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Abstract: Graph-based causal inference has recently been successfully applied to explore system
reliability and to predict failures in order to improve systems. One popular causal analysis following
Pearl and Spirtes et al. to study causal relationships embedded in a system is to use a Bayesian
network (BN). However, certain causal constructions that are particularly pertinent to the study of
reliability are difficult to express fully through a BN. Our recent work demonstrated the flexibility of
using a Chain Event Graph (CEG) instead to capture causal reasoning embedded within engineers’
reports. We demonstrated that an event tree rather than a BN could provide an alternative framework
that could capture most of the causal concepts needed within this domain. In particular, a causal
calculus for a specific type of intervention, called a remedial intervention, was devised on this tree-like
graph. In this paper, we extend the use of this framework to show that not only remedial maintenance
interventions but also interventions associated with routine maintenance can be well-defined using
this alternative class of graphical model. We also show that the complexity in making inference about
the potential relationships between causes and failures in a missing data situation in the domain of
system reliability can be elegantly addressed using this new methodology. Causal modelling using a
CEG is illustrated through examples drawn from the study of reliability of an energy distribution
network.

Keywords: Chain Event Graphs; interventions; causal calculus

1. Introduction

The use of Bayesian Networks (BN) for the study of reliability has been widely
advocated in the literature [1]. However, the asymmetric processes that are common in
system reliability can hardly be fully captured by the framework of a BN.

Fortunately, it has been shown that any discrete BN can be embellished into a tree-
based graph called a Chain Event Graph (CEG) [2,3]. The CEG is a graphical model that is a
function of an underlying event tree and certain context specific conditional independence
statements. In particular, the CEG can model and depict the types of structural asymmetries
that the BN framework struggles to embody [4]. This can then provide a framework for
studying the causal mechanisms behind the failures of a given system. For example, Cowell
and Smith [2] developed a dynamic programming algorithm for maximum a posterior
(MAP) structural learning for causal discovery within a restricted class of CEGs called
stratified CEGs.

Conventional causal algebras have been adapted from Pearl’s do-calculus for BNs [5]
to the singular manipulation on a CEG, and the back-door theorem has been generalised to
estimate the effect of this manipulation by previous research [6,7]. In a different strand of
research, Barclay, Hutton, and Smith [8] developed a class of CEGs suited for incorporating
various missing data structures directly through its topology. Unlike BNs, conjugate infer-
ence is still well supported by the structure of CEGs even in the presence of missingness [2].

In Section 2, we adapt the MAP structural learning algorithm [2] to search for the best
scoring structure of a CEG when some data is informedly missing. The selected model
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provides the best explanation of the observed data that has been informedly censored. By
assuming that each candidate CEG is causal in the sense formally defined in [6,7], the best
scoring CEG is of a CEG in idle mode, and then causal deductions can be made from it.

In our recent work [9], we demonstrated how to embed the causal reasoning underly-
ing engineering reports for CEGs designed specifically for applications in system reliability.
The causal calculus we developed there only provided a framework to study and analyse
the impact of remedial interventions, i.e., interventions designed to rectify the root cause
after a failure had been observed.

In Section 3, we extend the use of the CEG causal framework with missingness to
express and analyse a different kind of intervention called a routine intervention. This new
class of intervention is necessary when we are evaluating the impact of interventions within
scheduled maintenance regimes. These regimes are prepared in advance and are used to
inspect machines with the objective of preventing future failures that might be about to
happen. In this context, although the data may be informedly missing, we can still develop
algorithms that, under certain stated hypotheses, produce formulae to give quantitative
estimates of the impacts of various candidate routine interventions of this type.

In this paper, we can, therefore, show how we can use the underlying CEG model to
predict the effect of various types of such interventions. In particular we report a new back-
door criterion—an analogue of Pearl’s back-door criterion for BNs [5]. This gives a quick
sufficient condition as to whether the effect of such an intervention is identifiable when
data is censored in a way that induces informed missingness. This criterion significantly
increases the scope of the original causal calculus using CEGs designed for the singular
manipulation [6] and the stochastic manipulation established for BNs [5]. It, thus, enables
us to transfer causal technologies so that they apply to this graphical family.

In Section 4, we demonstrate how to interpret the causal structures of a best scoring
CEG by a simple example of a conservator system. Furthermore, comparative experiments
are designed to show that the proposed new causal algebras can embellish the current
structural learning algorithm to capture the causal effects of a routine intervention.

The contributions of this paper are threefold. First, we formally derive a method for
selecting a CEG providing the framework of a probability model of maintenance regimes,
which acknowledges the presence of informed missingness within the fitted data endemic
in these applications. Second, we devise new causal algebras for the routine intervention
and prove the identifiability of its causal effects in presence of the types of missing data
that we might expect from this application. Third, we demonstrate how important this
new intervention calculus can be in making valid inferences and how naive inferences that
treat the system as uncontrolled and ignore the underlying causal structure within this
application can severely mislead the analyst.

2. Causal Identifiability on Chain Event Graphs with Informed Missingness

We begin this section by briefly reviewing and then extending the definition of a
CEG [2,3,6–8] before providing a systematic approach to embedding information about the
context-specific missingness into a CEG customised for the domain of reliability [9,10].

Suppose we have a vector of variables X = (X1, X2..., Xn) taking values in a state
space X = X1 × · · · ×Xn, among which we explore various putative causal hypotheses.
An event tree T (X) = (VT , ET ) can be constructed to represent relationships embedded in
X, where VT denotes the vertex set and ET denotes the edge set of T (X). Each non-leaf
node is also called a situation. Let ST denote the set of non-leaf nodes. The floret of a
situation v ∈ ST is a subtree of T (X), denoted by F (v) = (VF (v), EF (v)). The vertex set
of F (v) consists of v and the vertices in ST connected from v by a directed edge in ET :
VF (v) = {v} ∪ {v′ ∈ VT |ev,v′ ∈ ET }. The edge set of F (v) is a subset of ET satisfying
EF (v) = {ev,v′ : v′ ∈ VT , ev,v′ ∈ ET }.

Let FT = {F (v)}v∈ST denote the collection of all florets on the tree T . Let µ(v0, v)
denote a subpath from the root node v0 to a node v ∈ VT on the event tree. Every floret
F (v) represents a random variable conditional on µ(v0, v). We denote this conditional
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random variable by X(v) = X|µ(v0, v) for X ∈ X. Each emanating edge ev,v′ of v is labelled
by a value x ∈ X(v). Thus, every conditional variable Xi, i ∈ {1, ..., n}, is represented
on a set of florets on the event tree, denoted by F (v(Xi)). Previous research [3,4,6,7] has
demonstrated the capability of a tree-like structure to encode the asymmetric information.
The corresponding event tree T associated with this description can be asymmetric and
non-stratified [2,4] so that the florets representing the same variable can have different
distances from the root node v0.

Figure 1 depicts an event tree for a conservator system. Its variables are X = (Xcause,
Xleak, Xalarm, Xs/b, X f ail). The categorical variable Xcause represents causes of defects and
has three levels {temperature, seal/pipe, and breathing system}; Xleak is the oil leak indi-
cator; Xalarm is the alarm indicator; Xs/b is an indicator of whether there is a sight glass
defect or a buchholz defect; and X f ail is a failure indicator. This tree is constructed under
the assumption that the fault caused by low temperature is irrelevant to the sight glass
or buchholz defect, labelled as s/b on the tree. The situations of the tree are annotated
as {v0, · · · , v37}, and the leaves are the unlabelled vertices. Since the last variable mod-
elled on this tree is X f ail , the leaves represent the status of the conservator being failed
or operational.
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Figure 1. An event tree constructed for the conservator system of a transformer.

Let ΛT denote the set of all root-to-leaf paths on the tree and λ(v, v′) ∈ ΛT denote
the root-to-leaf paths passing through vertices v, v′ ∈ VT . The vector θv = P(X(v)) =
P(X|µ(v0, v)) is called the vector of primitive probabilities. Let θT = (θv)v∈VT , which
satisfies ∑v′∈ch(v) θv,v′ = 1 and θv,v′ ∈ (0, 1) for all v ∈ VT , where ch(v) = {v′ ∈ VT |ev,v′ ∈
ET }. Then, the pair (T (X), θT ) indexes the probability tree [2,3] defined over X.
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The BN is capable of handling the missing data whenever this applies to all values of
a pre-assigned set of variables by assigning a missingness indicator to each unobservable
variable within that set. It is, therefore, possible to use the BN as a framework for identifying
when causal hypotheses are identifiable in this rather restricted setting. The associated
analyses use various graphically stated criteria—such as the front-door and the back-door
criteria—see e.g., [11–13]. However, unfortunately, the types of missingness that routinely
occur in reliability—and, in particular, those associated with the data we collect when
performing routine maintenance—are rarely missing across the original random vector
associated with the system in this sort of symmetric way. This is because we only learn
about those parts of a system that we have chosen to inspect.

In contrast, the probability tree provides a natural and more flexible way to visualise
and model the context-specific missingness, where the unobservability of the variable par-
tially depends on which path it lies on the tree. Here, we import the informed missingness
into the event tree by defining the floret-dependent missingness [14]. Thus, consider a floret
F (v), if the value of the corresponding variable X(v) is unobservable, then we classify this
floret into F (v) ∈ FM.

On the other hand, if conditioned on µ(v0, v), the value of the variable X(v) is always
observed, and then the corresponding floret is classified into F (v) ∈ FO. Accordingly,
we have two subsets of florets, FM and FO, representing unobservable florets and fully
observed florets, respectively. Then, FM ∩ FO = ∅ and FM ∪ FO = FT . For every
unobservable floret F (vj) ∈ FM, we define a missing floret indicator as:

BF (vj)
=

{
1 if x(vj) is missing,
0 otherwise.

(1)

Then, BF (vj)
represents the conditional missingness and

P(BF (vj)
= 1) = P(X(vj) missing|µ(v0, vj)). (2)

When P(BF (vj)
= 1) ∈ (0, 1), we construct a floret representing this indicator, denote

this by F (v(BF (vj)
)), and call it a missing indicator floret. We then reconstruct an event

tree by importing the missing indicator florets on to T . We call this a missingness event
tree (m-tree). Here, we assume that BF (vj)

precedes X(vj), denoted by BF (vj)
≺ X(vj). In

particular F (vj) is appended to the edge emanating from v(BF (vj)
) labelled by BF (vj)

= 0.
This artificially introduced ordering has already been shown to be useful for interpreting
an event tree constructed with informed missingness [8]. The m-tree then has a new class
of florets FMI = F (v(B)) for B = {BF}F∈FM , which is the set of missing indicator florets.
The variables associated to the m-tree are expanded to (X, B). We denote the topology of
the m-tree by T (X, B). An example of the missingness event tree is shown in Figure 2.

Having a missingness event tree, we further elicit a missingness staged tree from
T (X, B). For two situations v and w, if F (v) and F (w) represent the same variable,
then these two situations are in the same stage whenever θv = θw [3], and the emanating
edge ev,v′ is labelled the same value of X as ew,w′ when θv,v′ = θw,w′ . Here, we relax the
restrictions for a stratified staged tree where two situations in the same stage have the same
distance from the root node [2,4]. For example, v18 can be in the same stage as v38 in the
missingness event tree in Figure 2, similar example see [8].

Here, we assume that situations along the same root-to-leaf path cannot be in the same
stage. This is the square-free condition defined by Collazo et al. [3]. Vertices in the same
stage are assigned a unique colour, and the edges emanating from the same stage with
the same label are assigned the same colour. Such a coloured tree that embeds context-
specific conditional independence relations is a missingness staged tree. Let U = {u1, .., ul}
denote the set of stages in the m-tree. Let u(Xi) represent the set of stages associated
with variable Xi and U(X) = {u(X1), · · · , u(Xn)}. Let U(B) = U/U(X) denote the set of
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stages associated to the missing floret indicators. An example of a missingness staged tree
of the m-tree in Figure 2 is depicted in Figure 3.

Two situations vj, vk ∈ ui ∈ U in the same stage are in the same position w if the
rooted subtrees Tvj(X, B) and Tvk (X, B) are isomorphic. This clustering gives a finer
partition of vertices than U, denoted by W = {w1, ..., wm}. A missingness chain event graph
(MCEG) C(X, B) = (VC , EC) can be constructed from a missingness staged tree as follows.
A sink node w∞ is created by merging all the leaves of T (X, B). Then, the vertex set is
VC = W

⋃
w∞.

For any two w, w′ ∈ VC , we create an edge for every v ∈ w and the child node
v′ ∈ ch(v) ∈ VT , which belongs to the position w′, where the annotating edge probability
is the same as that of ev,v′ ∈ ET and is inherited from the original tree. The colours of the
vertices and edges of the MCEG are the same as the corresponding stages and edges in the
missingness staged tree [15].

Note that the events on the event tree are chronologically ordered. By definition,
a cause comes before its effects. We can be reasonably confident in providing X with a
plausible order. For example, the trajectory of the events that lead to a machine’s failure
always starts with a cause, followed by symptoms, and terminates with a failure. Therefore,
we can construct event trees for analysing system failures following this order. In this case,
having failed or not is always modelled on the leaves of the tree. Examples are shown in
Figures 1 and 2.

It follows that, for this special application of CEGs in system reliability, it is convenient
to adapt the semantics and to replace the sink node w∞ defined above by w f

∞ and wn
∞.

In this way, w f
∞ is the receiving node of the edges labelled by a failure, while wn

∞ is the
receiving node of the edges labelled by an operational condition.

Thus, we can classify the root-to-sink paths into two categories: failure paths and
deteriorating paths. The former terminate in w f

∞, while the latter terminate in wn
∞. Figure 4

gives an example of such a MCEG derived from Figure 3.
It is possible to perform conjugate inference on an idle MCEG even when the data

is informed censored [8,16]. This enables us to greatly speed up the search for good
explanatory models. The simplest prior to set up in this context assumes each stage vector
θu = (θu1 , ..., θul ) is independently Dirichlet with parameters (αu1, ..., αumu) [3,8]. This is
identical to the case when there are no missingness indicators:

f (θ|C(X, B)) = ∏
u∈U

Γ(∑mu
j=1 αuj)

∏mu
j=1 Γ(αuj)

mu

∏
j=1

θ
αuj
uj . (3)

Let αu = ∑mu
j=1 αuj so that, in particular, the equivalent sample size is α = ∑u∈U ∑mu

j=1 αuj.
Then, given a set of observations D, the posterior can be computed in a closed form

due to Dirichlet-multinomial conjugacy. Thus,

f (θ|D, C(X, B)) = ∏
u∈U

f (θu|D, C(X, B))

= ∏
u∈U

Γ(∑mu
j=1 αuj+)

∏mu
j=1 Γ(αuj+)

mu

∏
j=1

θ
αuj+
uj ,

(4)

where αuj+ = αuj + nuj, and αu+ = αu + nu is the updated parameter vector.
The log-likelihood score for a MCEG C(X, B) can be decomposed into local scores

associated with the variables X and the missingness indicators B.

log Q(C(X, B)) = log fC(X,B)(D) =
n

∑
i=1

log Qu(Xi)
(C(X, B))+ ∑

u∈U(B)
log Qu(C(X, B)) (5)
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We can explicitly compute the log-likelihood in a closed form:

log Q(C(X, B)) = ∑
u∈U

(log Γ(αu)− log Γ(αu+)−
mu

∑
j=1

(log Γ(αuj)− log Γ(αuj+))). (6)

To elicit a best scoring CEG from an event tree, it is necessary to search over all
possible orderings over the variables modelled by the tree when the total order over
the variables is unknown. The event tree is defined to be built with respect to X, and
the associated missingness event tree is built as a function of T (X) with appropriate
hypotheses of missingness. Therefore, even when the dataset has missing values, we still
only search over permutations over X to find an appropriate ordering that best explains
the observed process.

Let Π denote an ordering of X. This could be a set of partial orderings. All variables
represented on the m-tree can automatically be ordered given Π. We denote the m-tree
with a specified ordering Π by T (X(Π), B) = (VT , ET ).

It is non-trivial to identify causal structure from a finite observational dataset. How-
ever, the idle model first needs to be estimated before any causal relations can be explored.
Many advances have been made in casting the causal discovery as a Bayesian model
selection problem [2,17,18]. The MAP structural learning algorithm is a popular and
well-developed tool for selecting a best topology of CEGs that best explains the data.

Under the hypothesis that there are no unobserved confounders [2], we render the
best scoring structure selected by the MAP algorithm causal and assume it is the model
of the idle system when there is no intervention imported. This enables us to further
perform causal analysis. Given such a causal graph, we can derive causal hypotheses from
the structure and estimate causal effects under different hypothesised underlying causal
mechanisms.

Sometimes there is only a putative partial order rather than total order on the variables
X whose causal relationship needs to be explored. However, in this setting we can still
perform the search over candidate CEGs for the best fitting model, providing that the
missing variables only extend to later nodes of the tree.

Cowell and Smith [2] and Collazo et al. [3] presented a recursive algorithm to find the
best sink variable for every subset of X ordered by increasing size. This algorithm can be
simply adapted for the tree built for the informedly missing data. Let Xj ⊆ X denote the
subset of variables whose ordering is needed to be learned and ΠXj denote the best partial
ordering over Xj.

Then, through applying the algorithm designed by [2,3] on every Xj, we can find
the best ordering over the variables defined on the tree, where Π = {ΠXj}j. Here, we
search over subspaces Xj1 × · · · × Xjk for Xj1 , ..., Xjk ∈ Xj and compute the local scores

with respect to the corresponding Y . In particular, for every X(l)
j = {Xj1 , ..., Xjl}, where

l ∈ {1, ..., k− 1}, we find a best sink variable X′ ∈ X(l)
j for every X(k−1)

j ⊆ X(k)
j that has

been ordered appropriately. The best sink variable X′ is found by computing the local
score of the best subtree spanned by X(k−1)

j
⋃{Xs} for every Xs ∈ X(k)

j together with the
corresponding missingness indicators.

The MAP score can be evaluated directly from the local scores that have been com-
puted because the total score is the sum of local scores as shown in Equation (5). Two
MCEGs C1 and C2 with respect to the same data set can be compared by the log-posterior
Bayes factor. Suppose both trees have Dirichlet priors whose hyperparameters are α1 and
α2. The Bayes factor, then, has a closed form [3]:

lpBF(C1, C2) = log q(C1)− log q(C2) + log Q(C1)− log Q(C2), (7)

where log q(Ci) denotes the log prior. Different priors over models can be chosen given
expert judgement on different missingness mechanisms and conditional dependencies.
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When using a uniform prior, log q(C1)− log q(C2) =
1

NC
− 1

NC
= 0, where NC denotes the

total number of models.
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Figure 2. A missingness event tree constructed from Figure 1.
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Figure 3. A missingness staged tree of the m-tree in Figure 2.
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Figure 4. A MCEG derived from Figure 3. For simplicity, the edges labelled “no” are coloured in red.

3. Causal Algebras for Routine Maintenance

By assuming the best scoring CEG causal and treating it as the idle system, one can
always design experiments to collect data under the influence of interventions, and thus
we can estimate the causal effects from the partially observed system. By controlling
certain events on the tree, the semantics of a causal CEG allow us to explore its effect on
the events that lie downstream of the controlled events along the root-to-sink paths. For
a reliability analysis, it is extremely useful to trace and discover the potential causes of
abnormal conditions or failures. By designing causal algebras for different interventions,
we can make predictive inferences about the effects of a variety of types of maintenance
and thus improve the prediction of system failures.

Having defined the remedial intervention on the CEG for the reliability system in [9],
here, we investigate a new class of intervention regime. In the reliability literature, there are
two main categories of maintenance: corrective maintenance (CM) and preventive maintenance
(PM) [19]. CM takes place after a failure, while PM often refers to a scheduled maintenance
that helps to identify and prevent problems during inspections before a failure occurs [20].
In this section, we carefully customise causal algebras for the intervention in light of the
latter case, calling this a routine intervention. A routine intervention not only has an impact
on the lifetime of the maintained equipment but also affects the likelihood of different
defects that may occur in the equipment.
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3.1. Effects on Lifetime

In the context of reliability, the interventions largely consist of replacing failed compo-
nents of the system. This type of intervention—unusual in most causal analyses—requires
special attention, especially as there are some very well-known effects of such interventions
that need to be incorporated before it is possible to realistically model the effects of inter-
ventions. In particular, when describing the failure of equipment, the bathtub effect [20] is
widely applicable. This divides the lifetime of an equipment into three periods: the early
life of a new component has a decreasing failure rate; this is followed by a period with
a constant failure rate; the failure rate rises during the wear-out period [21]. A Weibull
distribution whose density is given by

f (t) =
β

η
(

t
η
)β−1e−(

t
η )

β

(8)

is often used by reliability engineers to model this varying hazard [20], where the scale
parameter is η > 0, and the shape parameter is β > 0. The survival function takes the form:

1− F(t) = e−(
t
η )

β

. (9)

Let ΛC denote the set of all root-to-sink paths on the MCEG C(X(Π), B). Then, the
lifetime of the repaired equipment can be modelled on the associated root-to-sink paths,
denoted by Λ̃ ⊆ ΛC . For λ ∈ Λ̃, let T(λ) represent the total lifetime of the equipment when
the failure trajectory is modelled on the path λ.

For a repairable system, the PM prolongs the life of the component [22–24]. By
adopting the Arithmetic Reduction of Age (ARA) model, which assumes the life of the
equipment is shortened up to proportionality [23], we now establish methods to evaluate
the effect of the scheduled PM on the equipment’s lifetime.

Let Zλ
s represent the failure time of an equipment with observed age s given a failure

process that is modelled on the path λ. Then, the survival function is

P(Zλ
s > t) =

1− Fλ(s + t)
1− Fλ(s)

= e−(
s+t
ηλ

)βλ+( s
ηλ

)βλ
, (10)

where Fλ(·) denotes the reliability distribution for failure trajectory λ.

In an idle system, for λ ∈ Λ̃, T(λ) has the same distribution as Zλ
0 , i.e., T(λ) d

= Zλ
0 .

Thus,
P(T(λ) > t) = P(Zλ

0 > t) = 1− Fλ(t). (11)

Preventive maintenance can be scheduled periodically. However, for simplicity, we
only demonstrate the effect of a single time routine maintenance in this paper. We suppose
that an equipment is diagnosed during a routine maintenance and is repaired at age τ.
Kijima [24] and Guessoum and Aupiedy [23] introduced a parameter representing the
degree of repair, denoted by A ∈ [0, 1]. When A = 0, the repair is perfect and restores
the maintained part to as good as new (AGAN). On the other hand, A = 1 corresponds
to a minimal repair, after which the maintained part is functioning as it was just prior to
the repair.

Since the repaired equipment is rejuvenated, the virtual age [23,24] after maintenance
is then Aτ. Let T∗(λ) denote the post-intervention time to failure. Then, after a routine
intervention, the residual lifetime of the maintained equipment has the same distribution
as Zλ

Aτ . Therefore,

P(T∗(λ) > t) = P(Zλ
Aτ > t) =

1− Fλ(t + Aτ)

1− Fλ(Aτ)
. (12)
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3.2. Manipulations on the MCEG

If Xi ∈ X takes value xij, let e(xij) ∈ EC denote the edges labelled by this value that
emanate from w(Xi). The set of vertices receiving e(xij) are represented by w(xij). The
path related probability, denoted by π(λ) for λ ∈ ΛC , can then be factorised as:

π(λ) = ∏
e∈Eλ

θe, (13)

where Eλ represents a collection of edges lying along the path λ.
When there is a routine intervention, we are only interested in the process portrayed by

the deteriorating paths. We denote this set of paths by Λx f ail,0 = Λ(e(x f ail,0)), where x f ail,0
represents X f ail = 0. Whatever this preventive action is, an analogue of the do-operation
do(X f ail = 0) is imported into the idle MCEG. Thus, we force e(x f ail,0) to have probability
1 and e(x f ail,1) to have probability 0, or, equivalently, we manipulate Λx f ail,0 . Therefore, we
always have the post-intervened path probability:

π̂
Λx f ail,0 (λ) =


∏e∈Eλ

θe

θe(x f ail,0)
if λ ∈ Λx f ail,0 ;

0 otherwise,
(14)

This is a singular manipulation on the MCEG and yields a manipulated MCEG with respect

to Λx f ail,0 . We denote this by ĈΛx f ail,0 .
Depending on the preventive action taken, other manipulations can also be imported

into the MCEG in addition to the singular manipulation on Λx f ail,0 . We next demonstrate
two scenarios of composite manipulations.

3.2.1. Composite Singular Manipulations under Routine Intervention

In this section, we discuss the situation where the preventive maintenance perfectly
repaired a problem, and, as a consequence of this repair, an event xr is forced to occur. The
event xr is labelled on a set of edges e(xr) whose receiving nodes are w(xr) and emanating
nodes are pa(w(xr)). In this case, the unit will be forced to pass through every edge
e ∈ e(xr) with probability 1. We, therefore, have a composition of singular manipulations,
and the manipulated events are x = {x f ail,0, xr}. On an MCEG, the controlled event is
represented by

Λx = Λ(e(x)) = Λ(e(x f ail,0)) ∩Λ(e(xr)). (15)

Let F (e(x)) denote the set of florets that the edges e(x) lie in.
If we are interested in the effect of the routine maintenance on event y, then, on the

MCEG, we represent it by Λy = Λ(e(y)). The set of florets that e(y) lies in is denoted by
F (e(y)).

Given a CEG, let π(Λy||Λx) denote the probability of observing event y given a
manipulation that forces the events x to occur. We aim to estimate this probability from the
observed data and to demonstrate that the effects of a routine intervention are identifiable.
We have shown in [9] that causal effects from a singular manipulation are estimable, also
called recoverable, by adapting the back-door theorem [5]. Here, we simply extend our
previous results [9] so that it now also applies to the types of composite manipulations that
we discuss here.

The MCEG provides flexible choices of events z to be the back-door partition so that
Λz partitions ΛC [6,7]. We first impose a constraint on z that F (e(z)) * FMI , i.e., that
cannot be a missingness indicator. This is to ensure that π(Λy||Λx) can be estimated
from the partially observed data [9]. Note that any of F (e(x)),F (e(y)),F (e(z)) might be
unobservable. Let

Fx∪y∪z = {F : F ∈ F (e(x)) ∪ F (e(y)) ∪ F (e(z)) and F /∈ FMI}. (16)



Entropy 2021, 23, 1308 12 of 21

We define the manifest paths to be the largest set of root-to-sink paths on the MCEG passing
along edges labelled by x, y and z. We let bF (e(x)),0 = {bF ,0}F∈F (e(x)) denote the set of
missingness indicators of florets F (e(x)) taking value 0, i.e., values of the corresponding
floret variables are observed. Then, the manifest paths are

Λ(w(bFx∪y∪z,0)) = Λ(w(bF (e(x)),0)) ∩Λ(w(bF (e(y)),0)) ∩Λ(w(bF (e(z)),0)). (17)

We can construct a sub-MCEG CM using the manifest paths. Let the collection of the
root-to-sink paths of this subgraph be ΛCM = Λ(w(bFx∪y∪z,0)). We call this sub-MCEG
the manifest MCEG. This construction ensures that there is no edge in the manifest MCEG
associated with a controlled event, effect, or partition event being missing.

We next reconstruct π(Λy||Λx) from the manifest MCEG. Let πΛCM (Λy||Λx) denote
the probability of observing an event y given a manipulation forcing x to happen within the
manifest MCEG. Note that the manipulated MCEG is a subgraph of the manifest MCEG.
For a singular manipulation on Λx, the manipulated paths on the manifest MCEG are

Λ∗ = Λ(w(bFx∪y∪z,0)) ∩Λx. (18)

The manipulated MCEG with respect to Λ∗ is then denoted by ĈΛ∗ and satisfies ΛĈΛ∗ = Λ∗.

Theorem 1 (The m-back-door criterion for composite singular manipulations). When a
dataset has missing values, the effect of a singular manipulation on x on y is identifiable on the
MCEG if we can find a partition Λz of ΛCM such that

πΛCM (Λy||Λx) = ∑
z

π(Λy|Λx, Λz, Λ(w(bFx∪y∪z,0)))π(Λz|Λ(w(bFx∪y∪z,0))). (19)

For the proof of this theorem, see [9,14].

Example 1. Given the causal MCEG in Figure 4 of a conservator system, we demonstrate how the
formulae defined above works for a specific routine maintenance that successfully prevents an oil
leak. This is equivalent to importing a combination of do(X f ail = 0) and do(Xleak = 0) operations
to the idle MCEG. The controlled events are x = {x f ail,0, xleak,0}. From Figure 4, we next identify
the associated root-to-sink paths. In particular,

Λx f ail,0 =
⋃

w∈{w25,··· ,w30}
Λ(ew,wn

∞), (20)

Λxleak,0 = Λ(ew2,w8) ∪Λ(ew3,w9) ∪Λ(ew4,w10), (21)

and Λx f ail,0,xleak,0 = Λx f ail,0 ∩Λxleak,0 .
To next focus on alarm, the effect event is xalarm,1. The associated set of paths is Λxalarm,1 =

Λ(ew5,w25)∪ Λ(ew6,w11)∪Λ(ew7,w13)∪Λ(ew8,w25)∪Λ(ew9,w12)∪Λ(ew10,w14). The causal query
with respect to x is identifiable whenever π(Λxalarm,1 ||Λx f ail,0,xleak,0) can be recovered from the
MCEG by estimating it from the dataset with missing entries. There are a variety of possible
choices for the partition events z. Here, we simply let z be Xcause whose corresponding positions
lie upstream of the controlled events xleak,0 on the tree. The corresponding floret is, then, F (e(z))
= F (w1).

We now construct the manifest MCEG and the manipulated MCEG in order to identify
the effects of the intervention. Notice that the controlled events and the effect events are always
observable in our example. Thus,

Λ(w(bF (e(x)),0)) = (
⋃

w∈{w25,··· ,w30}
Λ(w)) ∩ (

⋃
w∈{w2,w3,w4}

Λ(w)) = ΛC , (22)

Λ(w(bF (e(y)),0)) =
⋃

w∈{w5,··· ,w10}
= ΛC , (23)



Entropy 2021, 23, 1308 13 of 21

However, the back-door partition events might be missing. The collection of paths along which z are
observed is

Λ(w(bF (e(z)),0)) = Λ(w1). (24)

Following Equation (17), the manifest paths are Λ(w(bFx∪y∪z,0)) = ΛC ∩Λ(w1) = Λ(w1). Thus,
to investigate this, we construct the manifest MCEG with respect to Λ(w1). This is a subgraph
of the idle MCEG in Figure 4 obtained by simply removing the edge ew0,w3 , which represents the
causes that are missing. We further elicit the manipulated MCEG from the manifest MCEG. By
the definition of the manipulated paths given in Equation (18), we select the manipulated paths
from the manifest paths: Λ∗ = Λ(w1) ∩ Λx f ail,0,xleak,0 . Since the intervention forces x f ail,0 and
xleak,0 to happen, the events x f ail,1 and xleak,1 should never be observed. Thus, the probability of a
manipulated path passing along the edges e(x f ail,1) and e(xleak,1) is 0.

Equivalently, the positions w(x f ail,1) = w f
∞ and w(e(xleak,1)) = {w5, w6, w7} should never

be passed through by any path in the manipulated graph. Then, by removing the nodes and edges that
are not traversed by the manipulated paths in the manifest MCEG, we can derive the manipulated
MCEG with respect to Λ∗, see Figure 5. We can then estimate the causal effects on alarm using
the formula given in the m-back-door theorem defined above. The conditional path probabilities
in Equation (19) can simply be evaluated using the factorisation of the corresponding primitive
probabilities in the manipulated MCEG.
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Figure 5. The manipulated MCEG when controlling xleak,0 and x f ail,0

3.2.2. Composite Singular and Stochastic Manipulations under Routine Intervention

During routine inspections, the field engineers may clean the components, check the
oil level and leakage, replace some units, and so on [25]. Since there are different types
of repair and because the degree of this repair varies, the manipulations enacted by the
routine intervention could be more complicated than forcing a specific event to happen. In
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fact, repairing or replacing an equipment could affect multiple units or multiple defects of
a unit.

Therefore, depending on the repaired subcomponent and the degree of repair, multiple
florets can be influenced separately and simultaneously. Thus, a routine intervention could
introduce more uncertainty to the probability distributions over these relevant florets.
Therefore, the distributions of some of the primitive probabilities may need to be reassigned.
This manipulation is then called a stochastic manipulation on the MCEG.

Unlike a remedial intervention [9], a stochastic manipulation induced by a routine
intervention is not restricted to root causes. Consider a floret F whose distribution is
manipulated by a routine intervention. The events represented by this floret could be
defects or symptoms of the maintained equipment.

Let xr denote the controlled events of a routine intervention. Suppose we can find the
edges labelled by these events, denoted by e(xr), then F (e(xr)) is the set of florets whose
distribution are manipulated under the routine intervention. Let w∗ = pa(w(xr)) denote
the set of emanating nodes of edges e(xr). We can then conclude that F (w∗) = F (e(xr)).

For w ∈ w∗, we update the probability distribution after a routine intervention via the
transformation:

q̂(θw) = G[q(θw)] (25)

where q̂(·) represents the post-intervened distribution. The transformation G preserves the
properties of the transition probabilities so that ∑e∈E(w) θe = 1 and θe > 0.

Motivated by the steady model [26,27], one straightforward option is to map distribu-
tions to distributions through non-linear state space models. A possible transformation to
increase uncertainty in a distribution is the power steady transformation [26,28], which can be
characterised by information loss after the intervention takes.

q̂(θw) ∝ q(θw)
φ, (26)

where φ ∈ (0, 1]. Assume that the value of φ can be assessed and informed by the domain
experts. Then, a power steady evolution assumes that such information loss is linear and
proportional to φ so that:

E[log q̂(θw)] = φE[log q(θw)] + c, (27)

for some constant c.
For a Dirichlet prior θw ∼ Dirichlet(αw) with concentration parameters

αw = (αw1, · · · , αwmw), following [29], we can transform it to Dirichlet(α̂w), where α̂w =
(α̂w1, · · · , α̂wmw) and α̂wj − 1 = φ(αwj − 1), for j ∈ {1, · · · , mw}. By this transformation,
the mode remains the same. We can consider such manipulations when searching for the
best scoring MCEG for causal discovery. This is explained in Section 4.

Having updated the transition probabilities, the path probabilities under the stochas-
tic manipulation given a routine intervention can be re-evaluated. Let Λ(w∗) denote
the set of root-to-sink paths on the MCEG passing through any position w ∈ w∗. Let
Λ(w∗) = ΛC/Λ(w∗). Then, the probabilities of paths in Λx f ail,0 ∩Λ(w∗) are affected by
both the singular manipulation on x f ail,0 and the stochastic manipulation on F (w∗). The
probabilities of paths in Λx f ail,0 ∩Λ(w∗) are affected by the singluar manipulation on x f ail,0.
Therefore, the post-intervened path probabilities on the MCEG are:

π̂(λ) =


∏e∈Eλ

θe

θe(x f ail,0)
∏e′∈E(w∗)∩Eλ

θe′
×∏e′∈E(w∗)∩Eλ

θ̂e′ if λ ∈ Λx f ail,0 ∩Λ(w∗),

∏e∈Eλ
θe

θe(x f ,0)
if λ ∈ Λx f ail,0 ∩Λ(w∗),

0 otherwise.

(28)
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Let x∗ denote the set of all events represented on F (w∗) and let x = x f ail,0 ∩ x∗ denote the
set of events that are manipulated. Then, the set of florets associated with the manipulated
events, the effect event and the partition events is

Fx∪y∪z = {F : F ∈ F (e(x f ail,0)) ∪ F (w∗) ∪ F (e(y)) ∪ F (e(z)) and F /∈ FMI}. (29)

The manifest paths are defined analogously to Equation (17) so that no event of interest,
i.e., x, y, and z, is missing in this restricted class of paths.

Λ(w(bFx∪y∪z,0 )) = Λ(w(bF (e(x f ail,0)),0)) ∩Λ(w∗) ∩Λ(w(bF (e(y)),0)) ∩Λ(w(bF (e(z)),0)). (30)

We next show the identifiability of the effects by adapting the back-door criterion for
stochastic manipulation [9]. More specifically, this is possible whenever we need to identify
a Λz that partitions the root-to-sink paths of the manifest MCEG CM so that

πΛCM (Λy||Λx f ail,0 , θ̂w∗ ) = ∑
x∈x

∑
z

π(Λy|Λx, Λz, Λ(w(bFx∪y∪z ,0)))π(Λz|Λx, Λ(w(bFx∪y∪z ,0)))

× π̂(Λx|Λ(w(bFx∪y∪z ,0))),
(31)

where

π̂(Λx|Λ(w(bFx∪y∪z ,0))) =
π̂(Λx, Λ(w(bFx∪y∪z)))

π̂(Λ(w(bFx∪y∪z ,0)))
. (32)

The numerator and denominator are the post-intervened path probabilities. Note that these
can be computed using Equation (28). Assuming that a stochastic manipulation on θ̂w∗

is equivalent to forcing each x with probability π(Λx||θ̂w∗) for every x ∈ x∗ [5], we can
obtain Equation (31) by expressing the causal query as

πΛCM (Λy||Λx f ail,0 , θ̂w∗) = ∑
x∈x∗

πΛCM (Λy||Λx f ail,0,x)π
ΛCM (Λx|Λx f ail,0 , θ̂w∗). (33)

The first component on the right hand side of the equation can be evaluated by applying
the results in Equation (19), and the second component can be simplified to Equation (32).
By doing this, we have the expression in Equation (31).

Example 2. Given the idle system in Figure 4, suppose routine maintenance involved in checking
the oil level, cleaning the leakage, and topping up the oil, but this did not fully prevent the oil leak.
The manipulations imported to the idle system under this intervention are then different from the one
we discussed in Example 1. Suppose florets F (w2),F (w3),F (w4) are directly affected in response
to the maintenance. Then, these florets are stochastically manipulated, and w∗ = {w2, w3, w4}.
This gives the same Λ(w(bF (e(x)),0)) as in Example 1. If we are interested in how the sight glass or
buchholz defect is affected by this intervention, then the effect event is xs/b,1. Note that this event is
unobservable and Λ(w(bF (e(xs/b,1)),0)) =

⋃
w∈{w19,··· ,w24} Λ(w).

Here, we can choose Xalarm as the partition events z, and these are always observable. Next
the manifest MCEG is constructed from the idle MCEG by removing the paths that do not traverse
any position in {w19, · · · , w24}. The manipulated MCEG is obtained by further deleting the paths
that terminate in w f

∞ from the manifest MCEG, see Figure 6. If the post-intervention probabilities
θ̂w∗ are known, then we can evaluate the path probabilities in the manipulated MCEG following
the factorisations we specified in Equation (28). Then, conditional on the manifest paths, each
probability in Equation (31) can be computed to estimate the effects of the observed maintenance on
the sight glass or the buchholz.
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Figure 6. The manipulated MCEG for Example 2.

4. Experiments

Due to commercial sensitivity, we cannot disclose the real maintenance data from the
energy distribution company and examine our methodology on it. Here, we show experi-
mentally, using synthetic data, how the structural learning algorithm over a class of MCEGs
can be used to provide useful causal inferences. We, then, perform a comparative study to
demonstrate how the predictions are improved when incorporating the causal algebras we
specified in previous section into the algorithm for the synthetic experimental data.

4.1. Causal Discovery with the Structural Learning Algorithm

Assume a ground truth missingness staged tree in Figure 3 and a corresponding
MCEG in Figure 4 are valid. Assume the causal ordering here is Π1 = Xcause ≺ Xleak
≺ Xalarm ≺ Xs/b ≺ X f ail . The oil leak, alarm, and sight glass or buchholz defect are faults
that may appear before a failure or routine maintenance. Thus, the oil leak could be a
potential cause of alarm and the defect in buchholz or sight glass. We assume that, for any
floret, the parameters of primitive probability vector are independent, and the vectors of
primitive probabilities associated with each stage are mutually independent.

This ensures a model search based on product of independent Dirichlet priors over the
model parameters and a closed-form conjugate analysis [30]. Based on these assumptions,
we now generate observation data D1 of size 5000 from the ground truth MCEG with
the corresponding hypothesized transition probabilities. This emulates the dataset in a
situation when there has been no intervention to the system.
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To begin to learn a best model for D1 given the event tree in Figure 2, we specify the
Dirichlet hyperparameters. We use established methods and treat each αuj as the number
of phantom units [3], which is believed to arrive at jth child of stage u. We let the total
phantom units entering the root vertex v0 be 1 and denote this by α = 1.

By performing the MAP algorithm, the best scoring MCEG is shown in Figure 7. In
this MCEG, denoted by C(X(Π1), B), the positions representing the same variable Xi ∈ X
are vertically aligned in descending order with respect to P(Xi(w) = 1|D1, µ(w0, w)). For
transparency, the edges that are supposed to have a label “yes” have been coloured red
for clarity.

The posterior means for each stage are summarised in Table 1. The score of this
selected model is −20,389.83. The stages for Xleak, Xalarm and the missing indicator of s/b
defect in this tree are accurately learned by the algorithm when these are compared with
the stages in the ground truth MCEG. In terms of the stages for Xs/b, the stage assigned to
v23 is wrong. There are 15 misclassifications appearing for X f ail . One possible reason is
that the dataset is not sufficiently large to provide sufficient information on the last event
modelled on the tree.

The best scoring MCEG in Figure 7 has a complex topology because many stages for the
last variable modelled on the tree are misspecified. However, we can still summarise some
causal explanations from it when assuming it is causal. We read the causal relationships
from the semantics of a causal CEG in an analogous way to a causal BN [3,6]. For example,
from Figure 7, we see that all the edges representing oil leak point to the stage u′ =
{w6, · · · , w9}, which is coloured in green, while the edges representing no leak point to the
stage u′′ = {w10, · · · , w13}, which is coloured in brown. The stage u′ is located above u′′

on the tree, meaning the mean posterior probability of alarm at this stage is higher than
that at u′′.

Therefore, the oil leak gives rise to the likelihood of alarm. Root causes also lie
upstream of alarm on the tree and can affect the possibility of alarm. However, from
Figure 7, whether the cause is missing and which cause is observed appear to have no
influence on alarm given an oil leak. Thus, given the oil leak, the alarm is independent
of the root causes we specified for this model. We could say that the oil leak is the main
cause of alarm given the hypothesised causal ordering Π1. One causal implication of
this discovery is that we could prevent an alarm by fixing or preventing the oil leak. For
positions associated with failure indicators, w37 is aligned at the lowest position. This
means that the probability P(X f ail = 1|µ(w0, w37), D1) is the lowest compared with the
probability of failure conditional on the position w34 or w35 or w36. There are eight edges
pointing to w37 labelled by no s/b defect and only one edge pointing to it labelled by a
s/b defect. Thus, to increase the reliability of the machine, we can schedule the preventive
maintenance for the sight glass or the buchholz.

4.2. A Comparison Study

Now, we assume the routine intervention described in Example 2 has occurred, and
Figure 4 portrays the real causal structure. We, then, simulate synthetic data D2 of size 5000
from this intervened model to emulate an experimental dataset by the following setups.
First, we assume the 5000 pieces of equipment here have been intervened in the same way
by the same routine maintenance. Second, a complete and unique root-to-sink path on the
tree can be identified for each case in D2. Third, assume we have the estimated posteriors
from the past failure data before conduction of routine maintenance, and these are now
used as priors to generate the data that would be observed after the routine maintenance.

Here, the prior independence assumptions are still assumed to be valid so that conju-
gate sampling can be characterised. To simulate from the intervened system instead of the
idle system, the florets F (w2),F (w3),F (w4) are stochastically manipulated in response to
the routine maintenance, and we adjust the corresponding Dirichlet hyperparameters as
described in the previous section.
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Figure 7. The best scoring MCEG selected for D1 with hypothesised causal ordering Π1.

Table 1. Mean posterior probabilities P(X = 1|stage, D1).

Xleak = 1 Xalarm = 1 Bs/b = 1 Xs/b = 1 X f ail = 1

stage w2 w3 w4, w5 w6, · · · , w9 w10, · · · , w13 w14, · · · , w19 w20, · · · , w24 w25, w26, w27 w28, w29, w30 w31, w32, w33 w34 w35 w36 w37
estimate 0.77 0.69 0.50 0.69 0.49 0.51 0.29 0.80 0.67 0.51 0.78 0.70 0.59 0.45

It is possible to embody the effects of this intervention when learning the causal struc-
ture by incorporating the stochastic manipulations we developed in the previous section
into the MAP algorithm. We can check whether this improves the causal structure learning
and parameter estimations. On the corresponding missingness event tree, see Figure 2, we
accordingly revise the Dirichlet hyperparameters of florets F (v1),F (v5),F (v6) and F (v7)
using the method we proposed in Section 3.2.2.

We defined φ in Equation (27) to add uncertainties to the intervened floret distributions.
In this study, we aim to compare the estimates learned from the best scoring model selected
by the algorithm when no distributions are manipulated, i.e., φ = 1, with the estimates
learned from the best scoring model selected by the algorithm when inputting φ < 1. In
particular, we consider six different cases here: φ = 0.1, φ = 0.3, φ = 0.5, φ = 0.7, φ = 0.9,
and φ = 1.

Now, we run the algorithm for α = 0.001, α = 0.01, α = 0.1, α = 1, α = 3, α = 5,
where α is the prior parameter representing the number of phantom units entering the
root node. We assess the resulted models in terms of situational errors [31] and MAP
scores. The situational error (The total situational error of a tree is evaluated as γ(T ) =
∑v∈VT ||θ∗v − θ̃v||2) for a situation v measures the Euclidean distance between the true
conditional probabilities θ∗v and the mean posterior probabilities θ̃v estimated on the best
scoring model.

The results are shown in Figure 8. The upper panel of each plot displays the total situ-
ational errors, while the lower panel displays the MAP scores for the best scoring models
for different values of φ. For any prior parameter α we choose, we observe that the best
scoring model is selected from the algorithm by setting φ = 0.1, which gives the smallest
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situational error and the highest MAP score. In particular, the situational error rises when
φ increases towards 1. Thus, the posterior parameters are better estimated by incorporating
the manipulations into the learning algorithm when modelling the experimental data for
an intervened system.

When φ = 1 (i.e., the distributions are not manipulated), the MAP score in each plot
of Figure 8 is much lower than that for φ = 0.1. This means the best structure selected
with φ = 0.1 is more consistent with the dataset D2 than the best model selected by the
algorithm without importing stochastic manipulations.
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Figure 8. Comparing situational errors and MAP scores for the best scoring models selected to fit
D2. The x-axis of each plot is labelled by different values of φ, where φ = 1 refers to the case when
no manipulation is imported to the prior. Each plot displays results for a specified total phantom
number α.

5. Discussion

Thus far, we demonstrated how the context-specific CEG is a compelling graphical tool
for analysing system failure data. This happens not only because of its ability to represent
structural asymmetries but also its flexibility in being able to perform the necessary analyses
in a straightforward way even in the presence of censored data that are informedly missing;
causal analyses can be performed through simple MAP structural learning algorithms. We
developed bespoke causal algebras for the routine intervention and extended the back-door
theorems for identifying its causal effects on the MCEG. The results from our designed
experiments confirm the usefulness of these bespoke causal algebras in structural learning
to improve the predictions needed for system reliability.

One concern of the study is that the model classes containing the best explanation can
become huge when the systems are very large. However, the established methodology
allows us to scale up the search space for more complex models with up to 20 variables [32].
Furthermore, these challenges associated with scalability are generic ones and are currently
being actively researched. Each new development can be simply translated into causal
analyses of reliability systems using the technologies we described above.



Entropy 2021, 23, 1308 20 of 21

Author Contributions: Development of the methodology behind the use of CEGs for modeling
routine maintenance regimes was led by X.Y. with contributions by J.Q.S.; software and data analysis,
X.Y.; presentation of the material led by X.Y. with contributions from J.Q.S. Both authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by Engineering and Physical Sciences Research Council (EPSRC)
with grant number EP/L016710/1 and the statistics department of the University of Warwick.
Professor Jim Q. Smith is supported by the Alan Turing Institute and EPSRC with grant number
EP/K039628/1.

Data Availability Statement: The data used to support the findings of this study are available from
the corresponding author upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Langseth, H.; Portinale, L. Bayesian networks in reliability. Reliab. Eng. Syst. Saf. 2007, 92, 92–108. [CrossRef]
2. Cowell, R.G.; Smith, J.Q. Causal discovery through MAP selection of stratified chain event graphs. Electron. J. Stat. 2014, 8,

965–997. [CrossRef]
3. Collazo, R.A.; Görgen, C.; Smith, J.Q. Chain Event Graphs; CRC Press: Boca Raton, FL, USA, 2018.
4. Görgen, C.; Smith, J.Q. A differential approach to causality in staged trees. In Proceedings of the Conference on Probabilistic

Graphical Models, Lugano, Switzerland, 6–9 September 2016.
5. Pearl, J. Causality: Models, Reasoning and Inference; MIT press: Cambridge, MA, USA, 2000; Volume 29.
6. Thwaites, P.; Smith, J.Q.; Riccomagno, E. Causal analysis with chain event graphs. Artif. Intell. 2010, 174, 889–909. [CrossRef]
7. Thwaites, P. Causal identifiability via chain event graphs. Artif. Intell. 2013, 195, 291–315. [CrossRef]
8. Barclay, L.M.; Hutton, J.L.; Smith, J.Q. Chain event graphs for informed missingness. Bayesian Anal. 2014, 9, 53–76. [CrossRef]
9. Yu, X.; Smith, J.Q. Hierarchical Causal Analysis of Natural Languages on a Chain Event Graph. arXiv 2021, arXiv:2110.01129.
10. Yu X; Smith, J.Q.; Nichols, L. Bayesian Learning of Causal Relationships for System Reliability. In Proceedings of the 7th

International Symposium on Reliability Engineering and Risk Management, Beijing, China, 12–14 November 2020.
11. Mohan, K.; Pearl, J. Graphical models for recovering probabilistic and causal queries from missing data. Adv. Neural Inf. Process.

Syst. 2014, 27, 1520–1528.
12. Mohan, K.; Pearl, J. Graphical models for processing missing data. arXiv 2018, arXiv:1801.03583.
13. Saadati, M.; Tian, J. Adjustment criteria for recovering causal effects from missing data. In Proceedings of the Joint Euro-

pean Conference on Machine Learning and Knowledge Discovery in Databases, Würzburg, Germany, 16–20 September 2019;
pp. 561–577.

14. Yu, X. Hierarchical Causal Analysis on Chain Event Graphs. Ph.D. Thesis, University of Warwick, Coventry, UK, Unpublished.
15. Barclay, L.M.; Collazo, R.A.; Smith, J.Q.; Thwaites, P.A.; Nicholson, A.E. The dynamic chain event graph. Electron. J. Stat. 2015, 9,

2130–2169. [CrossRef]
16. Freeman, G.; Smith, J.Q. Dynamic staged trees for discrete multivariate time series: Forecasting, model selection and causal

analysis. Bayesian Anal. 2011, 6, 279–305. [CrossRef]
17. Pensar, J.; Talvitie, T.; Hyttinen, A.; Koivisto, M. A Bayesian approach for estimating causal effects from observational data. In

Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; pp. 5395-5402.
18. Cooper, G.F.; Yoo, C. Causal discovery from a mixture of experimental and observational data. arXiv 2013, arXiv:1301.6686.
19. 9 types of Maintenance: From Preventive Maintenance to Corrective Maintenance and Everything in Between. Available online:

https://www.roadtoreliability.com/types-of-maintenance/ (accessed on 19 February 2021).
20. Bedford, T.; Cooke, R. Probabilistic Risk Analysis: Foundations and Methods; Cambridge University Press: Cambridge UK, 2001.
21. Lienig, J.; Bruemmer, H. Reliability Analysis. In Fundamentals of Electronic Systems Design; Springer: Cham, Switzerland, 2017;

pp. 45–73.
22. Bicen, Y. Monitoring of critical substation equipment. In Proceedings of the 3rd International Istanbul Smart Grid Congress and

Fair (ICSG), Istanbul, Turkey, 29–30 April 2015; pp. 1–4.
23. Guessoum, Y.; Aupiedy J. Modeling the impact of preventive maintenance over the lifetime of equipments. In Proceedings of the

International Conference on Electricity Distribution, Lyon, France, 7–8 June 2010.
24. Kijima, M. Some results for repairable systems with general repair. J. Appl. Probab. 1989, 26, 89–102. [CrossRef]
25. Preventive Maintenance Checklist for Transformer. Learn Electrician. Available online: https://learnelectrician.com/preventive-

maintenance-checklist-for-transformer/(accessed on 1 June 2021).
26. Smith, J.Q. Non-linear state space models with partially specified distributions on states. J. Forecast. 1990,9, 137–149. [CrossRef]
27. Smith, J.Q. A comparison of the characteristics of some Bayesian forecasting models. Int. Stat. Rev. Int. Stat. 1992, 60, 75–87.

[CrossRef]
28. Smith, J.Q. The multiparameter steady model. J. R. Stat. Soc. Ser. (Methodological) 1981, 43, 256–260. [CrossRef]

http://doi.org/10.1016/j.ress.2005.11.037
http://dx.doi.org/10.1214/14-EJS917
http://dx.doi.org/10.1016/j.artint.2010.05.004
http://dx.doi.org/10.1016/j.artint.2012.09.003
http://dx.doi.org/10.1214/13-BA843
http://dx.doi.org/10.1214/15-EJS1068
http://dx.doi.org/10.1214/11-BA610
https://www.roadtoreliability.com/types-of-maintenance/
http://dx.doi.org/10.2307/3214319
https://learnelectrician.com/preventive-maintenance-checklist-for-transformer/
https://learnelectrician.com/preventive-maintenance-checklist-for-transformer/
http://dx.doi.org/10.1002/for.3980090206
http://dx.doi.org/10.2307/1403502
http://dx.doi.org/10.1111/j.2517-6161.1981.tb01178.x


Entropy 2021, 23, 1308 21 of 21

29. Smith, J.Q. A generalization of the Bayesian steady forecasting model. J. R. Stat. Soc. Ser. (Methodological) 1979, 41, 375–387.
[CrossRef]

30. Freeman, G.; Smith, J.Q. Bayesian MAP model selection of chain event graphs. J. Multivar. Anal. 2011, 102, 1152–1165. [CrossRef]
31. Collazo, R.A.; Smith, J.Q. A new family of non-local priors for chain event graph model selection. Bayesian Anal. 2016, 11,

1165–1201. [CrossRef]
32. Carli, F.; Leonelli, M.; Riccomagno, E.; Varando, G. The R package stagedtrees for structural learning of stratified staged trees.

arXiv 2020, arXiv:2004.06459.

http://dx.doi.org/10.1111/j.2517-6161.1979.tb01092.x
http://dx.doi.org/10.1016/j.jmva.2011.03.008
http://dx.doi.org/10.1214/15-BA981

	Introduction
	Causal Identifiability on Chain Event Graphs with Informed Missingness
	Causal Algebras for Routine Maintenance
	Effects on Lifetime
	Manipulations on the MCEG
	Composite Singular Manipulations under Routine Intervention
	Composite Singular and Stochastic Manipulations under Routine Intervention


	Experiments
	Causal Discovery with the Structural Learning Algorithm
	A Comparison Study

	Discussion
	References

