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Abstract: Multi-focus image fusion is an important method used to combine the focused parts from
source multi-focus images into a single full-focus image. Currently, to address the problem of multi-
focus image fusion, the key is on how to accurately detect the focus regions, especially when the
source images captured by cameras produce anisotropic blur and unregistration. This paper proposes
a new multi-focus image fusion method based on the multi-scale decomposition of complementary
information. Firstly, this method uses two groups of large-scale and small-scale decomposition
schemes that are structurally complementary, to perform two-scale double-layer singular value
decomposition of the image separately and obtain low-frequency and high-frequency components.
Then, the low-frequency components are fused by a rule that integrates image local energy with
edge energy. The high-frequency components are fused by the parameter-adaptive pulse-coupled
neural network model (PA-PCNN), and according to the feature information contained in each
decomposition layer of the high-frequency components, different detailed features are selected as the
external stimulus input of the PA-PCNN. Finally, according to the two-scale decomposition of the
source image that is structure complementary, and the fusion of high and low frequency components,
two initial decision maps with complementary information are obtained. By refining the initial
decision graph, the final fusion decision map is obtained to complete the image fusion. In addition,
the proposed method is compared with 10 state-of-the-art approaches to verify its effectiveness. The
experimental results show that the proposed method can more accurately distinguish the focused
and non-focused areas in the case of image pre-registration and unregistration, and the subjective
and objective evaluation indicators are slightly better than those of the existing methods.

Keywords: multi-focus image fusion; singular value decomposition; multi-scale decomposition;
PA-PCNN; quaternion; joint bilateral filter

1. Introduction

Due to the focal lengths of optical lenses, the images obtained by the camera include
focused and defocused parts. Focused parts are sharper in the image, while defocused
parts appear blurry. In order to obtain full-focus images, a common solution is utilizing
multi-focus image fusion technology, to combine the focused parts of different images in
the same scene. The combined full-focus image contains global clarity and rich details, and
is more suitable for visual perception and computer processing. As an important branch of
image fusion, multi-focus image fusion can be studied on three different levels, i.e., pixel
level, feature level, and decision level [1]. Compared with the other two levels, pixel-level
image fusion can maximally reserve the original information in the source image, giving
it an edge over the other two in accuracy and robustness. Accordingly, it has become a
common fusion method for multi-focus images. The method proposed in this paper is
based on pixel-level multi-focus image fusion.
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Multi-scale decomposition (MSD) is a technique usually applied in pixel-level multi-
focus image fusion, and it was proven to be a very useful image analysis tool. The
MSD-based fusion method can extract image feature information on different scales for
image fusion. The mechanism of the MSD fusion method is as follows. Firstly, the source
images are decomposed into multi-scale spaces by MSD, where there is one approximate
component containing contours and several detail components storing salient features.
Then, the decomposed coefficients of all scale spaces are fused, following the designed
fusion strategies. Finally, the inverse multi-scale decomposed is used to reconstruct the
final fused image. Undoubtedly, the choice of the multi-scale decomposition method and
fusion strategy are two important factors of image fusion.

The selection of the multi-scale decomposition method needs to factor in the follow-
ing aspects: firstly, the desirable feature extraction performance. One advantage of the
MSD-based method is to separate spatially overlapping features in scales. Secondly, the de-
composition algorithm. In practical applications, the execution efficiency of the algorithm
is a key indicator. Finally, good generalization. It means being able to handle various types
of images, including anisotropic blur and unregistration.

Since the 1980s and 1990s, various multi-scale decomposition methods have been
applied in multi-focus image fusion [2], mainly containing Laplacian pyramid (LP) [3],
gradient pyramid (GP) [3], discrete wavelet transform (DWT) [4], and so on. Although,
DWT improves computational efficiency compared with LP and GP, it does not reflect shift
invariance and direction selectivity, which undermine feature extraction. To address these
problems, the dual-tree complex wavelet (DTCWT) [5] is proposed, which has shift invari-
ance and direction selectivity, and is successfully applied for multi-focus image fusion [6].
Compared with the pyramid and wavelet transform, the multi-scale geometric analysis
(MGA) [7–9] methods better reflect the inherent geometric structure of the image, and
outperform in feature extraction, but the calculation is more complex and time-consuming.

In recent years, scholars have proposed new and efficient multi-scale decomposition
methods, which show good performance in multi-focus image fusion. Typical meth-
ods include the following: Li et al. [10] proposed a two-scale decomposition method for
multi-focus fusion with the guided filtering technique. Through simple average filtering,
each source image is decomposed into a basic layer with large-scale variations and a
detail layer containing small-scale details. The method is superior to many traditional
MSD-based methods in terms of fusion performance and computational efficiency. Xiao
et al. [11] proposed that the multi-scale hessian matrix can decompose the source images
into small-scale feature components and large-scale background components, and effec-
tively remove the pseudo-edges, which are introduced by image blurring and unregistered.
The method shows good feature extraction and generalization capabilities. Zhang et al. [12]
proposed a multi-scale decomposition scheme by changing the size of the structural ele-
ments, and extracting the morphological gradient information of the image on different
scales to achieve multi-focus image fusion. The method shows the best execution efficiency.
NaiduIn et al. [13] and Wan et al. [14] proposed multi-scale analysis and singular value
decomposition are combined to perform multi-focus image fusion. This method achieves
the stability and orthogonality equivalent of that achieved by SVD. Since no convolution
operations are required, the fast decomposition speed means high execution efficiency of
the algorithm.

In addition to developing novel methods for MSD, fusion rules also play a key role
in image fusion. Advanced fusion rules and MSD methods form a complementary whole
in image fusion, which promotes fusion performance. The fusion rules of multi-focus
images are usually designed based on the focus measure between pixels. Commonly used
focus measures incorporate spatial frequency (SF) [15], sum-modified-Laplacian (SML) [16],
standard deviation (STD) [17], energy of gradient (EOG) [18], etc. Generally, simple pixel-
based fusion rules are insensitive to anisotropic blur and misregistration. For example,
fusion rules, such as direct comparison of decomposition coefficients and weighted average
values based on spatial context. To improve fusion results, some complex fusion rules
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are proposed. Among these are block-based and area-based methods [19,20]. Firstly, the
original images are divided into a number of blocks or regions. Then, the focus level and
sharpness of each block or region is measured by image intensity. Finally, a block or region
with a higher degree of focus as part of the fusion image is selected. However, the quality
of image fusion depends on the selection of the image block sizes or the segmentation
algorithms. When the image block is not selected correctly or the segmentation algorithm
cannot correctly segment the area, the focus area cannot be correctly determined and
extracted, and the boundary between the focus and the defocus area is prone to blur.
Zhou et al. [21] proposed a new focus measure fusion method based on a multi-scale
structure, which uses large-scale and small-scale focus measures to determine the clear
focus area and weight map of the transition area, respectively. This method can reduce the
influence of anisotropic blur and unregistration on image fusion. However, the transition
area is artificially set and cannot accurately reflect the focus of the boundary. Ma et al. [22]
proposed a random walk-based with two-scale focus measure for multi-focus image fusion.
The method estimates a focus map directly from the two-scale imperfect observations
obtained using small and large-scale focus measures. Since the random walk algorithm is
used to model the estimation from the perspective of probability, this method is relatively
time-consuming. In addition to the commonly used linear model fusion rules mentioned
above, there are also some fusion rules based on non-linear methods. Dong et al. [23]
proposed a multi-focus image fusion scheme by memristor-based PCNN. Hao et al. [24]
review the state-of-the-art on the use of deep learning in various types of image fusion
scenarios. The Generative Adversarial Network (GANS) proposed by Guo et al. [25]
has also been successfully applied to multi-focus image fusion. When it comes to the
deep learning model of multi-focus image fusion, the measurement of pixel activity level
is obtained through the model. However, the difficulties in training a large number
of parameters and large datasets have directly affected the image fusion efficiency and
quality. Compared with deep learning methods, the conventional fusion methods are more
extensible and repeatable, facilitating real-world applications. Thus, the paper mainly aims
to improve the conventional multi-focus image fusion algorithms.

According to the above analyses, decomposition schemes and focus measures involved
in the fusion strategy play important roles in multi-focus image fusion. In recent years,
many novel algorithms have been proposed to improve the image fusion quality, but some
existing problems still need to be addressed. Firstly, due to the diversity of fused images,
the contour and detailed information of images cannot be fully expressed when images
are decomposed by fixed basis and filter functions. Secondly, the boundary between the
focused and defocused areas of the image gives rise to false edges, mainly due to the fact
that the boundary between the two areas are not clearly distinguished, or that the two
images are not registered. Finally, the artifacts are easily generated between the focused and
unfocused flat regions, since the image details in those regions are extremely scanty [11].

In order to solve the problems, a novel multi-focus image fusion method based
on multi-scale singular value decomposition (MSVD) is proposed in this paper. The
method obtains low-frequency and high-frequency components with complementary
information through two groups of double-layer decompositions with complementary
structures and scales, and these components contain rich image structure and detailed
information. The proposed fusion rules are then applied to fuse each component to obtain
the final fusion image. Concretely, different fusion strategies and focusing measures are
used to fuse the high-frequency and low-frequency sub-images, respectively, and two
initial decision diagrams with complementary information are obtained. Hence, a definite
focus area and a non-definite focus area are obtained. After that, the non-definite focus
area is refined and transformed into a definite focus area, and the final decision map to
complete the image fusion is obtained. The proposed method has the following advantages.
Firstly, two groups of decomposition schemes with complementary structure and scale are
designed to accurately obtain the focus of the boundary. Secondly, the proposed method
combines multi-scale analysis and singular value decom-position for multi-focus image
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fusion. Singular value decomposition diagonalizes the image matrix according to the
size of eigenvalues, so there is no redundancy between the decomposed images, which
is suitable for different fusion rules for each component. Finally, by exploiting the image
feature information contained in each decomposition layer of low-frequency components
and high-frequency components, selecting different focus measures can better extract the
image feature information.

Compared with the existing multi-focus image fusion method, the main innovations
of the proposed method are as follows:

• The paper uses MSVD decomposition with a complementary structure and size for the
first time, enhances the complementarity of the extracted image feature information
and improves the ability to detect the focus area, in order to fully extract the structure
and detailed information of the image.

• To fully extract the structure and details of the image, the complementary features
extracted by different focus measures are developed as the external stimulus input of
the PA-PCNN.

• Experiments are performed to verify the efficiency of the proposed method. The
results show that the proposed method can effectively eliminate the pseudo edges
caused by anisotropic blur or unregistration.

The structure of this paper is organized as follows. Section 2 proposes the multi-focus
image fusion model based on multi-scale decomposition of information complementary.
Section 3 analyses and discusses the results of the comparison with the latest methods.
Finally, conclusions for this paper are provided in Section 4.

2. Proposed Multi-Focus Image Fusion Algorithm

Due to object displacement or camera shake during image acquisition, multi-focus
images will produce unregistration and anisotropic blur. These factors can lead to erro-
neous focus judgment in the focus map obtained by the focus measure (FM), which make
the fusion image appear blurred and distorted. In order to solve the above problems,
Zhou et al. [21] proposed a two-scale fusion scheme. A large scale can better reduce blur
and unregistration, and a small scale can better retain some details, so that the Halo effect
of the fused image can be mitigated. However, this algorithm calculates its saliency map
based on the covariance matrix of the region, and the fusion effect is not good for images
without obvious edges or corners. In addition, an unknown area is defined near the bound-
ary pixels of the focus area, and its width is set as 4δ1. This artificially set unknown area
cannot accurately reflect the focus of the boundary and will affect fusion. In response to
the above problems, we propose a multi-focus image decomposition strategy based on a
multi-scale singular value decomposition. In this strategy, two groups of low-frequency
and high-frequency components with complementary information are obtained by two-
level decomposition of the complementary structure and scale. According to the proposed
fusion rules, each component is fused to obtain the final fusion image.

Figure 1a shows the first group of decomposition schemes. The first layer is to divide
the source image into blocks in the size of 3 × 5 to achieve large-scale decomposition of the
image. In the second layer, the low-frequency components obtained from the first layer
are divided into blocks in the size of 2 × 3 to achieve small-scale image decomposition.
Figure 1b shows the second group of decomposition schemes. The first layer is to divide
the source image into blocks in the size of 5 × 3 to achieve the large-scale decomposition of
the image. In the second layer, the low-frequency components obtained from the first layer
are divided into blocks in the size of 3 × 2 to achieve mall-scale image decomposition (in
Section 2.1.2 for details of image segmentation method).
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Figure 1. Two groups of double-layer multi-scale singular value decomposition schemes with
complementary structure and scale. In the two decomposition schemes, H1

1−14 are the high-frequency
components of the first layer after decomposition, H2

1−5 are the high-frequency components of
the second layer after decomposition, L is the low-frequency component of the second layer after
decomposition. (a) The first group of the decomposition scheme; (b) the second group of the
decomposition scheme.

The multi-scale decomposition scheme proposed in this paper uses block operation to
achieve large-scale and small-scale decomposition of the image. Large-scale decomposition
can better retain image structure information, and small-scale decomposition can better
retain image detail information. Through the proposed fusion rule, the high and low
frequency components obtained by the two decomposition schemes are fused, and two
fusion decision maps with complementary information are obtained. These two fusion
decision maps can make up for the poor fusion effect of images without giving rise to
obvious edges and corners. It can also determine the blur region near the pixels of the focus
region boundary. Figure 2 shows the two complementary information fusion decision
maps obtained through the two decomposition schemes show in Figure 1 and the initial
decision map determined through them. The initial decision map contains the definite
focus area and the non-definite focus area.
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2.1. Multi-Scale Singular Value Decomposition of Multi-Focus Image
2.1.1. Multi-Scale Singular Value Decomposition

MSVD is an image decomposition method with simple calculations and is suitable
for real-time applications. In image decomposition, it uses singular value decomposition
(SVD) to perform a similar function to the FIR filter in wavelet transform, but MSVD is not
like wavelet transform, which has a fixed set of basis vectors to decompose images, and its
basis vectors depend on the image itself [13].

X is the matrix form of image f (x, y), X ∈ Rm×n. When orthogonal matrixes
U ∈ Rm×m and V ∈ Rn×n exist, we can obtain:

UTX V =

[
Λr 0
0 0

]
≡ Λ ∈ Rm×n (1)

According to the transformation of Equation (1), the singular value decomposition of
X can be obtained as:

X = U
[

Λr 0
0 0

]
(V)T (2)

In Equation (2), Λr = diag{λ1, λ2, · · · , λr}, λ1 ≥ λ2 ≥ · · · ≥ λr,. r is the rank of the
matrix X, λi(1 ≤ i ≤ r) is the singular value of X. The matrix singular value has strong
stability, and will not change with image scaling and rotation. U and V are the eigenvectors
corresponding to the singular values, and they depend on the image X. The amount
of image information represented by eigenvector is positively related to the size of the
corresponding singular value. The larger the singular value, the more image information it
contains, which corresponds to the approximate part of the image. The smaller singular
values correspond to the detailed parts of the image, which is the high frequency part of the
image. Therefore, the image can be separated into approximate and detailed information
according to the size of the singular values.

2.1.2. Decomposition of Multi-Focus Image

In order to achieve multi-scale decomposition of the multi-focus images, they are
divided into non-overlapping m× n blocks, and each sub-block is arranged into an mn × 1
vector. By combining these column vectors, a matrix X′ with a size of mn× (MN/mn) can
be obtained. The singular value decomposition of X′ is:

X′ = U′Λ′(V′)T (3)

U′ and V′ are orthogonal matrices, according to Equation (3):

S = (U′)TX′ = Λ′(V′)T (4)

The size of the matrix S is mn× (MN/mn).
According to the singular value decomposition mentioned above, the first column

vector of U′ corresponds to the maximum singular value. When it is left multiplied by
the matrix X′, the first row S(1, :) of S carries the main information from the original
image, which can be regarded as the approximate or smooth component of the original
image. Similarly, the other row S(2 : mn, :) of S corresponds to smaller singular values,
which retains such detailed information as the texture and edges of the original image.
Therefore, through singular value decomposition, the image can be decomposed into low-
frequency and high-frequency subimages by the singular value to achieve the multi-scale
decomposition of the image. The schematic diagram of the multi-focus image MSVD
scheme proposed in this paper is illustrated in Figure 1. In order to clearly illustrate the
image decomposition process, it is assumed that there is a source image with a size of
300 × 300. According to the decomposition scheme in Figure 1a and the above mentioned
image decomposition steps, the source image is divided into blocks of size 3 × 5 to achieve
the first-layer large-scale decomposition. After that, 1 low-frequency component and
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14 high-frequency components are obtained, and the size of each component is 100 × 60.
The second-layer of decomposition is to divide the low-frequency components of the
first-layer into blocks of size 2 × 3 to achieve small-scale decomposition. Moreover,
1 low-frequency component and 5 high-frequency components are obtained, and the size
of each component is 50 × 20. After fusion of the components, the final fusion image is
acquired through the inverse MSVD transformation.

2.2. Low-Frequency Component Fusion

The low-frequency sub-image of the multi-focus image obtained by the MSVD de-
composition scheme proposed in this paper reflects the overall characteristics of the image,
and mainly contains contour and energy information. In this paper, we use the algebraic
operations and spatial characteristics of quaternions to calculate the local energy of low-
frequency components. Joint bilateral filter (JBF) is used to get the structure information
of low-frequency components, combine the energy and structure information to calculate
the weight to obtain the fusion decision map. The fused low-frequency components are
obtained according to the decision map.

2.2.1. Quaternion

Quaternions were first introduced in 1843 by British mathematician Hamilton [26].
They can be considered an extension of complex numbers. The general form of a quaternion
is expressed as follows:

Q = a + bi + cj + dk (5)

where
i2 = j2 = k2 = ijk = −1,
ij = −ji = k, jk = −kj = i, ki = −ik = j.

and where a is the real part, bi, cj, and dk are three imaginary parts. If the real part a is zero,
Q is called a pure quaternion.

The modulus of a quaternion is defined as:

|Q| =
√

QQ∗ =
√

a2 + b2 + c2 + d2 (6)

where Q∗ is defined as the conjugate of the quaternion Q, Q∗ = a− bi− cj− dk.
The unit vector of a quaternion Q is defined as:

q =
Q
|Q| (7)

Define two quaternions as

Q1(Q1 = a + qv1) and Q2(Q2 = b + qv2)

In Equation (8), quaternion multiplication can be represented using the cross and dot product.

Q1Q2 = (a + qv1)(b + qv2)
= (ab− qv1.qv2) + (aqv2 + bqv1 + qv1 × qv2)

(8)

where qv1 and qv2 are the vector parts of each quaternion. qv1 · qv2 and qv1 × qv2 represent
the dot product and cross product of the two vectors, respectively.

2.2.2. Joint Bilateral Filter

Bilateral filter (BF) is a nonlinear filtering method, which combines the spatial proxim-
ity and pixel value similarity of the image. BF can achieve edge preservation and denoising
during image fusion. However, the weights of the bilateral filter are not stable enough, and
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the joint bilateral filter (JBF) introduces the guiding image on the basis of the bilateral filter,
making the weights more stable. JBF can be expressed as follows:

J(x) =
1

W ∑
y∈Ω

G(x, y, δs)G(O(x), O(y), δr)I(y) (9)

W is the regularization factor, defined as:

W = ∑
y∈Ω

G(x, y, δs)G(O(x), O(y), δr)

The Gaussian kernel function G is expressed as:

G(x, y, δ) = e−
‖x−y‖2

2δ2

In Equation (9), the set of adjacent pixels is denoted as Ω, δs, and δr are the parameters
of two Gaussian kernel functions, which are used to control the influence of Euclidean
distance and pixel similarity. The Gaussian kernel function will attenuate as the distance
between x and y increases. When the distance between x and y is less than δs or the
difference between two pixel values is less than δr, the pixel value I(y) of y has a greater
impact on the value of J(x). Different from the bilateral filter, O(x) and O(y) are the
guiding pixel values of x and y, respectively. The guiding image O can provide more
reliable information for the structure of the output image and obtain a more optimized
similarity Gaussian kernel weight.

2.2.3. Low-Frequency Component Fusion Rule

The low-frequency component contains most of the energy and contour information
of the image. Therefore, in the low-frequency fusion process, the energy and contour
information of the image should be taken into account. In this paper, a new low-frequency
component fusion method is proposed. Firstly, the local energy of low-frequency compo-
nent is calculated using the neighborhood of pixels represented by quaternions. Secondly,
we use JBF to get the edge contour information of the low frequency component. Then, we
combine the local energy and the edge energy to calculate the weight of the low-frequency
component to obtain the fusion decision map. Finally, the fused low-frequency component
is obtained according to the decision map. The detailed fusion process is as follows:

1. Select the pixel in the 3 × 3 domain of the target pixel to construct quaternion Q1
I , Q2

I ,
and calculate the local energy EL

I of the low-frequency component:

EL
I
(

x, y) = Q1
I Q2

I ∗ f L
I (x, y)

Q1
I = f (x, y + 1) + i f (x, y− 1) + j f (x− 1, y) + k f (x + 1, y)

Q2
I = f (x + 1, y + 1) + i f (x + 1, y− 1) + j f (x− 1, y− 1) + k f (x− 1, y + 1)

(10)

In Equation (10), I = A, B, (x, y) represent the position of the low-frequency com-
ponent pixel. Q1

I is the quaternion formed by the front, back, left, and right pixels in
the neighborhood of pixel (x, y). Q2

I is the quaternion formed by diagonal pixels in the
neighborhood of pixel (x, y). In the calculation of EL

I , Q1
I , Q2

I is constructed as a unit vector
according to Equation (7).

2. JBF is used to process the local energy map EL
I of low frequency components to get

the energy map SL
I of edge pixels:

SL
I = JBF(EL

I , f L
I , w, δs, δr) (11)

In Equation (11), EL
I is the local energy of the low-frequency component, with low-

frequency component f L
I as a guide map, w represents the local window radius, δs is
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the standard deviation of the spatial domain kernel, and δr the standard deviation of the
range kernel.

3. According to the local energy EL
I and edge energy SL

I of the low-frequency component,
the weight of the low-frequency component is calculated.

dL
A =

{
1, EL

A · SL
A ≥ EL

B · SL
B,

0, otherwise,
dL

B = 1− dL
A.

(12)

4. The fusion image of the low-frequency component is obtained by the following formula:

f L
F = dL

A · f L
A + dL

B · f L
B (13)

2.3. High-Frequency Component Fusion

The high frequency component corresponds to the sharply changing part of the image,
including the texture, details, and edge information of the image, which impacts the
clarity and visual effects of the fused image. Pulse coupled neural network (PCNN) is a
simplified artificial neural network constructed by Eckhorn based on the cat’s eye vision
principle. Its signal form and processing mechanism are more in line with the physiological
characteristics of the human visual nervous system. In order to improve the quality of the
fused image, this paper proposes to use an adaptive PCNN strategy to fuse high-frequency
components. The first layer of image decomposition selects the local spatial frequency (SF)
as the external stimulus input of the PCNN, and the second layer selects the local standard
deviation (STD) as the external stimulus input of PCNN.

2.3.1. PA-PCNN

PCNN can capture image edge and detailed information without any training process.
It is a feedback single-layer network composed of several neurons connected with each
other. It has three functional units: feedback input domain, connection input domain, and
pulse generation domain. The traditional PCNN model needs to determine parameters,
such as link strength, various amplitudes, and attenuation coefficients. In order to avoid the
insufficiency of manually setting parameters, a simplified PCNN model [27,28] is proposed,
which is described as follows:

Fij[n] = Sij (14)

Lij[n] = VL∑
kl

WijklYkl [n− 1] (15)

Uij[n] = e−a f Uij[n− 1] + Fij[n](1 + βLij[n]) (16)

Yij[n] =
{

1, i f Uij[n] > Eij[n− 1]
0, otherwise

(17)

Eij[n] = e−ae Eij[n− 1] + VEYij[n] (18)

Fij[n] and Lij[n] are the external stimulus input and link input of the pixel at position
(i, j) during the nth iteration, and Sij is the input image. The parameter VL is the ampli-
tude of the link input Lij[n], which controls Lij[n] together with Wijkl and Ykl [n− 1], and

Wijkl =

 0.5 1 0.5
1 0 1

0.5 1 0.5

 is the synaptic weight matrix. The internal activity item Uij[n]

consists of two parts: the first part e−a f Uij[n − 1] is the exponential decay part of the
internal activity of the previous iteration, and a f is the exponential decay coefficient. The
second part Fij[n](1 + βLij[n]) is the nonlinear modulation of Fij[n] and Lij[n], where the
parameter β is the link strength. Yij[n] depends on the current internal activity item Uij[n]
and the dynamic threshold Eij[n− 1] during the last iteration. When Uij[n] > Eij[n− 1],
Yij[n] = 1, PCNN is in an ignition state. By contrast, Yij[n] = 0, PCNN is in an unfired state.
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Yij[n] = 0 and VE are the exponential decay coefficient and amplitude of Eij[n], respectively.
There are 5 free parameters in the parameter adaptive PCNN model: a f , β, VL, ae, VE. These
parameters can be calculated by the following formula [27,28]:

a f = log
(

1
δ(s)

)
, βVL =

(Smax/S′)− 1
6

(19)

VE = e−a f + 1 + 6βVL (20)

ae = ln
VE

S′( 1−e
−3a f

1−e
−a f

+ 6βVLe−a f )
(21)

The smaller the value of a f , the greater the dynamic range of Uij[n]. δ(s) is the standard
deviation of normalized image S. β and VL are the weights of βVL, it can be regarded as a
whole as the weighted link strength. The maximum intensity value Smax of the input image
and the optimal histogram threshold S′ jointly determine the value of βVL. βVL and a f are
combined to get VE and ae. Figure 3 shows the PA-PCNN model used in the multi-focus
image fusion method proposed in this paper.

Figure 3. The diagram of a neuron in PA-PCNN model.

2.3.2. Space Frequency and Standard Deviation

The spatial frequency (SF) and standard deviation (STD) of an image are two important
indicators of the details of the image.

Spatial frequency is defined as:

SF =
√

RF2 + CF2

RF =

√
1

M×N

M
∑

i=1

N
∑

j=2
[ f (i, j)− f (i, j− 1)]2

CF =

√
1

M×N

M
∑

i=2

N
∑

j=1
[ f (i, j)− f (i− 1, j)]2

(22)

RF is the row frequency and CF is the column frequency. The spatial frequency (SF) of
the image indicates the clarity of the spatial details of the image.

Standard deviation is defined as:

STD =

√
1

M×N

M
∑

i=1

N
∑

j=1
[ f (i, j)− µ]2

µ = 1
M×N

M
∑

i=1

N
∑

j=1
f (i, j)

(23)

The image standard deviation represents the statistical distribution and contrast of
the image. The larger the standard deviation, the more scattered the gray level distribution,
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the greater the contrast, and the more prominent the image details. µ is the mean value of
the image.

Spatial frequency and standard deviation reflect the details of the image from different
aspects, and the two indicators are complementary.

2.3.3. High-Frequency Component Fusion Rule

The high-frequency components of the source image obtained through multi-scale
and multi-layer decomposition contain important details of the image. As the number
of decom-position layers increases, the detailed features of high-frequency components
become more prominent. In order to make the image fusion effect better meet the physio-
logical characteristics of the human visual nervous system, in the first layer and second
layer decomposition of high-frequency components, local spatial frequency (SF) and local
standard deviation (STD) are, respectively, selected as external stimulus inputs of PA-
PCNN, and to achieve the fusion of high-frequency components. The fusion procedure of
high-frequency components is as follows:

1. In the first layer of decomposition, SF is used as the external stimulus input of PA-
PCNN, and the number of ignitions of high-frequency components is obtained by

T1
S [n] = T1

S [n− 1] + Y1
S [n], (S = A, B) (24)

2. Weight coefficient of high-frequency components is obtained by:

dH1
A =

{
1, i f T1

A
[
n] > T1

B[n],
0, otherwise,
dH1

B = 1− dH1
A .

(25)

3. High-frequency components after fusion is obtained by:

f H1
F = dH1

A · f H1
A + dH1

B · f H1
B (26)

In the same way, STD is used as the external stimulus input of PA-PCNN to obtain the
fused high-frequency components of the second layer decomposition.

f H2
F = dH2

A · f H2
A + dH2

B · f H2
B (27)

H1 represents the high-frequency component decomposed in the first layer, and H2
represents the high-frequency component decomposed in the second.

2.4. Non-Definite Focus Region Fusion

A multi-focus image fusion method is commonly used to obtain the final fusion
image based on the decision maps. However, the decision maps are often inaccurate,
especially at the boundary between the focus and defocus regions. To better determine
the focus attribute of the boundary, we propose to define the aliasing region of the two
complementary initial decision graph boundaries as the undetermined focus region (the
red region in Figure 2e). On this basis, the measurement method combining local spatial
frequency (SF) and local standard deviation (STD) (Section 2.3.2) is used to convert the
non-definite focus region into a definite focus region, and accurate fusion decision map is
obtained, and can effectively address an out-of-focus blur caused by anisotropic blur and
unregistration. The specific fusion process is as follows:

1. Based on the two complementary decision maps, an initial decision map DF containing
the definite focus region and the non-definite focus region is obtained.

DF = (D1 + D2)·/2
DF(i, j) ∈ DIden, DF(i, j) = 1 or DF(i, j) = 0
DF(i, j) ∈ DUniden, DF(i, j) = 0.5

(28)
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where D1 is the fusion decision map obtained by the first group of decomposition
scheme (Figure 2c), D2 is the fusion decision map obtained by the second group of the
decomposition scheme (Figure 2d), DF is the initial decision map (Figure 2e). When
DF(i, j) = 1 or DF(i, j) = 0, DF(i, j) belongs to the definite focus region DIden; when
DF(i, j) = 0.5, DF(i, j) belongs to the definite focus region DUniden (the red region in
Figure 2e).

2. The weight coefficient of the non-definite focus region is calculated by

QUniden
U =

1
m× n

w

∑
m=0

w

∑
n=0

(SFU(i + m, j + n) ∗ STDU(i + m, j + n)), U = (A or B)

(29)

dUniden
A =

{
1, i f QUniden

A · f Uniden
A > QUniden

B · f Uniden
B ,

0, otherwise,
dUniden

B = 1− dUniden
A .

(30)

3. The non-definite focus region fusion is calculated by

f Uniden
F = dUniden

A w f Uniden
A + dUniden

B · f Uniden
B (31)

where f Uniden
A and f Uniden

B are non-definite focus regions of the source multi-focus images.

2.5. The Proposed Multi-Focus Image Fusion Method

Step 1: the two-layer MSVD decomposition with the complementary structure and
scale (Figure 1) is performed on two multi-focus images, A and B, respectively, and two
groups of information complementary low-frequency components and high-frequency
components are obtained. In each group of decomposition, the source image is decomposed
into a low-frequency component L and multiple high-frequency components Hc

i .
Step 2: different fusion rules are used to fuse the low-frequency components L and

high-frequency components Hc
i respectively, and the information complementary decision

map D1 and D2 are obtained.
Step 3: the complementary decision maps in Step 2 are exploited, and the initial

decision map DF containing the definite focus region and the non-definite focus region is
obtained. The non-definite focus region DUniden in DF is the aliasing area at the boundary of
the complementary decision maps. With the adoption of the proposed focus measurement
method (in Section 2.4), the non-definite focus region DUniden is transformed into the
definite focus region, and the final fusion decision map DFF is obtained.

Step 4: according to the fusion decision map DFF obtained in Step 3, the final fusion
image is obtained.

Figure 4 illustrates the principle diagram of the method in this paper, which corre-
sponds to the above fusion steps.
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Figure 4. Schematic diagram of the proposed method of multi-focus image fusion. D1 is the first
scheme decision map; D2 is the second scheme decision map; the red region in the initial decision
map DF is the non-definite focus region DUniden. Hc

i is the i-th high-frequency component in the c-th
layer decom-position, where c = 1 or 2.

3. Experiments and Discussion

In order to verify the effectiveness of the proposed method, we first compare the
proposed method with some classic and state-of-the-art methods, which are fusion meth-
ods based on traditional ideas. They are the curvelet transform (CVT) [29], the singular
value decomposition in discrete cosine transform (DCT_SVD) [30], the dual-tree complex
wavelet transform (DTCWT) [5,29], the image matting for fusion of multi-focus images
(IFM) [31], the Laplacian pyramid (LP) [29], the multi-resolution singular value decom-
position (MSVD) [13], the multi-scale weighted gradient-based fusion (MWGF) [21], the
nonsubsampled contourlet transform (NSCT) [29,32]. The codes for the eight methods
for comparison are provided by the authors of the corresponding papers, the MATLAB
programs are all available online, and the parameters are the default values presented
in the original papers. In addition, we select 13 pairs of multi-focus images commonly
used in image fusion for comparative experiments, where 6 pairs of source images are
provided by Lu et al. [1], and 4 pairs of source images are provided by Zhang et al. [33],
and 3 other pairs of source images are obtained from the website [34]. In order to verify
the performance of the proposed method, unregistered and pre-registered multi-focus
images are specially selected for experimental analyses. Then, the proposed method is also
compared with FuseGAN and CNN [25] methods, which are related to deep learning. The
data sets, objective metrics, and fusion results used in the FuseGAN and CNN all derive
from [25]. Finally, an ablation experiment is also carried out to test the effect of eliminating
the PCNN method from the fusion result.

The decomposition parameters setting of the proposed method are: in the first group,
the first layer is divided into 3 × 5 blocks, and the second layer is divided into 2 × 3 blocks;
in the second group, the first layer is divided into 5 × 3 blocks, and the second layer is
divided into 3× 2 blocks (in Section 2.1.2 and Figure 1 for details of the parameters setting).

3.1. Comparative Analysis of Fusion Results Based on Traditional Methods
3.1.1. Subjective Analysis of Pre-Registered Image Fusion Results

Figure 5 shows the fusion results of the “wine” source image obtained by different
multi-focus image fusion methods. Figure 5a,b are the source images of the front focus
and the back focus, respectively. Figure 5c–j are the fusion results obtained by the curvelet,
DCT_SVD, DTCWT, IFM, LP, MSVD, MWGF, and NSCT methods. Figure 5k is the fusion
results achieved by the proposed method. Figures 6 and 7 are enlarged regions of the
local details of Figure 5. In Figure 6, the part marked by the red frame shows that the
fused image is introduced; the artefacts and blurred edges are produced by the fusion



Entropy 2021, 23, 1362 14 of 28

method of curvelet, DCT_SVD, DTCWT, MSVD, MWGF, and NSCT, respectively. In
Figure 7, the red regions near the gear also produce the pseudo-edges, and are generated
by curvelet, DCT_SVD, DTCWT, IFM, LP, MSVD, MWGF, and NSCT. It is found that
the proposed method achieves the best fusion results among these methods. Figure 8
shows the fusion results of the “newspaper” source images obtained by different fusion
methods. Figure 8a,b are two source images of the left focus image and the right focus
image, respectively. Figure 8c–j are the fusion comparative results of the eight methods,
and (k) is the fusion result of the proposed method. Figure 9 presents the local detail
magnified regions of Figure 8. The red regions are the boundaries between the focus
regions and the defocus regions. The fusion result suggests the proposed method is clearer
at the boundary, and that the characteristics of the source image are better preserved than
other methods, whose fusion results have blurred edges and artifacts.

Figure 5. The source images of “wine” and the fusion results of different methods. (a) Source image A, (b) source image B,
(c) curvelet, (d) DCT_SVD, (e) DTCWT, (f) IFM, (g) LP, (h) MSVD, (i) MWGF, (j) NSCT, (k) proposed method.
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Figure 6. The partial enlarged regions taken from Figure 5a–k. (a) Source image A, (b) source image B, (c) curvelet, (d)
DCT_SVD (e) DTCWT, (f) IFM, (g) LP, (h) MSVD, (i) MWGF, (j) NSCT, (k) proposed method.
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Figure 8. The source image of “newspaper” and the fusion results of different methods. (a) Source image A, (b) source
image B, (c) curvelet, (d) DCT_SVD (e) DTCWT, (f) IFM, (g) LP, (h) MSVD, (i) MWGF, (j) NSCT, (k) proposed method.

Figure 9. The partial enlarged regions taken from Figure 8a–k. (a) Source image A, (b) source image B, (c) curvelet,
(d) DCT_SVD (e) DTCWT, (f) IFM, (g) LP, (h) MSVD, (i) MWGF, (j) NSCT, (k) proposed method.

3.1.2. Subjective Analysis of Unregistered Images Fusion Results

Figure 10 shows the fusion results of the “temple” source images obtained by nine
different multi-focus image fusion methods. Figure 10a,b are two source images of the
front focus image and the back focus image, respectively. From the stones in the lower
left corners of the source images (a) and (b), it can be see that the two images have been
displaced and have not been registered. Figure 10c,j are the fusion results obtained by the
curvelet, DCT_SVD, DTCWT, IFM, LP, MSVD, MWGF, and NSCT methods. Figure 10k is
the fusion result obtained by the proposed method. Figure 11 is the local detail magnified
regions of Figure 10. Although source images have misregistration, it can be seen from the
part marked by the red regions in Figure 11 that the fusion result of the proposed method
is very clear at the boundary between the stone lion and the background with fonts. The
fusion results of other methods have produced varying degrees of edge blur and artifacts.
Obviously, due to the precise detection of the pixel-focus, the proposed method obtains the
best fusion results.
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Figure 10. The source image of “temple” and the fusion results of different methods.

Figure 11. The partial enlarged regions taken from Figure 10a–k. (a) Source image A, (b) Source image B, (c) Curvelet,
(d) DCT_SVD (e) DTCWT, (f) IFM, (g) LP, (h) MSVD, (i) MWGF (j) NSCT (k) Proposed method.

3.1.3. Subjective Analysis of More Image Fusion Results

In order to further verify the effectiveness of the proposed method, we selected
10 pairs of popular multi-focus source images for comparative experiments, and the source
images are shown in Figure 12. Figure 13 shows the fusion results obtained by the proposed
method and the other eight methods for comparison. In contrast, the proposed method
achieves desirable results in the fusion of 10 pairs of multi-focus images. The proposed
method obtains a precise fusion boundary in the fusion results of “book”, “clock”, “flower”,
“hoed”, and “lytro”. In the fusion results of “craft”, “grass”, and “seascape” images, clear
fusion details are also obtained. In the case where there is a significant difference between
the student’s eyes in the “lab” source image and the girl’s body posture in the “girl” source
image, the proposed method also obtains a satisfactory fusion result.
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Figure 12. 10 pairs of multi-focus source images.

Figure 13. Fusion results of different methods.

3.1.4. Objective Analysis of Fusion Results

The quantitative evaluation of the fusion images has been acknowledged as a chal-
lenging task, since, in practice, it lacks of reference images for the source images. In this
paper, we selected the edge similarity metric QAB/F [25], the normalized mutual information
metric QMI [1], the phase congruency based fusion metric QPC [33], and gradient-based
fusion performance metric QG [35] to evaluate the fusion results. For all four objective
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evaluation indicators, the larger the value, the better the fusion results. The highest value
in the evaluation is bolded in all tables.

Table 1 shows the objective evaluation values of the fusion results of the nine methods,
and the evaluation objects are the “wine” in Figure 5, the “newspaper” in Figure 8, and the
“temple” in Figure 10. We can see that the MWGF method has the largest QAB/F value in
the “newspaper”, and the proposed method fares the best in other evaluation indicators.
The method obtains the largest values among the other objective evaluation indicators,
which is consistent with the subjective visual effect of the fusion result.

Table 1. The objective assessments of different methods for Figures 5, 8 and 10.

Images Metrics Curvelet DCT_SVD DTCWT IFM LP MSVD MWGF NSCT Proposed
Method

wine

QAB/F 0.6412 0.6942 0.6752 0.7111 0.6889 0.4467 0.6920 0.6290 0.7162
QMI 5.2622 8.4875 5.6663 7.8042 6.5947 4.9732 6.4336 5.4534 8.6158
QPC 0.6299 0.6845 0.6649 0.7040 0.0004 0.4206 0.6901 0.6174 0.7087
QG 0.4809 0.6501 0.5303 0.6531 0.5679 0.3556 0.6251 0.4950 0.6682

newspaper

QAB/F 0.5244 0.6625 0.6270 0.6659 0.6369 0.3098 0.6766 0.4199 0.6751
QMI 1.9036 6.4318 2.2117 5.8831 2.9815 1.7481 5.5151 1.9821 6.5558
QPC 0.5043 0.6533 0.6118 0.6568 0.0004 0.2827 0.6639 0.3999 0.6665
QG 0.4851 0.6382 0.5878 0.6425 0.6162 0.3349 0.6299 0.4266 0.6501

temple

QAB/F 0.5723 0.7512 0.6715 0.7582 0.7429 0.3474 0.6051 0.5369 0.7642
QMI 2.9895 7.2276 3.0351 7.0355 5.1978 3.0224 3.2813 3.1448 7.3391
QPC 0.5832 0.7533 0.6795 0.7619 0.0005 0.3658 0.6047 0.5423 0.7676
QG 0.5109 0.7146 0.6089 0.7193 0.6891 0.3722 0.7124 0.4922 0.7203

Table 2 shows the QAB/F objective evaluation values of the fusion results of 10 pairs
of source images with different methods. The proposed method fares the best in other
evaluation indicators. The method gets the best fusion results in “book”, “craft”, “flower”,
“girl”, “grass”, “lab”, “lytro”, and “hoed”. IFM and MWGF get the best fusion results in
“clock” and “seascape”, respectively. This means that, in most cases, the proposed method
can incorporate important edge information into the fusion image.

Table 2. The objective assessment QAB/F of different methods for Figure 13.

Images Curvelet DCT_SVD DTCWT IFM LP MSVD MWGF NSCT Proposed
Method

book 0.7335 0.7594 0.7504 0.7596 0.7532 0.6663 0.7227 0.7408 0.7628
clock 0.6022 0.6713 0.6618 0.7025 0.6920 0.5658 0.5437 0.6190 0.7018
craft 0.6605 0.7195 0.6891 0.7267 0.7086 0.6898 0.4401 0.6941 0.7346

flower 0.6657 0.7098 0.7004 0.7125 0.6985 0.6679 0.3991 0.6848 0.7133
girl 0.6146 0.6777 0.6528 0.6857 0.6696 0.5530 0.5836 0.5913 0.6919

grass 0.5574 0.6459 0.6037 0.6694 0.6320 0.4120 0.4496 0.5502 0.6706
lab 0.6183 0.7116 0.6892 0.7384 0.7194 0.5852 0.6859 0.6046 0.7394

lytro 0.6233 0.7373 0.7013 0.7428 0.7334 0.5163 0.7101 0.6162 0.7445
seascape 0.5358 0.6955 0.6231 0.7038 0.6333 0.4614 0.8794 0.4920 0.7060

hoed 0.6619 0.8207 0.7473 0.8094 0.8074 0.5568 0.7379 0.6323 0.8212

Table 3 shows the QMI objective evaluation of the fusion results of 10 pairs of source
images with different methods. The proposed method obtains the best fusion results among
the nine methods. Although the DCT_SVD method has the highest evaluation values in
“flower” and “hoed”, the evaluation value of the proposed method is very close to it, and
the variation is less than 0.04.
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Table 3. The objective assessment QMI of different methods for Figure 13.

Images Curvelet DCT_SVD DTCWT IFM LP MSVD MWGF NSCT Proposed
Method

book 7.5469 9.2254 7.8636 9.2650 8.0568 7.0990 8.7403 7.5655 9.4974
clock 6.5747 8.5643 6.6081 8.3289 7.2697 6.6358 6.5600 6.8297 8.5648
craft 6.8147 8.5981 6.9386 8.8035 7.1822 7.2763 5.9810 7.4597 8.8691

flower 5.2993 8.0569 5.8285 7.9184 6.4240 5.0763 3.8654 5.3363 8.0174
girl 5.4226 8.8479 5.7647 8.8677 6.2546 5.3249 7.6408 5.5291 9.0835

grass 4.8071 8.5131 4.9885 8.4649 5.8314 4.6484 4.9709 4.9466 8.9043
lab 6.6219 8.5181 6.9902 8.5302 7.5773 6.9382 7.9229 7.0273 8.6211

lytro 5.7419 8.1906 5.8921 8.0725 6.7115 5.7305 7.9050 5.9048 8.3023
seascape 4.5815 7.9492 4.8031 7.7184 5.5810 4.6547 6.7174 4.8333 8.0761

hoed 4.5654 8.3975 4.7390 7.9818 6.4462 4.5557 6.2599 4.6683 8.3834

Table 4 shows the QPC objective evaluation values of the fusion results of 10 pairs of
source images with different methods. Except for the MWGF method, to obtain the best
fusion result in “seascape”, the proposed method has the highest values in other evaluation
indicators. This means that the proposed method can well retain important source image
feature information of the fused image.

Table 4. The objective assessment QPC of different methods for Figure 13.

Images Curvelet DCT_SVD DTCWT IFM LP MSVD MWGF NSCT Proposed
Method

book 0.7254 0.7499 0.7416 0.7503 0.0005 0.6542 0.7081 0.7353 0.7535
clock 0.6006 0.6718 0.6608 0.7059 0.0005 0.5644 0.5498 0.6190 0.7067
craft 0.6195 0.6740 0.6547 0.6817 0.0004 0.6505 0.3123 0.6539 0.6910

flower 0.6722 0.7141 0.7058 0.7179 0.0005 0.6861 0.4042 0.6962 0.7181
girl 0.5967 0.6712 0.6389 0.6757 0.0004 0.5306 0.5737 0.5702 0.6827

grass 0.5620 0.6452 0.6090 0.6692 0.0004 0.4238 0.4393 0.5527 0.6705
lab 0.6307 0.7011 0.6992 0.7314 0.0005 0.5891 0.6794 0.6093 0.7320

lytro 0.6094 0.7299 0.6928 0.7354 0.0005 0.4946 0.6973 0.6006 0.7374
seascape 0.5402 0.6994 0.6261 0.7053 0.0004 0.4623 0.8893 0.4891 0.7064

hoed 0.6792 0.8171 0.7538 0.8074 0.0005 0.5842 0.7582 0.6516 0.8174

Table 5 shows the QG objective evaluation of the fusion results of 10 pairs of source
images with different methods. The IFM method achieves the best fusion results in “clock”
and “craft”, and the DCT_SVD method in “hoed”. The proposed method fares the best in
other evaluation indicators. These mean that the fused image obtained by the proposed
method has high sharpness.

Table 5. The objective assessment QG of different methods for Figure 13.

Images Curvelet DCT_SVD DTCWT IFM LP MSVD MWGF NSCT Proposed
Method

book 0.5636 0.6616 0.6142 0.6704 0.6249 0.5542 0.6482 0.6062 0.6733
clock 0.4730 0.6538 0.5236 0.6700 0.5661 0.4861 0.6509 0.5194 0.6604
craft 0.5124 0.6508 0.5619 0.6629 0.6070 0.5790 0.6507 0.5911 0.6494

flower 0.5936 0.6831 0.6641 0.6863 0.6526 0.6068 0.6770 0.6200 0.6869
girl 0.5924 0.6737 0.6443 0.6829 0.6628 0.5425 0.6826 0.5744 0.6859

grass 0.5253 0.6435 0.5871 0.6696 0.6249 0.3950 0.6423 0.5300 0.6736
lab 0.4604 0.7056 0.5463 0.6946 0.5788 0.4798 0.7153 0.4873 0.7167

lytro 0.5552 0.6987 0.6465 0.7099 0.6879 0.5074 0.7068 0.5691 0.7101
seascape 0.5332 0.6945 0.6295 0.6975 0.6687 0.4765 0.7032 0.5154 0.7116

hoed 0.6216 0.7912 0.7090 0.7836 0.7748 0.5316 0.7806 0.5936 0.7896
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Figure 14a–d show the score line graphs of 9 methods on 4 evaluation indicators
of 10 pairs of multifocal images, respectively. Obviously, the proposed method fares the
best in other evaluation indicators and shows a better scoring trend, compared with other
methods. This means that the proposed method fares the best in other evaluation indicators.
The method not only suggests better performance in terms of visual perception, but also in
quantitative analysis.

3.1.5. Comparison of Computational Efficiency

To compare the computational efficiency, we calculate and list the average fusion time
of the nine methods in Table 6. Noticeably, the proposed method takes less fusion time
than the IFM and the MWGF methods. The IFM method consumes the most fusion time
and the LP method consumes the least fusion time. Comparing the fusion results, it is
worthwhile to improve the fusion quality at the cost of the time.

Table 6. Average running time of different fusion methods.

Metric Curvelet DCT_SVD DTCWT IFM LP MSVD MWGF NSCT Proposed
Method

Time
(Seconds) 0.9757 1.1396 0.4036 2.2200 0.3072 0.3162 1.7036 0.7842 1.4473

3.2. Comparative Analysis of Fusion Results Based on Deep Learning Methods

Deep learning, with powerful feature extraction capabilities, has been widely used
in multi-focus image fusion. The fusion model obtained through the learning of a large
amount of data generalizes well. In order to further verify the effectiveness of the proposed
method, it is compared with the deep learning-based multi-focus image fusion methods
FuseGAN and CNN proposed in [25]. The comparative experiment in this paper inherits
all of the experimental data in [25], including the source images and the fusion results of
deep learning methods. The source images in Figure 15 and Figure 17 are from [36] and
the lytro dataset [37].

Figure 14. Cont.
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Figure 14. (a–d) show the score line graphs of the four image evaluation indicators (QAB/F, QMI, QPC, and QG) corresponding
to Tables 2–5, respectively. In subfigures (a–d), the horizontal axis represents the image indices ranging from 1 to 10, and the
vertical axis represents values of the image evaluation indicators.
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Figure 15. The source images (a,b) are from the lytro dataset; (c) is the fusion result of the CNN; (d) is the fusion result of
the FuseGAN; (e) is the fusion result of the proposed method.

3.2.1. Subjective Analysis of Image Fusion Results

Figure 15 shows the fusion results obtained by the deep learning fusion methods
and the proposed fusion method. (a) and (b) are respectively the source images of the
front focus and the back focus. (c) and (d) are the fusion results obtained by the CNN and
FuseGAN methods. (e) is the fusion result achieved by the proposed method.

Figure 16 shows an enlarged region of the local details marked with a yellow frame
in Figure 15. In Figure 16, the part marked by the red frame shows that the fused image
introduce the blurred edges, which are, respectively, produced by the fusion method of
CNN and FuseGAN. The results show that among these methods, the proposed method
best preserves the edge information of the source image.

Figure 16. The partial enlarged regions taken from Figure 15a–e.

To further verify the effectiveness of the proposed method, 16 pairs of multi-focus
source images are selected for comparative experiments. Figure 17 shows the source images
and the fusion results. The results reveal that both the proposed method and deep learning
method have achieved satisfactory fusion results. Figure 17c,g are the fusion results of the
FuseGAN; (d) and (h) are the fusion results achieved by the proposed method.

3.2.2. Objective Analysis of Image Fusion Results

This article selects four evaluation metrics in [25] to evaluate the fusion results, to
compare with deep learning methods. They are the edge similarity metric QAB/F, the spatial
frequency metric QSF, the structural similarity metric QY, the feature contrast metric QCB.
For the above four evaluation metrics, the larger the value, the better the fusion results.

Table 7 shows the mean values of objective evaluations and the average fusion time
corresponding to the four metrics when the fusion methods are applied to 29 pairs of
source images, with evaluation values of FuseGAN and CNN derived from [25]. The
evaluation results show that the proposed method has the best average values in QSF and
QCB. Although the QAB/F and Qy values of the proposed method are smaller than the other
two, the difference between them is not greater than 0.015. In summary, the proposed
method shows good performance in both visual perception and quantitative analysis.
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Figure 17. (a,b,e,f) show 16 pairs of source images; (c,g) are the fusion results of the FuseGAN; (d,h) are the fusion results
of the proposed method.

Table 7. Average objective assessment and running time of different fusion methods.

Metric QAb/F QSF QY QCB Time (Seconds)

FuseGAN 0.7222 0.0211 0.9925 0.8032 0.53
CNN 0.7177 0.0342 0.9901 0.8001 109.16

Proposed 0.7162 0.07261 0.9776 0.8127 2.85

Table 7 lists the computation efficiency of various methods. As it can be seen,
FuseGAN and CNN respectively consume the least and most running times. The running
time of the proposed method is slightly longer than that of FuseGAN. Compared with
the depth learning method, the proposed method does not need to train the model and
parameters in advance and, therefore, is more feasible.



Entropy 2021, 23, 1362 25 of 28

3.3. More Analysis
3.3.1. Ablation Research

The parameter-adaptive pulse coupled neural network (PA-PCNN) model can ef-
fectively extract image edge and detail information without any training, and all the
parameters can be adaptively estimated through the input frequency band. In order to
fully investigate the role of PA-PCNN played in the proposed algorithm, the proposed
method performs image fusion without it. Specifically, the PA-PCNN fusion strategy is not
used in the high-frequency component fusion, but a conventional fusion strategy based
directly on the high-frequency decomposition coefficients. This article selects two pairs
of images from the lytro dataset for ablation research. In Figure 18c is the fusion result
with PA-PCNN, and (d) is the fusion result without PA-PCNN. The upper right corners of
(c) and (d) are detailed enlarged views of the area marked with red boxes. In the enlarged
detail, the edge of the boy’s hat in (d) and the edge of the Sydney Opera House model have
obvious edge blurs, while the same area in (c) is clear. The analyses show that PA-PCNN
plays a role in enhancing the fusion effect in the proposed fusion approach.

Figure 18. Ablation experiment of the PCNN. (a,b) are source images; (c) results with PCNN; (d) results without PCNN.

3.3.2. Series Multi-Focus Image Fusion

The proposed method can also realize image fusion with more than two multi-focus
source images. Figure 19 shows the fusion results of a sequence of three multi-focal sources
images. The fusion process of the proposed method goes as follows. Firstly, two of the
three source images are selected for fusion; the fused image in the previous step is then
fused with the remaining source image to obtain the final fusion images. It can be seen that
the focus information of the three source images is well preserved in the final fusion image,
with good visual effects.
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Figure 19. An example of applying the proposed method to fuse three source images. (a–c) are source images, (d) fusion
results of the proposed method.

4. Conclusions

In this paper, a multi-focus image fusion method based on multi-scale decomposi-
tion with complementary information is proposed. The proposed method achieves the
multi-scale double-layer decomposition by constructing an image decomposition scheme
with complementary structures and directions. The decomposition method can accurately
extract the structure and detailed information of the source images. In order to further
ameliorate the fusion quality, different fusion rules are designed according to the char-
acteristics of each decomposition component. In addition, through decomposition and
fusion, a decision map with complementary information can be obtained. According to
the complementary decision maps, the focus regions and the non-focus regions can be
accurately determined, which help solve the fusion problems caused by the anisotropic
blur and unregistration of the multi-focus image. The experimental results show that the
fusion result of the proposed method is slightly better than the existing methods in terms of
image pre-registration and unregistration. Nevertheless, the approach has some limitations
and needs refinement. Firstly, in the settings of the method parameters are mainly based
on empirical values, and the choice of decomposition scale is one example. The adaptive
selection of parameters will be the focus of future research. Moreover, the application of
the proposed method to other areas, such as medical image processing and infrared-visible
image processing should be part of future exploration.
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