol sequence S = {s1, s2, · · · , sN}. Specifically, the mean
value, Td, of the original time series is first calculated; then, the points in the original time
series that are greater than the mean value are assigned a value of 1, and the points that are
less than the mean value are assigned a value of 0.

si =

{
0, if x(i) < Td
1, otherwise

(19)

(2) Initialize P0 and Q0 as the empty matrices and set the initial value i = 0. At this
time, the complexity C(i) = 0.

(3) Perform a loop operation. Set Pi = {Pi−1si}, Qi = {Qi−1si}, and then judge
whether Pi−1 contains Qi. If the judgment result is “Yes”, the complexity C(i) will remain
as the same value, i.e., C(i) = C(i− 1). Otherwise, C(i) = C(i− 1) + 1,Qi = {}. Notably,
in this step, it will loop N times until the symbol sequence S is traversed, and the last
complexity C(N) can be obtained.

(4) Normalize the complexity CN to obtain the final Lempel–Ziv complexity value.
Specifically, for the binary symbol sequence S, the normalized Lempel–Ziv complexity is
calculated by

C =
CN log2 N

N
(20)
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3.2. Multiscale Lempel–Ziv Complexity

For a given time series {x(i), i = 1, 2, · · · , N}, the specific calculation process of MLZC
can be described as follows:

(1) Using Equation (21) obtains a coarse-grained time series y(τ)j with the length of N/τ.

y(τ)j =
1
τ

jτ

∑
i=(j−1)τ+1

xi, j = 1, 2, · · · , N/τ (21)

where τ = 1, 2, · · · represents the scale factor. Apparently, when the scale factor τ = 1,
y(1)j (j = 1, 2, · · · , N) amounts to the original time series.

(2) According to Equation (22), the LZC value of each coarse-grained time series y(τ)j
can be calculated to obtain the final multiscale Lempel–Ziv complexity.

MLZC(x, τ) = LZC(y(τ)j ) (22)

where τ is the scale factor and LZC(•) is the operator of Lempel–Ziv complexity. Figure 7
shows the flowchart of the MLZC method.
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3.3. Generalized Composite Multiscale Lempel–Ziv Complexity

For a given time series {x(i), i = 1, 2, · · · , N}, the specific calculation process of
GCMLZC is given as follows:

(1) Using Equation (23) to obtain the generalized composite coarse-grained time series
y(τ)k =

{
y(τ)k,j1

, y(τ)k,j2
, · · · , y(τ)k,jτ

}
. Concretely, in the GCMLZC method, when the scale factor

τ = 1, one generalized composite coarse-grained time series y(1)k can be obtained, which
is equivalent to the original time series. When the scale factor τ = 2, two generalized
composite coarse-grained time series y(1)k and y(2)k can be obtained. Nevertheless, in the
MLZC method, if the scale factor τ = 2, we can only obtain one coarse-grained time
series y(2)k .

y(τ)k,j =
1
τ

k+jτ−1

∑
i=k+(j−1)τ

(xi − xi)
2, 1 ≤ j ≤

⌊
N
τ

⌋
, 1 ≤ k ≤ τ (23)

where xi =
1
τ ∑τ−1

k=0 xi+k and 2 ≤ τ.
(2) For the scale factor τ, calculating the LZC value of each generalized composite

coarse-grained time series y(τ)k (k = 1, 2, · · · , τ).
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(3) Equation (24) can be used to calculate the mean LZC value as the LZC result of the
scale factor τ of the original time series.

GCMLZC(x, τ) =
1
τ

τ

∑
k=1

LZC(y(τ)k ) (24)

where τ is the scale factor and LZC(•) is the operator of Lempel–Ziv complexity.
(4) Judging whether the scale factor τ reaches its maximum value τm. If the scale factor

τ < τm, set τ = τ + 1, return to steps (2) and (3) and continue to run the procedure until
τ = τm. Otherwise, stop the circulation process and output the final results of the GCMLZC
method. In other words, after performing the GCMLZC method, for the scale factor τ,
a series of LZC value can be obtained. It is worth mentioning that the scale factor τ of
GCMLZC method is between 2 and τm. In addition, without a loss of generality, the largest
scale factor τm is selected as 20, which is regarded as an empirical value. Figure 8 shows
the flowchart of the GCMLZC method.
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3.4. Comparison among LZC, MLZC and GCMLZC

To show the feature extraction performance of the proposed GCMLZC method, here,
one intermittent multi-component amplitude-modulated and one frequency-modulated
signal x(t) are established as follows:

x1(t) =
{

(0.8 + 0.8 sin(20πt)) cos(3000πt + 2 sin(15πt)) , 1 < t ≤ 2
0, other

x2(t) =
{

(0.5 + 0.5 sin(15πt)) cos(1500πt + sin(10πt)) , 3 < t ≤ 4
0, other

x3(t) =
{

(0.3 + 0.3 sin(10πt)) cos(600πt + 0.5 sin(5πt)) , 5 < t ≤ 6
0, other

x(t) = x1(t) + x2(t) + x3(t) + n(t)

(25)

where n(t) is the Gaussian white noise with an SNR of 32 dB. x1(t), x2(t) and x3(t) are used
to simulate gear fault signals with different frequencies (i.e., 1500 Hz, 750 Hz and 300 Hz),
respectively. The sampling frequency and sampling length of simulation signal x(t) are
5000 Hz and 35,000 points. Figure 9 shows the time domain waveform of simulation signal
x(t) and its components.
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Figure 9. Time domain waveform of simulation signal x(t) and its corresponding components.

For convenient comparison, we firstly used a sliding window with 80% overlap
(i.e., the number of the overlapping data points is 800) to conduct the data interception
along the simulation signal x(t), where the window width of the sliding window was
1000 data points, i.e., there were 171 sliding windows in total. Then, Euclidean distances
(ED) of three complexity indexes (i.e., LZC, MLZC and GCMLZC) of the intercepted data
were calculated to describe the complexity and uncertainty of the simulated signal x(t).
The largest scale factors τm of the GCMLZC and MLZC were set as 20. Figure 10 shows the
ED calculation results obtained by different complexity methods for the simulation signal
x(t). It can clearly be seen from Figure 10 that LZC can only depict the changing state of the
component x1(t) and x2(t) of the simulation signal x(t). In addition, the changing state of the
component x2(t) and x3(t) of the simulation signal x(t) can be detected in MLZC, whereas
the proposed GCMLZC can track the changing of all components of the simulation signal
x(t). Furthermore, compared with LZC and MLZC, the Euclidian distance of the proposed
GCMLZC has smaller fluctuation and higher accuracy at the component detection position
of simulation signal x(t), which indicates that the GCMLZC method has better complexity
assessment and fault feature extraction performance.

To investigate the influence of the added signal noises on the performance of the
GCMLZC method, we calculated the analysis results of the GCMLZC method under
different noise levels (i.e., SNR = 20 dB, SNR = 15 dB, SNR = 11 dB and SNR = 10 dB),
as shown in Figure 11. It can clearly be seen from Figure 11 that the complexity assessment
ability of the GCMLZC method will be decreased with the decrease in SNR. When the SNR
of the added signal noises is 10 dB, the GCMLZC method cannot accurately depict the
complexity of simulation signal x(t). Therefore, the SNRs of the added signal noises are
usually set to more than 10 dB, which is regarded as an empirical value.
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Figure 10. The calculation results of Euclidean distance obtained by different complexity methods
for simulation signal x(t): (a) LZC, (b) MLZC and (c) GCMLZC.
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4. The Proposed Fault Diagnosis Scheme

To effectively identify wind turbine gearbox faults, this paper proposes a new intelli-
gent fault diagnosis scheme based on MHCO and GCMLZC, which is mainly composed of
four stages (i.e., data sample collection, signal preprocessing, fault feature extraction and
fault pattern identification). Figure 12 shows the overall flowchart of the proposed fault
diagnosis method, and its detailed procedure is expressed as follows:
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Step 1: Data sample collection. Using the accelerometer to collect wind turbine gearbox
vibration signals x(i) = {x(1), x(2), · · · , x(N)}.

Step 2: Signal preprocessing. Morphological convolution filtering (i.e., MHCO) is
adopted to preprocess the originally collected wind turbine gearbox vibration signal, which
is aimed at weakening noise interference and highlighting fault features. Meanwhile,
the SCFNR indicator is employed to select the optimal SE scale of MHCO.

Step 3: Fault feature extraction. According to the calculation process of GCMLZC,
GCMLZC of the filtered signal is calculated to extract fault features of the wind turbine
gearbox under different health conditions.

Step 4: Fault pattern identification. The extracted fault features are randomly divided
into training samples and testing samples, where the training samples are used to train the
softmax model and the testing samples are input into the well-trained softmax model to
automatically identify wind turbine gearbox faults. In this step, the output of the softmax
model is defined by

p(θ)j =
e(θ

(j)x)

∑K
k=1 e(θ(k)x)

, j = 1, 2, · · · , n (26)

where p(θ)j represents the probability corresponding to the jth fault type, K is the number
of fault types and θ denotes the parameters learned from the input samples.

5. Experimental and Engineering Application
5.1. Case 1: Experimental Gearbox Data Analysis

The proposed method was adopted to analyze gear vibration data collected from the
laboratory of testing technology and fault diagnosis, North China Electric Power University
(NCEPU). The experimental gear fault device was mainly composed of a driving motor,
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bearing, gearbox, shaft, turntable and governor. Figure 13a,b show photos of the experi-
mental gear fault device and a gearbox structure drawing, respectively. In the experiment,
gear vibration data were collected by using the accelerometer installed on the housing
of the reduction gearbox with a sampling frequency of 5120 Hz. The experimental data
collection system was mainly composed of an accelerometer, cable conductor, amphenol
connector, signal conditioner, acquisition card and acquisition software, where the type of
the data acquisition card was ADA16-8/2 (LPCI) with a single-terminal 8-channel input
and 2-channel output. The motor speed could be adjusted by looking at the tachome-
ter and turning the speed control knob. In addition, gear loading could be adjusted by
switching on the brake and setting the level of braking torque. The specific steps can
be found in the operating instructions of vibration analysis and the fault diagnosis test
platform system for rotating machinery of QPZZ-II. The experimental gearbox was made
up of two parts (i.e., the pinion and big gear). The pinion had 55 teeth, whereas the big
gear had 75 teeth. In this experiment, the gearbox operated under five health conditions,
including normal (condition 1), big gear pitting fault (condition 2), big gear fracture fault
(condition 3), big gear pitting and pinion wear compound fault (condition 4), big gear
fracture and pinion wear compound fault (condition 5). In addition, in this experiment,
through speed adjustments, the motor operated at a rotating speed of about 800 rpm,
but the actual speed and environmental interference under different health conditions
differed somewhat, which indicates that the amplitude of the healthy condition may be
greater than that of the unhealthy condition at a certain time point: the rotating frequen-
cies of the small gear and big gear can be approximatively inferred as f r1 = 13.3 Hz and
f r2 = 9.8 Hz, respectively. To verify the proposed method, 50 sets of gear vibration data
under each health conditions were collected and each gear vibration signal consisted of
4096 data points. The training:testing data proportion was 1:1, i.e., the number of training
samples and testing samples was the same, which was 125. Table 2 details the gear health
conditions and sample selection. The time domain waveforms and amplitude spectra of
gear vibration signals under different health conditions are shown in Figure 14. Notably,
the plotted gear vibration signal belongs to the standardized results. The standardized
formula is expressed as x = (x −mean(x))/std(x), where x is the collected original gear
vibration signal, mean(x) is the mean value of x and std(x) is the standard deviation of
x. As can be seen from Figure 14, the waveforms and spectra in different gear health
conditions have certain similarities, especially for condition 3, condition 4 and condition 5,
which implies that an effective method should be adopted to identify them. In order to
facilitate the understanding, the identification performance of the proposed method was
compared and analyzed from the following several aspects:
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Figure 13. (a) Gear fault simulation experimental device and (b) gearbox structure drawing.
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Figure 14. Time domain waveform and amplitude spectrum of gear vibration signal under different
health conditions in case 1.

Table 2. The detailed description of gear datasets in case 1.

Condition Label Gear State Number of Training Samples Number of Testing Samples Class Labels

Condition 1 Normal 25 25 1
Condition 2 Gear pitting 25 25 2
Condition 3 Gear fracture 25 25 3
Condition 4 Gear pitting and wear 25 25 4
Condition 5 Gear fracture and wear 25 25 5

(1) The proposed method was utilized to analyze the collected gear vibration data.
According to the flowchart of the proposed method, MHCO was first used to process
different gear fault signals, where the optimal SE scale of MHCO was determined as
8 by using SCFNR. Notably, in this experimental data analysis, the search range of the
flat SE scale λ was set as 1 to b fs/ frc − 2, where f s is the sampling frequency, fr is the
rotating frequency of the input or output shaft and b·c denotes the down round operation.
Due to the rotating frequency of the output shaft, f r2 = 9.8 Hz is smaller than that of the
input shaft, i.e., when the maximum SE scale λ = b fs/ fr2c − 2, fault signatures of different
gear health condition can all be covered. Hence, in experimental case 1, the flat SE scale
λ = 1, 2, · · · , 520. Figure 15 plots the filtered results obtained by MHCO for different gear
fault signals. Subsequently, the GCMLZC of all data samples was calculated for fault feature
extraction. For analysis, Figure 16a,b show the GCMLZC of one data sample for different
gear health conditions before and after morphological convolution filtering, respectively.
In the GCMLZC method, without a loss of generality, the largest scale factor τm is set as 20.
As can be seen from Figure 16, GCMLZC with morphological convolution filtering has a
better differentiation than GCMLZC without noise reduction. This proves the necessity of
morphological convolution filtering in fault identification. Finally, the extracted GCMLZC
was fed into the softmax classification model for automatically identifying different gear
health conditions. Figure 17 shows the identification results of the proposed method for
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the first trial. Seen from Figure 17, the identification accuracy rate of the proposed method
reached 98.4%, which indicates that only two data samples were misidentified; therefore,
the proposed method is preliminarily proven to be effective in identifying gear fault types.
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Figure 15. The filtered results obtained by MHCO for different experimental gear fault signals.
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Figure 16. (a) GCMLZC of the original gear vibration signals and (b) GCMLZC of the filtered gear
vibration signals in case 1.
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Figure 17. Identification results of the proposed method for gear datasets in the first trial.

(2) To further verify the validity of the proposed method, comparisons among the
proposed method and four representative complexity indexes (i.e., MLZC, multiscale
dispersion entropy (MDE) [31], multiscale permutation entropy (MPE) [32] and multiscale
sample entropy (MSE) [33]) were performed. To avoid randomness in the identification
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results of different methods and to ensure a fair comparison, all methods were preprocessed
by the same morphological filtering (MHCO), the largest scale factor τm of all methods
(i.e., GCMLZC, MLZC, MDE, MPE and MSE) were set as 20 and 10 trials were conducted.
In addition, in the MDE method, the embedded dimension m = 3, time delay d = 1,
the number of classes c = 5. In the MPE method, the embedded dimension m = 3 and time
delay d = 1. In the MSE method, the embedded dimension m = 3 and the similarity tolerance
r = 0.15× SD, where SD is the standard deviation of the analyzed signal. Figure 18 shows
the identification accuracies of different methods in 10 trials. In addition, Table 3 gives the
detailed identification results of different methods, including the maximum, minimum and
mean identification accuracy. Seen from Figure 18 and Table 3, the average identification
accuracy (98.24%) of the proposed method was bigger than that of other methods (i.e.,
MLZC, MDE, MPE and MSE), whereas the standard deviation (0.3373) of the proposed
method was lower than that of other methods, which means that the identification ability
and stability of the proposed method are superior to other methods mentioned in this
paper. Therefore, the effectiveness of the proposed method in gear fault identification is
further validated by the above comparison.

(3) To consolidate the fault identification results, the fivefold cross-validation method
was also applied to analyze the same gear vibration signal. Concretely, the data sample was
first divided into five parts (each part had 50 samples), where four parts (i.e., 200 samples)
were alternately regarded as the training samples and the remaining part (i.e., 50 samples)
served as the testing sample. Next, five trials of different methods were performed,
and the average identification accuracy values of five results were regarded as the ultimate
identification accuracy of different methods. Table 4 gives the detailed diagnosis results
obtained by different methods. As shown in Table 4, the proposed method achieved an
average identification accuracy of 98.80%, whereas other complexity methods (i.e., MLZC,
MDE, MPE and MSE) obtained 96.40%, 97.60%, 94.40% and 86.40% accuracy, respectively.
The identification accuracy of the proposed method is clearly higher than that of other
comparison methods. Consequently, the effectiveness and superiority of the proposed
method is demonstrated once again.
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Table 4. Fault identification results of different methods with fivefold cross validation in case 1.

Different
Methods

Diagnosis Accuracy Obtained by Different Methods for Five Trials (%) Average
Accuracy (%)1 2 3 4 5

GCMLZC 100 100 98.00 98.00 98.00 98.80
MLZC 96.00 98.00 96.00 96.00 96.00 96.40
MDE 98.00 96.00 98.00 98.00 98.00 97.60
MPE 94.00 94.00 96.00 94.00 94.00 94.40
MSE 86.00 88.00 84.00 86.00 88.00 86.40

5.2. Case 2: Engineering Data Analysis for Wind Turbine Gearbox

In this section, the proposed method was adopted to analyze the practical vibration
data from a 1.5 MW wind turbine gearbox, which is located on a wind farm in northern
China. Figure 19 shows a structural diagram of the wind turbine transmission system,
which mainly consisted of a vane, spindle, rotor, gearbox and generator. The analyzed wind
turbine gearbox adopted three-stage transmission (i.e., planetary stage, middle stage and
high-speed stage), and was an FD1660 type. The rated power of the wind turbine gearbox
was 1660 KW, and the weight of the gearbox was approximately 16,800 kg. In addition,
the generator speed could be adjusted by using the electrical control system of the wind
turbine. Table 5 lists the teeth numbers of each stage gear of the wind turbine gearbox,
where Z0 denotes the teeth number of the planet gear, Z1 denotes the teeth number of the
sun gear, Z2 represents the teeth number of the inner ring gear, Z3 and Z5 are the teeth
numbers of the big gear and small gear in the middle stage, respectively, and Z4 and Z6
are the teeth numbers of the big gear and small gear in the high-speed stage, respectively.
In engineering data analysis, gear vibration data were collected by an accelerometer (see
Figure 19) glued onto the casing of the gearbox with a sampling frequency of 32,768 Hz.
The wind turbine gearbox operated under four gear health conditions (i.e., normal, pitting
fault of small gear in middle stage, spalling fault of big gear in high-speed stage, fracture
and wear compound fault small gear in high-speed stage). When gear vibration data
collection was conducted for each health condition, the wind speed was stable at about
12 m/s (corresponding to an input shaft speed of about 17 rpm and a power of about
1500 kW), and the speed of the high-speed shaft was stable at about 1400 rpm. Thus,
the rotating frequencies of the high-speed shaft and middle shaft can be approximatively
calculated as f h = 23.33 Hz and f m = 6.27 Hz, respectively. Figure 20 shows photographs of
three gearbox faults. In the process of method validation, we obtained 100 data samples of
each health condition. For each health condition, 50 samples were randomly selected as
the training data, and the remainder was regarded as testing data. A total of 200 training
and 200 testing samples were obtained, and each sample had 16,384 points. Apparently,
it is a four-classification issue to be solved in essence. Table 6 presents detailed information
of wind turbine gearbox data. Figure 21 shows the time domain waveform and amplitude
spectrum of the gear vibration signal under different health conditions. Seen from Figure 21,
gear fault conditions are difficult to be identified directly through observing the time
domain waveform and amplitude spectrum, because different gear vibration data have
certain self-similarity. Therefore, it is necessary to adopt an effective method to process the
practical gearbox data.
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Figure 21. Time domain waveform and amplitude spectra of gear vibration data under different
health conditions in case 2.
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Table 5. The teeth number of each stage gear of wind turbine gearbox.

Name
Planetary Stage Middle Stage High-Speed Stage

Z0 Z1 Z2 Z3 Z5 Z4 Z6

Teeth number 40 21 102 100 23 93 25

Table 6. Detailed description of wind turbine gearbox datasets in case 2.

Condition Label Gearbox State Number of Training Samples Number of Testing Samples Class Labels

Condition 1 Normal 50 50 1
Condition 2 Gear pitting fault 50 50 2
Condition 3 Gear spalling fault 50 50 3
Condition 4 Gear fracture and wear fault 50 50 4

According to the flowchart in Figure 12, the proposed method was adopted to analyze
the practical gearbox data. In the proposed method, based on the SCFNR indicator,
the optimal SE scale of MHCO was selected as 10. Similar to case 1, the search range of
the flat SE scale λ was set as 1 to b fs/ frc − 2, where f s is the sampling frequency, fr is the
rotating frequency of the high-speed shaft or middle shaft and b·c denotes the down round
operation. The rotating frequency of the middle shaft f m = 6.27 Hz was smaller than that of
the high-speed shaft, i.e., when the maximum SE scale λ = b fs/ fmc − 2, fault signatures
of different gear health condition can all be covered. Hence, in experimental case 2,
the flat SE scale λ = 1, 2, · · · , 5224. Due to space limitations, the corresponding parameter
optimization diagram is not included here. Figure 22 shows the filtered signals of three gear
faults. For fault feature extraction, we calculated the GCMLZC of the filtered signal of all
samples. Similar to case 1, in the GCMLZC method, the largest scale factor τm was selected
as 20. Figure 23a,b show the GCMLZC of gear vibration signals before and after applying
the MHCO method, respectively. As shown in Figure 23, after morphological convolution
filtering, the degree of distinction of four gear health conditions is greater than that without
filtering processing. This verifies the importance of morphological convolution filtering for
signal preprocessing. Finally, the extracted GCMLZC was input into the softmax model
for fault pattern identification. Figure 24 shows the identification results of the proposed
method in the first trial. As shown in Figure 24, only one sample was misclassified,
which indicates that the proposed method can obtain an identification accuracy of 99.5%
(199/200). Thus, the proposed method exhibits good recognition performance for wind
turbine gearbox faults.
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Figure 22. The filtered results obtained by MHCO for different practical gear fault signals.
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Figure 23. (a) GCMLZC of the original gear vibration signal and (b) GCMLZC of the filtered gear
vibration signal in case 2.
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Figure 24. Identification results of the proposed method for the practical gearbox data in the first trial.

Similarly to case 1, to further prove the effectiveness of the proposed method, the iden-
tification abilities of five methods (i.e., GCMLZC, MLZC, MDE, MPE and MSE) were
compared. Similarly, 10 trials of different methods were conducted to ensure the fairness
of the comparison results. In addition, in all comparison methods (i.e., GCMLZC, MLZC,
MDE, MPE and MSE), without a loss of generality, the largest scale factor τm was set as
20. In the MDE method, the embedded dimension m = 3, time delay d = 1 and the number
of classes c = 5. In the MPE method, the embedded dimension m = 3 and time delay
d = 1. In the MSE method, the embedded dimension m = 3 and the similarity tolerance
r = 0.15× SD, where SD is the standard deviation of the analyzed gear vibration signal.
Figure 25 shows the fault identification accuracy of different methods in 10 trials, and
Table 7 gives the detailed comparison results of different methods. Seen from Figure 25 and
Table 7, the average identification accuracy (99.35%) of the proposed method was higher
than that of other four methods (i.e., MLZC, MDE, MPE and MSE). In addition, standard
deviation (0.2415) of the proposed method was less than that of other methods. This again
indicates that the superiority of the proposed method in identifying wind turbine gearbox
faults is verified.

To further consolidate the fault diagnosis results of wind turbine gearbox, we also
used the fivefold cross-validation method to analyze the practical wind turbine gearbox
data. Table 8 shows the detailed fault identification results obtained by different methods in
the fivefold cross-validation. As can be seen from Table 8, the proposed method obtained an
average identification accuracy of 99.50%, which is greater than that of the other comparison
methods (i.e., MLZC, MDE, MPE and MSE). In other words, the proposed method has
a stronger fault discriminant ability. This further proves that the proposed method is
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effective in extracting fault features from wind turbine gearboxes and identifying different
gear fault categories.
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Table 7. Specific fault identification results of different methods in case 2.

Different
Methods

Diagnostic Accuracy Obtained Using Different Methods (%)

Maximum Minimum Mean Standard Deviation

GCMLZC 99.50 99.00 99.35 0.2415
MLZC 96.50 95.50 96.10 0.3162
MDE 97.50 96.50 97.10 0.3944
MPE 96.00 94.50 95.20 0.4830
MSE 86.00 84.50 85.25 0.6346

Table 8. Fault identification results of different methods with fivefold cross validation in case 2.

Different
Methods

Diagnosis Accuracy Obtained by Different Methods for Five Trials (%) Average
Accuracy (%)1 2 3 4 5

GCMLZC 98.75 100 100 98.75 100 99.50
MLZC 95.00 96.25 95.00 93.75 95.00 95.00
MDE 97.50 98.75 97.50 97.50 98.75 98.00
MPE 96.25 96.25 98.75 96.25 96.25 96.75
MSE 87.50 86.25 86.25 87.50 85.00 86.50

5.3. Further Discussion

Although the proposed fault diagnosis scheme has been proven effective in identifying
wind turbine gearbox faults, further research needs to be suggested. Firstly, in the signal
preprocessing step of the proposed method, morphological convolution filtering can be
replaced by other advanced techniques (e.g., local iterative filtering [34], total variation
denoising [35] and sparse coding shrinkage), which is viewed as our future work. Secondly,
in order to simultaneously obtain fault feature information of the vibration signal at dif-
ferent levels and scales, the idea of hierarchical decomposition can be integrated into the
GCMLZC to further propose generalized hierarchical multiscale Lempel–Ziv complex-
ity (GHMLZC), which is regarded as a future research direction. Thirdly, the softmax
classification model was adopted in the fault pattern identification step of the proposed
method; some other valuable classification models (e.g., weighted k-nearest neighbor,
kernel extreme learning machine [36] and deep learning [37–39]) could also be adopted to
replace the softmax model to automatically recognize wind turbine gearbox faults. Finally,
the proposed method was only applied in gear fault diagnoses of wind turbines; therefore,
our future work will focus on extending the proposed method to analyze other units (e.g.,
the bearing, rotor and blade) of mechanical systems. To avoid the dependence on knowing
equipment information in advance, in future, we will integrate the proposed method
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into the recently popularized transfer learning model based on digital–analog drive to
identify the unknown faults of different devices. In addition, it is worth mentioning that
the proposed method was implemented on the MATLAB R2010a platform and operated on
a computer with an Intel Core i7-9750H CPU @ 2.60 GHz/8.00 GB RAM processor. To im-
plement and extend the proposed method repeatedly to other fields, the morphological
filtering and Lempel–Ziv complexity software package will need to be downloaded, or the
related code can be obtained directly from our research group.

6. Conclusions

In this paper, a new wind turbine gearbox fault identification method based on
morphological convolution filtering and generalized composite multiscale Lempel–Ziv
complexity has been presented. The main advantages of the proposed method are that
fault feature extraction capability and identification accuracy can be improved by the
combination of two methods (i.e., multiscale morphological-hat convolution operator and
generalized composite multiscale Lempel–Ziv complexity). The effectiveness of the pro-
posed method was also verified by experimental and engineering data analysis. Compared
with traditional multiscale Lempel–Ziv complexity and several representative complex-
ity indexes (i.e., multiscale dispersion complexity, multiscale permutation entropy and
multiscale sample complexity), the proposed method could achieve a higher identification
accuracy. Concretely, the contributions of this paper are summarized as follows:

(1) An effective noise reduction process, named a multiscale morphological-hat convo-
lution operator, has been developed, which can solve the problem of the empirical selection
of structuring elements with the aid of signal characteristic frequency-to-noise ratio;

(2) A complexity evaluation index, entitled generalized composite multiscale Lempel–
Ziv complexity, has been proposed, which can avoid the problem of data length shortening
appearing in multiscale Lempel–Ziv complexity;

(3) A new fault diagnosis scheme for wind turbine gearbox faults is proposed via
the integration of a multiscale morphological-hat convolution operator and generalized
composite multiscale Lempel–Ziv complexity;

(4) The experimental and engineering data analysis demonstrated the effectiveness of
the proposed method in identifying wind turbine gearbox faults.

It should be pointed out that the influence of friction slip were not taken into account
in the simulation model used in the paper. Hence, more accurate and comprehensive
simulation signal analysis will be investigated in future research.
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