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Abstract: Contrast enhancement forensics techniques have always been of great interest for the image
forensics community, as they can be an effective tool for recovering image history and identifying
tampered images. Although several contrast enhancement forensic algorithms have been proposed,
their accuracy and robustness against some kinds of processing are still unsatisfactory. In order
to attenuate such deficiency, in this paper, we propose a new framework based on dual-domain
fusion convolutional neural network to fuse the features of pixel and histogram domains for contrast
enhancement forensics. Specifically, we first present a pixel-domain convolutional neural network
to automatically capture the patterns of contrast-enhanced images in the pixel domain. Then, we
present a histogram-domain convolutional neural network to extract the features in the histogram
domain. The feature representations of pixel and histogram domains are fused and fed into two
fully connected layers for the classification of contrast-enhanced images. Experimental results show
that the proposed method achieves better performance and is robust against pre-JPEG compression
and antiforensics attacks, obtaining over 99% detection accuracy for JPEG-compressed images with
different QFs and antiforensics attack. In addition, a strategy for performance improvements of
CNN-based forensics is explored, which could provide guidance for the design of CNN-based
forensics tools.

Keywords: contrast-enhanced image detection; pixel-domain; histogram-domain

1. Introduction

With the development of image editing techniques, manipulating images is becom-
ing an easy task via various software, such as Photoshop, Meitu, etc., and brings a new
challenge for the digital image forensics community. In order to verify the authenticity
and integrity of a digital image, numerous algorithms [1–4] have been proposed. One
of the most important research topics in the field of digital image forensics is contrast
enhancement forensics. Being a simple yet efficient image processing operation, Contrast
enhancement (CE) is typically used by malicious image attackers to eliminate inconsis-
tent brightness when generating visually imperceptible tampered images. CE detection
algorithms play an important role in decision analysis of the authenticity and integrity of
digital images. Although some schemes have been proposed to detect contrast-enhanced
images, the performance of such techniques is limited in the cases of pre-JPEG compression
and antiforensic attacks. Therefore, it is critical to develop robust and effective CE forensics
algorithms.

Thanks to the efforts of researches in the past decade, a number of schemes [5–13]
have been proposed to discriminate contrast-enhanced images in an uncompressed format.
Stamm et al. [5–7] found that contrast enhancement introduced peaks and gaps into
the image’s gray-level histogram, which led to specific high values in high-frequency
components. Lin et al. [10,11] revealed that contrast enhancement would disturb the
interchannel correlation left by color image interpolation and measured such correlation
to distinguish the enhanced images from the original images. Furthermore, in order to

Entropy 2021, 23, 1318. https://doi.org/10.3390/e23101318 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://doi.org/10.3390/e23101318
https://doi.org/10.3390/e23101318
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23101318
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23101318?type=check_update&version=3


Entropy 2021, 23, 1318 2 of 16

recover the image processing history, many algorithms for estimating parameters for
contrast-enhanced images have been developed [14–17].

Despite the good performance obtained by the abovementioned algorithms, their
robustness can be unsatisfactory in some cases, such as the CE of JPEG images (pre-
JPEG compression) and the occurrence of antiforensic attacks [18–23]. The reason lies
in the fact that the fingerprint left by CE operation would be altered. Based on such
a phenomenon, some researchers have proposed more robust CE forensic algorithms,
which can be divided into two major branches: overcoming pre-JPEG compression [8] and
defending against antiforensic attacks [13]. Unfortunately, neither one of these methods is
capable of addressing both pre-JPEG compression and antiforensic attacks. To date, there
are no satisfactory solutions for these problems.

With the rapid development of deep-learning techniques, and especially convolutional
neural networks (CNNs), some researchers have recently attempted to use them for digital
image forensics. A number of preliminary works exploring CNNs in a single domain (such
as the pixel domain [24], the histogram domain [25], and the gray-level co-occurrence
matrix (GLCM) [26,27]) have been proposed for CE forensics. According to the report [26],
deep-learning-based CE forensic schemes achieved better performance than traditional
ones. The schemes mentioned above attempt to deal with the CE forensics task by feeding
single-domain information to CNNs. However, each domain has its own advantages and
disadvantages. For example, according to our experiments, the CNN working in the pixel
domain is robust to postprocessing but hard to obtain satisfactory performance. In addition,
it is well-known that histogram domain is effective for CE forensics task but fails to resist
CE attacks. Such situations give us a strong incentive to explore fusion algorithm across
multiple domains based on deep learning techniques against pre-JPEG compression and
antiforensic attacks.

In this paper, we propose a novel framework based on dual-domain fusion convo-
lutional neural network for CE forensics. Specifically, the pixel-domain CNN (P-CNN)
is designed for the pattern extraction of contrast-enhanced images in pixel domain. For
P-CNN, a high-pass filter is used to reduce the affect of image contents and keep the data
distribution balance cooperating with batch normalization [28]. In addition, the histogram-
domain CNN (H-CNN) is constructed by feeding a histogram with 256 dimensions into
a convolutional neural network. The features obtained from P-CNN and H-CNN are
fused together and fed into a classifier with two fully connected layers. Experimental
results show that our proposed method outperforms state-of-the-art schemes in the case
of uncompressed images and obtains comparable performance in the cases of pre-JPEG
compression, antiforensics attack, and CE level variation.

The main contributions of this paper are as follows:
(1) We present a dual-domain fusion framework for CE forensics;
(2) We propose and evaluate two kinds of simple yet effective convolutional neural

networks based on pixel and histogram domains;
(3) We explore the design principle of CNN for CE forensics, specifically, by adding

preprocessing, improving complexity of the architecture, and selecting a training strategy
that includes a fine-tuning technique and data augmentation.

The rest of this paper is organized as follows: Section 2 describes related works in the
field of CE forensics. In Section 3, we formulate the problem, and in Section 4, we present
the proposed dual-domain fusion CNN framework. In Section 5, experimental results are
reported. The conclusion is given in Section 6.

2. Related Works

In this section, we provide some descriptions of the related works.
CE forensics, as a popular topic in the image forensics community, has been studied

[1,2] for a long time. Early research works attempted to extract features from the his-
togram domain. Stamm et al. [5–7] observed that the histograms of contrast-enhanced
images present peaks/gaps artifacts; in contrast, those of nonenhanced image do not
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display peaks/gaps, as shown in Figure 1. Based on such observations, they proposed a
histogram-based scheme where the high-frequency energy metric is calculated and decided
by threshold strategy. However, the above method failed to detect CE images in previously
middle/lower-quality JPEG compressed images in which the peak/gap artifacts also exist
[8]. Cao et al. [8] studied this issue and found that there exists a notable difference between
the peak/gap artifacts from contrast enhancement and those from JPEG compression,
which is that the gap bins with zero height always appear in contrast-enhanced images.
However, the above phenomenon does not occur in the case of an antiforensics attack.
As can be seen in Figure 1, the histogram of an enhanced image with antiforensics attack
conforms to a smooth envelope, which is similar with the nonenhanced image.

Figure 1. Histogram of uncompressed image, contrast-enhanced image with γ = 0.6, contrast-
enhanced image in the case of antiforensic attack, and JPEG image with a quality factor equal to 70,
respectively.

Instead of exploring the features in histogram domain, De Rosa et al. [13] studied the
possibility of using second-order statistics to detect contrast-enhanced images, even in the
case of an antiforensics attack. Specifically, the co-occurrence matrix of a gray-level image
was explored. According to the report [13], several empty rows and columns appear in the
GLCM of contrast-enhanced images, as shown in Figure 2, even after the application of an
antiforensics attack [18]. Based on this observation, the authors tried to extract such a feature
from the standard deviation of each column of the GLCM. However, its performance is still
not satisfactory, especially for the other powerful antiforensics attacks [16].

These algorithms described are based on handcrafted, low-level features, which are not
easy to deal with the above problems simultaneously. With the development of data-driven
techniques, some researchers have started to study the deep feature representations for CE
forensics via data-driven approach using recent and existing methods [24–27] focused on
exploring in single domain. Barni et al. [24] presented a CNN containing a total of nine
convolutional layers in the pixel domain, which is similar to the typical CNNs used in the
field of computer vision. Cong et al. [25] explored the information in histogram domain
and applied the histogram with 256 dimensions into a VGG-based multipath network. Sun
et al. [26] proposed calculating the gray-level co-occurrence matrix (GLCM) and feeding
it to a CNN with three convolutional layers. Although these approaches based on deep
features in single domain have obtained performance gains for CE forensics, they ignore
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multidomain information, which could be useful in the case that some features in single
domain are destroyed.

To overcome the limitation of exiting works, we propose a new deep-learning-based
framework to extract and fuse the feature representation in the pixel and histogram do-
mains for CE forensics.

Figure 2. GLCM of uncompressed image, contrast-enhanced image with γ = 0.6, contrast-enhanced
image in the case of antiforensic attack, and JPEG image with a quality factor is equal to 70.

3. Problem Formulation

As a common way of contrast enhancement, gamma correction can be found in many
image-editing tools. In addition, according to the report [24], enhanced-images with
gamma correction are harder to detect than the enhanced images via the other method.
Therefore, in this paper, we mainly focus on the detection of gamma correlation, which is
typically defined as

Y = [255(X/255)γ] ≈ 255(Tγ) (1)

where X denotes an input and Y represents the remapped value, T = (X/255)ε[0, 1].
The problem addressed in this paper is how to classify the given image as a contrast-
enhanced or nonenhanced image. Particularly, the robustness of the proposed method
against pre-JPEG compression and antiforensics attacks is evaluated.

4. Proposed Method

In this section, we first present an overview of the proposed framework dual-domain
fusion convolutional neural network, and then introduce the major components in detail.

4.1. Framework Overview

The proposed dual-domain fusion convolutional neural network is shown in Figure 3,
which extracts the features from pixel and histogram domains by P-CNN and H-CNN,
respectively, and then fuses them before feeding into the classifier with two fully-connected
layers. Our end-to-end system predicts whether the image is a contrast-enhanced or
nonenhanced image.
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Figure 3. The proposed dual-domain fusion convolutional neural network.

4.2. Pixel-Domain Convolutional Neural Network

As is well-known, gamma correction leads to the nonlinear changes in pixel domain
and introduces peak/gap bins into the histogram domain [5–7]. A number of handcrafted
features are designed based on such phenomena.

In pixel domain, the difference between the original and enhanced images can be
computed as follows, and the absolute value of difference is considered:

D = Y− X = 255(Z− T) ≈ 255(Tγ − T), γ < 1

D = X−Y = 255(T − Z) ≈ 255(T − Tγ), γ > 1
(2)

It can be seen from (3) that the discriminability in pixel domain is related to the pixel
value (image contents) T and parameter of gamma correction γ. In order to describe such
discriminability, the maximum difference denoted by Dmax is considered. Dmax is obtained
when the partial derivative of Z with respect to T is equal to 1.

TDmax = T∂Z
∂T =1 = (

1
γ
)(

1
γ−1 ) (3)

Dmax =


255[( 1

γ )
γ

γ−1 − ( 1
γ )

1
γ−1 ], γ < 1

255[( 1
γ )

1
γ−1 − ( 1

γ )
γ

γ−1 ], γ > 1

(4)

The curve of function of Dmax/255 on γ is shown in Figure 4. For the purposes
of understanding, four groups of parameters are chosen in the following discussion:
γ = {0.6, 0.8, 1.2, 1.4}. It is easy to find that DmaxA (γ = 0.6) = 47.4045 > DmaxD (γ =
1.4) = 31.416 > DmaxB (γ = 0.8) = 20.8896 >DmaxC (γ = 1.2) = 17.0799.
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Figure 4. The curve of function of Dmax/255 on γ and A, B, C, D are γ = 0.6, 0.8, 1.2, 1.4, respectively.

Fortunately, despite the changes in discriminability in the pixel domain, the difference
in pixel domain could be learned by deep-learning-based methods. As a popular deep-
learning-based technique for image classification, convolutional neural networks (CNNs) in
the pixel domain have been applied in image forensics and developed for specific forensic
tasks recently. The common modification [29,30] for the CNNs in the forensics community
is to add a preprocessing layer that could weaken the effect of image content and improve
the signal-to-noise ratio. Inspired by this observation, we performed an experimental study
on preprocessing and found an effective CE forensics method (Section 5.3.1). Due to the
hardware limitations, we designed a simple 4-layer CNN to keep the balance between
performance and computational complexity. The architecture of the proposed pixel-domain
convolutional neural network is shown in Figure 5.

Figure 5. The architecture of proposed pixel-domain convolutional neural networks.

Firstly, the high-pass filter is added into the front-end of architecture to eliminate
the interference of image content. Another advantage of using a high-pass filter is that it
accelerates training by cooperating with batch normalization. The histogram of high-pass
filtered images approximately follows the generalized Gaussian distribution, which is
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similar to batch normalization [28]. In particular, we experimentally found that the filter of
the first-order difference along the horizontal direction has better performance.

I1 = H ∗ I (5)

where H = [1,−1], I is the input image, I1 is the output of the first layer, and ’∗’ represents
the convolution operator.

Next, the high-pass filtering layer is followed by four traditional convolutional layers.
For each layer, there are four types of operations: convolution, batch normalization, ReLU,
and average pooling. The feature maps for each layer are 64, 16, 32, and 128, respectively.
The kernel size for convolutional and pooling operation is 3 × 3 with 1 stride and 5 × 5
with 2 strides. It should be pointed out that (1) we experimentally find that the number
of feature maps for the first convolutional layer is important for CE detection, which has
better performance when the number of feature maps is 64. In other words, low-level
features would be more helpful. (2) Instead of average pooling, the spatial pyramid
pooling (SPP) layer [31] is used in the last convolutional layer to fuse multiscale features.
The convolutional layer is calculated as

Ii =

{
P(R(F(Wi ∗ Ii−1 + Bi))), iε(2, 3, 4)
S(R(F(Wi ∗ Ii−1 + Bi))), i = 5

(6)

where F, R, P, S represent the batch normalization, ReLU, average pooling, and spatial
pyramid pooling, respectively. For spatial pyramid pooling, three scales are chosen and
lead to 2688 dimensional outputs.

In the end, the fully connected layer and softmax are followed by a multinomial
logistic loss. The loss function is defined as

Loss = −log(
eW j I5+Bj

∑n
j=1 eW j I5+Bj ) (7)

where n is the number of classes and j denotes the true label. In our experimental setup,
Mini-batch Stochastic Gradient Descent is applied and the batch size is set as 120. The
learning rate is initialized as 0.001 and scheduled to decrease 10% for every 10,000 iterations.
The max iterations is 100,000. Momentum and weight_decay are fixed to 0.9 and 0.0005,
respectively.

4.3. Histogram-Domain Convolutional Neural Network

According to the report [8], the handcrafted feature based on histogram is also vulnera-
ble. The peak and gap feature is easily destroyed by pre-JPEG compression and antiforensic
attacks. In order to detect the CE of JPEG-compressed images, Cao et al. [8] only used the
numbers of gap bins as features. However, its performance for different gamma parameters
is unstable and it does not work for antiforensics attacks, which could be caused by the
unsteadiness of gap bins.

The reason why gamma correction could cause gap bins is that a narrow range of
values is projected to a wide one. For example, the values in the range

[
0, TDmax

]
, γ < 1

will be changed to the range of [0, Tγ
Dmax

]. Therefore, the probability of gap bins (zero bins)
should be proportional to the ratio of the wide range of values and the corresponding
strait range,

Pzero_bin ∝ G(r) =


Tγ

Dmax−TDmax
TDmax

= 1
γ − 1, γ < 1

TDmax−Tγ
Dmax

1−TDmax
=

( 1
γ )

1
γ−1−( 1

γ )
γ

γ−1

1−( 1
γ )

1
γ−1

, γ > 1

(8)
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It can be found that G(0.6) > G(0.8) > G(1.4) > G(1.2), which means that the number
of gap bins varies among CE parameters. The statistical distribution of gap bins for the
original and enhanced images with γ = 0.6, 0.8, 1.2, 1.4 is shown in Figure 6. As can be seen,
the numbers of gap bins for γ = 0.6, 0.8 are larger than γ = 1.2, 1.4 and the overlapping
parts with original images for γ = 0.6, 0.8 are less than γ = 1.2, 1.4, which is consistent
with the result of our theoretical analysis. Despite the instability of peak/gap bins, we
believe that the effective feature could be autolearned from the histogram domain using
data-driven algorithm. Instead of designing features, the histogram-domain convolutional
neural network is constructed to achieve end-to-end self-learning detection. The H-CNN is
proposed to self-learn better features directly from the histogram domain. In addition, as
an input with low and fixed dimension, the histogram is suitable for convolutional neural
networks. The architecture of H-CNN is shown in Figure 7. Its input is the histogram of the
image, namely, a vector with 1 × 256 dimensions. Then, such an input layer is followed by
two convolutional and two fully connected layers. The feature maps are 64, 64, 512, and
1024, respectively. Lastly, the softmax layer followed by a multinomial logistic loss, which
is added to classify original and enhanced images. The parameters of the convolutional
layers and hyperparameters are the same as the P-CNN.

Figure 6. The statistical distribution of gap bins for original and contrast-enhanced images with differ-
ent parameters. The images are from BOSSBase data-set and centrally cropped into 128×128 patches.
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Figure 7. The architecture of the proposed histogram-domain convolutional neural networks.

4.4. Dual-Domain Fusion Convolutional Neural Network

According to the description of the abovementioned CE forensics, the performance
of CE system designed in single domain is still unsatisfactory. Fortunately, fusion strate-
gies [32] provide a good solution to obtain higher performance and have been adopted in
the community of digital image forensics [30,33]. In this work, we assume that the features
extracted from P-CNN and H-CNN are complementary for CE forensics; thus, we propose
a simple yet effective feature fusion framework for deep-learning-based CE forensics to
integrate multiple domains and construct the dual-domains fusion CNN (DM-CNN), as
shown in Figure 3. Firstly, high-pass filtered images and the histogram are extracted from
input images. Then, the filtered images are fed into P-CNN with four 2D-convolutional lay-
ers and the histogram is fed into H-CNN with two 1D-convolutional layers. Note that for
the purpose of fusion, P-CNN and H-CNN are slightly modified. The P-CNN of DM-CNN
is composed of the convolutional layers extracted from the P-CNN. Besides, in order to
ensure that the outputs of the P-CNN and H-CNN have the same dimension, one scale of
spatial pyramid pooling in P-CNN is chosen and the number of feature maps in the second
convolutional layer of H-CNN is set to 128. The features outputs from P-CNN and H-CNN
are concatenated together and then fed into classification unit, which consists of two fully
connected layers and one softmax layer followed by multinomial logistic loss. It is worth
noting that due to the limitation of our hardware configuration, only dual-domains are
fused in our system and it would be useful to ensemble features from the other domains.

5. Experimental Results

In this section, experimental results are reported. In order to verify the validity of
proposed methods, we compared them with four other methods. De Rosa [13], Cao [8], and
Sun [26] are proposed for CE forensics. The former two algorithms belong to traditional
scheme and the last one is based on deep learning techniques. Li [9] proposed identifying
various image operations using high-dimensional, residual-based features. Four groups of
experiments are conducted: ORG vs. P-CE, JPEG-ORG vs. JPEG-CE, ORG vs. Anti-CE, and
JPEG-ORG vs. JPEG-CE-Anti-CE, where ORG is the original image in an uncompressed
format, JPEG-ORG represents original images in JPEG format; P-CE and JPEG-CE denote
enhanced versions of ORG and JPEG-ORG, respectively; and Anti-CE and JPEG-CE-Anti-
CE represent enhanced images with antiforensics attack for P-CE and JPEG-CE, respectively.
The BOSSBase [34] with 10,000 images is chosen to construct the data-set. Firstly, the images
are centrally cropped into 128 × 128 pixel patches as ORG. Then, JPEG compression with
Q = 70, 50 is carried out for ORG to build JPEG-ORG. Next, gamma correction with
γ = {0.6, 0.8, 1.2, 1.4} is implemented on ORG, JPEG-ORG to constitute P-CE and JPEG-CE.
In the end, Anti-CE is produced by antiforensics attacks [16,18] on P-CE and JPEG-CE. The
reasons for our choice of pixel patch size are as follows: (1) the detection for images with
lower resolution is much harder than that with higher resolution images; (2) 128 × 128 is
a suitable size for tamper locating based on CE forensics; (3) our hardware configuration
is limited. For each experiment, the training, validation, and testing data are 8000, 2000,
10,000, respectively. The experiments about the proposed schemes are conducted on one
GPU (NVIDIA TITAN X) with an open-source framework of deep learning: Caffe [35].
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5.1. Contrast Enhancement Detection: ORG vs. PCE

The results for contrast-enhanced images in an uncompressed format are shown in
Table 1. P-CNN is pixel-domain convolutional neural networks and H-CNN is a histogram-
domain convolutional neural networks. DM-CNN denotes the dual-domain fusion CNN.
As seen in the Table 1, for Cao’s method, the detection accuracy for γ = {0.6, 0.8} is much
higher than that for γ = {1.2, 1.4}. The reason is that the gap feature is unstable among
CE parameters, which is consistent with our analysis in Section III. In addition, H-CNN
has better performance than the above four schemes. Such results demonstrated that the
histogram domain feature should be effective for CE detection. Besides, the proposed
fusion framework—DM-CNN—obtains the best average detection accuracy. It should
be mentioned that although the deep-learning-based method proposed by Sun obtained
slightly lower detection accuracy than DM-CNN, it has a much higher computational cost
during the feature extraction of the GLCM in preprocessing.

Table 1. CE detection accuracy for contrast-enhanced images in the case that ORG vs. P-CE. AVE is
the average accuracy. Best results are marked in bold.

Method γ = 0.6 γ = 0.8 γ = 1.2 γ = 1.4 AVE

De Rosa [13] 94.02% 84.85% 78.37% 74.12% 82.84%
Cao [8] 93.89% 93.90% 80.26% 81.40% 87.36%
Li [9] 93.63% 89.48% 90.76% 93.44% 91.83%

Sun [26] 99.35% 99.21% 98.45% 98.80% 98.95%
P-CNN 94.70% 89.00% 78.00% 86.00% 86.93%
H-CNN 99.48% 99.45% 99.40% 99.07% 99.35%

DM-CNN 99.80% 99.72% 99.36% 99.41% 99.57%

5.2. Robustness against Pre-JPEG Compressed and Antiforensic Attacked
Contrast-Enhanced Images

The performance of different methods for pre-JPEG compressed images with
Q = {50, 70} and antiforensics attacked images are shown in Tables 2–4. It can be seen
from Table 2 that P-CNN, H-CNN, and DM-CNN have much higher detection accuracy
than De Rosa’s and Cao’s methods and have comparable performance with the algorithms
proposed by Li and Sun. Besides, there is an interesting phenomenon that the performance
of P-CNN has a significant improvement compared with P-CE detection. The reason
may be attributed to the fact that JPEG compression weakens the signal components at
a high frequency and the difference between original and enhanced images after JPEG
compressing would be highlighted.

Table 2. CE detection accuracy for pre-JPEG compressed images with different QFs. AVE is the
average accuracy. Best results are marked in bold.

QF Method γ = 0.6 γ = 0.8 γ = 1.2 γ = 1.4 AVE

De Rosa [13] 81.50% 79.69% 75.16% 72.70% 77.26%
Cao [8] 93.96% 93.75% 80.36% 81.57% 87.41%
Li [9] 99.11% 98.59% 97.75% 98.43% 98.47%

50 Sun [26] 99.73% 99.62% 99.40% 99.75% 99.63%
P-CNN 98.20% 98.25% 96.70% 97.30% 97.61%
H-CNN 99.90% 99.80% 99.50% 99.78% 99.75%

DM-CNN 99.97% 99.90% 99.86% 99.96% 99.92%

De Rosa [13] 83.99% 82.27% 77.47% 72.95% 80.67%
Cao [8] 94.06% 93.77% 80.55% 81.56% 87.49%
Li [9] 98.54% 97.42% 96.22% 97.79% 97.49%

70 Sun [26] 99.32% 99.12% 99.14% 98.89% 99.12%
P-CNN 98.60% 97.00% 95.70% 96.50% 96.95%
H-CNN 98.86% 99.03% 98.27% 97.68% 98.46%

DM-CNN 99.68% 99.51% 99.06% 99.40% 99.41%

For antiforensic attacks, Cao’s method does not work and there is a degradation in
performance of H-CNN, especially when the antiforensic method [16] is applied. Conse-
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quently, the antiforensic attacks would conceal the peak/gap features in histogram domain.
In addition, the antiforensics attacks based on histogram may have a slight effect on pixel
domain. Therefore, the P-CNN has better performance than H-CNN in this case. When
the fusion framework is used to merge pixel and histogram domains together, DM-CNN
obtained the best detection accuracy; when the precompression and antiforensic attack are
put together, as shown in Table 4, the proposed CNN gains comparable performance with
Li’s and Sun’s schemes.

In conclusion, De Rosa’s method is not robust for pre-JPEG compression and an-
tiforensics attack, and Cao’s method is vulnerable to antiforensic attacks. Furthermore,
such prior algorithms are unstable in different gamma levels. Although Li’s method based
on high-dimensional features is better than previous works in the case of pre-JPEG com-
pression and antiforensic attack, its performance is unsatisfactory when no other operation
is used. The deep-learning-based method proposed by Sun obtained slightly lower detec-
tion accuracy than the proposed DM-CNN, but it has a much higher computational cost
during the feature extraction of the GLCM in preprocessing. Compared with the above
schemes, the proposed DM-CNN achieves good robustness against pre-JPEG compression,
antiforensic attacks, and CE level variation and obtains the best average detection accuracy
in all cases studied.

Table 3. CE detection accuracy in the case of antiforensics attacks. ’−’ denotes that the method does
not work in this case. AVE is the average accuracy. Best results are marked in bold.

Attack Method γ = 0.6 γ = 0.8 γ = 1.2 γ = 1.4 AVE

De Rosa [13] 61.67% 58.83% 55.32% 59.33% 58.79%
Cao [8] − − − − −
Li [9] 96.30% 95.54% 95.72% 96.55% 96.03%

[16] Sun [26] 95.53% 89.94% 90.55% 92.42% 92.11%
P-CNN 97.90% 96.00% 96.50% 96.55% 96.74%
H-CNN 88.77% 73.65% 74.85% 78.42% 78.92%

DM-CNN 97.85% 95.97% 96.68% 97.18% 96.92%

De Rosa [13] 69.85% 66.03% 62.29% 64.42% 65.65%
Cao [8] − − − − −
Li [9] 99.57% 99.38% 99.33% 99.51% 99.48%

[18] Sun [26] 99.48% 99.07% 99.08% 99.19% 99.21%
P-CNN 98.60% 98.50% 97.80% 98.00% 98.21%
H-CNN 98.82% 97.59% 97.57% 97.09% 97.77%

DM-CNN 99.72% 99.78% 99.70% 99.59% 99.70%

Table 4. CE detection accuracy for JPEG-compressed images with different QFs and antiforensics
attack [16]. ’−’ denotes that the method does not work in this case. AVE is the average accuracy. Best
results are marked in bold.

QF Method γ = 0.6 γ = 0.8 γ = 1.2 γ = 1.4 AVE

De Rosa [13] 70.26% 67.85% 65.38% 66.52% 67.50%
Cao [8] − − − − −
Li [9] 99.90% 99.90% 99.90% 99.90% 99.90%

50 Sun [26] 99.75% 99.63% 99.68% 99.57% 99.66%
P-CNN 99.90% 99.90% 99.90% 99.90% 99.90%
H-CNN 99.45% 99.40% 99.20% 99.20% 99.31%

DM-CNN 99.93% 99.96% 99.97% 99.94% 99.95%

De Rosa [13] 68.68% 65.61% 62.24% 63.93% 65.12%
Cao [8] − − − − −
Li [9] 99.90% 99.90% 99.90% 99.90% 99.90%

70 Sun [26] 99.32% 99.34% 98.60% 99.03% 99.07%
P-CNN 99.80% 99.75% 99.55% 99.80% 99.73%
H-CNN 97.35% 98.35% 97.80% 98.15% 97.91%

DM-CNN 99.92% 99.94% 99.95% 99.90% 99.93%

5.3. Exploration on the Strategy to Improve Performance of CNN-Based CE Forensics

Although numerous deep-learning-based schemes have been proposed for digital
image forensics, to the best of our knowledge, no one until now has focused on exploring
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the strategy for performance improvement of single-CNN-based CE forensics. However,
it is important for the neophyte to design the new CNN architecture in the community
of image forensics. In order to fill such a gap, we make a preliminary exploration in this
work. Specifically, there are three parts: adding the preprocessing, improving complexity
of architecture, and selecting training strategy, which includes a fine-tuning technique and
data augmentation.

5.3.1. Preprocessing

Through protracted and unremitting efforts of researchers, the deep learning technique
developed for computer vision (CV) tasks has been succeeded in image forensics. Differing
from CV-related tasks, classification in image forensics has little relation to the image
content. Therefore, the preprocessing technique has evolved into a universal way to
improve the signal-to-noise ratio (SNR). High-pass filtering has become one of most popular
means in the preprocessing stage. In this part, using P-CNN in the case of γ = 0.6 as an
example, we evaluate six kinds of high-pass filters—H1, V1, H2, V2, LAP, HP—that are
widely applied in image forensics and compare them with the case without preprocessing.
The definitions of these filters are shown in Table 5 and the performance of the above cases
is presented in Figure 7. NON means the case without preprocessing. It can be seen that
it is not good for CE forensic when non-preprocessing is used. In addition, first-order
difference along horizontal direction has better performance. At the same time, the HP
and LAP filter proposed for the other forensic task obtained worse performance, which
indicates that it is necessary for image forensics to design different high-pass filters.

Table 5. The filters evaluated in this work.

H1 =
[
1 −1

]
V1 =

 1

−1

 H2 =

1 0

0 −1



H2 =

0 −1

1 0

 LAP =


0 −1 0

−1 4 −1

0 −1 0

 HP = 1
12 ·



−1 2 −2 2 −1

2 −6 8 −6 2

−2 8 −12 8 −2

2 −6 8 −6 2

−1 2 −2 2 −1



5.3.2. Powerful Convolutional Neural Networks

Thanks to the development of deep learning techniques in CV, more powerful CNNs
(ResNet, XceptionNet, SENet) have surfaced at an increasing rate in recent years. However,
because of the limitations in the forensics community, such as insufficient training data-sets
and hardware configurations, it would be difficult to evaluate all of them. In order to
verify the effectiveness of powerful CNN in CE forensics, based on P-CNN, we replace its
traditional convolutional layers with the residual blocks that were proposed in ResNet18
and call it as Res_H1. The result is shown in Figure 8. Compared with the case of H1,
detection accuracy of the Res_H1 increases by 0.65%. From the above discussion, we
make the conclusion that, for CE forensics, powerful CNNs enhance its performance and
preprocessing plays a more important role.
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Figure 8. Performance on P-CNN with/without preprocessing and with a powerful network. NON
means the case of P-CNN without preprocessing. The others represent the P-CNN with LAP, V2, H2,
V1, and H1 filters in the preprocessing. Res_H1 denotes the P-CNN with H1 filter and residual blocks.

5.3.3. Training Strategy

It is well-known that the scale of data has an important effect on performance for
the deep-learning-based method, and the transfer learning technique [36] also provides
an effective strategy to train the CNN model. In this part, we conducted experiments to
evaluate the effect of the scale of data and transfer learning strategy on the performance
of CNN. For the former, the images from BOSSBase were firstly cropped into 128 × 128
non-overlapping pixel patches. Then, these images were enhanced with γ = 0.6. We
randomly chose 80,000 image pairs as test data and 5000, 20,000, 40,000, and 80,000 image
pairs as training data. Four groups of H-CNN and P-CNN were generated using the above
four training data, and the test data is same for these experiments. The result is as shown
in Figure 9. It can be seen that the scale of training data has a slight effect on H-CNN
with small parameters, and the opposite happens for P-CNN. Therefore, the larger scale
of training data is beneficial to the performance of P-CNN with more parameters and the
performance of P-CNN would be improved by enlarging the training data. For the latter,
we compared the performance of P-CNN with/without transfer learning in the cases of
γ = {0.8, 1.2, 1.4}, and the P-CNN with transfer learning by fine-tuning the model for
γ = {0.8, 1.2, 1.4} from the model for γ = 0.6. As shown in Figure 10, P-CNN-FT achieves
better performance than P-CNN.

Figure 9. Effect of the scale of training data.
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Figure 10. Performance of the P-CNN and the P-CNN with fine-tuning (P-CNN-FT).

6. Conclusions, Limitations, and Future Research

Being a simple yet efficient image processing operation, CE is typically used by
malicious image attackers to eliminate inconsistent brightness when generating visually
imperceptible tampered images. CE detection algorithms play an important role in decision
analysis for authenticity and integrity of digital images. The existing schemes for contrast
enhancement forensics have unsatisfactory performances, especially in the cases of pre-
JPEG compression and antiforensic attacks. To deal with such problems, in this paper, a
new deep-learning-based framework dual-domain fusion convolutional neural networks
(DM-CNN) is proposed. Such a method achieves end-to-end classification based on pixel
and histogram domains, which obtain great performance. Experimental results show that
our proposed DM-CNN achieves better performance than the state-of-the-art ones and is
robust against pre-JPEG compression, antiforensic attacks, and CE level variation. Besides,
we explored a strategy to improve the performance of CNN-based CE forensics, which
could provide guidance for the design of CNN-based forensics.

In spite of the good performance of exiting schemes, there is a limitation of the
proposed method. It is still a hard task to detect CE images in the case of post-JPEG
compression with lower-quality factors. The new algorithm should be designed to deal
with this problem.

In addition, the security of CNNs has drawn a lot of attention. Therefore, improving
the security of CNNs is worth studying in the future.
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