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Abstract: In CRYPTO 2019, Chen et al. showed how to construct pseudorandom functions (PRFs)
from random permutations (RPs), and they gave one beyond-birthday secure construction from sum
of Even-Mansour, namely SOEM22 in the single-key setting. In this paper, we improve their work by
proving the multi-key security of SOEM22, and further tweaking SoEM22 but still preserving beyond
birthday bound (BBB) security. Furthermore, we use only one random permutation to construct
parallelizable and succinct beyond-birthday secure PRFs in the multi-key setting, and then tweak
this new construction. Moreover, with a slight modification of our constructions of tweakable PRFs,
two parallelizable nonce based MACs for variable length messages are obtained.
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1. Introduction

Random numbers are widely used in engineering practice. In particular, random-
ization is central to cryptography. One can generate random numbers by using physical
random sources such as chaos-based [1] and quantum-based [2] random number generator.
However, obtaining random numbers from physical phenomena requires high quality of
the entropy source, and is also device-dependent so that the corresponding cost is not cheap.
Besides, in some cryptographic applications, the way of generating random numbers above
is not friendly due to its uncontrollability. Motivated by cryptographic applications, Blum
and Micali [3] and Yao [4] formalized the modern notation of pseudorandom generators
from the perspectives in computational complexity. Later, Goldreich et al. [5] proposed

Published: 30 September 2021 the concept of pseudorandom functions (PRFs). Informally, F(K, -) is said to be a PRF

where K is a uniformly random string with enough entropy, if for any input x, F(K, x) can
be computed efficiently and can not be distinguished from a truly random value. PRFs
are important in cryptography with fruitful applications in encryption, identification, and
authentication.

In theory, PRFs can be obtained from one-way functions [5,6], but this general transfor-
mation is not practical. Some other algebraic constructions, such as number theory-based
[7,8] or lattice-based PRFs [9-11], are still inefficient. Therefore, it is significant to construct
PRFs from symmetric primitives both in theory and practice. There are a series of works to
build the PRFs from pseudorandom permutations (PRPs)/block ciphers [12-14]. Recently,
Chen et al. [15] proposed a method to construct PRFs from random permutations (RPs). In
[15], the construction SOEM22 (which means sum of one-round Even-Mansour based on two
independent permutations) was proved beyond-birthday secure in the single-key setting.

About SOEM22, there are three questions we may ask: (i) Is SOEM22 beyond-birthday
secure in the multi-key setting? (ii) Can SoOEM22 be tweaked while preserving BBB security?
(iii) If the underlying random permutations can be computed efficiently in both forward
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and inverse directions, can we construct beyond-birthday secure PRFs by using only one
permutation in both multi-key and tweakable cases?

Fortunately, we can give positive answers to these questions. First, we prove that
SoEM22 is beyond-birthday secure in the multi-key setting. Informally, it means that for
any distinguisher who distinguishes m independent n-to-n-bit keyed functions from m
independent ideal random functions, its advantage does not depend on m. However, in this
case the distinguisher still needs to make at least O (22"/3) queries to achieve a noticeable
advantage.

Second, we tweak the construction SoEM22, inspired by the work [16]. A tweakable
PRE F: K x T x {0,1}" — {0,1}", means that one can associate a tweak space 7T to the
key space K. For any key k randomly sampled from K, one can choose different tweaks
t € T to compute y = F(k, t, x) even on the same input x.

Following the idea in [17], we solve the third question, and construct beyond-birthday
secure PRFs in the multi-key setting from one bidirectionally efficient random permutation.
Then this new construction from a single permutation can also be tweaked while preserving
BBB security.

1.1. Our Contributions
In this paper, we enhance the security of SOEM22 [15] by showing that
Flg(x) =P(x @ Ky) @ P(x & Ky) & Ky @Ky ()

is beyond-birthday secure in the multi-key setting, where @ denotes the bitwise XOR oper-
ator, P; and P, are two independent random permutations, x is an #-bit input, and K; and
K5 are two n-bit uniformly random strings. Furthermore, we can tweak the construction
SoEM22, while preserving BBB security, as

PP
TPRFE}KI;HK}2 (t,x) =P (x® HK;’(t)) OD(xd HK%(t)) P HK;(t) P HK%(t), )

where H Kl and H K2 are uniformly and independently sampled from the regular and
almost- XOR umversal (AXU) keyed hash family, t is a tweak, and x is an n-bit input.

Chen et al. [15] first constructed beyond-birthday secure PRFs from random per-
mutations. Later, Chakraborti et al. [18] suggested and designed minimally structured
beyond-birthday secure RPFs (i.e. by using only one random permutation). Following
this line of study, we design a parallelizable beyond-birthday secure PRF in the multi-key
setting from one bidirectionally efficient random permutation P as

Ff k,(x) =P(x @ Ky) & P~ (x & Kp) © Ky © Ky, 3)

where Kj, Ky, and x are the same as those in Equation (1). We tweak this new construction
as

TPRFH aH }z(t ,x) =Px&® HK},(t)) eP ' (xo HK%(t)) ® HK},(t) & HK%(t)/ 4)
where H Kls H K2 x, and t are the same as those in Equation (2).

Moreover, from our two constructions of tweakble PRFs, we can give two nonce based
MAC:s for variable length messages. In particular, when one replaces the input x (resp. the
tweak t) in Equations (2) and (4) by an n-bit nonce N (resp. a message M), one can obtain
two parallelizable beyond-birthday secure nonce based MACs as

and
T =P(N& Hy (M) & P YN Hy (M) @ Hya (M) @ Hyz (M). (6)
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1.2. Related Works

Based on two random permutations P; and P, Cogliati et al. [16] constructed a
beyond-birthday secure tweakable Even-Mansour (TEM) as

PP
TEMI%KfHKZ (t,x) =DP(P(x® HK;(t)) ® HK;(t) b HKﬁ(t)) ® HK%(t)' )

where H Kl and H K2 are uniformly and independently sampled from the uniform and

AXU keyed hash famlly, t is a tweak, and x is an n-bit input. Later, Dutta [17] gave a
beyond-birthday secure TEM from one permutation as
TEMY |, 1, (1) = P(P(x ® Hya (1)) & Hya (1) & Hya (1)) @ Ha (1), 8)
B K

where P is a random permutation, and Hy1, H Kl t, and x are the same as those in (7).

Compared with Equations (7) and (8), ourh constructions in Equations (2) and (4) are
parallelizable.

Chakraborti et al. [18] constructed beyond-birthday secure PRFs from random
permutations with minimal structure (i.e. from one random permutation P) as

PY(P(K®x) 3K D x) © 2K,

where K is an n-bit key, x is an n-bit input, and 2 is a primitive element in the finite field
Fon so that 2K denotes the multiplication of 2 and K over [F#. Recently, Dutta et al. [19]
proved that the construction

P(P(K1®x) Ky @Ky dx) BKy

is also a beyond-birthday secure PRF, where K; and Kj are two n-bit uniformly random
strings. However, all these two constructions were proved beyond-birthday secure only
in the single-key setting. Compared with them, Equation (3) is parallelizable and can be
proved beyond-birthday secure in the multi-key setting.

Besides, Chakraborti et al. [18] also gave a nonce based MAC for variable length
messages as

T=P '(P(K&N)®3Ka N @ Hg, (M)) @ 2K,

where K is an n-bit key, N is an n-bit nonce, M is a variable length message, and Hk;, is
uniformly sampled from the keyed hash family with three properties: regular, AXU, and
3-way regular.

1.3. Technical Overview

The basic technique to prove the BBB security of our constructions is the H-Coefficient
technique [20,21]. As an example, we intuitively introduce the core idea of the security proof
for the construction TPRFIP{ Hyg in Equation (4). Let ® be a random function from 7~ x

{0,1}" to {0,1}", where Tls the tweakable space. Denote TPRFL Ho : T x{0,1}" —
Ky h

{0,1}" as in Equation (4). Given a deterministic distinguisher D who has access query to
the primitive oracle P and to the construction oracle TPRFY or ®, the goal of D is to
Mg

distinguish which construction oracle it interacts with. Set Op = {(u1,v1),..., (1p,vp)} as
all p query-response tuples for the primitive oracle, and Qr = {(t1, x1,¥1), ..., (ts, X4, Y4) }
as all g query-response tuples for the construction oracle. Then, Qr and Qp along with H Kl

and H K2 are called a transcript, denoted by T = {QF, Op, (H KL/ H Kﬁ)} When D interacts

with @, the transcript 7 is said in the ideal world; otherwise, T is said in the real world.

In general, all possible transcripts are divided into bad transcripts and good transcripts.
The key to use the H-Coefficient technique is to define bad transcripts in the ideal world
with a low proportion. Furthermore, one also needs to show that the probability of any good
transcript in the ideal world is close to its probability in the real world. After observing the
transcript the distinguisher will use this information to test whether it is compatible with

TPRFY, 1 Ho . Based on this fact, one can briefly interpret how to define bad transcripts by
Ky h
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the following example. Assume that there exist (t,x,y) € O and (u1,v1), (uz,v2) € Qp
such that Hya (t) ®x = uy and HKﬁ(t) @ x = vy (this event is denoted by Bad;). Then in
the real world, one musthavey = v1 ®u, @ H Kl (tH)yoH K2 (t). However, in the ideal world,

the probability that this equation holds is at most 1/2". In this case, the distinguisher has a
significant advantage. If H Kl and H K2 are independently chosen from the uniform keyed

hash family, then one has

Prl(Hy (1) = x® ) A (Hig (1) = ¥ ®02)] < o

By union bound, the probability of Bad; in the ideal world can be upper bounded by
qp*/22". This advantage is secure roughly up to p = g = O(22"/3) adversarial queries. We
illustrate some other bad cases for transcript T in Figure 1, where (1) in Figure 1 is for the
above example.

For any good transcript, to prove that its probability in the real world is almost close
to the one in the ideal world, it needs to show that the number of choices for unfixed
maps of P is large enough. Let U = {u; € {0,1}" : (uy,v1) € Qp}, V = {v1 € {0,1}" :
(u1,01) € Qp}, Up = {Hya (1) ®x: (£,x,y) € Qp},and Vr = {Hpa () D x 2 (£, x,) € QF}-
Then the good transcript ensures that U N Ur = @ (resp. VNV = @) and all items in
Ur (resp. VF) are distinct. The next goal is to choose distinct values for { P(H Kl (1) ®x):
(t,x,y) € Qr} (resp. {Pfl(HKﬁ(t) @x) : (t,x,y) € Or}) such that {P(Hy (t) ® x) :
(tx,y) € O} N (VUVE) = @, {P(Hyg (1) & x) & Hyg (1) @ Hea(H) 3+ (1,x,y) € O}
(UU Uf) = @, and all items in {P(HK;(t) Dx)D HK;(t) ) HKﬁ(t) @y:(tx,y) € Op} are
distinct (resp. {P’l(HKﬁ(t) ®x): (Lxy) € QetN(UUUE) = Q, {P’l(HKﬁ(t) dx)®
HK}(t) @ HKﬁ(t) @y : (txy) € Qp}N(VUVE) = @, and all items in {P‘l(HK%(t) ®
xX) @ HK;(t) @ HKi(t) @y : (t,x,y) € Qr} are distinct). However, this strategy is not
enough to achieve the BBB security. To deal with this problem, we adopt the main idea
in [17,22] to count more possible choices for unfixed maps of P, and this idea allows that
{P(HK%,(t) @& x): (t,x,y) € Or} N Vg # @. Informally, it means that there exist some
pairs ((t,x,y), (¥, x',y")) € O x QF such that P(x & HK}’(t)) &> HK}I(t) ® HK%(t) Gy =
x' @ HK;’(t’) or Pl (x@ HK}Z(t)) ® Hg (t) & HK,z(t) dy=xa HKi(t’). Take the first case
for example, one has

x® Hyg (1) = %' @ Hyg () & Hia (1) @ Hea (1) @,

*' & He (F) = x & Hyg (1), ©)
x @ Hya (1) & H () ® Hia () @ y/ R Hya (t).

To ensure that the maps in (9) are valid, x’ @ HK}l(tl) @ HK;(t) @ HK%(t) @ y can not be
equal to previous fixed inputs of P, and x ® H K%(t) ®H Kl (e Hye (t') @y can not be
equal to previous fixed outputs of P. Since ® is a random function from 7 x {0,1}" to
{0,1}", then y = ®(t, x) is uniformly and independently distributed for each distinct query
(t, x) in the ideal world. Due to this property, one can define the good transcripts to ensure
that the number of rational maps in (9) is large enough. At the same time, it guarantees
that the proportion of the corresponding bad transcripts in the ideal world can also achieve
a beyond birthday bound. For more details, please refer to Section 4.
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Figure 1. Graphical representation of the motivation to define bad cases for the transcript in the ideal world, which corresponds to

the bad conditions from (C-1) to (C-12) in Section 4. In this graph, the same color in different lines means that there exists a collision

between these places.

1.4. Organization

The rest of this paper is organized as follows. In Section 2, we introduce some
necessary notations and basic tools. In Section 3, we prove the multi-key security of
SoEM22, further tweak the construction SoEM22, and finally construct parallelizable nonce
based MACs from two permutations. The constructions of beyond-birthday secure PRFs
from one permutation in both multi-key and tweakable settings are given in Section 4, and
we also design parallelizable nonce based MACs from one permutation in this section.
Finally, Section 5 concludes this paper.
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2. Preliminaries
2.1. Notations

For any n € Z, we simplify the set {1,...,n} as [n], and denote the set of all n-bit

strings by {0, 1}". For any finite set S, s & S means that s is sampled uniformly from S.
Besides, |S| denotes the size of S. For any sets X and Y, Func(X, Y) includes all functions
from X to ), and we simply write Func(n) for Func({0,1}",{0,1}"). Furthermore, Perm(n)
denotes the set of all permutations on {0,1}". For any two integers g and N such that
1 < g < N, define (N), = N(N —1)...(N — g +1). In particular, (N), = 1.

Q = {(x1,y1),---,(xp,yp)} is said a well-defined n-bit permutation-compatible set
if x1,...,xp, € {0,1}" (resp. y1,...,yp € {0,1}") are all distinct. Given a well-defined
permutation-compatible set Q, we say that the permutation P € Perm(n) extends Q,
denoted by P - Q, if P(x;) = y; for all i € [p]. For another well-defined n-bit permutation-
compatible set Q" = {(x},v}),..., (x;,,y;,)}, Q" and Q are called disjoint if x; # x; and
vi # y; forany i € [p] and j € [p']. Given the disjoint n-bit permutation-compatible set Q

and Q’, for any random permutation P & Perm(n) satisfying P I Q, the probability of
P+ Q"is1/(2" — p),y, which is denoted by
$ . ! —
Pr[P < Perm(n) : P+ Q'|P - Q] (2”—;7)}7/.
For any function F : D — V, given the set S = {(x1,v1),..., (Xq,yq) : (X, yi) €
D x V}, F F S means that F(x;) = y; for any (x;,y;) € S.
Given two sets U and U’, we say that U is disjoint with U" if UNU" = @. Let
U = {U,..., Uy} be a collection of finite sets. Then U is called a disjoint collection
if for any i # j € [m], U; is disjoint with U;. In this case, the size of U is defined as
\U| = |Us| + ...+ |Up|. Two disjoint collections U = {U,..., Uy} and U’ = {U7,..., U}
are called inner disjoint if U; N U}, = @ for any i € [m],i’ € [n]. Let Sy, be a multi-set, and
let 55, (x) denote the multiplicity of x in S, ;. When S, is called a set, it means that
all the repeated items in it are viewed as a unique item. Throughout this paper, when we
discuss the size of S, which is denoted by |S,|, the items in S, are counted without
considering the multiplicity.

Definition 1 (Universal Hash Functions). Let n be a positive integer. Assume that K and X
are two finite sets. Let H = (Hk, )KheICH be a keyed hash family from X to {0,1}", where Ky is
the hash key space. H is called eq-regular if for any t € X and any y € {0,1}", it holds that
PI'[Kh <i KH : HKh (f) = y] < €1.
H is called ex-almost XOR-universal (e-AXU) if for any distinct t,t' € X and any y €
{0,1}", it holds that
Pr(K), & Ky ¢ Hy, (1) @ Hi, () = y] < 2.

H is said XOR-universal (resp. uniform) if it is 27"-AXU ( resp. 27 "-regular).

Next, we briefly describe an example of zin-regular and zi,,-AXU keyed hash family
[18,23] for some constant I € N . Let M be any binary string with |M| < I -n, and set
Ky = {0,1}". Then we pad M as M||10° = M;||...||M;, wheres =1-n— |[M|—1, 0°
denotes the all zero s bits, and M; € {0,1}" for each i € [I]. For any K}, € Ky, the keyed
hash is defined as:

Polyy, (M) = M;-Ky® M1 Kj®...® My -Kj, (10)

where K, and M,; (i € [I]) are viewed as the elements in [Fon, and - denotes the multiplication
in ]an .
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Remark 1. The keyed hash family H is said to be e-3-way regular, if for any y € {0,1}" and any
three distinct inputs t, t', and t' € X, it holds that

Pr(K), & Ky : Hy, (t) ® H, () ® Hg, () = y] < e.

2.2. The H-Coefficient Technique

One important tool used in our proofs is the H-Coefficient technique [21], which
can be used to upper bound the statistical distance between the query-answers from two
interactive systems. For convenience, we focus on the modernization version of Chen and
Steinberger [20].

Let Py,..., P, ﬁ Perm(n) be r independent random permutations, and K be the
key space. In this paper, we only consider the case r € {1,2} and K = {0,1}*". The
randomly sampled 2n-bit key can be parsed as (Kj, Ky) & {0,1}?", where K; and K are
two independent n-bit uniformly random strings. Then based on r public permutations
P,..., P, PIQ:'I'(';P’ : {0,1}" — {0,1}" denotes the keyed function indexed by (K3, Ky) €

{0,1}%". Besides, let ¢ & Fu nc(n) be an ideal random function. Then for any deterministic

distinguisher D who has query access to the oracle Oy = (FII;“KZ’P’ Pf,...,PF) in the

real world, or the oracle Oy = (¢; P{", ..., P*) in the ideal world, the advantage of D to
distinguish which oracle it has access to is defined by

Advy(D) = |Pr[D% = 1] — Pr[D% = 1]|. (11)

As shown in Figure 2, in the multi-key setting, the goal of distinguisher D is to

distinguish m keyed functions (FI?"I'(‘{P’, . F};}n Ky ") from m independent ideal random
1772

functions @1, ..., ¢ & Func(n), where (K}, K}),..., (K", K & {0,1}?" are m indepen-
dent keys. In this case, let O;q = (¢1,..., ¢m, P i, eeey Pri) be the oracle in the ideal world,

and Ore = ( E}’K{P’, e, FII;},; K,”I;,’ PjE .., Pri) be the oracle in the real world. The advantage

of the dlstlngulsher D to distinguish these two oracles can be defined as the same in (11),

but here we use Adv;”liiwpr (D) to identify the multi-key case.
K1.Ky

KI'KZ

Py, P,
Fot il

FPl'm'

P

K? K3

Py, Py + 11 + *
et L PE [+ BT @1 || P2 P | PE||PF]

Distinguisher D

Figure 2. The illustration of the RP-based keyed function Flg"kz’p’ in the multi-key setting, where the distinguisher D interacts with the

real oracle at left, and with the ideal oracle at right.

Let H be an e;-regular and e;-AXU keyed hash family from 7 to {0,1}". Then
we use two independent keyed hash functions (H Kl H Kz) & 12 to tweak the keyed
function Fy ! 1’ P as TPRFPI’ ’P’ : T x{0,1}" — {0,1}" such that TPRFH 11;, (t,x) =

K K

h h h h
FluPr (x) In addition, the ideal tweakable random function can be denoted as
(Hya (), H2 ()

®: 7 x{0,1}" — {0,1}", i.e. ® & Func(7T x {0,1}",{0,1}"). In this case, let Oy, =
(TPRF%K 5’ ,Pli, ..., PF) be the oracle in the real world, and Oy = (P, Pli,. .., PF) be
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the oracle in the ideal world. For any distinguisher D, its advantage can be defined as the

same in (11), but here we use Advtw;’ék': .p (D) to identify the tweakable case.
H Ao

The security proofs in both multi-key and tweakable settings are similar. Therefore, we
prove these two cases in a unified approach. For two independently and randomly sampled
functions f; and f, from Func(7,{0,1}"), (f1, f2) is said a good (€1, €2)-key-derivation
pair if it satisfies two properties in the following:

(i) e1-Regular. Forany t € 7 and any y € {0,1}", it holds that
Pr[fi(t) =y] < e, fori € {1,2}.
(ii) €-AXU. For any distinct t,#' € T and any y € {0,1}", it holds that
Pr[fi(t) ® fi(t') = y] < e, fori e {1,2}.
The above two properties are enough for the security proofs in both tweakable and
multi-key settings. In the tweakable setting, (H KLs H Kz) is a good (€1, €2)-key-derivation
pair, where (H K1/ H K%) & H2. In the multi-key setting, set 7 = [m], and uniformly and

randomly sample two independent random functions fi, f» & Fu nc(7,{0,1}"). Then
(f1, f2) is a good (27",27™")-key-derivation pair. To show the security of the constructions
in both tweakable and multi-key settings, we only need to prove the BBB security of the
following “unified” function

T % {013 = {0,1}",

f1 fz
where (f1, f2) is a good (€1, €2)-key-derivation pair and Py, ..., P, (r € {1,2}) are r inde-
pendent random permutations. In this case, let Ore = ( ;jlf ’P r Pli, .., Pri) be the oracle

in the real world, and Oy = (&, Pli, ceey P,i) be the oracle in the ideal world, where ® <i
Func(T x {0,1}",{0,1}"). When the distinguisher D interactes with Oy or Ojqy, any query-
responses along with the good (€1, €;)-key-derivation pair (f1, f) € Func(T,{0,1}")?
are called a transcript, denoted by 7 = (Qr, Qp,, ..., Qp,, (f1, f2)). In addition, QF (resp.
Qp, for 1 <i < r) records query-responses when the distinguisher D interacts with the
construction oracle (resp. the primitive oracle P; for 1 < i < r). Furthermore, Te (resp.

Tiq) denotes the probability distribution of the interacting transcripts between D and O
(resp. Oiq). A transcript T is said attainable if Pr[T;y = 7] > 0. Finally, the advantage of the
distinguisher D, to distinguish which oracle it has access to, can be defined as the same in

(11), but here we use Adviﬁf{ Y4, (D) to identify this unified description.

172
Let T’ = I'good U T'haq be a partition for the set I' consisting of all attainable transcripts,
where T'go0q (resp. I'yaq) contains all “good” (resp. “bad”) transcripts. Then the main result
of the H-Coefficient technique can be described as the following lemma.

Lemma 1 (H-Coefficient Technique [20,21]). Let D be a deterministic distinguisher, and Te
(resp. Tiq) be the probability distribution of transcripts in the real world (resp. in the ideal world).
Let Tgooq and T'yaq be defined above. Assume that there exists 0 < €ratio < 1 such that for any
T € Ugood, it holds that

Pr[Tre = 71|

—=>1- io-

Pr[Tid — T] = €ratio

Then, Advugllfylj <D> < €ratio T PI'[Tid € I‘bad]'
Frin
2.3. Useful Tools

Assume that there are g “rational” items in an N-size set S. When one samples s items
from S without replacement, H denotes the random variable which counts the number
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of “rational” items among these s items. Then we say that H follows the hypergeometric
distribution with parameters N, s, and g, denoted by H ~ Hypn,s,g- For 0 < a < g, one has

N—
(%) : ( sfocg)
(5)
In addition, the expectation value of His sg/N, i.e.,, E(H) = sg/N.
The following lemma is useful in our proofs.

Pr[H =a] =

Lemma 2. Let A, B, C, and N be positive integers satisfying A+ B < N/2and A+ C < N/2.
Then we have

41 N(N-B-C-2)) o1 4A(A+B)(A+C)
L (N—B—(N-C—j) ~ N? '
Proof.
T N(N-B-C-2j) :ﬁ(N—B—j)(N—C—f)—(B+j)(c+f)
j=0 (N_B_j)(N_C_j) j=0 (N_B_j)(N_C_j)

A-1 A)
2]0<1_(N—B—A)(N—C—A)>
G 4B+A)(C+A)
SO0
. (1_4A(B+;2(C+A)>/

where (%) holds since A+ B< N/2and A+ C< N/2. O

3. Multi-Key and Tweakable Secure PRFs from Two Random Permutations
In this section, we prove that the construction SOEM22 from two random permutations
Py, P, & Perm(n) in [15], namely
Fe (x) = Pu(x @ Ky) © P (x @ Ka) © Ky @ Ko, (12)

is beyond-birthday secure in the multi-key setting, where (K7, K») & {0,1}*" and x €

{0,1}".
Let H be an e;-regular and e,-AXU keyed hash family from 7 to {0,1}". Then we can
tweak SOEM22 as

TPRFTS, (1) = Pr(x @ Hg (1) @ Pa(x @ Hg (1) & Hg (0 @ Hia (1), (13)
h h
where t € T, x € {0,1}", and (Hy, Hye) < H2.

To show the security of SOEM22 in both multi-key and tweakable settings above, we
only need to prove the BBB security of the following “unified” function

FR2(tx) = Pi(x @ fi(1) @ Pa(x @ fo(1) @ fi(t) @ folt), (14)

where P;, P, & Perm(n), (f1, f2) € Func(T,{0,1}")? is a good (e1, €)-key-derivation pair,
teT,and x € {0,1}".

Theorem 1. Let n € N, and (fy, ) € Func(T,{0,1}")? be a good (€1, €2 )-key-derivation pair.
Consider the function F;?}IZZ o T x{0,1}" — {0,1}" defined in (14) based on two random
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permutations Py, Py & Perm(n). For any deterministic distinguisher D making at most py queries
to P1, p queries to Py, and q queries to construction oracle Fflfz or ® such that py + p2 +3q <
27=1 e have

€1(e29> +2 +
Adv'y Y (D) <3qpipaci + g 2D sl 1 e

f1 p) (15)
4(pr+p2+29)°  2/A(p1+p2) g
22 21 2

In the multi-key setting, one sets 7 = [m] corresponding to m independent random

keys, and randomly samples two independent random functions f1, f> & Func([m],{0,1}").
Then we can easily conclude that (f1, f») is a good (27",27")-key-derivation pair. By this
fact, one can obtain the following corollary.

Corollary 1. Let n,m € N. Consider the keyed function FPl’P2 {0,1}" — {0,1}" defined in

(12) based on two random permutations Py, Py & Perm(n). For any deterministic distinguisher D

making at most py queries to Py, py queries to Py, and totally q queries to FP}’%, . F}z},{%m (resp.
2 1772

m independent ideal random functions ¢1, . . . @m ) such that p1 + p2 +3q < 2", we have

3pip2g | Ppr+p2) | 290 ¢¥?
AdV P1 Py (D) < 22n + 22n+1 + 22n + on
F % (16)
49(p1 + p2 +29)° L3P+ ) | 11
22n 2n 21

Corollary 1 shows that the construction SOEM22 in (12) is secure roughly up to
p1 = p2 = q = O(22"/3) adversarial queries in the multi-key setting.

Similarly, given an e;-regular and €,-AXU keyed hash family # from 7 to {0,1}",
one can obtain a good (€1, €2)-key-derivation pair (H Kls H Kﬁ) for (H Kls HK%) & %2, and
finally conclude the following corollary.

Corollary 2. Let n € N, and H be an e1-regular and eo-AXU keyed hash family from T to {0,1}".
Consider the tweakable function TP RFPl’P2 , T x{0,1}" — {0,1}" defined in (13) from two
i e

random permutations Py, Py & Perm(n). For any deterministic distinguisher D making at most p;

queries to Py, pa queries to P, and q queries to TPRFPl’P2H , 07 D such that p1 +p2 +3q < -1
KK,
we have
vk 2, €1(eq” +2/7)(p1 + p2) 23 3/2
dv ot pr, (D) <3qpipaet + 5 +263° + €21
HK%,HK% )
4(pr+p2+29)° 241 +p2) | g
22n 2n 21

Assume that #H is uniform (i.e. 27"-regular) and XOR-universal (i.e., 27"-AXU). Then

Corollary 2 shows that TP RF%};IEHKZ in Equation (13) is secure roughly up to p; = p2 =
h h

g = O(22"/3) adversarial queries. This means that TPRF%’IPH , is a beyond-birthday
Kh/ K,

secure tweakable PRE.

Finally, let M denote a message space. Given an e;-regular and €-AXU keyed
hash family H from M to {0,1}", we can construct a nonce based MAC (denoted by
Sum2PMAC), from two random permutations P;, P, ﬁ Perm(n) and H, as

T=P(N& HK;’(M)) &P (Na HK%(M)) D HK;(M) @ HK%(M), (18)
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where (HK}I,HKIZ) <i H2, M € M is message, and N € {0,1}" is a nonce. Due to
assumption of H, when we set T = M, then (H KLs HKi) is a good (€1, €2)-key-derivation
pair. Therefore, the following corollary holds.

Corollary 3. Let n € N, and M be a message space. Let H be an e1-regular and e;-AXU keyed
hash family from M to {0,1}". Consider the nonce based MAC Sum2PMAC defined in (18) from

two random permutations Py, Py & Perm(n). For any deterministic distinguisher D making at
most py queries to Py, py queries to Py, and q evaluation queries, we have

e1(e20* +2/7)(p1 + p2)
2

Y(pr+p2+29)°  2/A(ptp2) | g
2 21 20

+ 26%113 + 62q3/2

£
AdvEy opmac (D) <3qpipaet + .

_l’_

Assume that for any message M € M, one has |[M| < n -1 for some integer | € N.
Then the keyed hash family from M to {0,1}" can be instantiated by the Poly Hy, defined
in (10), which is %-regular and %-AXU. In this case, when one sets p; = py = g, then
AdngmePMAC (D) in (19) can be bounded as

(61> +64)g> (31+4)g%? 11q
22n + on + on
If I is a constant, then Sum2PMAC is a beyond-birthday secure MAC.

Proof of Theorem 1. For convenience, we follow some notations in [16,17] in this proof.
Let T = (Qr, Qp,, Qp,, (f1, f2)) be an attainable transcript, where |Qf| = g, |Qp,| = p1,
and |Qp,| = p2. In addition, we write these sets more clearly as:

QP - {(tl/xll]/l)/ ey (tq/ xq,]/q)},
Op, = {(u1,1,v11), -+, (U1,p,, 01,p) }
sz = {(Liz/l, 02’1), ey (1/[2’!,2,'024,2)}_
We denote
u, = {Ml € {O,l}n : (ul,vl) S Qp] }, Vi = {U1 S {0,1}” : (ul,vl) S Qp]},

and

u, = {Mz S {0,1}n : (le,’(’)z) S sz}, V, = {’02 S {0,1}” : (uz,vz) S sz}.

For each u € {0,1}", two associated sets can be defined as:

Xy={(txy) € Qr:x@ fi(t) =u}, Xi={(t,x,y) € Qr:x® fr(t) = u}.
Now we define four parameters for transcript T = (Qr, Qp,, Qp,, (f1, f2)) as
s Y [{(txy) € Qi x@ fi(t) € Un},
0w (2 y) € Qr 1 x® A1) € Un}],
B 1 {(t,x,y) € QF 3, x,y) # (F, 2, y), 2 fih) =¥ & fi(F)}],
B 1{(tx,y) € Q- 3(tx,y) £ (.4, 9),x® folt) = ¥ @ ()},

B1 and B2 can be also expressed as

p1 = Z 5D1 (X), B2 = Z 5D2(x),
xe{o1}: xe{01}:
éDl (x)>1 JDZ (x)>1

”
#
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where D1 = {x® f1(t) : (t,x,y) € Qp} and D, = {x @ fo(t) : (t,x,y) € Or}.
An attainable transcript T = (Qr, Qp,, Qp,, (f1, f2)) is said bad if any one of the
following conditions is satisfied:

J (B-1): di € [q],] € [Pﬂ,f’ € [Pz] for (ti, xi/yi) € Op, uyj € U, and up i € U, such that
X @ fi(t) = Uy, and x; & fo(t;) = Up,jr.

 (B2:3icqljeE [pi],j € [p] for (i, x;,y;) € Qp, (u1j,01j) € Qp,and vy € V3
such that x; @ f1(t;) = Uy, and U1, @ filt) @ falt)) By = Uy -

. (B—3): di € [q},] S [pl],j’ S [pz} for (tl‘, xi,yi) S Qp, Ul,j S Vl, and (u2,]-/, Uz,j’) S sz
such that x; @fz(ti) = Upjr and Uaj! EBf1(t,') @fz(fl‘) Dyi = v

. (B-4): 3i,i’ € [q] for (t;, xi/yi) # (ty, xi/,yir) € QF such that x; @fl(fi) =x @ f1 (ti)
and y; @ f1(t;) © fo(ti) = yr @ fi(ty) ® fa(ty).

. (B-5): 3i,i’ € [q] for (¢, Xi,Yi) # (ts, xi/,yi/) € Qr such that x; @fz(ti) = Xjr @fz(ti/)
and y; @ f1(t;) @ fo(ti) =y & fi(ty) @ falty).

. (B-6): 3i,i' € [q],] € [p1] for (ti,xi,y,-) # (ti/,xi/,yi/) € Qf, and uyj € U, such that
X @ fi(t;) = urjand x; © fo(t;) = x7 @ fa(ty).

° (B-7)Z 31',1'/ S [q],] S [pz] for (ti,xi,yi) 75 (ti/,x,v,yi/) € O, and Up,j € U, such that
X; @fz(ti) = Uy and x; @fl(ti) = Xy @fl(ti/).

J (B-8): 3, i',i" e [q] for distinct tuples (ti/ Xi,]/i), (t,-/,xi/,yl-/), (tiu,x,-u,y,w) € Qp, such
that x; @ f1(t;) = xy @ f1(ty) and x; & fo(t;) = xj & fo(tin).

o (B9):3ii €[ql,jj € [p1] for (ti, xi,yi), (tr, X, yi) € Qpand (uyj,v1), (U1, v1,1) €
Qpl such that x; ® fl(ti) = Uy, Xy (&) f] (t,‘/) = Uy, and fl(ti) D fz(ti) D U1, Dy =
filty) ® fa(ti) © oy Dy

o (B-10): 3i,i" € [q],],j € [p2] for (t;, xi, yi), (ty, xp,yp) € Qpand (uy, v2), (Up 1,0y ) €
sz such that x; @fz(ti) = Upj, Xy @fz(ti/) = Ui, and f1(t1') @fz(ti) D Vi Dy =
filti) ® fa(ty) ®vaj @y

e (B11):ay > /9.

U (B-12): a2 > /9.

o (B13): By > iorfa > Vi

Otherwise, we call T a good transcript.

3.1. Analysis of Bad Transcripts

The proportion of all bad transcripts in the ideal world is upper bounded by the
following lemma.

Lemma 3. Let Tyy be the probability distribution of transcript T = (Qp, Qp,, Qp,, (f1, f2)) in
the ideal world, where |Qp,| = p1, |Qp,| = p2, |Qr| = q, and (f1, f2) is a good (€1, €2)-key-
derivation pair. Then we have

e1(e29* +2/79)(p1 + p2)
2

q

Pr[T € Thad] < 3qp1p2ef + +2650° + 55 + g’

n

Proof. Here we assume that there exists no repeated items in Qp, Qp,, and Qf w.lo.g.
Then for each distinct construction query (t,x,y) € Qp, y is sampled uniformly and
independently from {0, 1}" in the ideal world. For each i € [13], the set of all transcripts
satisfying (B-i) is denoted by I';. By union bound, one has

13
Pr[Tiy € Tpaa] < ) Pr[Tiq € T} (20)
i=1
For each i € [13], the way to upper bound Pr[Ty € I}] is similar to that in [16,17,22].
Hence, we give the details in Appendix A. By combining these upper bounds together, the
proof of Lemma 3 is finished. O
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3.2. Analysis of Good Transcripts

In Lemma 4, we show that the probability of any good transcript T in the real world is
close to its probability in the ideal world.

Lemma 4. Let Tiy be the probability distribution of transcripts in the ideal world, and Tye be
the probability distribution in the real world. Then for any good transcript T = (Qf, Qp,, p,,
(f1, f2)) with parameters py, pa, and q satisfying p1 + pa + 39 < 21, one has

PrTe=1] _ | 49(p1tpat29)° 2/4(p1+p2) 10g

Pr[Tq =1] ~ 221 2" 21

Proof. Given a good transcript T, we define the following probability
f
p(t) € Pr[Py, Py & Perm(n) : F{'* - Qp | Py - Qp APy F Qpy).

fufa
By a simple combinatorial argument, we have
Pr[Tye = 1]
—— = 2"Ip(71). 21
Pr[Ty — 1] p(7) (21)

The next goal is to lower bound p(T). For convenience, define five subsets of Or as
follows:

(tbxy) € Qr:xd® fi(t) e U}, Qu, ={(tx,y) € Qr:xD fo(t) € Up},

(t,x,y) € Qp : dp, (x @ f1(t)) > land x & f1(t) & Uz},

(t,x,y) € Qp:dp,(x @ fo(t)) > land x & fo(t) € Uz},

Qo ={(t,x,y) € Qr:dp,(x B h1(t)) = bp,(x ® fo(t)) =1, x® f1(t) € Ly,
and x @ fo(t) € Uy }.

{
{
{

Note that |Qy,| = a1 and |Qyy,| = a,. The following proposition tells us that these sets
form a partition of Qr.

Proposition 1. Let T € Tgo0q be a good transcript. Then the sets (Qul, Qu,, 9%, 2%y, Qo)
defined above are pairwise disjoint.

Proof. By definition, we have Qu, N Qx, = @, Qu, N Px, = @, and Quy, N Qp = Qu, N
Qo = Qx, N Qg = Qx, N Qp = @. Since T does not satisfy (B-1), we have Qy;;, N Qy, = @
Moreover, Qy, N Qx, = @ (resp. Qu, N Qx, = @) since T does not satisfy (B-6) (resp.
(B-7)). Finally, Qx, N Qx, = @ holds due to the fact T ¢ I's. [

We use Eyy,, Ey,, Ex,, Ex,, and Eg to denote the events that FPl’P2 = Quy, Quyr 2,0 2Xy»

and Qy, respectively. Then F;Jl}Pz = QF is equivalent to Ey, A EUZ /\ Ex, N Ex, A Eo. Hence,

it holds that
p(t) = Pr[FIP2 - Qp | P+ Qp,i = 1,2]

1.J2
= Pr [Ej;lf/\ Eu, NEx, NEx, NEo | P; = Qp,i = 1,2]
=p'(1)p"(7),
where
p'(t) = Pr[Ey, NEy, | P+ Qp,i=1,2],
and

p"(T) = PI‘[EX1 A\ EXZ A Eo ‘ EU1 A Euz A (PZ (o Qpl.,i =1, 2)]

Pr[Tre=T7]

The way to compute p’(7) and p”(7), and the way to lower bound Pr[T o= are similar

to those in [16] so that we show the details in Appendix B. O

Finally, by Lemmas 1, 3, and 4, Theorem 1 can be proved. O
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4. Multi-Key and Tweakable Secure PRFs from One Random Permutation

In this section, we first use one bidirectionally efficient random permutation P &
Perm(n) to construct beyond-birthday and multi-key secure PRFs with a parallelizable
structure as

Fg x,(X) = P(x @ Ky) @ P (x @ Kg) @ Ky @ Ky (22)

where (K1, K>) & {0,1}?" is the key and x € {0,1}" is the input.
Let H be an e;-regular and €,-AXU keyed hash family from 7 to {0,1}". Then we can
tweak the construction FII<31,K2 in Equation (22) as

TPRFY 1, (%) = P(x @ Hya (1) © P~ (x & Ha (1) © Ha () @ Hia (1), (23)
h h

where (HK},HK%) &2 teT,andxe {0,1}".

As mentioned before, one can simultaneously show that the above two constructions
are beyond-birthday secure in the multi-key and the tweakable settings by proving the
BBB security of the “unified”function,

Ff (LX) =P(x@ fit) @ P (x e fo(t) @ fi(t) @ fo(t), (24)

where (f1, f2) € Func(T,{0,1}")? is a good (e1, €2)-key-derivation pair, P & Perm(n),
teT,andx € {0,1}".

Theorem 2. Assume that n > 6and q > 64 are two positive integers. Let (f1, f») € Func(T,{0,1}")?

be a good (€1, €;)-key-derivation pair, and P & Perm(n) be a random permutation. Consider
the function F}z,fz : T x{0,1}" — {0,1}" defined in Equation (24). For any deterministic
distinguisher D making at most p queries to P and q queries to the construction oracle Fﬁ 70 1O
such that p + 2q + 6,/q < 2"~1, one has

; 12

Adv;;;u;y(p) <(3qp* +24%p)€? + 24°€3 + 247 perer + ¢ %€y + 2p Jqer + 227‘/73
1J2

(25)

. 4q(p +2q+ 6.3 +¢° . 185°/2 +6p/G+97  16,/7

22n on omn/3 °

Same to Corollary 1, the following corollary holds.

Corollary 4. Assume n > 6 and q > 64 are two positive integers. Let P & Perm(n) be an
n-bit random permutation. Consider the keyed function F11<31,K2 :{0,1}" — {0,1}" defined in
(22). For any deterministic distinguisher D making at most p queries to P and at most totally g

queries to FII;l Qs F}gm xm (resp. m independent ideal random functions @1, ..., pn) satisfying
1089 1772

p+29+6.4< 2"=1 we have
4 2 6 2 3 2 2
AdvE (D) <MWP 206D 34 +3qp” +4pg
FKl,KZ 22n 22n (26)
19432 +8p/G+99 16/  12q
+ on T on/3 22n/3"

Similarly, given an €1-regular and e,-AXU keyed hash family A from 7 to {0,1}", the
following corollary holds.

Corollary 5. Assume n > 6 and q > 64. Let ‘H be an e1-reqular and ex-AXU keyed hash

family from T to {0,1}", and P & Perm(n) be an n-bit random permutation. Consider the
tweakable function TPRF%K1 He T x{0,1}" — {0,1}" defined in (23). For any deterministic
h h
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distinguisher D making at most p queries to P and q queries to TPRFH H, O ® such that
h h

p+2q+ 6.4 < 2"1, we have

12
k q
Advigeer (D) <(3qp +20°p)et +20°€3 + 2% perer + 47 2e2 + 2p JGe1 + 5

K"Ky, ) (27)
N 49(p+29+64)" +q° N 18432 +6p/g+97 16,7
22n on omn/3 "

Denote M as a message space. Let H be an e;-regular and e-AXU keyed hash family
from M to {0,1}". Then we can construct a nonce based MAC denoted by Sum1PMAC),

from one random permutation P & Perm (n) as
T =P(N & Ha(M)) & P~ (N & Hie (M) & Hga (M) & Hyz (M), (28)

where (HK}, HK%) & HZ, M € Mis message, and N € {0,1}" is a nonce. In this case,
(H KLs H Kﬁ) is a good (€1, €2)-key-derivation pair, and we can obtain the following corollary.

Corollary 6. Assumen > 3 and q > 64. Let H be an eq-regular and ex-AXU keyed hash family
from M to {0,1}". Consider the nonce based MAC Sum1PMAC defined in (28) based on a

random permutation P & Perm(n) and H. For any deterministic distinguisher D making at most
p queries to P and q evaluation queries, we have

f 12
Advl omac(D) <(3qp* +24°p)€? +24°e3 + 247 perex + ¢ %€y + 2p /e + 22n73

. 49(p +29+6,4)° + N 187°/% + 6p /7 +9q . 16,/7
22n on omn/3 "

(29)

Let M denote a message space, where for some | € N, |M| < n -1 holds for each
message M € M. Then, the keyed hash family from M to {0,1}" can be instantiated by
the Poly Hy, defined in (10), which is %-regular and zi,,—AXU. In this setting, when [ is set

to a constant, then Sum1PMAC is a beyond-birthday secure MAC.

Proof of Theorem 2. In this proof, we follow some notations in [16,17] for convenience.
Let T = (QF, Op, (f1, f2)) be an attainable transcript with |Qp| = g and |Qp| = p. We
write these sets more clearly as follows:

Or = {(ty, x1,y1), -+, (tg, Xq, ¥g) },
Op = {(u1,01), ..., (up,vp)}-

We also denote
U={u; €{0,1}": (ug,v1) € Qptand V = {v1 € {0,1}" : (uy,v1) € Op}

as domain and range of Qp respectively. For each u € {0,1}", two associated sets can be
defined as:

Xi={(t,x,y) € Or:x® fi(t) =u}yand X2 = {(t,x,y) € O : x ® fo(t) = u}.
Now we define four parameters for transcript T = (Qf, Op, (f1, f2)) as
X ((xy) € Or x@ fi(E) € U},
-z”’éf|{<txy>egp x@® folt) € VY,
B 1 {(txy) € O 3txy) # (1,2,0),x® filh) =¥ @ A(t))],
(tx,y) € ) #

B 1 xy At x,y) # (F,2,0),x D fH(t) = ¥ @ fr(t)}],
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where B; and f; can be also expressed as
Br= ) dp(x)andBy= ) 6p,(x)
xe {01} re{oym:
5D1 (x)>1 o‘Dz(x)>1

where D1 = {x @ fi(t) : (t,x,y) € Qr} and Dy = {x @ fo(t) : (t,x,y) € OF}.

An attainable transcript T = (Qr, Qp, (f1, f2)) is said bad if any one of the following
conditions is satisfied:

e (C-1): Ji € [gq] and j,j € [p] for tl,x,,yl) € Qf, uj € U, and vy € V such that
X @ fi(t;) = ujand Xi @ fa(ti) =

e (C-2:3dielq and .7 € [p] for (tl,xl,yl) € OF, (uj,vj) € Qp,and uj € U such that
xX; ® fi(tj) = ujand o @ f1(ti) @ fa(ti) D yi = uy

e (C3):die[q] and i7" € [p] for (t;, xi,yi) € QF/( uj,v;) € Qp,and vy € V such that
X ® f2(ti) = vjand u; & f1(t;) @ fo(ti) S yi = vy

e (C-4):3i,7 € [q] and] € |p] for (t;, x;,y;) # (tl-/,xl-/,yi/) € Qr and (uj,vj) € Qp such
that x; ®f1( i) =ujand 0; @ f1(t;) ® fo(ti) Dyi = xp @ fi(ty).

o (C-5):3i,i" € gland € [p] for (t;, x;,y;) # (ty, xi,yy) € QF and (u),vj) € Qp such
that x; @ f(t;) = vjand u; @ f1(t;) @ fa(t;) B yi = xy & fo(ty).

e (C-6):3i,i' €glandj € [p] for (t;, x;,y;) #

X D fi (ti) = Uj and x; @fZ(ti) = X @fz(i’i/).

e (C7):3ii" €[glandj € [p] for (t;, x;,y;) # (ty, xy,yy) € Qr and v; € V such that
X @ fo(t;) = vjand x; @ f1(t;) = x» @ f1(ty).

e (C-8): di,i’ € [q] for (t;, x;,y;) # (ti,xp,yy) € Qp such that x; ® f1(t;) = xy & f1(ty)
and f1(t;) ® fo(ti) ®yi = fi(ty) ® falti) S yir.

. (C-9): 3i,i’ € [q] for (tl,xi,yi) # (tir,xil,yg) € Or such that x; @fz(fi) = Xy @fz(ti/)
and fi (¢ )@fz( i) ®yi = fi(ty) ® fa(ty) S yy.

e (C-10):3i,i',and i € [q] for pairwise distinct (¢;, x;,;), (ti, X, yi), and (£, xjm, ym) €
Or such that X @ fi (k) = xp @fl(ti’) and x; @fz(fi) = Xjn @fz( ).

o (C11):3i,i" € [p]andj,j" € [p] for (t;, xi,yi) # (ty, xp,yp) € Qp and (u), vj),(uy,v5) €
Qp such that x; @ fl(ti) = uj, Xy © fl(ti’) = uj and 0; D fl(t ) D fz(fl) Dy, =
vy @ fi(tn) @ fa(ty) © yir.

o (C-12):3i,i" € [pland j,j" € [p] for (t;, x;, yi) # (ty, X, yr) € QF and (uj, vj),(up,vy) €

Qp such that x; @ fo(t;) = vj, xp @ falty) = vy and u; © fi() © falti) @yl

up @ fi(ty) ® falty) Sy

(C-13): a1 > ﬂ

(C-14): &, > /4.

(C-15): By > \/qor B > /7 .

(C-16): 3i,i',and i” € [q] for pairwise distinct (¢;, x;,y;), (ti, X1, yir), and (£, X, yin ) €

Or such that fi(t;) ® fo(t) @ yi = filty) @ folty) ©yy and fi(t) © fo(ti) By =

fi(tor) @ fa(tin) ® yim. )

e (C17): Forsets Oy = {(1,y) € Or : dp, (x® fi(t) = dp,(x® fo()) = Lx
A gUx@fo(t) gVEU=UU{ve fi()® fo(t) @y : (Lxy) € OF, (1,0) €
Qp,x® f1(t) = u € U} U{xD fi(t) : (tx,y) € Qr,x® fi(t) € U}, and V =
vu{use ilt)® L)@y : (txy) € QF (u,0) € Op,xD fo(t) =v € V} U{xa®

fa(t) : (Lx,y) € Qp,x® fo(t) ¢ V} derived from the transcript, Du = |{x1

f(t) ® filty) ® folty) ©yr € U : (b xi,y0) # (te,x,y0) € Qo}| > g% or DV =
{xi @ fi(t)) @ fity) @ falty) @y € Vi (b, x1,y:0) # (i, xi,yi) € Qo] > 472

Otherwise, T is said a good transcript.

(ti, xp,yz) € QF and u; € U such that

4.1. Analysis of Bad Transcripts

Let I'/ be the set of all transcripts satisfying (C-i) for i € [17]. The proportion of all bad
transcripts in the ideal world can be upper bounded in the following lemma.
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Lemma 5. Let Tiq be the probability distribution of transcript T = (QF, Op, (f1, f2)) in the ideal
world, where |Qp| = p, | Q| = g, and (f1, f2) is a good (€1, €2)-key-derivation pair. Then we
have

Pr[Tyy € Toaa] <(39p” +29°p)el +29°€3 + 297 perer + 37/ %es

q+2/q(p+4q)
+2p./q€1 + \g—n + 2‘%

Proof. Let Ty = (QfF, Op, (f1, f2)) be any attainable transcript in the ideal world, where
Qp includes p permutation pairs from the interaction between distinguisher D and P. For
each distinct construction query (t,x,y) € Qf, y is sampled uniformly and independently
from {0, 1}". Without loss of generality, we assume that there exists no repeated items in
Qr and Qp.
The probabilities of Tiq in I'y,4 can be upper bounded as
15

Pr[Tiy € Tpad] < ) Pr[Tig € I} +Pr[Tig € '] + Pr[Tig € '] . (30)
i\/_/ BadMZ
BadM1

For Bady,, one can obtain the following upper bound

Bad, < (3gp” +242p)€3 + 24°€3 + 247 perer + 2p /1 + 77/ % + o

TR G)
and more details can be found in Appendix C.

For Bady;,, we need to study (C-16) and (C-17), respectively.

Bounding (C-16) : For any three distinct construction queries (t;, xi, i), (i, xpr, yi/),
and (tyn, xjn,yin) € Of, yy and y;» are independently and uniformly sampled from {0,1}".
Hence, we have

Pr{(fi(t) ® fa(t) Dyi = fi(ty) © foa(ts) D ys)A
(fi(ti) ® fa(ti) B yi = fr(tw) © fo(tin) B yiw)] < 2%

Since the number of all possible tuples for ((t;, x;,y;), (ts, i1, yir), (tin, Xjn, yin)) € QF X
OF x QF is at most %, by union bound, one has

Pr[Ty € T'4] < Zq

Bounding (C-17): First, we have {(t,x,y) € Qr : x® f1(t) € U} N{(t, x,y) € OF :
x® f1(t) ¢ U} = @ (which means |U| < p + q). Hence, by the definition of Qy, it holds
that {(t,x,y) € Qr : x® f1(t) € U} N Qy = @. Similarly, we also have {(t,x,y) € OF :
x® fo(t) € VIn{(t,x,y) € Or : x® fo(t) & V} = @ (which means |V| < p + q) and
{(t,x,y) € QF : x @ fr(t) € V} N Qy = @. By combing these facts and the definitions of U,
V,and Qy, the random value y for each (t,x,y) € Qy in the ideal world is independent of
any elements in U and V. Therefore, for each pair ((t;, x;,y;), (tr, xi,yi)) € Qg x Qp, one
has | |

<

Prlx; @ folt) ® filty) ® folty) @y € 0] < L < L1,

Then the expectation value of random variable D; can be bounded as

2 \

E[Dy] < Y. Prlx; @ fo(t;) ® f1(ty) @ folty) @ yy € U]
(i) (b x g 0))€ Q3
3|2 2
< [Ql*pt+q) a(p+a)
- 21’1 - 21’1

By Markov’s inequality, we have

Pr[Da >

E[Dy] _ valp+9q)
3/2 u
7] < 77 <

Similarly, it holds that
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q(p+9q)
PI'[DV 2 q3/2] S f o .
Therefore, one has

Pr[Tyq € T

Finally, by combining the upper bounds on Bad), and Bady, together, by (30), the
proof of Lemma 5 is finished. O

4.2. Analysis of Good Transcripts

In this part, we prove that for any good transcript 7, the probability to sample it in the
real world is close to that in the ideal world, and this result can be formally stated in the
following lemma.

Lemma 6. Assume that n > 6 and q > 64. Let T,q be the probability distribution of transcripts in
the ideal world, and Ty be in the real world. Then for any good transcript T = (Qf, Qp, (f1, f2)) €
Tgood With parameters p and q satisfying[ p+2q }4— 6./4 < 2", one has

PI‘ Tre =T

e s 1o

PrTg=7 ~

49(p+29+6./9)> 16432 +4p . /5+8 16 12
q(Pq\/ﬁ)+ q Zf\/ﬁu \/ﬁ+ q

where € = i S5+ 5275

Proof. Given a good transcript T, we define the following probability
p(T) def Pr[P & Perm(n) : F}Z,fz Q| P+ Opl.

By a simple combinatorial argument, it holds that

PrTve =7] 0 /-
BTy =7~ PO

We first introduce some subsets of QF as follows:

Qu={(t,x,y) € Qr:x® fi(t) e U}, Qv ={(t,x,y) € Qp: xD fo(t) € V},
Ox, = {(t,x,y) € Qp: p, (x @ f1(t)) > 1and x @ f1(t) £ U},
Ox, ={(t,x,y) € OF : Op,(x® f2(t)) > land x @ fo(t) & vV},
Qo ={(t,x,y) € Qr : 6p, (x @ fi(t)) = op,(x @ fo(t)) =1,
x@ fi(t) ¢ U, and x ® fo(t) ¢ V}.

Note that | Q| = &1, |Qv| = &2, and Qy has been defined in (C-17). In fact, these sets form
a partition of Qp.

Proposition 2. Let T € Tgo0q be a good transcript. Then (Qu, Qv, Qx,, Qx,, Qo) defined
above are pairwise disjoint.

Proof. By the definition of these five subsets, it holds that Q;; N Qx, =@, Qy N Qx, =D,
and QN Qy = QyNQy = Ax, NQp = Qx, N Qy = D. Since T does not satisfy (C-1),
one has QN Qy = @. Besides, QN Qx, = D (resp. Oy N Ax, = D) holds since T does
not satisfy (C-6) (resp. (C-7)). Finally, Qx, N Qx, = @since T ¢ I'};. O

We use Ey, Ey, Ex,, Ex,, and Ej to denote the events Fg f F Qu, Qv, Qx,, Ox,, and
Qy, respectively. Note that F}Z 5 - Or is equivalent to Ey; A Ey A Ex, A Ex, A Eq. Therefore,
it holds that
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p(T) = Pr[P & Perm(n) : Fﬁ,fz Qr | P+ Qp]
= PI‘[P ﬁ Perm(n) : E_u/\EvAE)(l /\EX2 /\E_O I P+ Qp]
=p'(7)-p"(7),

where
p'(T) = Pr[P & Perm(n): Ey AEy | P+ Qpl,

and
p//(’f) = PI‘[P ﬁ Perm(n) : E_Xl A EXZ A EO | Eu A EV A (P F Q_p)]

The next goal is to lower bound p’(7) and p” (7).

Lower Bounding p’ (7). Conditioned on P - Qp, P is fixed on exactly p input-output
pairs from U to V. For each (t,x,y) € Qu, there exists a unique (1,v) € Op satisfying
x & f1(t) = u. Hence, P(x & f1(t)) = P(u) = v. Then we define two sets:

th={Pxa i) ® Al)& L) ©y: (txy) € Qu},
V= {x @fz(t) : (t,x,y) € Qu}

All values in Uj (resp. V7) are distinct since T does not satisfy (C-11) (resp. (C-6)). Moreover,
since T ¢ Thand T ¢ '}, onehas U; NU = @ and V; NV = @ respectively.
For each (t,x,y) € Qy, there exists a unique (1,v) € Qp satisfying x ® fo(t) = v. In
this case, P~!(x @ f»(t)) = u. Then we can define two sets:
U ={x® fi(t) : (t,x,y) € Qv},
Vy={P(x® fo() ® (1) ® fo(t) Dy : (L, x,y) € Qv}-

All elements in U, (resp. V5) are distinct since T does not satisfy (C-7) (resp. (C-12)). Due to

the fact T ¢ ') and T ¢ I'}, one has U, N U = @ and V, NV = @, respectively. Moreover,

Nl = @ (resp. VoNVy = @) since T ¢ T (resp. T ¢ It). Besides, it holds that

|Uy| = |V1| = |Qul| = & and |U;| = |V5| = |Qvy| = &;. Therefore, one can obtain that
o/ (%) = Pr[P & Perm(n) : Eu AEy | PF Op] = —

(2" —p )m +&,

Now, we can define two disjoint collections U def (U,Uy,Up) and V def (V, V1, V).
In this case, P is fixed on exactly p + & + &, input-output pairs from U U U; U U, to
VuVviuUVs.

Lower Bounding p”/ (). When conditioned on Ey; A Ey A (P + Qp), we next lower
bound the number of all possible “new” and distinct input-output pairs of P such that the
event Ex, A Ex, A Eg happens. First, one can define some multi-sets associated to Qx, and
Qx, as follows:

Uz ={x® f1(t) : (,x,y) € Qx, }, Us={xD fi(t) : (L, x,y) € Ox,},
Vi={x@fa(t): (tLxy) € Qx,}, Vo ={x@ fa(t) : (tx,y) € Ox, }.

Let az = |U3|, ag = | V4|, a5 = |Us]|, and ag = |V;|. For convenience, we rewrite these
sets as:

(32)

Us ={uz1,..., U3}, Us ={us51,..., U505},
Via=1{v41,.--,Va0,}, Vo=1{061,-- V6us}-

Let V3 = P(U3), Uy = P~1(V}), Vs = P(Us), and Us = P~1(V). These sets can be
written more clearly as:

Vs ={P(x@ fi()) : (t,x,y) € Qx,}, Vs ={P(x® fi(t) : (L x,y) € Ox,},

Uy ={P7(x& fo(t)) : (L x,y) € Ax,}, Us = {PT(x& fo()) : (tx,y) € O, }-

Recall that Dy = {x® f1(t) : (t,x,y) € O} and D, = {x® fo(t) : (t,x,y) € Or}.
Then, we get
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dp, (x B
as < Z 1< Z D17(> = P1 < g
xe{0,1}1: xe{0,1}1:
ébl (x)>1 5D1(x)>1

a3 _
oy < 25[31(143,1‘) < ) op, (x) = B1 < /3.
i=1 xe{0,1}":
JDl(x)>]

Similarly, it also holds that a5 < @ and a5 < V/q- Since T ¢ 1"’10, there exists no
repeated items in V; and Us. Hence, one can conclude that &y = |Qx,| and as = [Qx,|.
Now we define two multi-sets associated to Qg as

U7 = {x® f1(t) : (t,x,y) € Qo}, Vs ={x@ fo(t) : (t,x,y) € Qo}-

By the definition of Qy, there exists no repeated items in U7 and V3. Based on these
two sets, one can define two corresponding sets as:

V7 =P(Uy) = {P(x® f1(t)) : (t,x,y) € Qo},
Ug =P 1 (V) ={P ' (x® f(t)) : (t,x,y) € Op}.

Set Ut = (U3, Us, U;) and VT = (Vy, Vg, Vg) as two set collections. Then we can
conclude the following proposition.

Proposition 3. With notations as above, one has

(i) AllsetsinU™" (resp. V) are disjoint, ie. U3NUs = @, Us NU; = @, and Us N U; = @
(resp. ViNVe=0,VaNVg =@, and Vg N Vg = D).
(ii) U is inner disjoint with U, and V' is inner disjoint with V.

Proof. We first prove (i). From the fact T ¢ I}, we have U3 N Us = @. By the definition
of Qx, and Qp, one can conclude that U3 N Uy = @. Us N Uy = @ holds due to the fact
T ¢ T, and the disjoint property of Qx, and Qp. We can conclude that VN Vs = @,
VanVg =@, and Vg N Vg = @ in a similar way.

Next we prove (ii) by enumerating all possible cases. For U, the definition of Qx,
means that Uz N U = @; U3 N U; = @ comes from the fact T ¢ T'); Uz N U, = @ holds due
to the disjoint property between Qx, and Qy, and the fact T ¢ I',. For Us, Us N U = @
comes from the fact T ¢ I'}, and the definition of Q x,; Us N U, = @ comes from the fact
T ¢ T; By the disjoint property between Qyx, and Qy, and the fact T ¢ I, we have
Us N U, = @. For Uy, the definition of Qg means U; N U = @; U; N U; = @ comes from
the fact that T ¢ T'}; By the disjoint property between Qg and Qy, and the fact T & I, we
has U; N U, = @.

For Vy, V4NV = @ comes from the fact T ¢ I}, and the definition of Qx; VaNV; =@
can be derived from the disjoint property between Qx, and Qy, and the fact T ¢ T};
The fact T ¢ I', means V3NV, = @. For V4, Vg NV = @ holds from definition of Qx,;
Ve N V1 = @ comes from the definition of QXZ, and the fact T ¢ I';; The fact T ¢ I'; means
Ve N Vs = @. For Vg, Vg NV = @ comes from definition of Qp; Vg N V; = @ holds due
to the disjoint property between Qg and Qyy, and the fact T ¢ I';; Finally the fact T ¢ I';
means VsNVo =@. O

Now we define two disjoint union sets UT+ = U U U; U U, U U3 U Us U Uy ( which
equals to U in (C-17) ), and V*+ = VU V; UV, U VU Vg U Vg (which equals to V in (C-17)).

Let§'=|Qo| = g — (|Qul +19Qv| +19x,| +19x,|) = 9 — (&1 + &2 + a4 + a5) (actually,
g = |Uy| = |Vs]) and M = LZZ%j Then it holds that § —2M > g’ /2 if n > 6. Next we
try to sample “new” values for V; and Ug by allowing that there exist many construction
queries (t,x,y), (t,x",y") € Qpsuch that P(x @ f1(t)) ® f1(t) & fo(t) Dy = x' & f1(¥') or
P Hx@ fo(t) @ fi(t) @ fo(t) @y = X’ @ fo(t') holds. In the first case, we can obtain three
maps like
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x® fi(h) = X' @ i) @ f1(D) @ fo(t) By,
X @) x® f(t),

x® (1)@ AE) D L) By o X @ f(F).
In the second case, we have

Yo fi() o x@ i) ()@ H(F) By,
x® fi(t) = ¥ @ fHo(t),

Yo hH(E) e ()@ A1) By x @ fi(t).

Ifxafh(t)s filt) e L)@y ¢ UtT and X' @ f1(t) & f1(t) ® fo(t) By & VT, or
X @ f(E) ® fi(t) @ (D) @y € UT and x® fi(t) & f1(F) D fot') @y ¢ VT, then the
above permutation maps are compatible with O and Qp. Intuitively, when we consider
the above “collision” maps, there would be as many permutations chosen to be compatible
with Qr and Op as possible so that our construction can achieve BBB security.

Conditioned on E;; A Ey A (P + Qp), we next describe all possible permutations
satisfying Ex, A Ex, A Eo, and finally compute and lower bound p” (7).

For each « € [M], we define the following set

§ = {((01,61), (01,61)), - -, (0w, Ea), (02, €0)) },
where for each 1 < k < a, one has 0 = x; & f1(t) (resp. Cx = xx @ f2(tx)) for some
query (tg, xp,yx) € Qo and 0} = x; & f1(t}) (resp. & = x}. & fo(t;)) for another query
(t, %1, 91) € Qo.

Definition 2. We say S = {((c1,¢1),(01,81)), ..., ((0w,Ca), (04, L))} a “good” set if the
following four conditions are all satisfied

(1) xk@fz(fk)@fl(f')@fzf)®yk gur,

(
@ 3 f)© Al & i) Sy €V,
3) x® fal k) © fi(t) @ foty) Sy, # X @ faltp) © fi(ty) ® fa(ty) ® Yy, forany k' <k,
4 x. @ fi(ty) © fi(te) @ falte) @ yx # X © fi(ty) © fi(te) © faltw) Sy, forany k' < k.

The next lemma shows that for each « € [M], the number of all possible “good” sets
derived from Q is close to (7'),, /a!.

Lemma 7. Assume that q > 64 and n > 6. Let « be an integer with0 < a < M = LZZ%J Let
Ns(a) be the number of all “good” sets derived from Qg. Then we have

=/

Ns(w) > D ),

- al

16,7

where €) = an /3 + 53

Proof. We count all possible pairs in a “good” set step by step as follows. First, we decide
all possible pairs for ((¢1,¢1), (01,¢7)). There are §'(§' — 1) possible pairs to be chosen for
((01,&1), (0], &)). Since T ¢ T, there are at most 2%/ pairs not satisfying the first two
conditions in Definition 2. Then we can choose at least §'(§' — 1) — 2¢°/2 possible pairs for
((Ulr é’l)/ (0'{/ Ci))

After choosing (¢1,&1), (01,¢}), we decide all possible ((02,&2), (03,¢5)) in the follow-
ing way. We first choose (0, §7) from the remaining §' — 2 possible pairs, and then choose
the corresponding pair (03, {5) outside of (01,¢1), (01,8}), and (03, &5) to satisfy all four
conditions in Definition 2. To satisfy the last two conditions 3) and 4) in Definition 2, ¢
and ¢} should chosen such that

{ézaééleafl(t’l) (1) @y @ (1) ® foth) Dy,
0 # 01 @ fi(t) @ f2(t) Dy1 @ fi(t2) ® falt2) © yo.
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In this case, from the definition of Qg and the fact T ¢ 1”36, it excludes at most 3 possibilities
to be chosen for (0%, &}). Then there are at least (7' —2)(§’ — 6) possibilities to be chosen for
((02,82), (03,&5)), when we only consider the last two conditions in Definition 2. Finally,
from the fact T ¢ T/, there are at most 2¢%/2 pairs to be removed for all possibilities
((02,82), (0%, &,)) if we want them to satisfy the first two conditions 1) and 2) in Defini-
tion 2. Overall, there are at least (§' — 2)(§ — 6) — 2¢°/2 possible pairs to be chosen for
((02,82), (04, E}).

After choosing k — 1 pairs ((c1,&1), (01, 81)),- - - ((0k—1,Ek-1), (04_1,&}_)), there are
atleast (§' — 2k)(7' — 5k — 1) — 24%/% possible pairs to be chosen for ((oy, &), (07, &;)) by
repeating the above step.

When we finish the choice of all possible cases for (((c1,¢1), (¢1,81)), ..., (0w, Ca),
(0, EL))) satisfying all four conditions in Definition 2, one can conclude that

a—1
Ns(@) > =TT - 20— 5k~ 1) - 2¢*2), 33)
" k=0
where the term a! appears because the set S is unordered.

Furthermore, Ns(«) can be lower bounded as follows
1 a—1 B B
Ns() > — k_o((q’ —2k)(q' — 5k —1) —24°'%)

(7)20 %5 (7 —2K)(7 — 5k — 1) —2¢4%/2
S ! (7 — 2k) (7' — 2k — 1)

k=0
> (@2 7 (1  3kq — 6k +24%2 )
-l (7 —2k)(q" — 2k —1)
(Q (‘7/)2“ a—1 (1 - 3kq' +243/2>
I, (7 —2M)?
- @ (1 37 M2/2 4 2¢%2M )
-« (@ —2M)?
) ()0 (1 _ 67 M2 +85%2M )
- al g'?

i) (A =/ 3/2
) ()2, (1 67 _ 84 )

©om/3 g'21/3

o T o2n/3 T on/3

O Wy o161
where (i) follows as §' — 2k, q' =2k —1 > §' —2a > §’ — 2M, (ii) follows as § —2M > 7' /2,
(iii) follows as M < ZZTr and (iv) follows as q/2 < q — 4,/ < §' if g > 64. [

For a fixed & with 0 < a« < M and a corresponding “good” set
§ = {((01,€1), (01,81)), - (0w, Ga), (00, E0))
the following assignment (34) for P is well-defined by the definition of S:

o 0 @ f1(te) @ fo(te) © Y
Vkela] ol g, (34)

P
5@ fi(t) @ fo(t) @ vy — G
Furthermore, based on the “good” set S, we define two subsets of Uy and V3 as
def
U7p = {o1 =x1 @ fi(t1), 00 = x1 © fi(t]), ..., 00 = Xa ® fi(ta), 00 = x4 @ f1(ty)},

Vg1 Y {Gi=x10fH(h),5=x10 H(H), -, G = %2 ® fote), & = %, © fo(te) }-
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Besides, we can also denote two additional sets as

Y& 0 fi(1) 0 L) O, 8 ® fi(th) D f(th) DyL),

u71 -
{1 ® fi(h) © falt) Dy1,- ., 00 © fi(ta) © fote) D yal,

def

V8 1=
where Uy | N U =@ (resp. Vg, N VT = @) and all items in Uy, (resp. Vg ,) are distinct.
After the ass1gnment (34) for P P is fixed on 3a input-ouput pairs from Uy,; U Uy ; to
Vg1 U V8,1 In addition, we can define the corresponding co-subset of Uy and V8,1 as

Uy o 4 Uy \ Uy and Vg5 4 Vg \ Vg2, respectively.

Until now, the random permutation P is fixed on p input-output pairs from U to V, &;
input-output pairs from U; to V3, &, input-output pairs from U, to V5, and 3a input-output
pairs from Uy ; U U;/l to Vg1 U Vé,l' Based on these facts, the next work is to choose all other
possible compatible items for V3 = P(Us), Uy = P~1(V}), V5 = P(Us), Uy = P~1(Vg),
V75 = P(Uy,) and Ugp = P~1(Vg) to extend the fixed input-output pairs of P.

Note that once the items in V3 = P(U3) are fixed, the corresponding items in Uy =
P~1(V,) are uniquely determined since these two sets are both derived from Q. Similarly,
the items in V5 = P(Us) ( resp. V72 = P(Uy,)) uniquely determine the items in Ug =
P~1(Vg) (resp. Ugp = P~1(Vg)). Then we sample all possible items for these sets through
three steps.

Step I. Construct V3 = P(U3) and Uy = P~1(Vy).

Let UPT = Ut UU), and V3* = VI U Vg,. Thesize of UT is Ay = p+ & + & +
a3 + a5 + ' + a, and the size of V3T is Ay = p +a&; +ap +ay + ag + 3 + a. Recall that
X ={(t,x,y) € Or:x® fi(t) =u} and X2 = {(t,x,y) € Or : x D fo(t) = u}. Let N7 ()
be the number of distinct tuples (v31, . ..,03,,) in {0,1}" \ V37 such that the following
two conditions are satisfied

(i) Vk € [ag], for each (t,x,y) € X}‘B,k where uz € Us, v3; @ f1(t) ® fo(t) Dy & UT.
(i) VK, k € [as] with k' < k, for each (t,x,y) € X1143k' Ugrk @)D H(t)BY # v3p B
fi(t) @ fo(t') @y should be satisfied for each (¥, x',y') € X,

u3 k/

Now we count the number of all possible distinct tuples (v31,...,v34,) € {0,1}"\ V3t

satisfying these two conditions. First, one has [{0,1}"\ V3| = 2" — (p + & + & +

ag + ag + ' + a). The first condition can remove at most (p + &1 + &, + a3 + a5 + 7' +

)|Xu3k\ items for each k, and the second condition can exclude at most |Xu3k | (|Xu31| +
\Xua D) <y |Xb1,3,k| values for each choice of v3 . By the choice of v3; above, we

obtam that
N3 — 1

> H (271 Az — (Al + 0(4) |X”3k+1 |) (35)

Let V3 = {v31,..., 030, } and Uy = {03, @ f1(1) ® fo(t) @y 1 k € [a3], (1, x,y) € K], }-
The first condition ensures that Uy is disjoint with U3, Ttems in Uy are distinct due to the
second condition and the fact T ¢ T'g. This fact tells us that for each k € [a3] and (¢, x,y) #
(t',x",y') € X, itholds thatx @ f(t) = x' @ fi(t') = uzx but f1(t) © fo(t) @y # f1(H) ®
f2(t') @y, which means that vz, & f1(t) ® fo(t) Dy # v3x ® f1(t') ® fo(t') ® y'. Moreover,
items in Vj are distinct, and V; is disjoint with V3* by the choice of (v31,. .., V34,)- Let
Ut = UPT U Uy, and V4T = V31 U V3. The size of U*t is Ay = Ay + a4, and the size of
VA is Ay = Ay + as.

Step II. Construct Vs = P(Us), and Ug = P~1(Vg).

Recall that Vs = {v61,...,06.,}- Let No(a) be the number of all distinct tuples
(U1, - -, g, ) in {0,1}"\ U*T satisfying the following two conditions:
(i) Vk € [ag), for each (t,x,y) € Xzz,ék, ugk ® fA1(t) & fo(t) dy & V.
(i) VK, k € [ag] with k' < k, for each (t,x,y) € X%ﬁk, ué,k S fi(t) D () By # ugp @

f(t") @ fo(t') @y’ should be satisfied for each (¢, x',y') € X2

Ve,
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Now we count the number of all possible distinct tuples (ug1,...,Ugq,) € {0,1}"\
U** satisfying these two conditions. Similarly, one has [{0,1}" \ U*"| = 2" — (p+&; +
@y + a3 + a5 + § + a + ay). The first condition can remove at most (p + &1 + & + ag +
ae+q +a+az)- \Xz,é .| values for each k, and the second condition can exclude at most
(1X5 I+ + |Xz,6k K |Xv6k\ < a5 - | X3, | items for each choice of ug . By the choice of
(u(,rk)ke[%], we obtain that ,
wg—1

No@) > TT (2" = B3 — k= (Mg +as) - 122, ). (36)

k=0

Let Ug = P~ (Vé) = {u61,.. uﬁ%} and Vs = P(U5) = {M6k@f1( )@fz(t)@

y: k€ |ag), (tx,y) € X3 o)+ 1t holds that items in P~ 1(V) are distinct. Furthermore,

P~1(Vg) is disjoint with U*T by the choice of (ug,1, . .., g e, ). Let U = U*T U Uy, and
Vot = V4t U Vs. The size of Ut is A5 = Az + ag, and the size of V27 is Ag = Ay + as.

Step III. Construct V7, = P(Uy,), and Ugp = P~1(Vg,).

Letd" =43 —2a (7" = = |Vg2|). Let m be the number of all distinct tweaks
appearing in Qp, and then we use fy, .. ., f;; to denote these m distinct tweaks. We denote
Qi = {(f,xy) € Q:xd f1(fz') € Urp Ax & fo(fi) € Vgp} and ;' = [Qp,[. In this
case, it holds that 7" = Y1 ; 4/'. For convenience to count, we denote Qy = U/, Qp,; and

rewrite the items in Qo indexed by the m distinct tweaks as

50 = {(Ell xl,l/yl,l)/ (tll Xq q”,]/1 '”) (EMI xm,l/]/m,l)/- "/(fm/ xm,qgl,ym,qgl)}-

Fori=1,...,mandj=1,...,4/, denote
Uzij = xl]®f1( )andUSZ] x1]®f2({)
For convenience, Uy, and Vg, can be written as Uy, = {uy; ]}1 <i<mi<j<q! and Vg) =

{US’I’]}1SISM,1§]<L7”' respectively. Let (v, I/J)lgzgm,lgqul’.’

{0,1}"\ V5* such that the following two conditions are satisfied.

(i) Foreachi=1,...,mandj=1,...,q/,07;;® fi(E) ® fo(F;) Dy;; € UT.

(i) Foreachi=1,...,mandj=1,...,4/,v7,; ® fi(F;) © f2(F;) © y;; is distinct from the
values vy © f1(F) © f2(fx) @y, for k < iand [ € [7}/]. Furthermore, vy, ; @f1( )@
() EB yij should be distinct from the values vz, & filt) @ fa(F) @y p for j' € [q7]
with j/ < j.

be all possible different tuples in

Except these two conditions, each v7;; must be different from each other. By a simple
computation, one has [V°7| = |U°"| = p' + 4 +a, where p’ = p+ & + & + a3+ ag +
as+oagand § = g — (& + &2 + s +as5). So [{0,1}"\ V5*| =2"— (p’—t—q’ +a). Now
we bound the number of all possible distinct tuples (v7, ) " satisfying these

two conditions. The first condition excludes at most p’ + §' + « Values, and the second
condition excludes at most Z}( 11 7. — j+ 1 values for each choice of vz, Furthermore,

v7,i,j should not be same as any one of previous Z}c 11 gy — j+ 1items. By combining these

facts, one can conclude that

No(a) > l—mI (2" —27 —2a—2 2 g — (37)

i=1 j=0 k=1

Overall, by combining (33), (35), (36), and (37), one has
Ns(a) - Ni(a) - Na(a) - No(a)

/(=
P = og;gM (2" —p—a; - &2)a3+a4+a5+a6+2¢7”+3a‘ (38)
By combining (32) and (38), we have
M) = ¥ Ns(a) - Ni(a) - Na(a) - No(a) ' (39)
0<a<M (2" — p)541+5c2+u¢3+vc4+1x5+a¢6+2q'”+3a
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Recall that

)] 0)

By combining (39) and (40), we conclude that
Pr[Tre = T] S 2" Ng(a) - Ny (&) - Na(a) - N ()

a1 = n_
Pr[Tyq = T] 0<a<M (2 p)ﬁél+5€2+“3+“4+“5+“6+2’1”+3“

-y M)  Na(a)
0<a<M (2" — P),XS (2" —p— “3)%
Ry (a) Ra(a)
zn(qfql) (41)
(2" —p—az— “6)&1+a2+a4+a5

>1(%)
2" Ns(a) - No(a)

: — - ’
(2" —p—a1 — @ —ag — &g — Qs _“6)2q//+3a

Ro(a)

where (x) follows as g — §' = &1 + & + ay + as.
Lower bounds on Rj (), Ry(«), and Ry («) are given in Appendix D, and the results
are showed as follows:

832 2p./7 4
Ri(a) >1—e;, wheree; = ‘;n 2}[ + sz (42)
832 2p./7 4
Rp(a) > 1— €y, where ey = qzn + 2[ + Z—Z (43)
RQ(D() Z (1 — 60) . (1 — 63) . (1 — €4) . HypZn,p//q/’q—/ ((X), (44)
6 16 4 4q(p+2q+6,/7)
where ¢) = 22,?/3 + 2"7\//5' €3 = 22,1—‘7/3, and g4 = w

Putting (42), (43), and (44) into (41), we obtain

Innl
inlifa}

BT =g 2 (el —en(-e)—e)(—c) T e ppp@: o

The last term in (45) can be bounded as
Z Hyp2n_p1,q/,q/(0€) =1- Z HypZ”—p’,q’ﬁ’ (DC)

0<a<M a>q /2n/3
(>) 1— E[Hyp2”7p’,q”,q”(a)}
= 17//2”/3
(@’
- (1 (2” _ pl)q—//zn/3 (46)

(vi) zq
=z (1 N 22n/3)’
where (v) follows as Markov’s inequality and (vi) follows as 2" — p’ > 2" —p — 6,/4 >

2"~1 which comes from the assumption p + 6, < p+6,4+29 < 2"=1 and the fact
g <gq.Letes = 2221% Then we can write (45) as

m > (1= eo)(1—e1)(1—e2)(1 - e3)(1 - e4) (1~ e5) @)

>(1—e—€ —€—€3—€4—¢€5).
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Combing all these facts together, the proof of Lemma 6 is finished. O
Finally, by Lemmas 1, 5 and 6, Theorem 2 follows. [

5. Conclusions

In this paper, we first prove the BBB security of the construction SOEM22 in the
multi-key setting, and further tweak this construction. When the bidirectionally efficient
public random permutations are considered, we build the parallelizable beyond-birthday
secure PRFs from one permutation in the multi-key setting, and also tweak this new
construction while preserving BBB security. By a slight modification of two tweakable
PRFs, we obtain two parallelizable nonce based MACs for variable length messages. In fact,
the constructions mentioned above come from sum of two Even-Mansours. It is natural to
generalize SOEM22 to sum of s Even-Mansours, namely

Frg (x) = PL(x & K1) @ Ky @ - & Py(x © Ks) @ K,

where P, ..., Ps ﬁ Perm(n) are s independent random permutations, and Ky, ..., K, are
s n-bit uniformly random strings. Obliviously, this generalization is at least as secure as
SoEM22 even in the multi-key setting. However, the detailed analysis of its security is not
easy to see, and we leave it as a future work.
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Appendix A. Upper Bound on Pr[Tiy € I'p,q] in Lemma 3
For each i € [13], we upper bound Pr[T4 € T;] as follows.
Bounding (B-1), (B-2), and (B-3): First, we consider (B-1). For any (¢;,x;, ;) € QF,
uy,j € Uy, and uy y € Uy, by the e1-regular property of (fi, f2), one has
Pr((fi(t:) = x; @ urj) A (f2(ti) = xi B )] < €7.
Since the number of all possible tuples for ((t;, x;,y;), uyj, u2,]-/)
union bound, it holds that

iclgljelp).j €lpa) 'S IP1P2/ by

Pr[Tiq € T1] < qpipaei.
Similarly, we can bound the probabilities of (B-2) and (B-3) as
Pr[Tyy € I5] < gpipa€f and Pr[Tiq € T3] < gpipaei.
Bounding (B-4) and (B-5): For any two distinct queries (t;, x;,y;) # (ti, Xy, yir) € QF,
by the e,-AXU property of pair (fi, f2), we have

Pr(f1(t:) ® fi(te) = xi ® x¢) A (f2(t:) @ fo(te) = fi(ti) © fi(ty) @ yi B yar)] < €3
Since there are (g — 1) /2 possible unordered pairs for {(t;, x;,v;), (£, x;r, yi’)}iyéi’e[q]' by
union bound, one can obtain that

24 Sy
Pr[Tiq € Ty] < 2T’ and similarly, Pr[T,q € I's] < 2?
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Bounding (B-6) and (B-7): For any two distinct construction queries (t;, x;,y;) #
(ty, xp,yy) € Qr and any uy ; € Uy, by the €1-regular and €2-AXU properties of (f1, f2), we
have

Pr[(fl (t)=x® ul,j) AN (fz(ti) @fz(ti/) =x; Dxy)] < €16
Then, summing over all (¢, x;,y;) # (ty, xy,yy) € QF and uy; € Uy, one has
€1624°p1 €1620°p2
2 2 '

Bounding (B-8): For any (t;, x;,y;), (ti, Xy, yi), (ti, Xpr, yi) € Qp with (t;, x;,y;) #
(tir, xpr,yir) and (t;, x;,y;) # (tin, X,y ), by the e-AXU property of (f1, f2), one concludes
that

Pr[Tyq € Tg] < , and similarly, Pr[T,q € I'7] <

Pr((fi(t:) ® fi(ty) = % © xp) A (fa(t) ® falty) = % @ )] < €3,
Note that the above inequality also holds for the case t; = t; (resp. t; = t;#) since we have
x; # xy (resp. x; # xm)ie. x; @ xyp = 0 (resp. x; @ x;» = 0). It is easy to count that the
number of all possible (t;, x;,y;), (t7, X, y), (tin, Xin, y;n ) is at most g%, which means that
Pr(Tyq € I's] < e37°.

Bounding (B-9), (B-10), (B-11), and (B-12): We deal with bad conditions (B-9) and

(B-11) together by using the fact that
Pr[Tq € ToUT11] < Pr[Tyq € I'11] +Pr[Tiq € Ty \ T'11].
We first consider how to upper bound Pr[T;y € I'1]. For the random variable a1 =

{(t,x,y) € Qp : x® f1(t) € Uy }| (the randomness from the choice of f), its expectation
value can be computed as

Em] < Y ) Prlx@ fi(t) = w] < enqpa,

(txy)eQp: uyely:

due to the e;-regular property of (fi, f2). By Markov’s inequality, one has
Elai]
PI’[T‘d S 1’11] < ——<¢ 1-
1 \/ﬁ \/ﬁp

Under the condition a1 < /g, there are at most q/2 pairs { ((t;, x;, y;), u1,j), ((tr, X, Yir),
uy,p) } such that x; @ f1(t;) = uyjand xy @ f1(ty) = uyp where (t;, x;,y;) # (ty, X, yr) €
Qr and (uy,,v1), (u1,7,01,7) € Qp,- In this case, the corresponding y; and y; are two
independently uniform random variables over {0, 1}" so that we have

Prlo,; @ fi(t;) @ fa(t;) Dyi = v1p @ fr(ty) © falty) Dys] < 217

By summing over all the q/2 possible pairs, one can obtain that
Pr[Tiq € To \I'ny] < 2%
Finally, it holds that

Pr[Tiq € ToUTy] < e€11/gp1 + 2;%

Similarly, we obtain
Pr[Tig € T1o UT1o] < €11/gp2 + 2;%

Bounding (B-13) : To bound Pr[B; > ,/q], we first define the random variable Ty =
{((txy), (F,xy) € Qrx QF = (Lxy) # (1,2,y),x® filt) = ¥ @ fi(t)}]. By

definition of 81, one has

Pr=H(txy) € Qr: 3t x,y) # (.2 y),x® fi(t) =x"® Ai(t)}| < Tr.
Hence, E[81] < E[Tr]. We can compute the expectation value of Tr as

2
€
BT = Y Plef)=yen) <2
(txy) At y'):
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from the e,-AXU property of (f1, f2). By Markov’s inequality, one has

erg3/?
2

Pr[B1 > /q] < E\[fﬁﬂ < E\[};} < 62’23/2, and similarly, Pr[8, > \/q] <

Finally, we obtain
Pr(Tig € T1a] = Pr(B1 > v/7) V (B2 > V4)] < €29

Appendix B. More Details in Proof of Lemma 4
Lower Bounding p’ (7). Conditioned on P; - Q p,and P, F Qp,, Py (resp. P,) is fixed
on exactly pq (resp. py) input-output pairs. For each (t,x,y) € Qy,, there exists a unique
(M], '01) € Qpl satisfying x @ f; (t) = 14 so that Pl(x D fl(t)) = Pl(ul) = v7. Then we can
define two corresponding multi-sets as:
U ={x& fo(t) : (t,x,y) € Qu, },
n={P@sfil)e ) L) ey: (txy) € Qul-

Note that all values in U (resp. V5) are distinct since otherwise T would satisfy (B-6)
(resp. (B-9)). Then it holds that |Uy| = |V,| = |Qu,| = 1. Moreover, since T ¢ I'y and
T ¢ T, one conclude that U, N U, = @ and V, NV, = @), respectively. Then we get

PrEy, | P, Qp = (A1)

(271 - PZ)al .
Similarly, for each (t,x,y) € Qy,, there exists a unique (uy,v,) € Qp, satisfying
X @ f2(t) = up, which means P, (x & f(t)) = vp. Then two corresponding multi-sets can
be defined as:
Uy ={x@ fit) : (t,x,y) € Qu, },

Vi = {P2(x® fo(1)) ® A1(1) © o(t) By : (%) € Quy }-
All values in lj1~ (resp. ~171) are distinct since otherwise T would satisfy (B-7) (resp. (B-10)).
Then one has |U;| = |Vi| = |Qu,| = a». Moreover, since T ¢ I'y and T ¢ T3, it holds that
LNy =Qand VNV =Q, respectively. Hence,

PrlEy, |P1F Qp = ————. A2
[ Uz | 1 P]] (2;1 _ pl)lxz ( )
By combing (A1) and (A2), one can conclude that
1
p'(T) = (A3)

(21’1 - pz)al (21’1 - pl)az '

Now it holds that |U;| = |Vi| = ap and |Uy| = |V2| = ;. Then we define four disjoint
collections Z/I1 déf (Ul, ﬁl), Vl déf (Vl, V1), U déf (Uz, ﬁz), and V, déf (Vz, ‘72) Notice
that when conditioned on Ey; A Ey, A (P; = Qp,,i = 1,2), Py is fixed on exactly p; + a3
input-output pairs and P; is fixed on exactly pp + a1 input-output pairs.

Lower Bounding p”/(7). Conditioned on Ey;, A Ey, A (P; - Qp,i = 1,2) we next
lower bound the number of all possible “new” and distinct input-output pairs of P; and P,
such that the event Ex, A Ex, A Eg happens. We first define four multi-sets derived from

Qx, and Qx, as:

U ={x® fi(t) : (t,x,y) € Qx, }, Upp = {x@ fi(t) : (t,x,y) € Qx, },
Uy = {x @ fot) : (t,x,y) € Ox}, Uap ={x® fo(t) : (t,x,y) € Qx, }-
The size of four sets above can be denoted as a1 = |Uy 1|, a1 = [Uppl|, ax1 = |Ua1],

and apo = |Upp|. We also denote four additional sets as Vi1 = P(Uy1), Vip = P(Uyp),
Vo1 = P(Ups), and Vo5 = P(Uyz), which can be wrote more clearly as:

Vip={P(x® fi(t)): (Lx,y) € Qx,}, Vag = {P(x® fi(1)) : (£ 1Y) € Qx, },
Vip={P(x® £2(t)) : (t,x,y) € Qx, }, Vap = {P(x® f2(t)) : (£, x,y) € O, }-
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For convenience, we rewrite U ; and Uy as:
U =A{u11, -t b Uz = {21, 20y,

Recall that D1 = {x® f1(t) : (t,x,y) € Qr} and Dy = {x & fo(t) : (t,x,y) € Qr}. Then
«1,1 and a1 > can be bounded as:

a1 < Yy 1<) M:ﬁ<ﬂ

xe{0,1}7%: xe{0,1}7: 2 272
5D1(x)>1 JDl(x)>1
1,1
arp <Y 0p,(uri) <) Op,(x) = B1 < V3.
i—1 xe{01}1:
ZSDl(x)>1

Similarly, we obtain a5 < ‘[ and ay1 < /q. From the fact T ¢ I's, one has that any
items in the U, (resp.Up 1) are dlstmct so that a1 o = |Qx,| (resp. ap1 = |Qx,|) holds.
Finally, we define two multi-sets derived from QO as

U ={xafi(t): (t,x,y) € Qo}and U3 = {x @ fo(t) : (t,x,y) € Qo}.

Due to the definition of Qy, it holds that any items in U} (resp. U3) are distinct. We can
also denote two additio?al sets as
V() = P(u()) = {P(x@fl(t)) : (trx/y) € QO}/

Vi = P(U3) = {P(x® fo(t)) : (t,%,y) € Qo}.

Let ¢ Qo] = g~ (|Qul +1Qv| + Qx| +[Qu]) = 1~ (01 + a2 +-a12 +a3)
(besides, ¢’ = |U1| = |U2|) Let m be the number of all distinct tweaks appearing in QF,
and then we use {1, . . ., £, to denote these m distinct tweaks. Furthermore, write Qp;asa
set consisting of all the query-response tuples indexed by the tweak f; in Qy and denote
7 = | Q| (4} might be zero for some i). Then it holds that Qy = U}, Qq; and respectively
q' = ¥, ;. For convenience to count, we rearrange the items in Qg as

QO - {(fll xl,l/l/l,l)/ ey (fllx],qll/yllq/l )/ ceey (fﬂ’I/ xm,lz]/m,l)/ sy (fm/ xmlq;n/ym,q;n)}-

Fori=1,...,mandj=1,...,q,, we denote
ulz]—xz]@fl( )anduZz]—xzj@fZ( i)-

For convenience to describe, we rewrite the sets UO and U(% as
Us={i,;j:1<i<m1<j<giandUj = {ip;;j:1<i<m1<j<qj}

Let U = (U1, Upy, U}) and U™ = (Upa, Uy, U3). Then the following proposition
holds.

Proposition Al. With notations as above, we have

(i) All sets in Uy (resp. Uy ) are disjoint, i.e. Uy NUpy = @, Uyg NUS = @, and Upy N
= Q@ (resp. Upp NU1p = @, Upp NUZ = @, and Uy, N UZ = D).

(i) U is inner disjoint with Uy and Uy" is inner disjoint with Us.

Proof. We first prove (i). From the fact T ¢ I's, one can conclude that Uy ; NUy; = @.
By definition of Qx, and Qp, U;1 N U} = @ holds. By combining the fact T ¢ I's and
the disjoint property of Qx, and Q, one has Uy; N U} = @. We can conclude that
UppoNUyp =@, UxpN U(% =@,and U, N U(% = @ in a similar way.

Next we prove (ii) by enumerating all possible cases. For Uy, the definition of
Qx, means that U;; N Uy = @; Uy N U; = @ comes from the fact T ¢ I';. For U1,
Up1 NU; = @ holds due to the fact T € I'g; U1 N U, = @ can be obtained from the fact
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T ¢ T and the disjoint property between Qx, and Qyy,. For U}, the definition of Oy means
U(% NnU; =, U(% N l~11 = @ holds for the reason that T ¢ I'; and Q, is disjoint with Qy,.

For U, 5, the definition of Qx, means that U, N U = @; Uz p N U, = @ comes from
the fact T € I's. For Ujp, one has Ujp NU; = @ since T € Ty, Ujp N U, = @ holds
due to the fact T ¢ I's and the disjoint property between Qyx, and Qyy,. For U2, one has
U(% N Uy = @ by the definition of Qy; Ug N U, = @ holds for the reason that T ¢ I'y and Qg
is disjoint with Qy;,. [0

Until now P is fixed on p1 input-output pairs from Uj to V3, a; input-output pairs
from Uj from Vj, p, input-output pairs from U, to Va, and &1 input-output pairs from U,
to \72. Based on these facts, the next work is to choose other possible compatible items
for Viy = Pi(U11), Va1 = Pi(Upy), V) = P1(U}), Vip = Pa(Usp), Vap = Pa(Up), and
V¢ = P,(U3) to extend the fixed input-output pairs of permutations P; and P, respectively.

Note that once the items in V; 1 = P;(Uj 1) are fixed, then the corresponding items in
Vi = P,(Uy2) are uniquely determined since these two sets are both derived from Qx,.
Similarly, the choices for items in V3, = Pp(Up ) ( resp. VO1 =P (Ué)) uniquely determine
the items in V1 = P;(Uy1) (resp. VO2 = PQ(U(%)). Then we sample all possible items for
these sets through three steps.

Step L. Construct V11 = P1(Uy1) and Vq, = P2(Uqp) .

Recall that Xth ={(t, x,y) € Or:x EBfl(t) = u} and Uy = {”1,1/ .. "ulral,l}' Let
Ny, be the number of a; 1-wise tuples of distinct values (01,1, ..., 01,4,,) in {0,1}"\ V1 U v
satisfying the following two conditions:

(i) Foreachi € [a1,] and each (¢, x,y) € Xgll,i’ 01, ® L)@ falt) By & VaU Vs
(i) Foreachi € [a14] and (t,x,y) € X}m, v1; D f1(t) @ f2(t) @y is distinct from the
values v1; @ f1(t') @ fo(t') @y, forj <iand (¥,x,y) € X],

Ll],]“
Now we count the number of all possible distinct tuples (v11,...,014,,) in {0,1}"\
V1 U V; satisfying the above two conditions. First, we have [{0,1}"\ V; U Vil =2" — (p1 +
;). The first condition can remove at most (|Va| + |Va]) |XL111,,-| = (p2+aq)- \X},U\ values,
and the final condition can exclude at most | X} ul Z};% |X1 l/],| <o X} ;| values for
each choice of v; ;. By combining above facts, one gets that
a1,

Nx, > [J@" = pr—aa = (i—1) = (p2 + a1 + a12) X5, ])- (Ad)
i=1

In Condition (ii), for each i € [a11] and (t,x,y) # (', x',y) € X} ” it holds that
v1; B f1(t) B fo(t) By # v, ® fi(f') & fo(f') &y (which is equivalent to f1(t) & fo(t) &
y# fA(t") ® fo(t') ®y') from the fact T ¢ T'y. After choosing any tuple of distinct values
v1; € {0,1}"\ VU V1 such that Conditions (i) and (ii) hold, we define two corresponding
sets as follows:

Vig={o11,- 010, 1

Vip={v1;® il ® o) By:i=1,...,a11and (t,x,y) € X, }.

From the above discussion, we know that all values in V; ; are distinct, gnd all values
in Vy, are also distinct. By the choice of v, it holds that Vi1 N (V; UV;) = @ and
Vip N (Vo U V;) = @. After this step, P, is fixed on a1 input-output pairs from U ; to V1,
and P, is fixed on a; » input-output pairs from Uj  to V7 5.

Step II. Construct V, = P(Uyp) and Vo1 = P1(Uzq) .

We next deal with Qx,. Recall that Up» = {ua1,...,U24,,} and X2 ={(t,x,y) € OF:
x @ fa(t) = u}. Let Nx, be the number of a; >-wise tuples of distinct values (vp1, ..., V2,4,)
in {0,1}" \ V2 U V5 U V; 5 such that the following two conditions hold:

(i) Foreachi € [ayp] and each (t,x,y) € X3, , 02 ® f1(t) ® fo(t) By & V1 U ViUV,
(i) Foreachi € [app] and (t,x,y) € Xf‘z,i’ /?’2,1‘ @ f1(t) ® f2(t) @ y is distinct from the
values v @ f1(t') & fo(t') @y, forj <iand (¥, x,y') € X

uZ,j °
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Now we count the number of all possible distinct tuples (v31, ..., 024,,) in {0,1}"\
Vo U V5 U Vi, satisfying above two conditions. It is easy to see that [{0,1}" \ Vo U V5 U
Vip| = 2" — (p2 + a1 + «12). The first condition can remove at most ( % 1) -
\Xuzl| =(p+ax+agq)- |X,§2J,| values, and the final condition can exclude at most |X§2'i| :

i—1 :
Yica |Xu2/| < : |Xu2”_| values for each choice of v, ;. Then we can bound N, as

2,2

Nx, > H(Zn —pp—ag—app—(i—1)—(p1+ax+ag1+ 0(2,1)|X52'i|). (A5)

In Condition (ii), for each i and (t,x,y) # (f,x,y') € X% , it holds that v;; &
)@ fo(t) Dy # v, ® fr(t) & fo(t') @y (which is equivalent to fi(t) & fo(t) Dy #
fi(t") @ fo(t') @ y') since otherwise T would satisfy Condition (B-5). Similarly, we define
two sets as:

Voo = {021, 020, }
Vo1 ={02;® i) ® fot) By :i=1,...,ap0and (t,x,y) € X§2 1.

By the discussion abovNe, all values in V; ; are distinct zind all values in V,, are also
distinct. Then V2,l N (Vl U u Vl,l) = @ and Voo N (Vz U u Vl,Z) = @ hold from the
choice of v, ;. After this step, P, is fixed on ay » input-output pairs from Uy, to V52, and Py
is fixed on a; 1 input-output pairs from Uy 1 to V3 ;.

Step III. Construct V§ = P;(U}) and V3 = P,(U3) .

It remains to sample all possible compatlble values in Vj and V{. First, we denote p}
and p} as

p1=IViUViUVI U V| = p1+ag + a1 + gy,

py=1V2

Recallthatllé ={,;j:1<i<m1<j<g}andUi = {p;;:1<i<m1<
j < q;}. Let Ny be the number of g'-wise tuples of distinct values (9y,;), , in

<i<m,1<j<gq;

{0,1}"\ VUV, U V11 U Va1 such that the following two conditions hold:

(i) Foreachi=1,...,mandj=1,.. .,qZ’-, 01,i,] @fl(ﬂ') @fz(fi) Dyi; g VU ‘72 UVipu
Vz/z.

(i) Foreachi=1,...,mandj=1,...,q,01,;;® fi(f;) ® fo(f;) ©y;;is distinct from the
values 911 ® f1(f) @ f2(f) @ vk fork < iand I € [q;]. Furthermore, 9y ;; ® f1(f;) @
fz( i) @ y;,j should also be distinct from the values 9y, 7 ® f1(f;) @ f2(t;) © y; 7 with
<.

Except these two conditions, each 01 ; ; must be chosen distinctly from each other. First, one

has [{0,1}"\ 1 U \71 U V11U Vaq| = 2" — p}. Then we count the number of all possible

distinct tuples (d1,;) / satisfying above two conditions. The first condition can

exclude at most p) values, and the second condition can exclude at most Zk 1 qk —j+1

values for each choice of 0y ; ;. Furthermore, 01 ; ; should not be same to previous Zk 1 T —
j + 1 items. Based on these facts, one can obtain that

m
No>TTI]@" ~pi- 22% 2(j-1)) (A6)

Until now, we have chosen Ny, - N, - Ny possible values for (v; i)1<l<a1 ¥ (vq i)1<z<1x2 )

and (dy,,;) , satisfying all above conditions. By this way, when conditioned on

1<i<m 1<]<q
Ey, NEy, A (Pi = Qp,i=1,2), the event Ex, A Ex, A Eg happens means that P; (resp. P»)
is fixed on exactly aq1 + a1 + ¢’ (resp. a1 + a22 +¢’) “new” input-output pairs from
U Ul U Ué (resp. Upo U U p U u(%) toVi; UV U V01 (resp. Voo UV U VOZ) Finally,
we conclude that
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A o N(’; _N(,’,2 — ) . (A7)
ay1+an1+q X12ta22+q
From (A3) and (A7), one has
p(7) = 2" —m), X Zj]()ézn i\](})h) - (A8)
2taq,1taz+q atuagptagz+q
Combining (21) and (A8), we get
Pr[Te = 7] S Nx, - Nx, - Np - 2"
Pr[Tig =] = (2" - pl)az+0¢1,1+0¢2,1+'1'(2n N P2)1¥1+0¢1,2+0¢2/2+‘7’
_ Nx, _ Nx,
(2" =p1—az)y, ("—p2—ar—w),,
Rx, Rx,
. No-2"7 (A9)
(2" =p1)y (2" = p2)y
Ro
on(q—q')
(2 - Py - (2" —p1—ta =)y, (2" = P2)ayay,
>1(x)

where () can be obtained from the fact (2" — p1),,-(2" — p1 — a2 — uq,l)azll (2" — P2)a1+a1,z
< onlttaz tar+arp) _ on(g—q')
B First, Rx, can be bounded as follows:
Ry > @ —pr—a—(i—1)— (p2+a1 + a12) X5, 0)
' (2" = p1—a2),,,
- ﬁ(l (ot a12)| X5, | )
T 2" —pp—ap — (i — 1)

(P2 + o1 +agp) Dot XD | (A10)

Uy,

2" —pp—ay — g
(P2 + a1 +arp)ar2
2" —pp—ap—wy
o1 2/alp2 +249)
= B TR
where the last equality holds from the fact oy < /g, 212 < /g, and p; + a2 + @17 <
p1+29 < p1+pr+3qg<2nL

:1—

Next, we can bound Ry, as
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122" —p2—ag —a1p— (= 1) = (pr + a2+ 11 + a21)| X3, |)
(2" —py — a1 — a1 )
222 . (p1+ a2 + a1 +a21)| X3,
2" —pp —a — &1 — Ao

@22

1 (P + a2 +a1 +a21) T3 X, (A11)
2" —py — g — w1 — &2

(mtaptantagiag
2 —py—ag —ayp —Kop

o1 2alp +3/4)
puiy 2” 7

where the last equality holds from the fact ay < /g, 211 < /7, 221 < /g, and po + a1 +
w10+ a0 < pr+3q < pr+pa+3g<2tL

Finally, Ry can be bounded in the following way:

m ong =1 on
R g 2" 'H?:o (2" —ph =Py — 2525 4 — 2))
0 n n
@), @ - m,/
/ r—1
B l_mI 2 'H;-]l:o (2" —py — Py — 252 4k — 2))
i=1 (2” —pi - Zk 1 qk) (2” — P Zk 1 qk)
LA 2"(2" —py— ph =25} 4k — 2))
o H > n n
i=1 j=0 (2 —pi - Zk 1qk—1)(2 —p— Zk 1‘7k )
(a) m (4! i i / (Al2)
< 1 49;(p} + L1 9) (P2 + Li—1 9)
= 11 - 22n
® o ( 4gl(py + pa +29)°
S _ i
= E(l 22n
c / 2
© (1_ 4q (p1+22;iz+2q) )

v

(1 _Yq(pitpt 2q)2>

22n /
where (a )holdsbyLemmathenonesetsA—ql, =p+yi g, andC=p)+Yi_ 1qk
suchthat A4+ B< pi+q =p1+qg+aj1—ajo—a; <pr+q+ap; < p1+2q+py <2"1
andA+C<p2+q+0¢22<p1+2q—|—p2<2n 1 (b)fOllOWS&Sp1+Zk_1qk§p1+q >~
p+q+a <pr+29+prand ph+ Yo g < ph+q < pr+q+aa < pr+24+p
and (c) follows as ' = Y} ; q}-

We finally lower bound Pr%T'e ﬁ, from (A9), (A10), (Al1l), and (A12), as

PrTe=1] _ 4q(pi+p2+29)° 2A(p1+pa) 109
Pr[Tyy = 7] — 22n 2" 2n -

Appendix C. Upper Bound on Badyy,
In this part, we upper bound each term Pr[Tiy € I'}] for i € [15] one by one.

Bounding (C-1), (C-2), and (C-3): For any (¢;,x;,y;) € QF and (uj,v), (ujr,vp) € Op,
by the e1-regular property of (f1, f2), one has
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Pr((f1(t:) = x; @ uj) A (falti) = x; @ 0y)] < €7

Since the number of all possible tuples for ((t;, x;, y;), uj, vjr) is at most gp?, by union bound,
it holds that
Pr[Tyq € ] < gp°e;.

Similarly, we can bound the probabilities of (C-2) and (C-3) as
Pr[Tyq € Th] < gp®e? and Pr[Tyy € T4] < gp*el.

Bounding (C-4) and (C-5): For any fixed construction queries (t;, x;,y;), (tir, Xy, yir) €
Or, and (u;,vj) € Qp, by the same reason as above, we have

Prl(fi(ti) = x; @ up) A (fa(ti) = v @ fi(t) ©y; © xp @ fu(ty))] < ef.

Since there are at most g?p possible unordered pairs for {(t;, x;, v;), (ty, X1, y), (uj,0;)}, by
union bound, one obtains that
Pr[Tyy € Tj] < ¢°pe?, and similarly, Pr[Tiq € T5] < g*pe?.

Bounding (C-6) and (C-7): For any fixed distinct construction queries (t;, x;,Y;),
(tr,xp,yy) € QO and u; € U, from the ej-regular and e;-AXU properties of (fi, f2),
one has

Pr[(fi(ti) = xi @ uj) A (f2(ti) ® f(ty) = x;i ® xp)] < €1€2.

Since there are at most g?p possible unordered pairs for {(t;, x;,v;), (ti, xir, yi), ui}, by
union bound, it holds that
Pr[Ty € T] < ¢*peien, and similarly, Pr[Tyy € T%] < ¢°pe;es.

Bounding (C-8) and (C-9): For any two distinct construction queries (t;, x;, y;), (ti, Xi7, Yir)
€ O, one can conclude

Pr(fi(t;) @ fi(ty) = xi @ xp) A (f2(t;) @ falty) = fi(t)) & fi(ty) By B yy)] < €3

from the e,-AXU property of (fi1, f2). In particular, when t; = t;, the above probability is
in fact zero since in this case we have fi(t;) @ fi(t;) = 0 but x; # xy. Then by summing
over all (]) possible unordered pairs {(t;, x;, y;), (ty, X7,y;) }, one has
2.2 2
€

Pr[Tyq € Tg] < (9) 2 < ‘72ﬁ’ and similarly, Pr[T,q € Tg] < .

NN

Bounding (C-10): For any (t;, x;,;), (ty, Xy, yi), and (tyn, X,y ) € Qp with (t;, x;, ;)
# (tp, xp,yy) and (t;, x5, y;) # (tm, X,y ), one can conclude, from the €,-AXU property
of (fl/fZ)/ that

Pr((fi(t) @ fi(ty) = xi @ xp) A (fo(ti) © foltin) = % © x)] < €3

Note that the number of all possible tuples {(t;, x;,y;), (ts, Xir, yir), (tim, X,y ) } is at

most ¢ so that one has
Pr[Tig € Tg] < g°€3.

Bounding (C-11), (C-12), (C-13), and (C-14): We deal with bad conditions (C-11) and

(C-13) together by using the fact that
Pr[Tyy € I')y UTy3] < Pr[Tig € T3] + Pr[Tig € Ty \ Ty3)-

We first consider how to upper bound Pr[Tyy € I'j;]. Recall that &, = |{(t,x,y) € OF

x @ f1(t) € U}|. Then the expectation value of & can be computed as

Em]= ), ) Prlx@fi(t)=u] < pge;

(t,x,y)gQF; uel:

due to the e;1-regular property of (f1, f2). By Markov’s inequality, one has

Ela
Pr[Tiy € T3] < \[/qﬂ = pVer.
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Under the condition & < /g, there are at most q/2 pairs {((t;, x;,y:),u;), ((ty, xi1, yir),
up)} such that x; © f1(t;) = uj and xy @ fi(ty) = uy where (t;,x;,y;) # (ty, xi,ys) €
Qr and (u]-, v]-), (ujr,v]v) € Qp. In this case, since the random variables y; and y; are
independently and uniformly distributed over {0,1}", one can conclude that

Prlo; & (k) @ fo(t) ©yi = 07  fit) © folty) © yi] < o

By summing over all these q/2 possible pairs, we have
Pr[Tyg € Ty \ T3] < 5.

R YESE
and so that it holds that

Pr(T,q € T}, UT)s] < py/Ger + 27%
Similarly, we can obtain that

Pr[Tiy € T, UT ] < py/ge1 + SR

Bounding (C-15): To upper bound Pr[Tiy € I'}5], we first define the random variable

Tr = {((t,x,y), (t',x,y) € Qr x Qr : (t,x,y) # (', x,y),x® fi(t) = X' @ f(t')}]. By
definition of 1, it holds that

Br={(txy) € Qr: 3t x,y) # (£, ¥, y),x® fi(t) = x @ fi(t')}] < Tr.
Thus, E[B1] < E[Tf]. Then the expectation value of Tr can be bounded as
2
Eff]= ¥  PElreAd)=xe) <3

(txy) A 2y € OF:

from the e€,-AXU property of (f1, f2). By Markov’s inequality, we have

T 3/2
Y] 2
Similarly, one has
3/2

a €
Finally, by combining the above two facts, it holds that
Pr[Tyg € Ts] < Pr((B1 = va) V (B2 = V)] < 472,

Appendix D. More Details in Proof of Lemma 6

First we have
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T (2= (g —ws g ta) —p—k— (p+a+q+ay)lKL, )
B I, (2" —p—k)

“31<1q0€5+0t6+0€ (p+“+q+“3)|xu3k+1|>

Ry(a)

>
_g 2m —p—k —-p—k

lX31<1_ q+(’(6+a (P+‘x+‘7+a3)|xu3k+1|>

> T1
k=0

Cas(qtasta) (P+“+17+0¢3 )5, 1|XugkH
2" —p—ua3 "—p—a3
@ 203(q +a + @) 2(p+¢x+q+a3)zx4
B 2n a 2n
©  2q(q+/F+49/25)  20p+49/25 +q9+ /D)4
2n 2n
4q3/2 zp\/q 4q 4‘]3/2

omn on on 24341

2" —p—ua3 —p—as

(A13)

where (d) follows as p+ a3 < p+ /7 < 2" ! sothat 2" — p — a3 > 2""1, and (e) follows
as a3, 04,06 < \/gand a < M < q/Z%.
Then, the item Rp(«) can be bounded as

T (2" = (p+as+q+a) —k— (p+q+as+as+a) X, )
Iy (2" —p—az — k)
"‘6-1(1_ g+a (p+q+as+a6+vc)lxvéml>

Ry(a) >

2" —p—a3—k —p—az—k

O 2qtaas 2P +atastas+a) 5 X3
R 2"
2+ a)ag  2(p+q+as+as+a)as
n 21

2(9+9/25)yq  2p+q9+29+49/25)q

21 21

3/2

o 8777 2V 4

Y6,k+1 | (A14)

where (f) followsas p+a3 +k < p+as+ag < p+2,/4< 2"=lso that 2" — p —k > 271
and (g) follows as a3, a5,46 < \/gand a <M < q/Z%.
Finally, Ry («) can be bounded in the following.
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2" Ns(a) - No(w)

Ro(w) = (2" = P") o1 4 34

> (7) 24 (1—e) - M

a! (2" = P") g 434
— (1) Do 27 T T, (@0 —2p — 29 — 20— 20} g — 2))

u: (2" — Pl)ql’+a+q’
=
=(1-eo)- m
27 I 1y (20— 29 27 — 20— 2557 7]~ 2)) (Al5)

@ =7 =@ =V =Dy
. Hypzn .74 (0()

(@), (2m)*
=(1—e)- J "X ’ ‘Hpn,/—/—/a
(=) ({1)a(@)e 2" —p' =7); Yo 7 ()
Bl({!) 21

1 a1 ) o ’
2T T (2" =29 =27 — 20 =255 4 — 2))
' ol A )2
@ —p =7 —a)y
B (a)

For By («), we have

(h) _/_ZM 2w M 2w
By (a) > %: <1— = )
(7) q
4M 4u
>1-— 7 e T (Al6)
() 4q
- _22n/3’

where (h) followsas g —i > g—2Mfor 0 <i <2x <2Mand (7'), < (7)" and (j) follows
asa <M < 55
We then bound the B, («) as
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m ”l _ _ .
M IO T, (20 —2p' =27 — 20— 27 qf — 2j)

2
"1:1(211_;,/_‘7/_0(—2;( 11{712/)[7”

i

By(a) =

m [ 21 H?;SI(Z” —2p' —27 — 20 —2Y "} g7 —2j)
=1

(2n_P —q _“_Zk 1’7;(/)2_,,

=

1L (on(on — oy — 2 —2a —2Y i) g — 2j)
. - —_ . 2
j=0 (2”—P’—q’—w—2k 1%/_])

2
(1 A7 +q +a+ i )

I
‘:IS

I
—_

(A17)

A
V=

22n

43! (p' +29)’
1- 2211

4"+ 2t7’)z>
22n

AV
= i

Il
—_

V=

TN N

—_

>

2
L 4a(p+29+6y7) )
22n ’
where (k) follows as Lemma 2 when we set N = 2", A = §/ and B = C =
a + Yi~! g where it satisfies A+ B = A+C = p/ +7 +D€+Zk 107 <
p+2q+ 6,/ < 2" from the assumption and (I) follows as 7" maql

References

1. Bonilla, L.L.; Alvaro, M.; Carretero, M. Chaos-based true random number generators. |. Math. Ind. 2016, 7, 191. [CrossRef]

2. Trejo, ]JM.A,; Calude, C.S. A new quantum random number generator certified by value indefiniteness. Theor. Comput. Sci. 2021,
862, 3-13. [CrossRef]

3. Blum, M.; Micali, S. How to Generate Cryptographically Strong Sequences of Pseudo-Random Bits. SIAM ]. Comput. 1984,
13, 850-864. [CrossRef]

4. Yao, A.C.C. Theory and Applications of Trapdoor Functions. In Proceedings of the 23rd Annual Symposium on Foundations of
Computer Science (SFCS 1982), Chicago, IL, USA, 3-5 November 1982.

5. Goldreich, O.; Goldwasser, S.; Micali, S. How to Construct Random Functions. In Proceedings of the 25th Annual Symposium
onFoundations of Computer Science, Singer Island, FL, USA, 24-26 October 1984.

6. Hastad, J.; Impagliazzo, R.; Levin, L.A.; Luby, M. Construction of a Pseudo-Random Generator From Any One-Way Function.
SIAM |. Comput. 1993, 28, 12-24.

7. Naor, M.; Reingold, O.; Rosen, A. Pseudorandom Functions and Factoring. SIAM |. Comput. 2002, 31, 1383-1404. [CrossRef]

8. Naor, M.; Reingold, O. Number-theoretic constructions of efficient pseudo-random functions. ]. ACM 2004, 51, 231-262.
[CrossRef]

9. Banerjee, A.; Peikert, C.; Rosen, A. Pseudorandom Functions and Lattices. In Advances in Cryptology—EUROCRYPT 2012;
Pointcheval, D., Johansson, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7237, pp. 719-737.

10. Boneh, D.; Lewi, K.; Montgomery, H.W.; Raghunathan, A. Key Homomorphic PRFs and Their Applications. In Advances in
Cryptology—CRYPTO 2013, Part I; Canetti, R., Garay, ].A., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 8042, pp.
410-428.

11. Banerjee, A ; Peikert, C. New and Improved Key-Homomorphic Pseudorandom Functions. In Advances in Cryptology—CRYPTO
2014, Part I; Garay, J.A., Gennaro, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; Volume 8616, pp. 353-370.

12.  Bellare, M.; Krovetz, T.; Rogaway, P. Luby-Rackoff Backwards: Increasing Security by Making Block Ciphers Non-invertible. In
Advances in Cryptology—EUROCRYPT'98; Nyberg, K., Ed.; Springer: Berlin/Heidelberg, Germany, 1998, Volume 1403, pp. 266-280.

13. Cogliati, B.; Seurin, Y. EWCDM: An Efficient, Beyond-Birthday Secure, Nonce-Misuse Resistant MAC. In Advances in Cryptology—

CRYPTO 2016, Part I; Robshaw, M., Katz, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; Volume 9814, pp. 121-149.


http://doi.org/10.1186/s13362-016-0026-4
http://dx.doi.org/10.1016/j.tcs.2020.08.014
http://dx.doi.org/10.1137/0213053
http://dx.doi.org/10.1137/S0097539701389257
http://dx.doi.org/10.1145/972639.972643

Entropy 2021, 23, 1296 39 of 39

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Mennink, B.; Neves, S. Encrypted Davies-Meyer and Its Dual: Towards Optimal Security Using Mirror Theory. In Advances
in Cryptology—CRYPTO 2017, Part III; Katz, J., Shacham, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; Volume 10403,
pp- 556-583.

Chen, Y.L.; Lambooij, E.; Mennink, B. How to Build Pseudorandom Functions from Public Random Permutations. In Advances
in Cryptology—CRYPTO 2019, Part I; Boldyreva, A., Micciancio, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; Volume
11692, pp. 266-293.

Cogliati, B.; Lampe, R.; Seurin, Y. Tweaking Even-Mansour Ciphers. In Advances in Cryptology—CRYPTO 2015, Part I; Gennaro,
R., Robshaw, M.].B., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; Volume 9215, pp. 189-208.

Dutta, A. Minimizing the Two-Round Tweakable Even-Mansour Cipher. In Advances in Cryptology—ASIACRYPT 2020, Part I;
Moriai, S., Wang, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; Volume 12491, pp. 601-629.

Chakraborti, A.; Nandi, M.; Talnikar, S.; Yasuda, K. On the Composition of Single-Keyed Tweakable Even-Mansour for Achieving
BBB Security. IACR Trans. Symm. Cryptol. 2020, 2020, 1-39. [CrossRef]

Dutta, A.; Nandi, M.; Talnikar, S. Permutation Based EDM: An Inverse Free BBB Secure PRF. IACR Trans. Symmetric Cryptol. 2021,
2021, 31-70. [CrossRef]

Chen, S.; Steinberger, J.P. Tight Security Bounds for Key-Alternating Ciphers. In Advances in Cryptology—EUROCRYPT 2014;
Nguyen, P.Q., Oswald, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; Volume8441, pp. 327-350. [CrossRef]

Patarin, J. The “Coefficients H” Technique (Invited Talk). In Selected Areas in Cryptography. SAC 2008; Avanzi, R.M., Keliher, L.,
Sica, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 5381, pp. 328-345. [CrossRef]

Chen, S.; Lampe, R.; Lee, ]J.; Seurin, Y.; Steinberger, J.P. Minimizing the Two-Round Even-Mansour Cipher. In Advances in
Cryptology—CRYPTO 2014, Part I; Garay, J.A., Gennaro, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; Volume 8616,
pp. 39-56. [CrossRef]

Minematsu, K.; Iwata, T. Building Blockcipher from Tweakable Blockcipher: Extending FSE 2009 Proposal. In Processings of 13th
IMA International Conference on Cryptography and Coding (IMACC 2011); Chen, L., Ed.; Springer: Berlin/Heidelberg, Germany,
2011; Volume 7089, pp. 391-412.


http://dx.doi.org/10.46586/tosc.v2020.i2.1-39
http://dx.doi.org/10.46586/tosc.v2021.i2.31-70
http://dx.doi.org/10.1007/978-3-642-55220-5_19
http://dx.doi.org/10.1007/978-3-642-04159-4_21
http://dx.doi.org/10.1007/978-3-662-44371-2_3

	Introduction
	Our Contributions
	Related Works
	Technical Overview
	Organization

	Preliminaries
	Notations
	The H-Coefficient Technique
	Useful Tools

	Multi-Key and Tweakable Secure PRFs from Two Random Permutations 
	Analysis of Bad Transcripts
	Analysis of Good Transcripts

	Multi-Key and Tweakable Secure PRFs from One Random Permutation
	Analysis of Bad Transcripts
	Analysis of Good Transcripts

	Conclusions
	Upper Bound on Pr[Tidbad] in Lemma 3
	More Details in Proof of Lemma 4
	Upper Bound on BadM1
	More Details in Proof of Lemma 6 
	References

