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Abstract: Block compressed sensing (BCS) is a promising technology for image sampling and com-
pression for resource-constrained applications, but it needs to balance the sampling rate and quan-
tization bit-depth for a bit-rate constraint. In this paper, we summarize the commonly used CS quan-
tization frameworks into a unified framework, and a new bit-rate model and a model of the optimal 
bit-depth are proposed for the unified CS framework. The proposed bit-rate model reveals the rela-
tionship between the bit-rate, sampling rate, and bit-depth based on the information entropy of 
generalized Gaussian distribution. The optimal bit-depth model can predict the optimal bit-depth 
of CS measurements at a given bit-rate. Then, we propose a general algorithm for choosing sampling 
rate and bit-depth based on the proposed models. Experimental results show that the proposed 
algorithm achieves near-optimal rate-distortion performance for the uniform quantization frame-
work and predictive quantization framework in BCS. 

Keywords: data acquisition; compressed sensing; rate-distortion; optimal bit-depth; bit-rate; quan-
tization 
 

1. Introduction 
Compressed sensing (CS) is a signal acquisition framework [1–3] that acquires the 

signal’s measurements by linear projection at the sub-Nyquist rate. Unlike traditional im-
age coding methods with high computational complexity, the CS-based image coding 
methods are suitable for resource-constrained application scenarios through simultane-
ous data acquisition and compression [4–7]. 

When CS is applied to an image, the large measurement matrix will cause enormous 
computation and memory space for the codec. Gan [8] has proposed a block compressed 
sensing (BCS) method to decrease the measurement matrix’s size for images. BCS uses the 
same measurement matrix to measure the image block’s raster scan vector, significantly 
reducing the sensor’s calculation and transmission cost [9]. BCS processes each image 
block independently and supports parallel encoding, which can quickly obtain the image 
measurements. However, the real-valued CS measurements need to be combined with 
quantization and entropy encoder to output bitstreams for transmission or storage [10]. 

Although the uniform scalar quantization (SQ) is the most straightforward solution 
for quantizing CS measurements, it is inefficient in rate-distortion performance [6,11]. 
Therefore, some researchers have proposed different quantization schemes of CS meas-
urements to enhance the rate-distortion performance. For example, Mun et al. [12] have 
combined the differential pulse-code modulation (DPCM) with uniform scalar quantiza-
tion (DPCM-plus-SQ) for BCS measurements. The CS-based imaging system with DPCM-
plus-SQ and the smoothed projected Landweber (SPL) reconstruction can compete with 
JPEG in some cases. Wang et al. [13] have proposed a progressive quantization framework 
of CS measurements, which is slightly better than JPEG in rate-distortion performance. 
Chen et al. [14] have proposed a progressive non-uniform quantization framework of CS 
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measurements using partial Hadamard matrix together with patch-based recovery algo-
rithm, which can reach the rate-distortion performance of CCSDS-IDC (consultative com-
mittee for space data systems-image data compression standard). Chen et al. [15] have 
proposed a multi-layer residual coding framework for CS measurements, which combines 
prediction with the uniform SQ at the encoder. The framework predicts the CS measure-
ments by using the reconstructed image of the encoded CS measurements and then uses 
the uniform SQ to quantify the residuals between the predicted measurement and the ac-
tual measurement, which can obtain a better rate-distortion performance than JPEG2000. 
Some other quantization schemes are also used for CS measurements [16–19], but they are 
rarely used for CS-based image coding because of their complexity. 

In a CS-based image coding system, the bit-rate and reconstruction distortion depend 
on the CS sampling rate and quantization bit-depth, which have competition at a given 
bit-budget [20]. Therefore, the encoder needs to assign a CS sampling rate and a bit-depth 
by rate-distortion optimization (RDO). 

Some researchers have discussed the optimization problem of CS sampling rate and 
bit-depth. Chen et al. [21] have proposed a bit-rate model and a relative distortion model 
to assign CS sampling rate and bit-depth for the CS-based coding system with uniform 
SQ. Jiang et al. [22] have presented a new Lagrange multiplier method to set quantization 
step size and number of measurements, whereas they do not consider the complexity. Liu 
et al. [23] have introduced a distortion model of compressed video sampling to optimize 
the sampling rate and bit-depth. The model’s parameters need to be predicted from video 
features, which is not suitable for images. However, the above works only apply to uni-
form SQ scheme. To the knowledge of authors, little attention has been paid to optimize 
the CS sampling rate and bit-depth for other quantization schemes in BCS. 

The purpose of this study is to propose an efficient RDO algorithm to assign the CS 
sampling rate and bit-depth for the most frequently used quantization schemes in BCS. 
The RDO algorithm should be designed with low complexity due to the simple coding 
process of CS. In this paper, we propose a bit-rate model and an optimal bit-depth model 
to avoid the high complexity of calculating rate-distortion cost. Firstly, we use generalized 
Gaussian distribution to describe the distribution of objects encoded by entropy encoder 
and then build a bit-rate model. Secondly, we find that there is a logarithmic relationship 
between the optimal quantized bit-depth and the bit-rate. Then, we propose an optimal 
bit-depth model and use a feed-forward neural network to train the model parameters. 
Finally, we introduce a general method for optimizing the CS sampling rate and bit-depth 
with the proposed models. 

The remainder of this paper is structured as follows. We describe the problem of RDO 
in a CS-based imaging system in Section 2. Sections 3 and 4 discuss the proposed bit-rate 
model and the optimal bit-depth model. We propose an algorithm to assign CS sampling 
rate and bit-depth in Section 5. The experiment results and conclusions are drawn in Sec-
tions 6 and 7. 

2. Problem Statement 
CS theory states that a sparse signal can be recovered through its measurements ob-

tained by linear random projection. Many natural images have a sparse representation in 
a wavelet transform domain or discrete cosine transform domain [24,25], so they can be 
acquired by CS. Suppose 1Nx ×∈  denotes a raster-scanned vector of an image block. The 
CS measurements vector 1My ×∈  of x  can be acquired by the following expression: 

y x= Φ , (1) 

where ( )M N M N×Φ ∈   is a measurement matrix, and the sampling rate or measure-
ment rate is m M N= . 

Since CS measurements are real, they need to be discretized by the quantization be-
fore entropy encoding. Based on the most commonly used quantization schemes of CS 
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measurements, the CS sampling model with quantization can be unified into the follow-
ing expression: 

( ) ( )Q b by Q f y Q f x= = Φ       , (2) 

where Qy  is the quantized measurement vector, and it also stands for the input of en-
tropy encoder. bQ →：   denotes a uniform SQ operation for b-bit (applied element-
wise in (2)), which maps ( )f y  to the discrete alphabet   with 2b= . In this paper, 

we define ( ) ( )
b

f y
Q f y =   Δ

, where ( ) ( )max min=
2b

f y f y−
Δ  is the uniform quantization 

step size, ( )maxf y  and ( )minf y  represent the maximum and minimum of ( )f y , respec-
tively. ( )f   represents a reversible transform, which is used to change the distribution 
type of y . When the CS measurements are quantized by uniform SQ, ( )f   is an identity 
transformation. When the CS measurements are quantized by A-law or μ-Law non-uni-
form quantization, ( )f   is the law function [26]. When the CS measurements are quan-
tized by prediction with uniform SQ, ( )f   is the prediction function [12,17]. For example, 
in the DPCM-plus-SQ framework, ( ) ( 1) ( )( )j j jf y y y+= − , where ( )jy  represents the meas-
urement vector of the j-th image block. The progressive quantization methods [13,14] are 
also prediction frameworks combined with uniform SQ. In the progressive quantization 
method, the CS measurements are divided into a basic layer and refinement layer for 
transmission after uniform SQ quantization with B bit. In the basic layer, all B significant 
bits of the quantization indexes are transmitted, so the prediction function is equivalent 
to the identity transformation. In the refinement layer, the least B1<B significant bits of the 
quantization index are transmitted, so the dropped highest B-B1 bit is equivalent to the 
predicted value, and the retained B1 least significant bits are equivalent to the prediction 
residual. 

The CS-based image coding system is composed of CS sampling, quantization, and 
entropy encoder [15]. The bitstream of the encoded image is used for transmission or stor-
age. The decoder restores the bitstream to an image through the corresponding entropy 
decoder, dequantization, and CS reconstruction algorithm. Figure 1 shows the flow chart 
of the CS-based imaging system [10]. 

CS Random 
Projection Quantization Entropy 

Encoder
Image

Channel

CS 
Recovery Dequantization Entropy 

Decoder

Recovered
Image

 
Figure 1. CS-based imaging system. 

The average number of bits per pixel [21] of the encoded image can be calculated by 
the following expression: 

R mL= , (3) 

where L  is the average codeword length of the quantized CS measurements Qy  after 
entropy encoding. 

There is a positive correlation between average codeword length and quantization 
bit-depth. When the bit-rate is constrained, sampling rate and quantization bit-depth have 
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a competitive relationship with each other. We can minimize the distortion to optimize 
the sampling rate and bit-depth for a given bit-rate goalR , i.e., 

,
arg min ( , , ) . . ( , , ) goal

m b
D m b s t R m b R≤X X , (4) 

where ( , , )R m b X  and ( , , )D m b X , respectively, represent bit-rate and distortion of the 
image X  at the sampling rate m  and the bit-depth b . The bit-rate ( , , )R m b X  is the av-
erage number of bits per pixel of the encoded image, which can be obtained according to 
(3). Distortion refers to the dissimilarity between the reconstructed image X̂  and the 
original image X . The distortion measures mainly include the mean square error (MSE), 
the peak signal-to-noise ratio (PSNR), and the structural similarity index measure (SSIM) 
[27]. The PSNR between the reconstructed image X̂ and the original image X  is used as 
a measure of distortion in our paper. The mathematical definition of PSNR is 

( )2
1010 log 2 )(55 ˆ,PSNR MSE= × X X , where ˆ( , )MSE X X  is the mean square error 

between the reconstructed image X̂  and the original image X . The calculation of distor-
tion and bit rate depends on the original image and decoded image, and the cost of ob-
taining decoded image is very expensive. 

To avoid calculating the bit-rates and distortions, we first propose a new bit-rate 
model and an optimal bit-depth model. Then, we propose a general method to optimize 
the sampling rate and bit-depth for CS-based image coding. Figure 2 is the CS-based en-
coding system with RDO [21,23]. Our CS framework contains two CS processes. The first 
one is partial sampling, which aims to extract image features by a few CS measurements 
for RDO. The second one is to increase the number of CS measurements to achieve optimal 
sampling and compression by using the sampling rate optimized by RDO. 

Image Partial 
sampling

Rate-distortion 
optimization for 

sampling rate 
and bit-depth

Compressed 
sensing Quantization Entropy 

Encoder

*m

*b  
Figure 2. The CS-based coding system with RDO. 

3. Bit-Rate Model 
Based on (3), the bit-rate R  depends on the average codeword length of the quan-

tized CS measurements Qy  after entropy encoding. The average codeword length can be 
approximated by information entropy of Qy  before entropy encoding [28]. The infor-
mation entropy is closely related to the distribution characteristics of the CS measure-
ments, so we extract the distribution characteristics from the CS measurements of the first 
sampling to estimate the information entropy. However, the information entropy is only 
the lower boundary of the average codeword length. There is an error between the aver-
age codeword length and the information entropy estimated by a few measurements. 
Therefore, we modify the coefficients of the information entropy estimation model by fit-
ting the offline data of the average codeword length and then take it as the average code-
word length model. 

3.1. Generalized Gaussian Distribution Model of the Quantized CS Measurements 
According to (2), the quantized CS measurements can be considered to be obtained 

by ( )f   and [ ]bQ  . [ ]bQ   does not change the distribution type, while ( )f   deter-
mines how to change the distribution type of CS measurements. The CS measurements 
using random Gaussian matrix obey Gaussian distribution [13]. When the structurally 
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random matrix (SRM) is used for CS measurement, the CS measurements corresponding 
to the first row of SRM are uniformly distributed, and the remaining CS measurements 
are Laplacian distributed with zero mean [10]. The distribution of DPCM predictive errors 
without conditioning on contexts is very close to a Laplace distribution [29]. The experi-
ments of [30] show that the prediction errors of DPCM-plus-SQ satisfy the generalized 
Gaussian distribution. The Gauss distribution, the uniform distribution, and the Laplace 
distribution belong to the generalized Gauss distribution with specific shape parameters. 
In order to describe the distribution of CS measurements more generality, we use the gen-
eralized Gauss distribution to describe ( )f y  and Qy . The generalized Gaussian distri-
bution density function with zero mean can be expressed as: 

( ) ( ){ }( | , ) , exp , | |xp x v C x
βσ β σ α β σ= −    , (5) 

where ( )
1
2

1 (3 / ),
(1/ )

βα σ β σ
β

−  Γ=  Γ 
, ( ) ( ),

,
2 (1 / )

C
βα σ β

σ β
β

=
Γ

. σ  is the standard deviation. β  

is the shape parameter, which determines the attenuation rate of the density function. 
1

0
( ) e du tt u u

∞ − −Γ =  . The Laplace distribution and Gaussian distribution correspond to gen-

eralized Gaussian distribution when 1β =  and 2β = , respectively. Based on the gener-
alized Gaussian distribution, the information entropy [31] of ( )f y  can be estimated as 

( )

( ) [ ]
[ ]

2

2

1
2

2 2 3
2

( | , ) log ( | , )

( , ) 1log
2 (1/ ) ln 2

(3 / ) 1log log
ln 2(1

2
/ )

f

f

f

f

H p x p x dx
+∞

−∞
≈ −

 
= − + Γ 

 Γ = − + 
Γ  

 β σ β σ

βα β σ
β β

β β
σ

ββ

, 
(6) 

where fσ  and β  are the standard deviation and distribution shape parameters of 
( )f y , respectively. In Equation (2), Qy  is the discretization of ( )f y  quantized by the 

quantization step size Δ , so the information entropy [31] of Qy  can be estimated by: 

( ) [ ]
[ ]

2

1
2

2 2
2
3 2

log

(3 / ) 1log log log
ln 2(1/

2
)

Q

f

H H

β β
σ

ββ

− Δ

 Γ = − + − Δ 
Γ  



, (7) 

3.2. Average Codeword Length Estimation Model 
In Equation (7), fσ  and β  are keys to estimating information entropy H . How-

ever, fσ  and β  cannot be calculated directly because the CS measurements are un-
known before the sampling rate and bit-depth are assigned. Since the number of CS meas-
urements required for a high-quality reconstructed signal must satisfy a lower limit, the 
number of CS measurements used for compression will exceed the lower limit regardless 
of the goal bit-rate. Therefore, we can acquire a small number of CS measurements by the 
first sampling and then extract features for RDO. 

The CS measurements with different sampling rates are subsets of the measurement 
population for the same image, so a small number of measurements can be used to esti-
mate the features of measurements with a higher sampling rate. In this paper, 0m  repre-
sents the sampling rate of the first sampling. 
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The entropy-matching method is usually used to estimate the shape parameter of the 
generalized Gaussian distribution [31]. To simplify the estimation, we assume that there 

is a proportional relationship between 
1 3
2 2

2log [ (3 / )] / [(1 / )] 1 / ( ln 2)β β β β
 

− Γ Γ + 
 

 at dif-

ferent sampling rates for the same bit-depth, i.e., 

( ) ( ) ( )

( )0

1 3
2 2

2

1 3
2 2

2 0 0 0 0

0 2

log [ (3 / )] / [(1/ )] 1/ ( ln 2)

log 3 / / 1/ 1/ ln 2

1 g 2lo log
2 f

c

c H

β β β β

β β β β

σ

 
− Γ Γ + 

 
  ≈ − Γ Γ +        

  
 ≈ − + Δ 
 

, (8) 

where 0H  and 0β  represent the information entropy and shape parameter of ( )f y  at 
sampling rate 0m  and bit-depth b . c  is an undetermined parameter. 

Combined with the formula (8), the information entropy of Qy  can be estimated by 
the following expression: 

( ) ( )0 02 0 2 l2 21 1log log og log
2 2f f fH c Hσ σ ≈ + − + Δ − Δ 

 
, (9) 

where 
0f

σ  is the standard deviation of ( )f y  for measurements obtained by the first 

partial sampling, ( ) ( )
0

max m0 0in

2f b

f y f y−
Δ = , 0y  is the measurement vector obtained by the 

first sampling. 

In statistical theory, the statistic 2 2

1
Ms
M

σ=
−

 of the sample variance is an unbiased 

estimation of the population’s variance. Since the CS measurements with different sam-
pling rates have the same population, we assume that the unbiased variance estimates of 
CS measurements at different measurement rates are approximately equal, that is: 

0

2 20

01 1f f
MM

M M
σ σ≈

− −
, (10) 

where 2 2
0 0=round( ), =round( )M mN M m N . The expression (10) can be converted into 

0

2
2 20 0

2 2
0 0( 1) ( 1)

1
f f

m N
m N N m

m
m

σ σ
−

 
× 



−
≈ +

−
. Then, we can obtain the following expression: 

( ) ( ) ( )

( ) ( )

0 0

0

0 0

2
2 2 0 2

2
20 0

2 22 2
0 0

2 0 2

1 1 1log log log log log
4 2 2

1 1   log log
4 4( 1) ( 1)

1 1log log log2 log

2 2

2

1 ( )

2
2

f f f

f

f f

H c H

m N m
m N m N m

c H

σ σ

σ

σ

 ≈ + + − + Δ − Δ 
 

 −
≈ + × + − − 

 + + − + Δ − Δ 
 

. (11) 

Since 0
2 2

0

1
( 1)

m
m N N

− −→
−

 is very small, and the range of the sampling rate m  is lim-

ited; the range of 0
2

0

1
( 1) m

m
m N

−
×

−
 is also very limited. Therefore, we use a simple linear 

function to estimate it: 
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2
0 0

2 2 2
0 0

l 'g 1 1'o
( 1) ( 1)

'm N m
m N m N

c c
m m

×
 

≈
−

+
−

+
 −  , (12) 

where 'c  and ''c  are undetermined parameters. Moreover, we substitute the expression 
of quantization step into (11) to obtain the following expression: 

( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )( )

02 2

max min max min
2 2

2 max min 2 ma

0 0

0 min0 x

log log

log log
2 2

1 log log

f

b b

f y f y f y f y

f y f y f y f y

c

c

c b c

Δ − Δ

− −
= −

= − + − − −

. (13) 

We used the maximum ( )0maxf y  and minimum ( )0minf y  of the first sampled CS 

measurements to predict the maximum ( )maxf y  and minimum ( )minf y  of the CS meas-
urements with sampling rate m . Therefore, 

( )

( ) ( ) ( ) ( )( )
0

2

0 0

2 2

0 2 max min

1 1 ) log log
4 4

      1 1 log

1' '' ( 2fc c
m

f y

H c

c yH c b c f

σ≈ − ++

+ + − − −

+

+
. (14) 

Based on (14), we replaced ( )1 c− , 'c , c , (1 1 )
4 4

c− , ( )1c −  and ( )2 2l'' ogc +  with 

1c , 2c , 3c , 4c , 5c  and 6c , respectively, and establish a model for estimating the average 
codeword length as follows: 

( ) ( )( )
0 6

2
0 4 2 5 2 m1 ax min

2
3 0 0log logf

cL yH cc b c f cc y f
m

σ+ +≈ + + +− . (15) 

To improve the estimation accuracy of the average codeword length, we utilize the 
model coefficients 1 6c c  learned from offline data. Combining (3) with (15), we can es-
tablish the bit-rate model, as follows: 

( ) ( )( )
0

2
0 4 2 5 2 n

2
1 3 0 6ma 0x mi[ ]log logf

cR mL m c b c f y c
m

H c yc fσ+ + −≈ ≈ + + + , (16) 

4. Optimal Bit-Depth Model 
If we first predict the optimal bit-depth *b , the sampling rate can be estimated based 

on the bit-rate model (16), i.e., 

2*
*

1

goalR c
m

c b C
−

≈
+

, (17) 

where goalR  is the target bit-rate, ( ) ( )( )
0 53 0 0 6

2
0 4 2 2 max minlog logfC c f y f y cH c cσ= + + +−  

represents the feature of X  at bit-depth *b . In this section, we propose an optimal bit-
depth model, which can directly predict the optimal bit-depth for a given bit-rate. 

4.1. Function Mapping Relationship between Optimal Bit-Depth and Bit-Rate 
Chen et al. [15] tested the reconstruction performance of some images at different 

quantization bit-depths. They show that low quantization bit-depths can reconstruct high 
PSNRs at a low bit-rate, and the high quantization bit-depths can reconstruct high PSNRs 
at high bit-rate. However, they only give the fixed selection of quantization bit-depths for 
some bit-rates of all images, and do not give a method for selecting the optimal bit-depth. 
To find the relationship between the different quantization bit-depths and the PSNRs, we 
simulated eight test images, as shown in Figure 3. We obtain the optimal bit-depths of 
eight testing images by traversing different sampling rates ( [0.05,0.06,...,0.4]m∈ ) and 



Entropy 2021, 23, 1354 8 of 23 
 

different quantization bit-depths ( [3,4,...,10]b∈ ) for CS-based coding systems with uni-
form SQ and DPCM-plus-SQ, as shown in Figures 4 and 5. 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 3. eight testing images. (a) Monarch; (b) Parrots; (c) Barbara; (d) Boats; (e) Cameraman; (f) Foreman; (g) House; (h) 
Lena. 

Figure 4. The optimal bit-depths of eight images for CS-based coding system with uniform SQ. (a) Monarch; (b) Parrots; 
(c) Barbara; (d) Boats; (e) Cameraman; (f) Foreman; (g) House; (h) Lena. 
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Figure 5. The optimal bit-depths of eight images for CS-based coding system with DPCM-plus-SQ. (a) Monarch; (b) Par-
rots; (c) Barbara; (d) Boats; (e) Cameraman; (f) Foreman; (g) House; (h) Lena. 

It can be found from Figures 4 and 5 that the rate-distortion performance of the 
DPCM-plus-SQ framework (represents the CS-based coding system with DPCM-plus-SQ) 
is better than that of the uniform SQ framework (represents the CS-based coding system 
with uniform SQ), which indicates that the quantization scheme has a significant influence 
on the rate-distortion performance. However, the current rate-distortion optimization 
methods for CS are only suitable for a single uniform SQ framework. As far as we know, 
little attention has been paid to study the rate-distortion optimization method suitable for 
the prediction framework. 

Although the optimal bit-depth of different quantization frameworks is different, 
Figures 4 and 5 have the following common characteristics: (1) low bit-depths have high 
PSNRs at low bit-rates, and high bit-depths have high PSNRs at high bit-rates. (2) The 
optimal bit-depth of almost all images is 4 when the bit-rate is around 0.1 bpp. (3) With 
the increase of bit-rate, the optimal bit-depth shows a nondecreasing trend. (4) The opti-
mal bit-depth is the same in a bit-rate range, but the range is different for different images. 
There is a functional relationship between the optimal bit-depth and the bit-rate, which 
can be expressed as: 

1

1 2

5 6

3 0
4

8

best

R r
r R r

b

r R r

< ≤
 < ≤= 

 < ≤


, (18) 

where 1 6r r  are the endpoints of the bit-rate ranges. It can be found that the bit-rate 
range increases with the increases of bestb . The model (18) is equivalent to the following 
model: 

[ ]( )bestb g R= , (19) 

where [ ]  represents the rounding operation, and ( )g R  represents a continuous func-
tion of the bit-rate. Since the optimal bit-depth increases with the increases of bit-rate, the 
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first-order derivative of ( )g R  is required to be no less than 0. The increasing rate of the 
optimal bit-depth becomes slower with the increase of bit-rate, so the second-order deriv-
ative of ( )g R  is required to be less than 0, that is, 

2

2

( ) ( )0 & 0g R g R
RR

∂ ∂< ≥
∂∂

, (20) 

Based on the above discussion, we set 1 2( ) ln( )g R k R k= + . The model of the optimal 
bit-depth is established as follows: 

[ ] [ ]1 2( ) ln( )bestb g R k R k= = + , (21) 

where 1k  and 2k  are the model parameters, which are learned by a neural network in 
the Section 4.2. In order to collect offline data samples of 1k  and 2k  for the proposed 
neural network training, we establish the following optimization problem: 

1 2

2( ) ( ) ( ) ( )
21,

arg min ( ) + ( )
qi i i i

i best best
k k i i

b g R b g R − −  ω λ , (22) 

where i  is the sample index of the offline data. ( )i
bestb  represents the actual value of the 

optimal bit depth of the i-th sample. iω  represents the weight, which is the difference 
between the PSNR quantized with ( )i

bestb  and the PSNR quantized with ( )( )ig R    at the 
same bit-rate. In order to obtain the PSNR at the same bit rate, we perform linear interpo-

lation on the sample data. The regularization term 
2( ) ( )
2

( )i i
best

i
b g R−  guarantees the 

uniqueness of the solution. λ  is a constant coefficient, which takes 0.01 in this work. We 
take 10q = , which avoids an error of more than 2 bits between the predicted value and 
the actual value. 

In (22), the first item ensures the accuracy of the optimal bit-depth model, and the 
second item ensures the uniqueness of the model coefficient. Since it is difficult to deal 
with the gradient of the rounding operation, (22) cannot be solved by the traditional gra-
dient-based optimization method. We use the particle swarm optimization algorithm 
[32,33] to optimize the problem (22). The number of particle swarm is 100 and iterated 300 
times. In each iteration, 30 particle swarms in the population are randomly generated in 
the [−0.5, 0.5] range of the optimal point. 

Figures 6 and 7 show the fitted results of the model (21) for the uniform SQ frame-
work and DPCM-plus-SQ framework, respectively. It can be seen that the fitted bit-depths 
are in good agreement with the actual bit-depths. The errors between the predicted value 
and the actual value are only one bit at most. The errors of one bit are mainly concentrated 
between the two adjacent optimal bit-depths, which has little difference on the PSNR for 
the two bit-depths. 
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Figure 6. The predicted bit-depths of eight images for the SQ framework. (a) Monarch; (b) Parrots; (c) Barbara; (d) Boats; 
(e) Cameraman; (f) Foreman; (g) House; (h) Lena. 

Figure 7. The predicted bit-depths of eight images for the DPCM-plus-SQ framework. (a) Monarch; (b) Parrots; (c) Barbara; 
(d) Boats; (e) Cameraman; (f) Foreman; (g) House; (h) Lena. 

4.2. Model Parameter Estimation Based on Neural Network 
It is challenging to design a function for estimating the model parameters accurately. 

Therefore, we use a four-layer feed-forward neural network [34,35] to learn the mapping 
relationship between the model parameters and image features rather than designing the 
function relationship by hand [36,37]. We can imagine that the model (21) would be 
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beneficial if the model parameters could be predicted based on some content features de-
rived from the compressed sampled image. As model (21) is closely related to the bit-rate, 
we directly use the image features in the proposed bit-rate model as the characteristics of 
estimating the parameters. The image features of the proposed bit-rate model are 2

0σ , 

0H , ( )0maxf y  ( )0minf y . A finite set of real numbers usually needs to be quantized before 
calculating the information entropy. The optimal bit-depth of many images is low when 
the bit-rate is low, so we choose the information entropy 0, 4bitH =  with a quantization bit-
depth of 4 as a feature. Since the CS measurement of the image is sampled block by block, 
we take the image block as the video frame and design two image features according to 
the video features in reference [23]. For example, block difference (BD): the mean (and 
standard deviation) of the difference between the measurements of adjacent blocks, i.e., 

BDμ  and BDσ . We also take the mean of measurements 0y  as a feature. 
We designed a network including an input layer of seven neurons and an output 

layer of two neurons to estimate the model parameters 1 2[ , ]k k , as shown in Formula (23) 
and Figure 8. 

( ) ( )2
1 0 0 0 0 0, 4

1 1 1

1 1 1

max min[ , , , , , ]
( ) , 2 4

, 4

, T
BD BD bit

j j j j

j j j

u y f y f y H
u g W u d j
F W u d j

σ μ σ =

− − −

− − −

=
= + ≤ <

= + =

 (23) 

where ( )g v  is the sigmoid activation function, ju  is the input variable vector at the j-
th layer, F  is the parameters vector 1 2[ , ]k k . ,j jW d  are the network parameters learned 
from offline data. We take the mean square error (MSE) as the loss function. 

     input layer      1st hidden layer       2nd hidden layer        output layer

2
0σ

0y

max 0( )f y

min 0( )f y

BDμ

BDσ

0H

1k

2k

 
Figure 8. Four-layer feed-forward neural network model for the parameters. 

5. A General Rate-Distortion Optimization Method for Sampling Rate and Bit-Depth 
5.1. Sampling Rate Modification 

The model (16) obtains the model parameters by minimizing the mean square error 
of all training samples. Although the total error is the smallest, there are still some samples 
with significant errors. To prevent excessive errors in predicting sampling rate, we pro-
pose the average codeword length boundary and sampling rate boundary. 

5.1.1. Average Codeword Length Boundary 
When the optimal bit-depth is determined, the average codeword length usually de-

creases with the sampling rate increase. Although the average codeword length of differ-
ent images varies with the sampling rate, the variation is finite. Therefore, we design an 
average codeword length boundary. 
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As the information entropy 0H  is the input of the optimized sampling rate and is 
very close to the average codeword length 0L  with the sampling rate 0m , we take 0H  
as the reference of the average codeword length to estimate variation. The average code-
word length variation is expressed as 0L H− . We only take the bit-depth and sampling 
rate as factors for influencing the upper and lower bound. According to model (16), we 
establish the upper and lower bound model of the average codeword length variation as 
follows: 

2
3

5
4 6

0 1

0

u

l

aL H a b a
m
a

L H a b a
m

− = + +

− = + +
 

(24) 

where uL  and lL  describe the upper and lower bounds of average codeword length, re-
spectively. 1 6a a  are the model coefficients fitted by offline samples. 

According to (17), we first estimate the sampling rate as 
(1) *

3 1( ) / ( )goalm R c c b C= − +  (25) 

The corresponding average codeword length is (1)/goalL R m= . Then, we calculate the 
upper 02

*
31 /uL a b a m a H= + + +  and the lower bound 04 5

*
6/lL a b a m a H= + + +  based 

on (24). uL L>  means that the sampling rate is too low; we should increase the sampling 
rate. So, we take the bit-rate model as uR mL= , the sampling rate is updated to 

2
*

0 31( ) / ( )u goalm R a H a b a= − + + ; if lL L< , we take the bit-rate model as lR mL= , the sam-

pling rate is updated to 5
*

0 4 6( ) / ( )l goalm R a H a b a= − + + . It is summarized as follows: 

1

(2)

( )
l

u u

l

m if L L
m m if L L

wm other ise

>
= <



 (26) 

5.1.2. Sampling Rate Boundary 
The average codeword length boundary uses the information entropy of partial 

measurements to restrict the estimated value of the average codeword length, so as to 
modify a sampling rate that is too large or too small. To modify the sampling rate more 
directly, we establish a linear boundary model of the sampling rate for different bit-depths 
as follows: 

7 8

9 10

'
'
u

l

m a a
m

R
a aR

= +
= +

 (27) 

where R  is the bit-rate, 7 10a a  are the model coefficients fitted by offline samples. 
When the assigned sampling rate exceeds the boundaries in (27), it will be modified by 
the following expression: 

(2)
*

(2)

' '
' '
u u

l l

m if m m
m

m if m m
 >=  <

 (28) 

5.2. Rate-Distortion Optimization Algorithm 
Based on the proposed bit-rate model and the optimal bit-depth model, we propose 

an algorithm to assign the bit-depth and sampling rate for a given target bit-rate goalR , as 
follows. 

(1) Partial sampling. 
The partial CS measurements are sampled with the sampling rate 0m . 
(2) Features extraction. 

( ) ( ) ,max mi
2
0 0 0 0 0 4n, , ,, , ,BD BD bity f y f y Hσ μ σ =  of partial measurements are calculated. 
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(3) The optimal bit-depth prediction. 
The optimal bit-depth is predicted by [ ]1 2ln( )bestb k R k= + , where the model parame-

ters are estimated by the trained network. 
(4) Features extraction. 
The partial measurements are quantized with bit-depth *b , and then the information 

entropy 0H  is calculated. 
(5) The optimal sampling rate prediction. 
The optimal sampling rate is estimated by formula (25). 
(6) Sampling rate modification 
The sampling rate is updated according to the formula (26) and (28). 
(7) CS sampling 
The original image is acquired to obtain the remaining CS measurements by the sup-

plementary sampling rate *
0m m m= − . 

(8) Quantization and entropy encoding. 
All measurements are quantized and then coded by arithmetic coding. 

5.3. Computational Complexity Analysis 
The extra calculation of the sampling rate and quantization bit-depth optimization 

comes from three processes, namely feature extraction, the optimal bit-depth prediction, 
and the sampling rate estimation. 

In feature extraction, the extra calculation mainly comes from 
( ) ( ) ,max mi

2
0 0 0 0 0 4n, , ,, , ,BD BD bity f y f y Hσ μ σ =  of the measurements with sampling rate 0m . 

The number of measurements is 2
0m N× . We assume that the calculation of one subtrac-

tion is equivalent to that of one addition. The calculation of 0y  needs 2
0 1m N× −  addi-

tions and one multiplication. The calculation of 2
0σ  needs 2

0 2 1m N× × −  additions and 
2

0 +1m N×  multiplications. ( )0maxf y  and ( )0minf y  need ( )2
0 -1 2m N× ×  judgment op-

erations. The calculation of block errors needs 2 2
0 )(m N B× −  additions. BDμ  needs 

2 2
0 ) 1(m N B× −−  additions and one multiplication. BDσ  needs 2 2

0 ( 2 1)m N B× − × −  ad-
ditions and 2 2

0 ( +1)m N B× −  multiplications. The extra calculation of 0, 4bitH =  comes 
from quantization with bit-depth 4, which requires 2

0m N×  multiplications. The remain-
ing calculation of 0, 4bitH =  mainly comes from counting the number of symbols and calcu-
lating the entropy. The calculation of counting the number of symbols requires 2

0m N×  
judgments, 2

0m N×  additions. As the maximum number of symbols is 4 12 +  + 1 = 33, the 
calculation of entropy needs 66 multiplications, 33 logarithms, and 33 additions at the 
most. 

In the optimal bit-depth prediction, the calculation mainly comes from the neural 
network model. There are seven neurons in the input layer, two neurons in the output 
layer, four neurons in the first hidden layer, and three neurons in the second hidden layer. 
When the activation function is not considered, the calculation of the network includes 7 
×  4 + 4 ×  3 + 3 ×  2 = 46 multiplications and 6 ×  4 + 4 + 3 ×  3 + 3 + 2 ×  2 + 2 = 46 
additions. In the sampling rate estimation, the amount of calculation mainly comes from 
the calculation of (25) and (26). 

Compared with the computations of the CS measurements, a fixed number of oper-
ations can be ignored. The extra calculation includes 2

0 8m N× ×  additions, 2
0m N× × 3 

multiplications, and 2
0m N× × 3 judgments. Assuming that two additions are needed for 

one judgment operation, the total amount of additional computation requires 2
0 14m N× ×  

additions and 2
0 3m N× ×  multiplications. 

The computations of all CS measurements requires 2 2Bm N× ×  multiplications and 
2 2(B 1)m N× × −  additions. B  is the size of the image block, which is at least 16. When 
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B  = 16, the optimization process needs to increase ( )2
03 B 3 256m m× ≤ 1.17%≈  multi-

plications and ( )2
014 (B 1) 14 255 5.49%m m− × ≤ ≈  additions. In computer operations, 

the amount of calculation of addition is at least ten times faster than multiplication. The 
computations of rate-distortion optimization will not exceed 2% of the computations of 
the partial measurements. Furthermore, with the increase of image block size or sampling 
rate m , the percentage of computation in the optimization process will be further re-
duced. 

6. Experimental Results 
The proposed method is tested on some images for the DPCM-plus-SQ framework 

and uniform SQ framework, respectively. The model parameters are obtained by offline 
training some images of the BSDS500 database [38]. Several images, including eight im-
ages (shown in Figure 3), and the BSD68 dataset [39], are tested in our simulations. We 
take 100 images randomly selected from the BSDS500 database as the training set and the 
BSD68 dataset (68 images) as the test set. Since the size of the images varies, the images 
were cropped to a size of 256 × 256 from the center. All the numerical experiments are 
performed via MATLAB (R2018b) on a Windows 10 (64 bit) platform with an Intel Core 
i5-8300H 2.30 GHz processor and 16 GB of RAM. 

6.1. Model Parameters Estimation 
To obtain the model parameters of the proposed bit-rate model and the optimal bit-

depth model, we take 100 images from the BSDS500 database [38] to collect training sam-
ples. The training data adopts the way of traversing bit-depths and sampling rates. The 
bit-depths include {3, 4, …, 10}; the set of sampling rate includes 37 samples in {0.04, 0.05, 
…, 0.4} and 7 samples in {3/256, 4/256, …, 9/256}. If the average codeword length com-
pressed by entropy encoding is greater than the quantized bit-depth, we take the average 
codeword length equal to the quantized bit-depth. One image collects 352 samples of the 
average codeword length and PSNR. The image block size adopts the optimal size of the 
corresponding quantization method, in which the DPCM quantization framework uses 
16×16 blocks and uniform quantization uses 32×32 blocks. The orthogonal random Gauss-
ian matrix is used for BCS sampling in this work. The entropy encoder adopts arithmetic 
coding [40]. In the decoder, the SPL-DWT algorithm [41] is used for image reconstruction. 
We take the first partial sampling rate 0 0.05m = . 

We use the least-square method to fit the model (15). Table 1 shows the trained pa-
rameters for DPCM-plus-SQ framework and uniform SQ framework. To quantify the ac-
curacy of the fitting, we calculate the mean square error (MSE) and Pearson correlation 
coefficient (PCC) [42] between the actual value and predicted value. The closer the PCC is 
to 1, the better the fit of the model. The closer the MSE is to 0, the better the fit of the model. 
For the DPCM-plus-SQ framework, the MSE and PCC are 0.022 and 0.995, respectively. 
For the uniform SQ framework, the MSE and PCC are 0.027 and 0.996, respectively. Table 
1 shows that the proposed model (15) can well describe the relationship between average 
codeword length L  and bit-depth, sampling rate, and image features. The results show 
that model (15) can well describe the relationship between the average codeword length, 
sampling rate, and bit-depth. 

Table 1. Parameters of the fitted model (15). 

Quantization Framework 1c  2c  3c  4c  5c  6c  PCC MSE 
DPCM-plus-SQ −3.0927 × 10−1 1.9128 × 10−2 −1.6845 × 10−1 1.6592 × 10−1 1.3467 −1.1718 0.995 0.022 

uniform SQ −2.0660 × 10−1 6.5594 × 10−3 −2.0673 × 10−1 2.3831 × 10−1 1.2761 −1.9910 0.996 0.027 

The optimal bit-depth model depends on the model parameters estimated by the pro-
posed neural network. The samples of the model parameters are obtained by solving the 
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problem (22) and then are used to train the neural network. Due to the random initializa-
tion of neural network parameters, the prediction performances of the different trained 
networks are different. The best network from several trained networks is chosen to esti-
mate the parameters of the proposed optimal bit-depth model. Table 2 shows the predic-
tion performance of the optimal bit-depth model in the training set image and test set. 

Table 2. Performances of the training set and test set for the optimal bit-depth model. 

Quantization Framework DPCM-Plus-SQ Uniform SQ 
Data Training Set Test Set Training Set Test Set 

Accuracy (%) 80.7 70.7 76.5 70.4 
Percentage of one-bit error (%) 19.3 29.0 23.5 29.3 

Sum (above) (%) 100 99.7 100 99.7 

As shown in Table 2, for DPCM-plus-SQ framework, 80.7% and 70.7% are the accu-
racies of predicting the optimal bit-depth in the training set (BSDS500) and the test set 
(BSD68), respectively. For uniform SQ framework, 76.5% and 70.4% are the accuracies of 
predicting the optimal bit-depth in the training set (BSDS500) and the test set (BSD68), 
respectively. In the training set, the differences between the optimal bit-depth and the 
predicted bit-depth are no more than one bit. In the test set, 99.7% of the samples have a 
difference of no more than one bit between the optimal bit-depth and the predicted bit-
depth. In most cases, the influence of 1-bit error on PSNR is limited, so it is effective to 
utilize a neural network to learn the optimal bit-depth model parameters. 

In the training set, 100 images have 100 the average codeword length curves. We take 
the upper five curves and the lower five curves as the training samples of the model (24). 
The parameters are fitted offline by the least square method. We obtain 1a  = 

38.4564 10−− × , 2a  = 21.8272 10−× , 3a  = 11.5871 10−×− , 4a  = 26.7478 10−×− , 5a  = 
21.4306 10−× , 6a  = 11.8052 10−×−  for the DPCM-plus-SQ framework, and 1a  = 
24.5857 10−× , 2a  = 38.1957 10−× , 3a  = 12.1012 10−×− , 4a  = 1.02261 10−× , 5a  = 
31.6633 10−× , 6a  = 19.0052 10−×−  for the uniform SQ framework. 

In the training set, we take the maximum and minimum sampling rate corresponding 
to the given bit-rates as the training sample of the model (27). The parameters are obtained 
by the least-square method. Through experiments, we found that the optimized sampling 
rates beyond the boundary are mainly near the low bit-rate of 0.1–0.3, and the correspond-
ing optimal bit-depths are mostly 4 bit or 5 bit. So, we impose boundary constraints on 
the sampling rates when the optimal bit-depths are 4 and 5. The parameters are fitted 
offline by the least square method. For DPCM-plus-SQ framework with bit-depth of 4, we 
obtain 1

7 4.9164 10a −= × , 3
8 7.1258 10a −= − × . For DPCM-plus-SQ framework with bit-

depth 5, we obtain 7a  = 13.4874 10−× , 3
8 6.1371 10a −= − × . For uniform SQ framework 

with bit-depth 4, we obtain 1
7 3.3181 10a −= × , 3

8 1.3050 10a −= − × . For uniform SQ frame-
work with bit-depth 5, we obtain 1

7 2.3433 10a −= × , 3
8 2.3347 10a −= × . 

6.2. Rate-Distortion Optimization Performance 
To verify the accuracy of the bit-rate model, we tested the BSD68 dataset and eight 

images in Figure 3, respectively. We first use the proposed algorithm to assign the sam-
pling rate and bit-depth for target bit-rates, including 0.1, ... 1 bit per pixel (bpp). Then, 
we calculate actual bit-rates and PSNRs of the reconstructed image for the estimated sam-
pling rate and bit-depth. Tables 3 and 4 show the optimized bit-rate of BSD68 for the uni-
form SQ framework and DPCM-plus-SQ framework, respectively. The absolute error per-
centage denotes the percentage of the absolute error in the target bit-rate, where the abso-
lute error is the absolute of the difference between target bit-rate and actual bit-rate. 
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Table 3. Comparison of actual bit-rates with target bit-rates for the uniform SQ framework. 

Image Target Bit-Rate (bpp) 0.1 0.2 0.3 0.4 0.5 

BSD68 test set 
Actual bit-

rate 

Maximum 0.110 0.218 0.327 0.427 0.523 
Minimum 0.087 0.181 0.268 0.368 0.467 
Average 0.099 0.203 0.305 0.406 0.503 

Average of absolute error percentage (%) 3.23 2.91 2.29 2.33 1.78 
Image Target Bit-Rate (bpp) 0.6 0.7 0.8 0.9 1 

BSD68 test set 
Actual bit-

rate 

Maximum 0.619 0.727 0.831 0.934 1.037 
Minimum 0.565 0.664 0.771 0.831 0.916 
Average 0.603 0.706 0.805 0.901 0.999 

Average of absolute error percentage (%) 1.67 1.87 1.65 1.86 1.86 

Table 4. Comparison of actual bit-rates with target bit-rates for the DPCM-plus-SQ framework. 

Image Target Bit-Rate (bpp) 0.1 0.2 0.3 0.4 0.5 

BSD68 test set 
Actual bit-

rate 

Maximum 0.108 0.219 0.319 0.424 0.533 
Minimum 0.090 0.187 0.274 0.366 0.457 
Average 0.101 0.200 0.299 0.399 0.499 

Average of absolute error percentage (%) 3.17 2.75 2.30 2.09 2.03 
Image Target Bit-Rate (bpp) 0.6 0.7 0.8 0.9 1 

BSD68 test set 
Actual bit-

rate 

Maximum 0.636 0.741 0.848 0.954 1.063 
Minimum 0.548 0.646 0.737 0.829 0.922 
Average 0.597 0.695 0.793 0.891 0.989 

Average of absolute error percentage (%) 2.18 2.23 2.20 2.33 2.26 

As shown in Table 3, the bit-rate average absolute error percentages of BSD68 are 
between 1.65% and 3.23%, which indicates that the proposed bit-rate model is useful for 
uniform SQ. As shown in Table 4, the bit-rate average absolute error percentages of BSD68 
are between 2.09% and 3.17%, which indicates that the proposed bit-rate model is useful 
for DPCM-plus-SQ. 

Tables 5 and 6 show the actual bit-rate of the eight testing images for uniform SQ and 
DPCM-plus-SQ, respectively. The results exhibit that actual bit-rates are very close to the 
target bit-rates. 

Table 5. The actual bit-rates of eight images for the uniform SQ framework. 

Target Bit-Rate 
(bpp) 

Actual Bit-Rate (bpp) 
Monarch Parrots Barbara Boats Cameraman Foreman House Lena 

0.1 0.102 0.102 0.098 0.106 0.101 0.096 0.105 0.100 
0.2 0.203 0.207 0.204 0.207 0.204 0.208 0.204 0.205 
0.3 0.305 0.305 0.307 0.317 0.312 0.308 0.310 0.307 
0.4 0.408 0.402 0.412 0.416 0.419 0.415 0.414 0.412 
0.5 0.493 0.506 0.504 0.513 0.518 0.512 0.511 0.507 
0.6 0.590 0.606 0.606 0.615 0.623 0.609 0.612 0.609 
0.7 0.694 0.713 0.713 0.725 0.731 0.712 0.720 0.705 
0.8 0.790 0.800 0.802 0.827 0.837 0.812 0.817 0.805 
0.9 0.884 0.905 0.905 0.918 0.897 0.917 0.923 0.910 
1.0 0.981 1.003 1.003 1.019 1.030 1.017 1.024 1.007 

  



Entropy 2021, 23, 1354 18 of 23 
 

Table 6. The actual bit-rates of eight images for the DPCM-plus-SQ framework. 

Target Bit-Rate 
(bpp) 

Actual Bit-Rate (bpp) 
Monarch Parrots Barbara Boats Cameraman Foreman House Lena 

0.1 0.102 0.098 0.099 0.103 0.101 0.095 0.098 0.102 
0.2 0.197 0.189 0.201 0.210 0.201 0.202 0.190 0.187 
0.3 0.303 0.292 0.295 0.308 0.302 0.296 0.291 0.289 
0.4 0.404 0.392 0.387 0.410 0.404 0.398 0.407 0.380 
0.5 0.504 0.487 0.490 0.511 0.500 0.494 0.505 0.477 
0.6 0.603 0.578 0.593 0.611 0.596 0.598 0.610 0.569 
0.7 0.705 0.671 0.691 0.703 0.695 0.706 0.703 0.668 
0.8 0.799 0.756 0.779 0.811 0.794 0.792 0.804 0.759 
0.9 0.899 0.864 0.881 0.902 0.896 0.895 0.898 0.848 
1.0 1.014 0.957 0.969 0.993 0.989 0.996 1.004 0.940 

To test the validity of the optimal bit-depth model, we compare the predicted optimal 
bit-depth with the best bit-depths by traversing different bit-depths and different sam-
pling rates, as shown in Tables 7 and 8. 

Table 7. Performance of the optimal bit-depth model for the uniform SQ framework. 

Image Target Bit-Rate (bpp) 0.1 0.2 0.3 0.4 0.5 

BSD68  
test set 

Optimal percentage (%) 91.18 64.71 77.94 77.94 64.71 
One-bit error percentage (%) 8.82 35.29 22.06 22.06 35.29 

Sum of the above (%) 100 100 100 100 100 
Average PSNR error (dB) −0.04 −0.13 −0.12 −0.06 −0.08 

Image Target Bit-Rate (bpp) 0.6 0.7 0.8 0.9 1 

BSD68  
test set 

Optimal percentage (%) 63.24 54.41 60.29 57.35 64.71 
One-bit error percentage (%) 36.76 45.59 39.71 41.18 33.82 

Sum of the above (%) 100 100 100 98.53 98.53 
Average PSNR error (dB) −0.09 −0.10 −0.08 −0.11 −0.07 

Table 8. Performance of the optimal bit-depth model for the DPCM-plus-SQ framework. 

Image Target Bit-Rate (bpp) 0.1 0.2 0.3 0.4 0.5 

BSD68  
test set 

Optimal percentage (%) 82.35 58.82 79.41 79.41 76.47 
One-bit error percentage (%) 17.65 41.18 20.59 20.59 23.53 

Sum of the above (%) 100 100 100 100 100 
Average PSNR error (dB) −0.29 −0.21 −0.16 −0.06 −0.07 

Image Target Bit-Rate (bpp) 0.6 0.7 0.8 0.9 1 

BSD68  
test set 

Optimal percentage (%) 64.71 70.59 60.29 55.88 63.24 
One-bit error percentage (%) 35.29 29.41 38.24 42.65 35.29 

Sum of the above (%) 100 100 98.53 98.53 98.53 
Average PSNR error (dB) −0.07 −0.09 −0.11 −0.14 −0.11 

In Tables 7 and 8, the optimal percentage shows the percentage of images whose pre-
dicted bit-depth is consistent with the actual best bit-depth. The one-bit error percentage 
is the percentage of images with the one-bit error between the predicted bit-depth and the 
actual best bit-depth. We encode and decode the images according to the predicted pa-
rameters (sampling rate and bit-depth) and calculate the bit-rate and PSNR. The PSNR 
error is the PSNR minus the maximum PSNR, where the PSNRs are obtained by the near-
est interpolation method for a bit-rate. 

In Table 7, the sum of optimal bit-depth and one-bit error bit-depth obtain a percent-
age of between 98.53% and 100% for the SQ framework. When the target bit-rates are 
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0.1~0.8 bpp, the sum of the optimal bit-depth and one-bit error bit-depth percentage is 
100%. When the target bit-rates are 0.9 and 1 bpp, the sum of optimal bit-depth and one-
bit error bit-depth percentage is 98.53%. As the difference of PSNR between different bit-
depths is small at the high target bit-rates, there is an error in estimating the bit-depth. 
Although only 54.41% to 91.18% of the predicted bit-depths are consistent with the opti-
mal bit-depth, the average PSNR errors are between 0.04 dB and 0.013 dB, which shows 
that the error of predicted bit-depth has little influence on the reconstruction performance. 

In Table 8, the sum of optimal bit-depth and one-bit error bit-depth obtain a percent-
age of between 98.53% and 100% for the DPCM-plus-SQ framework. When the target bit-
rates are 0.1~0.7 bpp, the sum of optimal bit-depth and one-bit error bit-depth obtain a 
percentage of 100%. When the target bit-rates are 0.8~1 bpp, the sum of optimal bit-depth 
and one-bit error bit-depth obtains a percentage of 98.53%. Although only 55.88% to 
82.35% of the predicted bit-depths are consistent with the optimal bit-depth, the average 
PSNR errors are between 0.07 dB and 0.029 dB, which shows that the error of predicted 
bit-depth has little influence on the reconstruction performance. 

To demonstrate the performance of the proposed method in detail, we give the opti-
mized rate-distortion curves of the eight testing images, as shown in Figures 9 and 10. We 
first encode the image for the bit-rates according to the optimized sampling rates and bit-
depths, then calculate the PSNRs of the reconstructed image to obtain the rate-distortion 
curve. All bit-rates and PSNRs obtained by traversing different sampling rates and bit-
depths are also shown in Figures 9 and 10. As far as we know, the optimization of sam-
pling rate and bit-depth in the CS-based coding system is mainly focused on the uniform 
SQ framework, so we compared the proposed method with the latest methods [21] for the 
uniform SQ framework, as shown in Figure 9. 

Figure 9. Rate-distortion performance of the proposed algorithm for the SQ framework. (a) Monarch; (b) Parrots; (c) Bar-
bara; (d) Boats; (e) Cameraman; (f) Foreman; (g) House; (h) Lena. 
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Figure 10. Rate-distortion performance of the proposed algorithm for the DPCM-plus-SQ framework. (a) Monarch; (b) 
Parrots; (c) Barbara; (d) Boats; (e) Cameraman; (f) Foreman; (g) House; (h) Lena. 

Figure 9 shows the proposed algorithm’s rate-distortion curves of the eight test im-
ages encoded by the CS-based coding system with uniform SQ. The rate-distortion curve 
of the proposed algorithm is very close to the optimal rate-distortion curve. The PSNRs of 
the proposed algorithm are slightly worse than the optimal PSNRs only at a few bit-rates. 
When the bit-rate is 0.3 bpp for Monarch, the predicted optimal bit-depth is 5 bit, while 
the actual optimal bit-depth is 4 bit. The PSNR of the proposed algorithm is 0.52 dB less 
than the optimal PSNR at bit-rate of 0.3 bpp. When the bit-rate is 0.3 and 0.8 bpp for Par-
rots, the predicted optimal bit-depth is 4 and 6, while the actual optimal bit-depth is 5 bit. 
The PSNRs of the proposed algorithm are about 0.25 and 0.3 dB less than the optimal 
PSNR at bit-rate of 0.3 and 0.8 bpp. When the bit-rate is 0.3 and 0.9 bpp for Cameraman, 
the predicted optimal bit-depth is 5 and 6, while the actual optimal bit-depth is 4 and 5. 
The PSNRs of the proposed algorithm are about 0.48 and 0.12 dB less than the optimal 
PSNR at bit-rate of 0.3 and 0.9 bpp. When the bit-rate is 0.4 bpp for Foreman, the predicted 
optimal bit-depth is 5 bit, while the actual optimal bit-depth is 6 bit. The PSNR of the 
proposed algorithm is 0.41 dB less than the optimal PSNR at bit-rate of 0.4 bpp. The opti-
mal bit-depth model mainly causes these deviations, whereas the maximum deviation is 
1 bit. 

The proposed algorithm’s rate-distortion curves are very close to the results of [21] 
on Barbara, Boats, House, Lena, and are better than [21] on Monarch, Parrots, Cameraman, 
Foreman. It can be seen from Figure 9a that the optimal bit-depth is 7 at the bit-rate of 0.7 
bpp or 0.8 bpp, the proposed algorithm can accurately predict the optimal bit-depth. How-
ever, the bit-depth predicted by [21] is 6, which is one bit less than the optimal bit-depth. 
In Figure 9b, the optimal bit-depth is 4 at the bit-rate of 0.2 bbp, and the optimal bit-depth 
is 5 at the bit-rate of 0.6 bpp and 0.7 bbp. Compared with [21], the predicted bit-depths of 
the proposed algorithm are more accurate. Some similar situations occur in Figure 9e,f. 

Figure 10 shows the proposed algorithm’s rate-distortion curves of the eight test im-
ages encoded by the CS-based coding system with DPCM-plus-SQ. The rate-distortion 
curve of the proposed algorithm is very close to the optimal rate-distortion curve. The 
PSNRs of the proposed algorithm are slightly worse than the optimal PSNRs only at a few 
bit-rates. When the bit-rate is 0.5 bpp for Parrots, the predicted optimal bit-depth is 6 bit, 
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while the actual optimal bit-depth is 5 bit. The PSNR of the proposed algorithm is 0.25 dB 
less than the optimal PSNR at bit-rate of 0.5 bpp. When the bit-rate is 0.2 and 0.8 bpp for 
the image boats, the predicted optimal bit-depth is 4 and 5 bit, while the actual optimal 
bit-depth is 5 and 6. The PSNRs of the proposed algorithm are about 0.5 dB and 0.4 dB 
less than the optimal PSNR at bit-rates of 0.2 and 0.8 bpp. When the bit-rate is 0.7 bpp for 
Cameraman, the predicted optimal bit-depth is 6 bit, while the actual optimal bit-depth is 
5 bit. The PSNR of the proposed algorithm is 0.45 dB less than the optimal PSNR at bit-
rate of 0.7 bpp. When the bit-rate is 0.8 bpp for Foreman, the predicted optimal bit-depth 
is 6 bit, while the actual optimal bit-depth is 7 bit. The PSNR of the proposed algorithm is 
about 0.29 dB less than the optimal PSNR at bit-rate of 0.8 bpp. 

From Figures 9 and 10, the prediction deviation of the optimal bit-depth is at most 1 
bit, which mainly occurs at the junction between the two optimal bit-depths and has little 
effect on PSNR. The rate-distortion curves of the proposed algorithm are almost the opti-
mal curve for the DPCM-plus-SQ framework and SQ framework. Although the proposed 
algorithm’s rate-distortion performance is not optimal at some bit-rates, the gap is small. 

7. Conclusions 
The CS-based coding system needs to assign sampling rate and quantization bit-

depth for a given bit-rate before encoding an image. In this work, we first propose a bit-
rate model and an optimal bit-depth model for the CS-based coding system. The proposed 
bit-rate model and optimal bit-depth model have simple mathematical forms, and they 
have effective parameters based on training off-line data. Then, we propose a general rate-
distortion optimization method to assign sampling rate and quantization bit-depth based 
on the bit-rate model and optimal bit-depth model. The proposed method only needs to 
extract some features of a small number of measurements, so the computational cost is 
low. Compared with the first sampling calculation of the CS measurements (blocks’ size 
is 16×16), the addition and multiplication of the optimization process are about 5.94% and 
1.17% of the sampling process, respectively, and the percentage decrease as the block size 
increases. The disadvantage of the proposed method is that a large amount of offline data 
needs to be collected to train the model parameters, which is usually acceptable. We test 
the uniform SQ framework and DPCM-plus-SQ framework, respectively. Experimental 
results show that the optimized rate-distortion performance and bit-rate of the proposed 
algorithm are very close to the optimal rate-distortion performance and the target bit-rate. 
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