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Abstract: Vigilance estimation of drivers is a hot research field of current traffic safety. Wearable 

devices can monitor information regarding the driver’s state in real time, which is then analyzed by 

a data analysis model to provide an estimation of vigilance. The accuracy of the data analysis model 

directly affects the effect of vigilance estimation. In this paper, we propose a deep coupling recurrent 

auto-encoder (DCRA) that combines electroencephalography (EEG) and electrooculography (EOG). 

This model uses a coupling layer to connect two single-modal auto-encoders to construct a joint 

objective loss function optimization model, which consists of single-modal loss and multi-modal 

loss. The single-modal loss is measured by Euclidean distance, and the multi-modal loss is measured 

by a Mahalanobis distance of metric learning, which can effectively reflect the distance between 

different modal data so that the distance between different modes can be described more accurately 

in the new feature space based on the metric matrix. In order to ensure gradient stability in the long 

sequence learning process, a multi-layer gated recurrent unit (GRU) auto-encoder model was 

adopted. The DCRA integrates data feature extraction and feature fusion. Relevant comparative 

experiments show that the DCRA is better than the single-modal method and the latest multi-modal 

fusion. The DCRA has a lower root mean square error (RMSE) and a higher Pearson correlation 

coefficient (PCC). 

Keywords: vigilance estimation; electroencephalogram; electrooculogram; deep coupling recurrent 

auto-encoder; multi-modal fusion 

 

1. Introduction 

The fatality rate of traffic accidents is very high. According to statistics, millions of 

people die from traffic accidents every year. Tired driving and inattention are the main 

causes of traffic accidents. Modern sensor technology has been widely used in driver con-

dition monitoring, and has reduced traffic accidents to a certain extent and saved thou-

sands of lives [1]. 

A portable wearable device can collect electroencephalography (EEG) and elec-

trooculography (EOG) signals, which are used to evaluate the driver’s state in real time 

[2–4]. EEG signals can directly reflect the activity of the human brain and capture the 

changes of radio waves caused by fatigue or drowsiness [5]. EEG is a promising neuro-

physiological indicator that has distinguished wakefulness from sleeping in various stud-

ies. EOG measures the potential between the front and back positions of human eyes, 

which contains information about vigilance and eye movement, the latter of which is an 

effective indicator of human psychological activities. EEG and EOG signals come from 

different sensors, and such data are called multi-modal data. Multi-modal fusion methods 

include the multi-core method, the graph model, and the neural network method [6]. In 

recent years, multi-modal data fusion has attracted extensive attention [6–8], and the fu-

sion of vibration signals and acoustic signals with different attributes and characteristics 
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provides better fault diagnosis results [9,10]. In the field of artificial intelligence, the fusion 

of image, sound, text, and video is a current research hotspot [11–13]. 

EEG and EOG represent internal cognitive state and external subconscious behav-

iors, respectively, and the information gathered by these two modes is closely connected 

and complementary. Related studies have shown that the fusion of EEG and EOG in alert-

ness analyses has obvious advantages over the use of each of them alone [4,11–14]. How-

ever, there are some difficulties regarding the integration of EEG and EOG. On the one 

hand, there are some human disturbances within the data itself. In the process of data 

monitoring, the unconventional actions and thinking changes of the tested body make 

data noise, which is difficult to uncover. On the other hand, multi-modal analysis of bio-

logical signals is very difficult, and it is a challenging task to identify complementary and 

contradictory information from the available signals. In addition, the lack of an ideal syn-

chronization method between modes is another challenge related to multi-modal fusion 

analysis. 

A number of machine learning methods based on EEG and EOG have been proposed 

for vigilance estimation. For example, support vector regression (SVR) was applied to 

EEG, EOG, and multi-modal EEG and EOG, and was used as a benchmark to evaluate 

other models [2]. Vigilance is a dynamic process because the user’s internal psychological 

state is involved in time evolution. In order to incorporate time dependence into vigilance 

estimation, continuous conditional neural field (CCNF) and continuous conditional ran-

dom field (CCRF) were introduced in [2] to construct a vigilance estimation model. The 

authors of [3] proposed a multi-modal fusion strategy that uses the depth auto-encoder 

model to learn better sharing. The authors of [4] put forward a method of an adversarial 

domain adaptive network for reusing data, which saves the time of labeling a large 

amount of data. Huo [15] used the discriminative graph regularized extreme learning ma-

chine (GELM) to evaluate the driver’s state. An extreme learning machine is an efficient 

and practical feedforward neural network with a single hidden layer. The authors of [16] 

put forward a continuous vigilance estimation method using long- and short-term 

memory (LSTM) neural networks and combining EEG and EEG signals from the forehead. 

This method explores time-dependent information and significantly improves the perfor-

mance of vigilance estimation. The authors of [17] proposed a double-layered neural net-

work with subnetwork nodes (DNNSN), which is composed of several subnet nodes, and 

each node is composed of many hidden nodes with various feature selection capabilities. 

Zhang [14] suggested that the capsule attention model and deep LSTM should be inte-

grated with EEG and EEG. The capsule attention model learns the temporal and hierar-

chical/spatial dependencies in the data through the LSTM network and the capsule feature 

representation layer. 

In recent years, deep neural networks have been widely studied regarding the fusion 

of EEG and EGG, and promising results have been achieved [13]. The convolutional neu-

ral network (CNN), recurrent neural network (RNN), auto-encoder, anti-neural network, 

and attention model are widely used in feature extraction and the fusion of EEG and EOG. 

In terms of image reconstruction and image fusion, auto-encoders and convolutional neu-

ral networks also show their advantages. The authors of [18] showed that even simple 

autoencoders can be trained to reconstruct an image in such a way that the human eye 

would not be able to distinguish the noise and signal from a damaged sample. Professor 

Lu Baoliang of Shanghai Jiao Tong University and his team have done a lot of work re-

garding the integration of EEG and EOG. They have done relevant simulation tests, col-

lected a large amount of test data, and put forward a series of vigilance evaluation meth-

ods [2,4,19–21] based on these test data. The experimental data used in this study came 

from Lu Baoliang’s team. 

Auto-encoders can extract deep features of data and remove noise interference. An 

RNN with a memory function has a good effect on processing time-series data, and it does 

not require the high synchronization of time. We designed a feature extraction and fusion 
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framework—a deep coupling recurrent auto-encoder (DCRA) model, which can effec-

tively solve the above problems. Our contributions include the following: 

 The DCRA uses multi-layer gated recurrent units (GRUs) to extract deep features 

and uses the joint objective loss function to fuse them together. 

 The joint loss function uses Euclidean distance similarity metrics in a single mode, 

and the multi-modal loss is measured by a Mahalanobis distance of metric learning 

[22,23], which can effectively reflect the distance between different modal data so 

that the distance between different modes can be described more accurately in the 

new feature space based on the metric matrix, and the losses of the two modes are 

summed according to weights.  

 Compared to the latest fusion method and the single-modal method, the method 

proposed in this paper has a lower root mean square error (RMSE) and a higher 

Pearson correlation coefficient (PCC). 

The remainder of this paper is organized as follows: In Section 2, the auto-encoder 

and metric learning are described. The deep recurrent auto-encoder is then extended to a 

deep coupling recurrent auto-encoder and a combinational model. The experimental data 

and evaluation methods are introduced in Section 3. Section 4 describes the experimental 

results and compares the performance of different models. Conclusions are presented in 

Section 5. 

2. Materials and Methods  

2.1. Auto-Encoder 

An auto-encoder is an unsupervised symmetric structure neural network model [24]. 

It consists of two parts—an encoder that converts inputs into potential representations, 

and a decoder that converts internal representations into outputs. An auto-encoder usu-

ally has the same number of neurons in the input and output layers. If the number of 

neurons in the hidden layer is smaller than that in the input and output layers, the hidden 

layer needs to learn the most important features of the input data and delete the unim-

portant features. The output layer is often called reconstruction, and the auto-encoder at-

tempts to reconstruct the input through the loss function so that the input and output are 

as similar as possible. The auto-encoder encoding function f and decoding function g are 

as follows: 

(1) (1)

1( ) ( )y = f x = s w x+b , (1) 

(2) (2)( ) ( ( ) )2z g y = s w f x +b , (2) 

where w(1) and w(2) are weight matrices, b(1) and b(2) are bias vectors, and S1 and S2 are non-

linear activation functions. The objective of an auto-encoder is to optimize w and b to min-

imize the reconstruction error. Traditionally, the mean squared error or cross entropy is 

used to compute the reconstruction error. The mean squared error function is lMSE(x,z) = 

‖x-z‖
2 

2 , and the cross entropy function is 

1

( , ) log (1 ) log(1 )
d

CE k k k k

k

l x z x z x z


      (3) 

The auto-encoder minimizes the objective function by optimizing w and b to maxim-

ize the similarity of the reconstructed data input.  

2.2. Metric Learning 

Mahalanobis distance was proposed by Indian statisticians in the literature [22] to 

represent the covariance distance of data. Compared with Euclidean distance, Mahalano-

bis distance has some excellent properties of its own—it is independent of decoupling and 



Entropy 2021, 23, 1316 4 of 14 
 

 

the dimension. The traditional Mahalanobis distance based on the inverse of the covari-

ance matrix is usually used to reflect the internal aggregation relationship of data. How-

ever, in many classification tasks, it is not enough to measure the distance function only 

to reflect the internal aggregation relationship of data, and it is more important to establish 

the relationship between sample attributes and categories. In the study of metric learning, 

Mahalanobis distance is no longer simply limited to the inverse of the covariance matrix, 

but needs to be obtained through the process of metric learning [25–27]. If there are two 

sequences xi and xj, then a semi-positive definite matrix M is given, called the Mahalanobis 

distance, expressed as follows: 

( ) ( ) ( )T

M i j i j i jD x ,x = x - x M x - x  (4) 

Distance metric learning refers to using a given training sample set to learn a metric 

matrix that can effectively reflect the distance between data so that in the new feature 

space based on the metric matrix, the distribution between similar samples is more com-

pact, while the distribution between different samples is more distant. Metric learning is 

to learn M. In order to ensure a non-negative distance and satisfy the triangle inequality, 

M must be a (semi) positive definite symmetric matrix, that is, there is an orthogonal basis 

P so that M can be written as M = PPT. Commonly used distance measurement learning 

methods include the probabilistic global distance metric (PGDM)[26], the large margin 

nearest neighbor (LMNN)[28], and information-theoretic metric learning (ITML)[29]. In 

this study, Mahalanobis distance was used to measure the similarity between multiple 

modes. 

2.3. Deep Coupling Recurrent Auto-Encoder (DCRA) 

The deep recurrent auto-encoder extracts deep features, which is the basis of feature 

fusion. The coupling layer connects two single auto-encoders together. The DCRA inte-

grates feature representation and feature fusion. 

2.3.1. Coupling Auto-Encoder 

Multi-modal EEG and EEG information is closely related and complementary. It is 

one of the strategies of multi-modal fusion to strengthen the common features of multi-

modal data and weaken the individual features of multi-modal data. The structure of the 

coupling auto-encoder is shown in Figure 1. The coupling auto-encoder consists of two 

auto-encoders of the same structure. The inputs of the two auto-encoders are EEG and 

EOG data, and the model reconstruction is consistent with the inputs. The coupling layer 

fuses two single-modal features together through a joint objective loss function [11]. Alt-

hough the two auto-encoders have the same structure, the parameters of the two auto-

encoders are different because of different inputs. 

EEG

Coupling Layer

Recons truction

EOG

Recons truction

 

Figure 1. Coupling auto-encoder. 

In this study, a joint objective loss function was designed to train the coupling auto-

encoder [10,11]. The joint loss function is shown in Formula (5). The joint loss function is 

composed of three parts: EEG loss LE, EOG loss Lo, and multi-modal loss S. LE and Lo are 

single-modal losses. Considering the internal correlation of a single mode, a single mode 
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uses Euclidean distance to measure similarity, as shown in Formulas (6) and (7), zE and zO 

are the reconstruction data from the inputs xE and xO. The use of Euclidean distance for 

multi-modal loss S between two different modes cannot fully reflect the internal relation-

ship between them. In order to learn the internal relations between the two modes, Ma-

halanobis distance was used to measure different modes, and this distance was obtained 

through metric learning. The Mahalanobis distance of metric learning can reflect the in-

ternal relations between different modes and express the differences between them 

[26,27]. As shown in Formula (8), M is the Mahalanobis distance of metric learning. 

( , ; , ) (1- )( ( , )+ ( , ))+ ( , ; , )E O E O E E E O O O E O E OL x x L x L x S x x         (5) 

2( , ) )E E E E EL x x z    (6) 

2( , ) )O O O O OL x x z    (7) 

( , ; , ) ( , ) ( , )E O E O E E E O O OS x x f x Mf x     (8) 

In Formula (5), LE(xE,θE) and LO(xO,θO) are auto-encoder loss functions of EEG and 

EOG, respectively; θE and θO represent parameters of corresponding models. α is the 

weight of multi-modal loss in the joint loss function. If α = 0, the joint loss function de-

grades to the loss function of a single auto-encoder, which cannot capture any correlation 

between inputs from different modes. If α = 1, any pair of multi-modal inputs has a cor-

relation. In short, the loss function only focuses on the constraint of correlation and com-

pletely ignores the characteristics of the data. 

In Formula (8), fE(xE,θE) and fO(xO,θO) represent the auto-encoder mapping functions 

of EEG and EOG, and M in Formula (8) is the Mahalanobis distance for metric learning. 

In this study, the probabilistic global distance metric learning (PGDM) method was used 

to learn the Mahalanobis matrix [26]. This method transforms the metric learning method 

into a convex optimization problem with constraints, and takes the selected pair constraint 

as the constraint condition of training samples. The dominant idea was to minimize the 

distance of sample pairs of the same category while constraining the distance between 

different samples of the same category that were greater than a certain value. The optimi-

zation model is as follows: 

2

( , )

( , )

|| ||

. . || || 1, 0

i j

i j

i j Mx x SM

i j Mx x D

min x x

s t x x M







 




 (9) 

If M is the Mahalanobis distance to be learned, to minimize the sum of the squares of 

xi and xj distances for any homogeneous xi and xj, the limiting condition is that the distance 

between xi and xj of different classes is greater than 1 and M is semi-positive. In Formula 

(9), S is the same classes of data, and D is the different classes of data. The loss function of 

PGDM is expressed as the following: 

2

( , ) ( , )

( , , ) || || log || ||
i j i j

11 nn i j M i j M

x x S x x D

g(M)= g M M x x x x
 

 
    

 
 

   (10) 

This loss function is equivalent to the optimization model, which is a convex optimi-

zation problem and can be directly optimized by Newton and quasi-Newton methods. 

Compared with Euclidean distance, Mahalanobis distance can describe the relationship 

between two different modes more accurately. 
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2.3.2. Deep Coupling Recurrent Auto-Encoder (DCRA) 

A deep coupling recurrent auto-encoder can extract deep features, which are the ba-

sis of feature fusion. In this paper, a deep coupling recurrent auto-encoder (DCRA) is pro-

posed. Its structure is shown in Figure 2. DCRA encoding and decoding are composed of 

three layers of gated recurrent units (GRUs), and the coupling layer connects two inde-

pendent auto-encoders. The DCRA is trained by the joint objective loss function, as ex-

pressed by Formula (5). 

EEG

Coupling Layer

Recons truction

EOG

Recons truction

 

Figure 2. Deep coupling recurrent auto-encoder. 

A recurrent neural network (RNN) is a neural network with short-term memory and 

parameter sharing. The nodes between the hidden layers in the structure of a recurrent 

neural network are connected, and the input of the hidden layer includes not only the 

output of the input layer but also the output of the hidden layer at the last moment. This 

structure focuses on the relevance of data before and after, and is particularly suitable for 

video, voice, text, and other time-series-related problems. As shown in Figure 3, the re-

current neural network is connected not only between adjacent layers but also between 

hidden layers. 

x

y

X(0) X(1) X(2) X(n)

y(0) y(n)y(1) y(2)

h(0) h(1) h(n-1)

 

Figure 3. Structure of a recurrent neural network. 

In Figure 3, at each time step t, neuron y(t) receives input vector x(t) and output vector 

y(t-1) of the previous time step, and transmits backwards, step-by-step, as expressed by 

Formula (11): 

( ) ( ) ( 1)( )T T

t x t y ty W x W y b     (11) 

In Formula (11), Wx and Wy are the weight matrices of input x(t) and y(t-1), b is the 

bias vector, and ø is the activation function. The parameters of the recurrent neural net-

work are learned by the back propagation algorithm, that is, the errors are passed forward, 

step-by-step, in the reverse order of time. Because the data transforms when traversing 

the RNN, some information is lost at each time step, resulting in a worse final result. Long- 
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and short-term memory (LSTM) has been proposed to solve this problem [30–32]. The 

unique structure of LSTM can detect medium and long-term dependence of data. A GRU 

is a simplified version of an LSTM recurrent neural network [33]. The structure of a GRU 

is shown in Figure 4. We used a GRU in this study to design the recurrent auto-encoder. 

FC FC

FC

1-

X(t)

h(t-1)

r(t) z(t)

g(t)

y(t)

h(t)

GRU

multiplicationaddition

logistic tanh

 

Figure 4. Structure of a GRU. 

In Figure 4, z(t) controls the forgetting gate and the input gate. Some parts of the 

forgetting gate that control the long-term state should be deleted. The input gate control 

should add some parts of g(t) to the long state. If the gate controller outputs 1, the forget-

ting gate opens and the input gate closes. If 0 is the output, the opposite is true. Gate 

controller r(t) controls the display of a portion of the previous state to the main output 

layer g(t). g(t) is the main output layer, whose function is to analyze the current input x(t) 

and the previous state h(t-1), store the most important part in the long-term state, and its 

output goes directly to h(t). 

( ) ( ) ( 1)( )T T

t xz t hz t zz W x W h b     (12) 

( ) ( ) ( 1)( )T T

t xr t hr t rr W x W h b     (13) 

( ) ( ) ( ) ( 1)tanh( ( )T T

t xg t hg t t gg W x W r h b     (14) 

( ) ( ) ( 1) ( ) ( )(1 )t t t t th z h z g      (15) 

In Formulas (12), (13), and (14), Wxz, Wxr, and Wxg are the weight matrices of each layer 

in 3 layers connected with input vector x(t). Whz, Whr, and Whg are the weight matrices of 

the connection between each layer and the previous short-term state h(t-1) in the three 

layers. bz、br, and bg are the offset terms of each of the three layers. GRUs can learn to 

identify important inputs, store them in a long-term state, and extract them when needed, 

which is the advantage of a GRU processing time-series data. 

DCRA model training is stratified from bottom to top. The DCRA is able to learn 

similar features from different modes by mapping multi-mode signals into the same rep-

resentation space. The DCRA algorithm is shown below. 

Algorithm: DCRA. 

Input: training data EEG, EOG, Mahalanobis distance M 

Output: DCRA model parameters 

1  Training layer 1 GRU; 

2  Training layer 2 GRU; 

3  Training layer 3 GRU;  

4  Update DCRA parameters using Formula (5) using gradient descent; 

5  Repeat steps 1-4 until the model converges. 
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3. Data Description and Evaluation Measures 

3.1. Dataset 

SEED-VIG [2] is a vigilance evaluation dataset collected in a simulation experiment 

by Lu Baoliang’s research group. In the experiment, a neuroscan system and eye-tracking 

glasses were used to record the real-time data of the tester. The neuroscan system rec-

orded EEG and EOG data, and the eye-tracking glasses recorded eye movement data, 

which included saccade, fixation, blinking, and closing eyes. Testers needed to drive the 

simulated car in a virtual environment for 120 min without any warning or interference 

during driving. Testers were required to test after lunch because drivers are prone to 

drowsiness at this time. SEED-VIG recorded data from 23 testers. The testers included 12 

women and 11 men. The eye-tracking glasses accurately captured information about their 

eye movements. Eye movement-based PERCLOS [34] is considered to be the most reliable 

and effective method for measuring driver alertness levels. PERCLOS is equal to (blink + 

eyes CLOSures(CLOS))/(blink + fixation + saccade + eyes CLOSures(CLOS)). This is a 

widely accepted indicator of alertness. 

3.2. Evaluation Methods 

PERCLOS is suitable for regression analysis, and the root mean square error (RMSE) 

is a common evaluation method for regression models [35]. The RMSE uses the square 

error of the real value y and the predicted value ŷ  to evaluate the model, and the RMSE 

formula is as follows: 

2 1/2

1

1
ˆ ˆ( , ) ( ( ) )

n

i ii
RMSE y y y y

n 
   (16) 

The RMSE does not provide some structural information, while the Pearson correla-

tion coefficient (PCC) provides an assessment of the linear relationship between the pre-

dicted and true values. The PCC is used as a complement to the RMSE in related models 

for assessing EEG and EOG. The formula of PCC is as follows: 

1

2 2

1 1

ˆˆ( )( )
ˆ( , )

ˆˆ( ) ( )

n

i ii

n n

i ii i

y y y y
PCC y y

y y y y



 

 


 



 
 (17) 

1 2( , , , )T

ny y y y  is the actual measured PERCLOS and 1 2
ˆ ˆ ˆ ˆ( , , , )T

ny y y y is the 

model-predicted value. y  and ŷ  are the means of the real and predicted values, re-

spectively. When the model is more accurate, the PCC value is larger and the RMSE value 

is smaller. 

3.3. Comparison Method 

In this study, eight feature level fusion methods were selected for comparison, in-

cluding SVR, CCNF and CCRF [2], DAE [3], GELM [15], LSTM [16], DNNSN [17], and 

LSTM-CapsAtt [14]. The DNNSN proposes a double-layer neural network with subnet-

work nodes. The model is composed of multiple subnet nodes, and each node is composed 

of many hidden nodes with various feature selection capabilities. The DNNSN demon-

strated good results in an experiment. The LSTM-CapsAtt uses a capsule attention model 

and a deep LSTM network to fuse EEG and EOG. The capsule attention model uses LSTM 

and capsule feature representation layers to learn temporal and hierarchical/spatial de-

pendencies in the data. Experiments have shown that the LSTM-CapsAtt achieves better 

results than the previous seven methods. 

The DCRA was realized using the TensorFlow and Keras frameworks. In order to 

make the DCRA model more accurate, parameters, such as the number of layers of the 
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DCRA model, the number of neurons in each layer, the activation function, the optimiza-

tion function, and the learning rate, were debugged several times, and the most suitable 

parameter collocation was selected to achieve the best effect. The model parameter set-

tings are shown in Table 1. 

Before the experiment, the data was first standardized so that the data of different 

modalities were in the same range and equally distributed. In the experiment, we found 

that adding the batch normalization layer can improve the model performance, so the 

batch normalization layer was added after second, third, fifth and sixth layers of the 

model. The batch normalization layer realizes batch normalization, which has a positive 

effect on the deep network [36]. The learning rate and batch size were adjusted multiple 

times simultaneously, and the learning rate increased from 10−5 to 10, each time by 10 

times. The batch size ranged from 16 to 256 and increased twofold each time. Finally, 

when the learning rate was 0.001 and the batch size was 32, the model performance was 

optimal and the convergence speed was the fastest. The activation function selected Relu 

and Sigmoid, and different layers selected different activation functions. Regarding the 

choice of optimizer, we tried AdaGrad, RMSProp, and Adam, and finally chose the more 

suitable Adam, which was faster than the other two optimizers. 

Table 1. Parameter settings of the DCRA model. 

Layers Name Units (EEG/EOG) Activation 

1 GRU 36/25 Relu 

2 GRU 20/20 Relu 

3 GRU 16/16 Relu 

4 Coupling layer 10  

5 GRU 16/16 Relu 

6 GRU 20/20 Relu 

7 GRU 36/25 Sigmoid 

3.4. Learning Mahalanobis Distance 

In order to obtain the Mahalanobis distance M, some data was selected from the 

SEED-VIG dataset, and feature data was extracted with a single recurrent auto-encoder 

model to achieve data dimension reduction. Then, these characteristic data and labels 

were processed by the PGDM method for training and learning the Mahalanobis distance 

M. In this study, the PGDM algorithm was realized in MATLAB (Version 2016, Math-

Works, Natick, MA, USA). 

In reference [25], Mahalanobis distance and Euclidean distance were compared in 

UCR datasets, and the results show that Mahalanobis distance is smaller than Euclidean 

distance. These experiments show that Mahalanobis distance is more accurate than Eu-

clidean distance in measuring the distance similarity of different modes. 

4. Results and Discussion 

4.1. Performance Analysis 

In order to verify the effectiveness of the DCRA algorithm under different distance 

measures, DCRA_E, based on Euclidean distance, and DCRA_M, based on Mahalanobis 

distance, were compared with the other eight latest fusion methods. We employed five-

fold cross-validation for the data, and no overlap existed between the testing and training 

data. As shown in Table 2, we used different algorithms to evaluate the values of RMSE 

and PCC on multi-modal EEG and EOG. 

Table 2. Comparison results of different methods. 

NO. Methods  RMSE PCC 

1 SVR 0.100 0.830 
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2 CCRF 0.100 0.840 

3 CCNF 0.095 0.845 

4 DAE 0.094 0.852 

5 GELM 0.071 0.808 

6 LSTM 0.080 0.830 

7 DNNSN 0.080 0.860 

8 LSTM-CapsAtt 0.029 0.989 

9 DCRA_E 0.035 0.980 

10 DCRA_M 0.023 0.985 

As can be seen in Table 2, the RMSEs of the time-dependent CCRF and CCNF meth-

ods were 0.10 and 0.095, respectively, and the PCCs 0.84 and 0.845, respectively. The DAE 

was almost the same as the CCNF without significant change. Although the LSTM cyclic 

neural network achieved an adequate PCC, the RMSE performance significantly reduced 

its actual performance. At the same time, we observed the fact that the combination of the 

ELM-based GELM model and the auto-encoder significantly improved the performance 

because it reduced the dimension of input data. The DNNSN performed better than 

LSTM, but not as well as the GELM in terms of the RMSE. The LSTM-CapsAtt made a 

great leap in performance, as the RMSE and PCC were 0.029 and 0.989, respectively, which 

is obviously better than the previous algorithms. Compared to the LSTM-CapsAtt, the 

DCRA_E was slightly insufficient, but the DCRA_M was better than the LSTM-CapsAtt, 

which shows that similarity measurements based on Mahalanobis distance have certain 

advantages. 

In order to compare the performance of algorithms more accurately, the Friedman 

test was performed on some algorithms in Table 2. As shown in Table 3, the entire dataset 

was divided into five small datasets, namely D1, D2, D3, D4, and D5. We selected six algo-

rithms with better results from the 10 algorithms in Table 2, performed five-fold cross-

validation, and sorted the results, and then the average order value (AOV) was calculated. 

Using SPSS software to perform a non-parametric Friedman test under α = 0.05, the chi-

square value of 20.805 was calculated, and looked up the table to get the chi-square critical 

value of 12.592. Therefore, the hypothesis that “all algorithms have the same perfor-

mance” was rejected, as the performances of the six algorithms were significantly differ-

ent. 

Table 3. The AOVs of 6 algorithms. 

Dataset DRCA_M LSTM-CapsAtt DRCA_E DNNSN LSTM GELM 

D1 1 2 3 5 4 6 

D2 1 2 3 4 6 5 

D3 1 2 3 4 5 6 

D4 2 1 4 3 6 5 

D5 1 2 3 6 5 4 

AOV 1.20 1.80 3.20 4.4 5.20 5.10 

We used Nemenyi to further test the performance of the algorithm. First, we used 

Formula (18) to calculate the critical difference (CD) of the AOV: 

( 1)

6

k k
CD q

N



  (18) 

where k is the number of algorithms, N is the number of datasets, and qα can be obtained 

by looking up the table, where α = 0.05. If the difference between the average sequence 

values of the two algorithms exceeds the CD, the assumption that the performance of the 

two algorithms is the same is rejected. When k = 6, N = 5, and qα = 2.850, then CD = 3.372. 
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Figure 5 was drawn according to the ordinal results in Table 3. In Figure 5, the vertical 

axis shows each algorithm, and the horizontal axis is the average ordinal value. For each 

algorithm, a dot displays its AOV, and the horizontal line segment with the dot in the 

center represents the size of the CD. If the horizontal line segments of the two algorithms 

overlap, it means that there was no significant difference between the two algorithms; 

otherwise, it means that there was a significant difference. It can be easily seen from Figure 

5 that there was no significant difference between the algorithms DCRA_M and LSTM-

CapsAtt, because their horizontal line segments have overlapping areas. However, the 

DCRA_M is closer to the vertical axis, so the performance of DCRA_M was better than 

that of the LSTM-CapsAtt. Similarly, there was no significant difference between the al-

gorithm DNNSN and the LSTM and GELM algorithms. However, the DNNSN is closer 

to the vertical axis, so the performance of DNNSN was better than LSTM and the GELM. 

The algorithms DCRA_M and LSTM-CapsAtt do not overlap with the DNNSN, LSTM, 

and GELM, indicating that the DCRA_M and LSTM-CapsAtt are significantly better than 

the DNNSN, LSTM, and GELM. DCRA_E is in the middle of all the algorithms, so the 

performance of DCRA_E was also moderate. 

DCRA_M

DCRA_E

LSTM-CapsAtt

DNNSN
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GELM

1.0 2.0 3.0 4.0 5.0 6.0 (AOV)

(Algorithms)

 

Figure 5. Friedman test chart. 

To further verify the fusion effect, the DCRA_E and DCRA_M were compared to the 

single-modal deep recurrent auto-encoder model. Single-modal deep recurrent auto-en-

coder input only uses EEG or EOG, and there is no coupling layer. Other hierarchical 

structures are consistent with the coupling auto-encoder structure. The values of the 

RMSEs and PCCs of the four methods are listed in Table 4. 

Table 4. Comparison of effects before and after fusion. 

Method RMSE PCC 

DCRA_M with EEG and EOG 0.023 0.985 

DCRA_E with EEG and EOG 0.035 0.980 

DRA with EEG 0.085 0.854 

DRA with EOG 0.095 0.805 

As shown in Table 4, the RMSE and PCC values when 0.085 and 0.854, respectively, 

when EEG was used as the only input to the DRA. When EOG was used as the only input 

to the deep recurrent auto-encoder (DRA), the RMSE and PCC values were 0.095 and 

0.805, respectively. Both the DCRA_E and DCRA_M were better than the single-modal 

methods, and the improvement is obvious. Because of the intrinsic relationship between 

EEG and EOG, the DCRA can reinforce the common features of different modes and pro-

vide complementary information to achieve better results than a single mode. 
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At the same time, it can be seen from Tables 2 and 4 that the fusion methods, includ-

ing CCRF, CCNF, GELM, DNNSN, and LSTM-CapsAtt, were better than the single-modal 

method in the test results. It can be said that multi-modal fusion can improve the accuracy 

of the model and generally performs better than the single-modal method. Overall, the 

DCRA_M performed better than the other fusion methods. 

4.2. Analysis of α 

In Formula (5), α is the coupling factor of the joint loss function. In order to verify the 

influence of coupling loss on the joint loss function and RMSE, α values were set as 0, 0.2, 

0.4, 0.8, and 1 respectively, and the RMSE values corresponding to different α values were 

obtained in the experiment, as shown in Figure 6. As can be seen from Figure 6, α values 

achieved good results at 0.2, 0.4, and 0.8. When α was equal to 0.4, the RMSE value was 

at the minimum. When α was equal to 0, the coupling loss was 0, and only single-modal 

loss played a role, which was the worst effect. When α was equal to 1, the coupling loss 

weight was the largest, and the single-modal loss was 0, so the effect was not good. The-

oretically, an α value that is too small will overemphasize the “individuality” of the data 

and ignore the correlation, while an α value that is too large will overemphasize the cor-

relation and ignore the “individuation” of the data. Therefore, the effect is better when the 

α value is moderate. 
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Figure 6. Influence analysis of α value on RMSE. 

5. Conclusions 

Vigilance estimation based on EEG and EOG multi-modal data fusion is a hot re-

search topic and has high research value and practical prospects. In this paper, a deep 

coupling recurrent auto-encoder model that combines EEG and EOG is proposed. This 

model constructs a coupling layer, which links EEG and EOG together. When construct-

ing the coupling loss function of the model, the Mahalanobis distance is learned by meas-

urements to calculate the similarity of two different modal data. In order to ensure the 

gradient stability of learning long sequences, a multi-layer GRU is used to construct the 

auto-encoder model. The deep coupling recurrent auto-encoder model integrates data fea-

ture extraction and feature fusion. The results of our experiments show that the proposed 

method is superior to the single-modal method and the latest multi-modal fusion method. 

Based on the comparisons of experimental results using different methods, we observed 

that the proposed method can handle the multimodal data fusion and project the high 

dimensional vectors of data from different types of sensors into a common latent space, 

which enables effective classification of multi-model data. However, our method also has 

some problems, such as the need to take out part of the experimental data to learn a Ma-

halanobis matrix, and this part of the data must be consistent with the data required for 

deep model training. At the same time, the Mahalanobis matrix used in the loss function 

affects the speed of model convergence, and the choice of metric learning method also 

needs further discussion. 
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Deep learning has achieved promising results with EEG and EOG fusion, but it also 

faces some challenges. First of all, there is not a sufficient solution to measure the similar-

ity between different modes, and this area needs more in-depth research and discussion. 

In addition, our next step is to find a suitable framework for multi-modal fusion. 
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