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Abstract: Originally, the Carnot cycle was a theoretical thermodynamic cycle that provided an upper
limit on the efficiency that any classical thermodynamic engine can achieve during the conversion
of heat into work, or conversely, the efficiency of a refrigeration system in creating a temperature
difference by the application of work to the system. The first aim of this paper is to introduce and
study the economic Carnot cycles concerning Roegenian economics, using our thermodynamic–
economic dictionary. These cycles are described in both a Q− P diagram and a E− I diagram. An
economic Carnot cycle has a maximum efficiency for a reversible economic “engine”. Three problems
together with their solutions clarify the meaning of the economic Carnot cycle, in our context. Then
we transform the ideal gas theory into the ideal income theory. The second aim is to analyze the
economic Van der Waals equation, showing that the diffeomorphic-invariant information about the
Van der Waals surface can be obtained by examining a cuspidal potential.

Keywords: thermodynamic–economic dictionary; Roegenian economics; economic Carnot cycle;
ideal income case; economic Van der Waals surface

1. Thermodynamic-Economic Dictionary

Thermodynamics is important as a model of phenomenological theory, which de-
scribes and unifies certain properties of different types of physical systems. There are
many systems in biology, economics and computer science, for which a similar and unitary-
phenomenological organization would be desirable. Our purpose is to present certain
features of Roegenian economics that are inspired by thermodynamics. In this context, we
offer again a morphism of dictionary type that reflects a thermodynamics–economics trans-
fer. The formal analytical-mathematical analogy between economics and thermodynamics
is accepted by economists and physicists as well (what differs are the dictionaries used).
Starting from these remarks, the papers of Udriste and coauthors [1–5] build a morphism
of dictionary type between thermodynamics and economics, admitting that fundamental
laws in thermodynamics are transferred into laws for economics.

In the following, we reproduce again the correspondence between the characteristic
state variables and the laws of thermodynamics with the macro-economics ingredients as
described in Udriste et al. (2002–2019) based on the theory on which the economics was
founded in 1971 [6]. They also allow us to include in the economics the idea of a “black
hole” with a similar meaning to the one in astrophysics [5].

Remark 1. (i) Our dictionary started from Roegen’s idea [6,7] that the entropy in thermodynamics
must correspond to the entropy in economics. Mimkes’ economics–thermodynamics dictionary [8,9]
uses the idea that “production function” corresponds to “entropy”. Obviously, the two dictionaries
are different.
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(ii) In this paper it is only a morphism based on an initial dictionary conceived by Udriste’s
research team. Different parts of this dictionary (morphism) can be found in the papers [1,5] and
references therein. A full discussion of the thermodynamics–economics morphism will be produced
in a future paper.

(iii) The marginal inclination to investment turnover can measure the marginal process in
changing the capital into a new investment type in the system. This change normally gives better
performances to systems in terms of growth and producing more wealth.

THERMODYNAMICS ECONOMICS

U = internal energy . . . G = growth potential
T = temperature . . . I = internal politics stability
S = entropy . . . E = entropy
P = pressure . . . P = price level (inflation)
V = volume . . . Q = volume, structure, quality
M = total energy (mass) . . . Y = national income (income)
Q = electric charge . . . I = total investment
J = angular momentum . . . J = economical investment angular momentum

(spin) (investment spin)
M = M(S,Q,J) . . . Y = Y(E,I ,J)
Ω = ∂M

∂J = angular speed . . . ∂Y
∂J = marginal inclination to investment turnover

Φ = ∂M
∂Q = electric potential . . . ∂Y

∂I = marginal inclination to investment
TH = ∂M

∂S =Hawking temperature . . . ∂Y
∂E = marginal inclination to entropy

µk = chemical potentials . . . νk = economical potentials

The Gibbs–Pfaff fundamental equation in thermodynamics

dU − TdS + PdV + ∑
k

µkdNk = 0

is changed to the Gibbs–Pfaff fundamental equation of economics

dG− IdE + PdQ + ∑
k

νkdNk = 0.

These equations are combinations of the first law and the second law (in thermodynamics
and economics, respectively). The third law of thermodynamics lim

T→0
S = 0 suggests the

third law of economics lim
I→0

E = 0 “if the internal political stability I tends to 0, the system

is blocked, meaning entropy becomes E = 0, equivalent to maintaining the functionality of
the economic system we must cause disruption”.

Remark 2. The first law of thermodynamics is equivalent to the law of conservation of energy:
Energy cannot be created or destroyed; the total amount of energy in the Universe is fixed. Energy
can be transformed from one form to another or transferred from one place to another but the total
energy must remain unchanged.

The thermodynamics–economics morphism is not surjective (the dictionary is not isomor-
phism). That is why the sentence “in Thermodynamics there is a law of energy conservation, while
in Economics there is no such conservation law” is meaningless.

Process variables W = mechanical works and Q = heat are introduced into elemen-
tary mechanical thermodynamics by dW = PdV (the first law) and by elementary heat,
respectively, dQ = TdS, for reversible processes, or dQ < TdS, for irreversible processes
(second law). Their correspondences in economics,

W = wealth of the system, q = production of goods
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are defined by dW = Pdq (elementary wealth in the economy) and dq = IdE or dq < IdE
(the second law or the elementary production of commodities). A commodity is an eco-
nomic good, a product of human labour, with a utility in the sense of life, for sale-purchase
on the market in the economy.

Sometimes a thermodynamic system is found in an external electromagnetic field
(~E, ~H). The external electric field ~E determines the polarization ~P and the external magnetic
field ~H determines magnetizing ~M. Together they give the total elementary mechanical
work dW = P dV + ~E d~P + ~H d ~M. Naturally, an economic system is found in an external
econo-electromagnetic field (~e,~h). The external investment (econo-electric) field~e deter-
mines initial growth condition field (econo-polarization field) ~p and the external growth
field (econo-magnetic field) ~h causes growth (econo-magnetization) ~m. All these fields
produce the elementary mechanical work dW = P dQ +~e d~e +~h d~m. The economic fields
introduced here are imposed on the one hand by the type of economic system and on the
other hand by the policy makers (government, public companies, private firms, etc.).

The long term association between thermodynamics and economics can be strength-
ened with new tools based on the previous dictionary. Of course, this idea of a new
thermodynamics–economics dictionary (morphism) produces concepts different from
those in econophysics [10] and concepts of thermodynamics in economic systems like
in [9,11]. Econophysics seems to build similar economic notions to physics, as if those in
the economy were not enough.

The thermodynamics–economics dictionary (morphism) allows the transfer of infor-
mation from one discipline to its image (Udriste et al. [1,5]), keeping the background of the
first discipline that we think was suggested by Roegen in 1971 [6].

Definition 1. Economics based on rules similar to those in thermodynamics is called Roegenian economics.

Economics described by previous Gibbs–Pfaff equation is Roegenian economics.
A macro-economic system based on a Gibbs–Pfaff equation is both Roegenian and

controllable (see [12]).
Roegenian economics (also called bioeconomics by Georgescu–Roegen) is both a trans-

disciplinary and an interdisciplinary field of academic research addressing the interdepen-
dence and coevolution of human economies and natural ecosystems, both intertemporally
and spatially. The economic entropy is closely related to disorder and complexity [7].

2. What Is the Carnot Cycle in Thermodynamics?

The Carnot cycle [13–15] is a theoretical thermodynamic cycle proposed by French
physicist Sadi Carnot. It provides an upper limit on the efficiency that any classical thermo-
dynamic engine can achieve during the conversion of heat into work, or conversely, the
efficiency of a refrigeration system in creating a temperature difference by the application
of work to the system.

A heat engine is a device that produces motion from heat and includes gasoline
engines and steam engines. These devices vary in efficiency. The Carnot cycle describes the
most efficient possible heat engine, involving two isothermal processes and two adiabatic
processes. It is the most efficient heat engine that is possible within the laws of physics.

The second law of thermodynamics states that it is impossible to extract heat from a
hot reservoir and use it all to do work; some must be exhausted in a cold reservoir. Or, in
other words, no process can be “one hundred percen” efficient because energy is always
lost somewhere. The Carnot cycle sets the upper limit for what is possible, for what the
maximally efficient engine would look like.

When we go through the details of the Carnot cycle, we should define two important
adjectives, isothermic and adiabatic, which characterize a process. An isothermic process
means that the temperature remains constant and the volume and pressure vary relative to
each other. An adiabatic process means that no heat enters or leaves the system to or from
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a reservoir and the temperature, pressure, and volume are all free to change, relative to
each other.

Remark 3. The idea of Carnot’s cycles in the Roegenian economy was suggested by Vladimir Gol-
ubyatnikov in a discussion held at the “The XII-th International Conference of Differential Geometry
and Dynamical Systems (DGDS-2018), 30 August–2 September 2018, Mangalia, Romania” on the
communication of Constantin Udriste about the Roegenian economy and the dictionary that creates
this point of view in the economy. The first ideas in this direction were included in a manuscript
posted in the arXiv [16].

3. Economic Carnot Cycle, Q− P Diagram

Let us consider again the Roegenian economics (an economic distribution) generated
by the Gibbs–Pfaff fundamental equation dG− IdE + PdQ = 0 on R5, where (G, I, E, P, Q)
are economic variables, according the previous dictionary (G = growth potential, I = inter-
nal politics stability, E = entropy, P = price level (inflation), Q = volume, structure, quality).

The heat Q in thermodynamics is associated to q = production of goods in economics.
Let I be the internal politics stability, P be the price level, and E the economic entropy.

The properties of an economic cycle are represented firstly on the Q− P diagram
(Figure 1, arrows clockwise). This diagram is based on economical quantities Q and P that
we can measure. In the Q− P diagram, the curves (evolutions) 1-2, 3-4 are considered at
constant internal politics stability (corresponding to isothermic transformations) and the
curves (evolutions) 2-3, 4-1 are considered at constant levels of goods production regarding
as supply (corresponding to adiabatic transformations). The convexity to the right of these
curves is opposite to similar curves in thermodynamics (convexity to the left).

Let us describe the four steps that make up an economic Carnot cycle. Process 1-2 is
an iso-internal politics stability expansion, where the volume increases and only price level
of some goods decreases at a constant internal politics stability. Process 2-3 is a constant
levels of goods production expansion.

Figure 1. Economic Carnot cycle illustrated on a Q-P diagram to show the wealth done.

Remark 4. The process is microeconomic and it involves only a certain number of goods. The
process becomes macroeconomic when we consider aggregate variables, in other words, Volume is
associated to Total Production. In this stage we can denote with P the general level of prices (i.e.,
inflation) and can explain Economic Carnot Cycle as well.

Process 3-4 is an iso-internal politics stability compression, where the volume decreases
and the price level increases at an internal politics stability. Lastly, process 4-1 is a constant
levels of goods production compression. Process 2-3 is a constant levels of goods production
expansion. Process 3-4 is an iso-internal politics stability compression, where the volume
decreases and the price level increases at an internal politics stability. Lastly, process 4-1 is
a constant levels of goods production compression.

The useful wealth W in the economy that comes out of the economic Carnot cycle
is the difference between the wealth W1 in the economy done by the economic system in
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stages 1-2 and 2-3 and the wealth W2 in the economy done (or the economic energy wasted)
by you in stages 3-4 and 4-1. The economic Carnot cycle described above is the most
favorable case, because it produces the largest difference between these values allowed by
the laws of economics.

4. Economic Carnot Cycle, E− I Diagram

Let (G, I, E, P, Q) be economic variables, according the previous dictionary (G = growth
potential, I = internal politics stability, E = entropy, P = price level (inflation), Q = volume,
structure, quality). We refer again the Roegenian economics (an economic distribution)
generated by the Gibbs–Pfaff fundamental equation dG− IdE + PdQ = 0 on R5.

The heat Q in thermodynamics is associated to q = production of goods in economics.
Let I be the internal politics stability, and E the economic entropy satisfying the Pfaff
equation dq = IdE. The properties of an economic process are represented secondly on the
E− I diagram (Figure 2), although E and I are not directly measurable.

The evolution in the plane E− I of an economic system in time will be described by a
curve connecting an initial state (A) and a final state (B). The area under the curve will be

q =
∫ B

A
I dE,

which is the amount of economical investments (economical energy) transferred in the
process. If the process moves to greater entropy, the area under the curve will be the
amount of production of goods absorbed by the system in that process. If the process
moves towards lesser entropy, it will be the amount of production of goods removed. For
any cyclic process, there will be an upper portion of the cycle and a lower portion. For a
clockwise cycle, the area under the upper portion will be the economical energy absorbed
during the cycle, while the area under the lower portion will be the economical energy
removed during the cycle.

The area inside the cycle will then be the difference between the two, but since the
economical energy of the system must have returned to its initial value, this difference
must be the amount of the wealth of the economic system over the cycle.

Figure 2. Economic Carnot cycle acting as an economic process with an engine producing goods,
illustrated on a E-I diagram.

Theorem 1. The amount of the wealth of the economic system done over a cyclic process is

W =
∮

IdE = (IH − IC)(EB − EA).
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Proof. Referring to “W = the wealth of the system, P = price level (inflation), Q = volume,
structure, quality”, mathematically, for a reversible process we may write the amount of
the wealth of the economic system done over a cyclic process as

W =
∮

PdQ =
∮

dq− dG =
∮

IdE− dG =
∮

IdE−
∮

dG =
∮

IdE.

Since dG is an exact differential, its integral over any closed loop is zero and it follows
that the area inside the loop on a E− I diagram is equal to the total amount of the wealth
performed if the loop is traversed in a clockwise direction, and is equal to the total amount
of the wealth done on the system as the loop is traversed in a counterclockwise direction.

Evaluation of the above integral is particularly simple for the Carnot cycle if we use
the E− I diagram (Figure 2). The amount of economic energy transferred as wealth of the
system is (see Green formula)

W =
∮

PdQ =
∮

IdE =
∫∫

∆
dI dE = (IH − IC)(EB − EA).

The total amount of economic energy transferred from the production to the system
is given by qH = IH(EB − EA), and the total amount of economic energy transferred from
the system to the consumption is

qC = IC(EB − EA),

where EB is the maximum system entropy, EA is the minimum system entropy.

5. Efficiency of an Economic System

We recall the notations: W is the wealth done by the system (economic energy), qC
is the production of goods taken from the system (economic energy leaving the system),
qH is the production of goods put into the system (economic energy entering the system),
IC is the absolute internal politics stability of the consumption, IH is the absolute internal
politics stability of the production.

Definition 2. The number
η =

W
qH

= 1− IC
IH

is called the efficiency of an economic system.

The absolute internal politics stability of the consumption can not be as small as it
is limited by social restrictions. The absolute internal politics stability of the production
can not be as large as it is limited by resources and labour. A wrong interpretation of the
efficiency of an economic Roegenian system can generate Homeland Falcons Hymn: To
grow strong and big without eating anything.

This definition of efficiency makes sense for an economic “engine”, since it is the frac-
tion of the economic energy extracted from the production and converted to wealth done by
the system (economic energy). In practical aspects of this theory, we use approximations.

Economic Carnot cycle has maximum efficiency for reversible economic “engine”.
The economic Carnot cycle previously described is a totally reversible cycle. That is,

all the processes that comprise it can be reversed, in which case it becomes the consumption
Carnot cycle. This time, the cycle remains exactly the same except that the directions of
any production and wealth interactions are reversed. The Q− P diagram of the reversed
economic Carnot cycle is the same as for the initial economic Carnot cycle except that the
directions of the processes are reversed.
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6. Economic Carnot Cycle—Problems and Solutions

A comparison between the units of measurement in thermodynamics and economics
is made in the paper [17].

1. If financial assets market (production of goods) absorbed by the engine is q1 = 10,000 c.u.
(conventional units), what is the wealthy of the system done by the economic Carnot engine?

Known: The absolute internal politics stability of the consumption IC = 400%, the
absolute internal politics stability of the production IH = 800%, the financial assets market
(production of goods) input q1 = 10,000 c.u.

Wanted. Wealthy of the system done by economic Carnot engine W.
Solution. The efficiency of the economic Carnot engine e = IH−IC

IH
, e = 1

2 .
Wealthy of the system done by economic Carnot engine: W = eq1, W = 5000 c.u.
2 The absolute internal politics stability of the production is IH = 600% and the

absolute internal politics stability of the consumption is IC = 400%. If the wealthy done by
engine is W, what is the financial assets market output?

Known: The absolute internal politics stability of the consumption IC = 400%, the
absolute internal politics stability of the production IH = 600%.

Wanted. Financial assets market output q2.
Solution. The efficiency of economic Carnot engine is e = IH−IC

IH
, e = 1

3 . The wealthy
of the system done by economic Carnot engine is W = eq1, 3W = q1. It follows the stock
market: q2 = q1 −W = 2W.

3 An economic Carnot engine has an efficiency of 0.3. Its efficiency is to be increased
to 0.5. By what must the internal politics stability of the source be increased if the sink is
at 300%?

Solution Efficiency is given by e = 1− I2
I1

. Here e = 0.3. From 0.3 = 1− 300
I1

, it follows
I1 = 428.6%. For increased efficiency of 0.5, the source internal politics stability should
be 0.5 = 1− 300

I1
, i.e., I1 = 600%. Hence the source internal politics stability should be

increased by 600− 428.6 = 171.4 (%).

7. Ideal Income Case

To transform the ideal gas theory into the ideal income theory, we recall a part of
dictionary (morphism) and we complete it with new correspondences: Q = heat ↔ q
production of goods; T = temperature ↔ I = internal politics stability; P = pressure ↔
P = price level; S = entropy↔ E = economic entropy; V = volume↔ Q = volume, structure,
quality; U = internal energy↔ G = growth potential; mole↔ economic mole; R = molar gas
constant↔ R = molar income constant; f = number of degrees of freedom↔ f = number
of degrees of freedom. Moreover, we look at Q− P diagram.

Suppose the three states of an economy “inflation, monetary policy as liquidity, income”
are reduced to one and the same “income”. By the equipartition theorem, the growth
potential of one mole of an ideal income is G = f

2 R I, where f , the number of degrees of
freedom, is 3 for a mono-atomic income, 5 for a diatomic income, and 6 for an income of
arbitrarily shaped economic molecules. The quantity R is the molar income constant. For
the present discussion it is important to notice that G is a function of I only.

In Figure 1 the economic Carnot cycle is represented in a Q− P diagram. Consider
the compression (decreasing “volume, structure, quality”) of the income along the path 3-4.
Along this path the internal politics stability is Ic. The economic work done is converted
into production of goods qc. This process is so slow that the internal politics stability
remains constant (i.e., it is an iso-ips), and hence the the potential growth Q of the income
does not change, i.e., dQ = 0. By the first and second law of economics, reference to
Figure 1, and the ideal income law PQ = R I (for the sake of argument we consider one
mole of income), we have

qc = Ic

∫ 4

3
dE =

∫ 4

3
PdQ = RIc

∫ 4

3

dQ
Q
⇒ E4 − E3 = R ln

Q4

Q3
< 0.
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The economic entropy E of an ideal income is a logarithmic function of its “volume,
structure, quality” Q.

In the Q− P plane, the iso-ips 3-4 has the following expression P = R Ic
Q , i.e., P is a

function of Q only.
At point 4, we move on a curve similar to an adiabatic curve. We move inward from

Q4 to Q3 and by this compression the income is amplified to exactly the internal politics
stability Ih. From 4 to 1 the path in the Q− P diagram is similar to adiabatic and reversible
path. The entropy does not change during this compression, i.e., dE = 0 (an isentropic
economic process). It is easy to derive the equation for the adiabatic in the Q− P plane,

dG =
f
2

R dI = −P dQ = −RI
Q

dQ ⇒ f
2

ln
I3

I4
= − ln

Q3

Q4

and the ideal income law PQ = RI (for the sake of argument we consider one mole of
income) implies

f
2

ln
P3Q3

P4Q4
= − ln

Q3

Q4
⇒ P3

P4
=

(
Q3

Q4

)− f+2
f

.

For a mono-atomic income ( f = 3) the expression of the curve 4-1 is P = c Q−
5
3 ,

where c = P4Q
5
3
4 .

The integral
∫ 1

3 P dQ is the economic work done. In the Q− P diagram this integral is
the negative of the area bounded by the curve 3-4-1 and the Q axis.

At point 1, we have the internal politics stability Ih and total production of goods qh.
The iso-ips 1-2 has the expression P(Q) = R Ih

Q and the entropy increases, i.e.,

E2 − E1 = R ln
Q2

Q1
> 0.

From 2 to 3 isentropic economic expansion occurs, the internal politics stability de-
creases to Ic. The integral

∫ 3
1 P dQ is the economic work. In the Q− P diagram this integral

is the area bounded by the curve 1-2-3 and the Q axis. Note that this area is larger than the
area below the curve 3-4-1. Difference of the two areas, the economic work done during
the cycle, is

∮
P dQ, where the closed curve is 1-2-3-4-1.

By the first law of economics, the total work W is equal to qh − qc.
The economic process, as depicted in Figure 1, runs clockwise. All the economic

processes are reversible, so that all arrows can be reverted.

8. Economic Van der Waals Equation

Let Qm be the molar volume of the income, R be the universal income constant, P be
the price level, Q be the “volume, structure, quality”, and I be internal politics stability.

The Van der Waals equation in Thermodynamics [18] has a correspondent in eco-
nomics, where the variables are P, Q, I. The idea is based on plausible reasons that real
incomes do not follow the ideal income law.

The ideal income law states that volume Q occupied by n moles of any income has a
price level P, typically in reference currency, at internal politics stability I in percents—see,
for instance, Moody’s rating. The relationship for these variables, PQ = nRI, is called the
ideal income economic law or equation of state.

The economic Van der Waals equation is(
P +

a
Q2

m

)
(Qm − b) = R I, or

(
P +

an2

Q2

)
(Q− nb) = n R I.

when the molar volume Qm is large, the constant b becomes negligible in comparison
with Qm, the term a

Q2
m

becomes negligible with respect to P, the economic Van der Waals
equation reduces to the ideal income economic law, P Qm = R I.
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The economic Van der Waals equation successfully approximates the behavior of real
“mp− lc = monetary policies as liquidity or consumption” above critical internal politics
stability and is qualitatively reasonable for points (mp− lc, level of prices, internal politics
stability) around critical point. However, near the transitions between income and mp− lc,
in the range of P, Q, I, where the mp− lc phase and the income phase are in equilibrium,
the Van der Waals equation fails to accurately model observed experimental behaviour; in
particular P is a constant function of Q at given internal politics stability, but the Van der
Waals equation do not confirm that. As such, the Van der Waals model is not useful only
for calculations intended to predict real behavior in regions near the critical point, but also
for qualitatively properties. Empirical corrections to address these predictive deficiencies
can be inserted into the Van der Waals model, e.g., equal area rule (see Maxwell theory),
and related but distinct theoretical models, e.g., based on the principle of corresponding
states. All of these permit to achieve better fits to real mp− lc behaviour in equations of
more comparable complexity.

Geometrically, the previous equation represents a surface located in the first octane
of the point space (0, ∞)3 = {(P, Q, I)}, that we call the economic Van der Waals surface,
Figure 3. The shape of this surface follows from the shapes of the sections by the planes
I = constant (Van der Waals iso-“mp-lc”). There is a stationary inflection point in the
constant—“internal politics stability” curve (critical iso-“mp-lc”)—on a Q− P diagram.
This means that at the degenerate critical point we must have

∂P
∂Q

∣∣∣
I
= 0,

∂2P
∂Q2

∣∣∣
I
= 0.

On the Van der Waals surface, the above critical point (Pc, Qc, Ic) has the coordinates

Pc =
a

27b2 , Qc = 3b, Ic =
8a

27bR
.

Remark 5. Let us write the economic Van der Waals surface in the implicit form W : f (P, Q, I) = 0.
Eliminating the critical point, the Gaussian curvature of this surface can be written as the determinant

K = − 1
‖∇ f ‖4

∣∣∣∣∣∣∣∣
fPP fPQ fPI fP
fQP fQQ fQI fQ
f IP f IQ f I I f I
fP fQ f I 0

∣∣∣∣∣∣∣∣,
where the inferior indices mean partial derivatives.

Remark 6. Let us show that we can find the critical point without the use of the “partial derivative”.
At the critical point, the income is characterized by the critical values of Ic, Pc, Qc, which are
determined only by the income properties. From the algebraic point of view, the iso-“mp-lc” through
the critical point, i.e., Q3−

(
b + RI

P

)
Q2 + a

P Q− ab
P = 0, like equation in Q, has a triple real root

Qc, i.e., the equation should be identified to (Q−Qc)3 = 0. Expanding this cube and equating the
coefficients of the terms with equal powers of Q, we find the expressions for the critical parameters.

This phenomena can be explain in terms of economic collapse of a certain number of variables
named technically “Fundamentals”. This event is perfectly modeled by the previous Gaussian
curvature and the Hessian meaning.

Let’s connect with catastrophe theory. For this we consider the function ϕ : (0, ∞)3 → R3,
of components

x =
1
Q
− 1

3b
, α =

P
a
+

RI
ab
− 1

3b2 , β = − P
3ab

+
RI

3ab2 −
2

27b3 .
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One remarks that ϕ : (0, ∞)3 → ϕ((0, ∞)3) is a global diffeomorphism and
ϕ(Pc, Qc, Ic) = (0, 0, 0). The image of economic Van der Waals surface by ϕ is charac-
terized by the equation x3 + αx + β = 0, where

x ∈
(
− 1

3b
, ∞
)

, α ∈
(
− 1

3b2 , ∞
)

, β ∈
(
−∞,

−2
27b3

)
∪
(
−2

27b3 , ∞
)

,

that is, it is part of the cuspidal catastrophe manifold.

Theorem 2. All diffeomorphic-invariant information about Van der Waals mp− lc can be obtained
by examining the cuspidal potential x → f (x, α, β) = 1

4 x4 + 1
2 αx2 + βx, which is equivalent to

Gibbs’ free energy.

Figure 3. Van der Waals surface.

9. Conclusions

Thermodynamics is not Economics, and Economics is not Thermodynamics.
Some general concepts of the thermodynamics are transferred to economics and

biology through appropriate dictionaries (morphisms). This means that economics or
biology are thought as collections of notions, and the relationships between them are
borrowed from thermodynamics. So far, no one has set out to determine notions of
thermodynamics coming from economics or biology.

The economic Carnot cycle in Roegenian economics, introduced and analyzed in
the Sections 3–6, is not the same with economic cycles described in the papers [13,19–21].
According these papers, a business cycle is a pattern of economic booms and busts ex-
hibited by the modern economy. Sometimes referred to as a trade or economic cycle, a
business cycle is the measured expansion and contraction of economic growth within a
period. Business cycles naturally fluctuate through four phases or stages: Expansion, peak,
contraction and trough.

In our sense, an economic Carnot cycle in Roegenian economics (a totally reversible
cycle) is the counterpart of the Carnot cycle in thermodynamics, obtained by a suitable
dictionary (morphism). This Carnot-type economic cycle was created through a dictionary-
like morphism that we used in our papers. Any other comment is superfluous.

The Q− P and E− I diagrams are useful as visual aids in the analysis of ideal power
cycles in Roegenian economics.

It is hoped that the paper will open up new avenues for future work on macro and
micro systems.
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