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Abstract: Artificial neural networks have become the go-to solution for computer vision tasks,
including problems of the security domain. One such example comes in the form of reidentification,
where deep learning can be part of the surveillance pipeline. The use case necessitates considering
an adversarial setting—and neural networks have been shown to be vulnerable to a range of attacks.
In this paper, the preprocessing defences against adversarial attacks are evaluated, including block-
matching convolutional neural network for image denoising used as an adversarial defence. The
benefit of using preprocessing defences comes from the fact that it does not require the effort of
retraining the classifier, which, in computer vision problems, is a computationally heavy task. The
defences are tested in a real-life-like scenario of using a pre-trained, widely available neural network
architecture adapted to a specific task with the use of transfer learning. Multiple preprocessing
pipelines are tested and the results are promising.

Keywords: deep learning; computer vision; adversarial attacks; adversarial defences

1. Introduction

Artificial neural networks offer a collection of benefits which have proved useful
in image processing, especially in tasks including artificial-intelligence-based computer
aided detection [1]. The progress of the last decade allowed to push the results obtained
by artificial neural networks to levels surpassing human performance, in select tasks [2].
In computer vision, deep neural networks became the go-to solution for a wide variety
of problems [3], capable of producing an impressive result in a sensible time frame [4].
Recently, artificial neural networks found success in person reidentification [5–7].

In general, reidentification (reID) refers to the process of re-attaching publicly available
data to an anonymised record in order to discover the identity of an individual. In the
context of computer vision, the phrase refers to the ability of an image recognition system to
spot an individual across different cameras, and different angles [7]. ReID is a challenging
task which stirred up a significant amount of research recently, particularly due to the
significant benefits it could bring for public safety [7]. The use in the context of intelligent
surveillance systems forces the consideration of adversarial behaviour against the artificial
intelligence (AI) technologies used for reID. In a real-world scenario, impressive detection
metrics are not the only thing that matters [8]. The current trend in reID involves the use
of deep neural networks, which have been proven to be susceptible to a novel kind of
attacks [9–12].

Deep neural networks, particularly convolutional neural networks (CNN), are widely
used for the CV tasks [13]; some of the best-performing ImageNet contest architectures
were based on the premise of utilising convolutional layers. The network architectures tend
to be very deep: Inception features over 6 million trainable parameters [14,15], ResNet18
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(Residual neural network) over 11 million [16], AlexNet over 60 million [17], VGG16 (Visual
Geometry Group) over 138 million [18], etc. Therefore, training a top-tier deep neural
network is a huge computational endeavour [19]. In order not to repeat this effort for
each task, transfer learning can be employed [20]. Transfer learning leverages pre-trained
networks, essentially using them as feature extractors with frozen weights, feeding samples
to the network and only training the added dense layers at the output end of the topology.
However, the use of openly-available, pre-trained networks poses a security problem in an
adversarial setting, as it raises the capability of the attacker [21,22].

The idea of attacking deep neural networks has focused the attention of the deep
learning community over the last few years [23–25]. A range of adversarial attacks effective
against AI were discovered, uncovering the vulnerabilities of data driven technologies [25].
In this work, the attacks performed at test-time are considered, which are known as evasion
attacks [26,27].

The goal of an Evasion attack is to force the AI-based system to misclassify a particular
sample. This is achieved by adding a specifically crafted noise to the tested sample. This
added noise, in case of images, is imperceptible to humans, but leverages the ’intriguing
properties of neural networks’ to fool the AI algorithm [28]. The issue of defending against
those attacks is a fierce arms race and the satisfactory defence has not yet emerged [29].

The algorithms and technologies presented in this paper were used to form a sub-
mission to the reidentification defences track of the H2020 SPARTA SAFAIR contest. The
task was formulated around the CelebA face recognition dataset [30,31]. The dataset, as
used in the task, featured 5304 classes, with 85,612 samples in the training subset and
28,523 samples in the testing set. The objective of the defensive track was to propose ways
of preventing adversarial samples from lowering the accuracy of the face recognition model.
The following sections describe the specific technologies used for defining the submission
of the contest, the rationale behind those choices, the formulated defences, and provide the
results of the experiments.

As such, the research and, thus, the paper is conducted and formulated to answer the
following research question:

• RQ1 Is it possible to use data preprocessing methods to robustify an ANN-based
classifier against adversarial evasion attack in computer vision (CV)?

• RQ2 Does using all the identified defensive preprocessing methods provide a better
protection than using just a selection of those?

Thus, the innovative contribution of this paper comes in the formulation and evalua-
tion of a plug-and-play preprocessing pipeline for robustification of already-existing or
pre-trained CV classifiers, easily deployable in a real-world situation and saving on the
cost of re-training the classifier

The paper is structured as follows: In Section 2, the related works are introduced and
the most important categories of defences are described. Section 3 lists the setup of the used
reidentification pipeline, showcases the effects of the adversarial attacks and introduces the
specific defences, including the block-matching convolutional neural network (BMCNN)
for image denoising, which, to the best of our knowledge, has never before been used to
counter adversarial attacks. Section 4 contains the experimental setups and the results
obtained by specific pipelines. Section 5 encompasses the conclusions along with the
impact the defensive pipeline has over a clean dataset.

2. Related Works

The advent of adversarial perturbations revealed the vulnerabilities of contemporary
AI-based technologies. There is a considerable body of research into both the attacks and
the defences. However, as noted by [32], the construction of a theoretical model of crafting
adversarial perturbations is problematic, as it is a sophisticated optimisation procedure for
most machine learning models. This absence of a theoretical baseline makes it troublesome
to verify whether administering a certain defence can proof a system against a certain set
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of attacks. This situation finds its expression in the fact that whenever a new defence is
proposed, a new attack capable of breaking through that defence appears [33–38].

Against this canvas, the authors of [38] propose a set of guidelines for research into
the defensive mechanisms against adversarial attacks, listing common pitfalls and a range
of best practices. There is a substantial body of work gathering both the available attacks
and possible defences geared towards machine and deep learning [27,29,32,39–42] and
even specifically deep learning in computer vision [23,43,44].

A thorough analysis of the sources allows one to roughly divide the adversarial
defences into these categories:

1. Gradient masking;
2. Input reconstruction;
3. Detectors.

According to [29], the category of gradient masking encompasses defences which
fit either intentionally or unintentionally. This category of defences relies on making the
gradient unfit for the operation of the attack algorithms. Some defences do not aim at
gradient masking specifically, but achieve it as a by-product of defensive procedures. One
of the most popular approaches, adversarial training, frequently has a gradient masking
effect, even though it is not the goal of the process.

Adversarial (re)training is considered as the brute-force approach [32]. The procedure
relies on crafting adversarial samples and including them in the training set. The problem
with retraining the whole classifier is the computational cost of such course of conduct.
This problem will be touched upon later in this paper.

The defences in the input reconstruction category perform various forms of input
pre-processing. Although it might be possible to circumvent those methods in a scenario
where the attacker has full knowledge of the system, in a real-world setting the defences
from this category can be very effective, and computationally much cheaper in use than
retraining. The detection approaches are effective as long as the adversary is not aware of
the existence of the detector. For an attacker of sufficient capability it is possible to build
an adversarial sample which, at the same time, circumvents the detector and fools the
classifier, as proven by [33].

3. Materials and Methods
3.1. Classifier Setup

In this work, the VGG-face network was used [45] with the pre-trained ‘resnet-50’ [46]
architecture. VGGFace is trained on a dataset containing 2.6 million face images of over
2.6k people. The resnet50 network is a CNN assembled of 50 layers. The detailed hyperpa-
rameter setup of the entire network can be found in [45]. The final layer of the pre-trained
network is AveragePooling2D with the shape of (None, 1, 1, 2048). To perform transfer
learning, a dense layer of 2048 neurons is added to the the pre-trained network, followed
by a dropout layer, and wrapped up by the softmax layer set with the number of neurons
equal to the number of classes. The added dense layer uses the rectified linear unit (ReLU)
activation function. The weights between the AveragePooling layer and the dense layer
along with the weights between the dense layer and the output layer constitute the part of
the network that is trained on the CelebA dataset, with the weights of the remainder of the
network frozen. The batch size used for training was set to 1, while early stopping was
used to find the optimal number of epochs, which capped at 32. Multiple different hyperpa-
rameters setup were tested, and learning rate scheduling was also tested. For the reduced
dataset used in the experiments the default learning rate of straight 0.01 proved optimal.

The trainable part of the model contains 15,064,248 parameters when it is prepared to
recognise all the 5304 identities found in the CelebA dataset. To allow fast prototyping, a
toy model was built on fourteen most populated classes in the CelebA dataset. The most
populated classes were chosen to avoid having to deal with the data imbalance problem,
allowing the research to focus on adversarial defences. Changing just the number of classes
allowed to reduce the number of trainable parameters to just over 4 million; a reduction
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of over 70%. The prior probability of the occurrence of each of the classes is displayed in
Table 1.

Table 1. The priors of the classes

Class 1757 2114 2820 3227 3699 3745 3782 4262

Prior Probability (%) 6.72 6.72 7.84 7.84 7.56 7.56 7.84 6.72

4740 4978 6568 8968 9152 9256

Prior Probability (%) 6.72 6.72 6.72 7.00 7.00 7.00

Multi-task cascaded convolutional neural networks (MTCNN) is a technique capable
of spotting faces and extracting them for later processing by other networks. A state-of-the-
art face recognition processing pipeline consists of MTCNN for face detection and landmark
placement, and a CNN used for placing the extracted face in adequate categories [47–49].
In this work, MTCNN is used for preprocessing the CelebA images for both training and
testing. The CelebA subset selected for the formulation of the model was further split into
the training set and the testing set. The classifier performance on the test set containing the
14 most populated classes is presented in Table 2.

Table 2. Classifier performance on the test set containing the 14 most populated classes.

Label Precision Recall f1-Score

1757.0 1.00 1.00 1.00
2114.0 1.00 1.00 1.00
2820.0 0.88 1.00 0.93
3227.0 1.00 0.86 0.92
3699.0 0.88 1.00 0.93
3745.0 1.00 1.00 1.00
3782.0 1.00 1.00 1.00
4262.0 0.88 1.00 0.93
4740.0 1.00 1.00 1.00
4978.0 1.00 1.00 1.00
6568.0 1.00 1.00 1.00
8968.0 1.00 1.00 1.00
9152.0 1.00 1.00 1.00
9256.0 1.00 0.71 0.83

macro avg 0.97 0.97 0.97
weighted avg 0.97 0.97 0.97

accuracy 0.9693877551020408
balanced accuracy 0.9693877551020408

For better evaluation of the effects of adversarial perturbations and adversarial de-
fences, the misclassified samples were removed from the set, manually pushing the perfor-
mance to 100% accuracy. That way, any adversarial perturbations are registered as drops in
performance, avoiding a situation where an attack pushes the misclassified sample to the
correct class. Furthermore, the way the defences affect the classifier performance is more
clearly readable.

3.2. Adversarial Attacks

The testing set was then subjected to the procedure of creating the adversarial samples.
To produce the adversarial attacks, the projected gradient descent (PGD) method was used,
considering PGD as the universal first-order adversary, following [50]. The maximum
number of iterations was set to 100, the epsilon step to 0.1. The value of epsilon determines
the maximum size of perturbation allowed for the attack. Along with the number of
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iterations, multiple values of epsilon were tested to simulate different strengths of attack.
The effect different strengths of the attacks have on the image can be seen in Figure 1. The
pictures are reformatted to fit the vgg-face input shape. The effects of PGD eps = 4 on the
performance of the classifier can be seen in Table 3.

Figure 1. The effects of different strengths of the attacks on the image.

Table 3. The effects of PGD eps = 4 on the performance of the classifier.

Label Precision Recall f1-Score

1757.0 1.00 0.14 0.25
2114.0 0.33 0.14 0.20
2820.0 0.00 0.00 0.00
3227.0 1.00 0.17 0.29
3699.0 0.32 1.00 0.48
3745.0 0.00 0.00 0.00
3782.0 0.00 0.00 0.00
4262.0 0.33 0.71 0.45
4740.0 0.08 0.14 0.11
4978.0 0.00 0.00 0.00
6568.0 1.00 0.14 0.25
8968.0 0.00 0.00 0.00

macro avg 0.40 0.21 0.20
weighted avg 0.38 0.21 0.19

accuracy 0.21052631578947367
balanced accuracy 0.2139455782312925

3.3. Defences

There have been a number of defences proposed by the research community [51]. The
task is to design robust AI tools that are resilient to adversarial attacks. Some methods
rely on retraining the entire classifier using attacks generated with the known attack
methods [52]. This method, called adversarial training, not only impacts the effectiveness
of the classifier, but also requires an immense computational effort. The proposition
contained in this section utilises the idea of using pre-processing methods to robustify
existing AI-based classifiers, so as the users do not need to re-train their models. The
proposed methods are accompanied by an assessment of how the defensive measures affect
the classifier performance, which helps optimise the resiliency of AI against the loss of
performance some defences introduce.

3.3.1. JPEG Compression

The Joint Photographic Experts Group (JPEG) compression used as adversarial defence
relies on the fact that JPEG-compressed images are very prevalent in contemporary usage.
Following the authors of [53], who noted that JPEG compression often has the ability to
reverse the effects of small adversarial perturbations, the technique is evaluated here for
the use as a purely pre-processing defence against adversarial attacks. The compression has
the effect of removing additive artefacts in square blocks of an image, effectively working
as a filter removing adversarial perturbations [54]. The effect of different magnitudes of
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compression (20, 40, 80) can be seen in Figure 2. The results of the classifier using JPEG
compression with quality set to 20 on PGD attacks with epsilon = 4 can be found in Table 4.

Figure 2. JPEG compression.

Table 4. The results of the classifier using JPEG compression with quality set to 20 on PGD attacks
with epsilon = 4.

Label Precision Recall f1-Score

1757.0 1.00 1.00 1.00
2114.0 1.00 1.00 1.00
2820.0 1.00 1.00 1.00
3227.0 1.00 0.83 0.91
3699.0 0.88 1.00 0.93
3745.0 0.86 0.86 0.86
3782.0 0.86 0.86 0.86
4262.0 0.78 1.00 0.88
4740.0 1.00 1.00 1.00
4978.0 0.86 0.86 0.86
6568.0 1.00 1.00 1.00
8968.0 1.00 0.86 0.92
9152.0 1.00 0.86 0.92
9256.0 0.80 0.80 0.80

macro avg 0.93 0.92 0.92
weighted avg 0.93 0.93 0.93

accuracy 0.9263157894736842
balanced accuracy 0.9227891156462587

3.3.2. Gaussian Data Augmentation

Gaussian data augmentation [55] is a process of adding Gaussian noise to a sample.
This method is proven not to produce adversarial samples and can reverse the effects of
known adversarial attacks. Image samples with different sigma settings can be seen in
Figure 3. The value of sigma expresses the variance.
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Figure 3. Gaussian augmentation—sigma 255.0/5, 255.0/17, 255.0/3.

3.3.3. Local Spatial Smoothing

Following the research of [56], spatial smoothing can be used to reduce the effects of
added adversarial noise. The algorithm uses local blurring filters to remove the effects
of adversarial noise. The approach is one of the feature squeezing methods and can be
effectively applied as a pre-processor-based defence. The image before and after spatial
smoothing can be seen in Figure 4.

Figure 4. The image before and after spatial smoothing.

3.3.4. Total Variance Minimisation

Total variance minimisation is a model-agnostic preprocessor approach. In the original
paper [57], the defence is used for retraining the model and then the inputs are also pre-
processed at test time. The method reassembles the image by rebuilding a randomly chosen
set of pixels with the plainest depiction of these pixels. The image before and after total
variance minimisation can be seen in Figure 5.
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Figure 5. The image before and after total variance minimisation.

3.3.5. Block-Matching Convolutional Neural Network (BMCNN) for Image Denoising as
an Adversarial Defence

Following the work in image denoising presented in [58], and extending the idea of
applying autoencoders as adversarial defences [59], the BMCNN is proposed for the a
method of robustifying the image recognition system against adversarial attacks. BMCNN
is an attempt to merge two leading approaches to image denoising: non-local self-similarity
prior based methods [60] and feed-forward denoising with the use of convolutional neural
networks [61]. The method is applied as a pre-processor to remove adversarial noise before
the sample is fed to the classifier. The results of the BMCNN with sigma set to 20 used on
adversarial samples created with PGD with epsilon set to four can be seen in Table 5. The
value of sigma has been chosen experimentally.

Table 5. The results of the classifier using BMCNN with sigma set to 20 used on adversarial samples
created with PGD with epsilon set to four.

Label Precision Recall f1-Score

1757.0 1.00 1.00 1.00
2114.0 1.00 1.00 1.00
2820.0 1.00 1.00 1.00
3227.0 0.83 0.83 0.83
3699.0 0.70 1.00 0.82
3745.0 1.00 0.71 0.83
3782.0 0.88 1.00 0.93
4262.0 0.78 1.00 0.88
4740.0 1.00 1.00 1.00
4978.0 0.88 1.00 0.93
6568.0 1.00 0.86 0.92
8968.0 1.00 0.86 0.92
9152.0 0.80 0.57 0.67
9256.0 1.00 0.8 0.89

macro avg 0.92 0.90 0.90
weighted avg 0.92 0.91 0.90

accuracy 0.9052631578947369
balanced accuracy 0.9023809523809525

4. Results

The low computational cost of the preprocessors in comparison with re-training the
classifier allows to mix and match the defences. The experiments show that some pipelines
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are more effective than others. An example of a defensive pipeline which utilises all the
researched defences is displayed in Figure 6.

Figure 6. A defensive pipeline which utilises all the researched defences.

The pipeline makes intuitive sense, as blurring the image should remove some of the
artefacts added by PGD, same for JPEG compression, then adding Gaussian noise and
removing it with BMCNN denoising has the potential of removing both the Gaussian and
the adversarial noise at the same time. The results of this particular pipeline are shown in
Table 6.

Table 6. The results of the classifier using spatial smoothing with JPEG compression, Gaussian
augmentation, total variance minimisation and BMCNN with sigma set to 20 on PGD images with
epsilon set to four.

Label Precision Recall f1-Score

1757.0 0.50 0.71 0.59
2114.0 0.50 0.43 0.46
2820.0 0.00 0.00 0.00
3227.0 0.40 0.33 0.36
3699.0 0.37 1.00 0.54
3745.0 0.25 0.14 0.18
3782.0 0.25 0.86 0.39
4262.0 0.25 0.14 0.18
4740.0 0.50 0.57 0.53
4978.0 0.67 0.29 0.40
6568.0 1.00 0.14 0.25
8968.0 0.50 0.14 0.22
9152.0 0.67 0.29 0.40
9256.0 0.00 0.00 0.00

macro avg 0.42 0.36 0.32
weighted avg 0.43 0.37 0.33

accuracy 0.3684210526315789
balanced accuracy 0.36054421768707484

As showcased by the results of the experiment in Table 6, the mix of defences im-
proved the detection metrics as compared to the undefended model; however it did not
perform as well as, for example, BMCNN denoising alone (Table 5). For the next experi-
ment, the total variance minimisation preprocessor was removed, as it has a similar filtering
effect as localised spatial smoothing. The pipeline is shown in Figure 7. The results of the
experiment are contained in Table 7.

Figure 7. A defensive pipeline which utilises all the researched defences, except total variance
minimisation.



Entropy 2021, 23, 1304 10 of 14

Table 7. The results of the classifier using spatial smoothing with JPEG compression, Gaussian
augmentation, and BMCNN with sigma set to 20 on PGD images with epsilon set to four, without
total variance minimisation.

Label Precision Recall f1-Score

1757.0 1.00 1.00 1.00
2114.0 1.00 1.00 1.00
2820.0 1.00 1.00 1.00
3227.0 0.83 0.83 0.83
3699.0 0.78 1.00 0.88
3745.0 1.00 0.86 0.92
3782.0 0.75 0.86 0.80
4262.0 0.78 1.00 0.88
4740.0 1.00 1.00 1.00
4978.0 0.86 0.86 0.86
6568.0 1.00 0.86 0.92
8968.0 1.00 0.86 0.92
9152.0 1.00 0.57 0.73
9256.0 0.83 1.00 0.91

macro avg 0.92 0.91 0.90
weighted avg 0.92 0.91 0.90

accuracy 0.9052631578947369
balanced accuracy 0.9064625850340137

To find the optimal mix of preprocessors that would minimise or eliminate the effect
of adversarial perturbations without significantly deteriorating the classifier results, a
range of experiments was performed. The results of some of those tests are contained in
Tables 8 and 9. To assess the results of the preprocessing defences, the best performing pre-
processing pipeline was tested on a clean, unperturbed set. The results of this experiment
can be found in Table 10. The best performing pipeline is illustrated in Figure 8.

Table 8. The results of the classifier using spatial smoothing with JPEG compression on PGD images
with epsilon set to four.

Label Precision Recall f1-Score

1757.0 1.00 1.00 1.00
2114.0 1.00 1.00 1.00
2820.0 1.00 1.00 1.00
3227.0 1.00 0.83 0.91
3699.0 0.78 1.00 0.88
3745.0 0.86 0.86 0.86
3782.0 0.86 0.86 0.86
4262.0 0.78 1.00 0.88
4740.0 1.00 1.00 1.00
4978.0 0.86 0.86 0.86
6568.0 1.00 1.00 1.00
8968.0 1.00 0.86 0.92
9152.0 1.00 0.71 0.83
9256.0 0.80 0.80 0.80

macro avg 0.92 0.91 0.91
weighted avg 0.93 0.92 0.92

accuracy 0.9157894736842105
balanced accuracy 0.9125850340136055
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Figure 8. A defensive pipeline with JPEG compression, Gaussian augmentation, and BMCNN.

Table 9. The results of the classifier using JPEG compression, Gaussian augmentation, and BMCNN
on PGD images with epsilon set to four.

Label Precision Recall f1-Score

1757.0 0.88 1.00 0.93
2114.0 1.00 1.00 1.00
2820.0 1.00 1.00 1.00
3227.0 1.00 0.83 0.91
3699.0 0.78 1.00 0.88
3745.0 0.86 0.86 0.86
3782.0 0.86 0.86 0.86
4262.0 0.88 1.00 0.93
4740.0 1.00 1.00 1.00
4978.0 0.86 0.86 0.86
6568.0 1.00 1.00 1.00
8968.0 1.00 0.86 0.92
9152.0 1.00 0.71 0.83
9256.0 1.00 1.00 1.00

macro avg 0.94 0.93 0.93
weighted avg 0.93 0.93 0.93

accuracy 0.9263157894736842
balanced accuracy 0.9268707482993197

Table 10. Results of classification with preprocessing defences on a clean dataset.

Label Precision Recall f1-Score

1757.0 1.00 1.00 1.00
2114.0 1.00 1.00 1.00
2820.0 1.00 1.00 1.00
3227.0 1.00 0.83 0.91
3699.0 0.88 1.00 0.93
3745.0 0.83 0.71 0.77
3782.0 0.75 0.86 0.80
4262.0 0.78 1.00 0.88
4740.0 1.00 1.00 1.00
4978.0 1.00 1.00 1.00
8968.0 1.00 1.00 1.00
9152.0 1.00 1.00 1.00
9256.0 1.00 0.60 0.75

macro avg 0.95 0.93 0.93
weighted avg 0.94 0.94 0.94

accuracy 0.9368421052631579
balanced accuracy 0.9289115646258503

5. Conclusions

The classifier performance indicates that using preprocessing defences causes a drop
in the measured metrics; at the same time, the achieved robustness is considerable. The
results of the experiments prove that input transformations are an effective weapon against
adversarial attacks, though the robustness comes at a cost. The utility of the proposed
preprocessing pipeline solution comes in the fact that it can be used as a plug-and-play
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quick-fix, granting a measure of robustness against adversarial attacks without having
to incur the costs of re-training the classifier. This answers RQ1 affirmatively, using
preprocessing defensive methods is feasible for robustification of ANN-based classifiers
against adversarial evasion attacks in computer vision tasks. The results of the experiments
also point out that passing the images through a series of filters can have adverse effects
on the accuracy of protected classifier. Joining all the researched preprocessing methods
in one pipeline did alleviate some of the effects of the adversarial attacks. However, the
accumulative distortion introduced by those methods hindered the effectiveness of the
classifier to a considerable extent. Extensive experimentation made it possible to answer
RQ2—some combinations are more effective than others and more effective than using all
the preprocessors together.

Additionally, data augmentation is a booming area of research [62], and mixing
preprocessing adversarial defences with novel approaches to data augmentation could
potentially offset the performance loss of the researched defensive techniques, an approach
which is part of future research.
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