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Abstract: Feature selection is known to be an applicable solution to address the problem of high
dimensionality in software defect prediction (SDP). However, choosing an appropriate filter fea-
ture selection (FFS) method that will generate and guarantee optimal features in SDP is an open
research issue, known as the filter rank selection problem. As a solution, the combination of mul-
tiple filter methods can alleviate the filter rank selection problem. In this study, a novel adaptive
rank aggregation-based ensemble multi-filter feature selection (AREMFFS) method is proposed to
resolve high dimensionality and filter rank selection problems in SDP. Specifically, the proposed
AREMFFS method is based on assessing and combining the strengths of individual FFS methods by
aggregating multiple rank lists in the generation and subsequent selection of top-ranked features
to be used in the SDP process. The efficacy of the proposed AREMFFS method is evaluated with
decision tree (DT) and naïve Bayes (NB) models on defect datasets from different repositories with
diverse defect granularities. Findings from the experimental results indicated the superiority of
AREMFFS over other baseline FFS methods that were evaluated, existing rank aggregation based
multi-filter FS methods, and variants of AREMFFS as developed in this study. That is, the proposed
AREMFFS method not only had a superior effect on prediction performances of SDP models but
also outperformed baseline FS methods and existing rank aggregation based multi-filter FS methods.
Therefore, this study recommends the combination of multiple FFS methods to utilize the strength of
respective FFS methods and take advantage of filter–filter relationships in selecting optimal features
for SDP processes.

Keywords: feature selection; high dimensionality; rank aggregation; software defect prediction

1. Introduction

Software development lifecycle (SDLC) is a structured mechanism explicitly designed
and developed for the creation or development of top-quality software systems. To main-
tain a timely and efficient software system, the incremental measures contained in SDLC,
such as requirement elicitation, software system analysis, software system design, and
maintenance, should be closely followed and implemented [1,2]. However, since the
stepwise processes in SDLC are performed by human experts, mistakes or errors are un-
avoidable. Currently, due to the large size and dependencies in modules or components
of software systems, these mistakes are prominent and re-occurring. Consequently, if not
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corrected promptly, these mistakes lead to unstable software systems and finally to soft-
ware failure. That is, the presence of errors in modules or components of software systems
will result in defective and low-quality software systems. In addition, glitches in software
systems create frustration for end-users and stakeholders when the failed software system
does not function as proposed even after exhausting limited resources (time and effort) [3,4].
Therefore, it is crucial to identify and predict software defects before product release or
during the software development phase. Early prediction and identification of faulty
modules or components in a software system will allow such modules or components to
be spontaneously corrected and the available resources to be used judiciously [5,6].

Software defect prediction (SDP) involves the implementation of machine learning
(ML) methods to assess the defectivity of modules or components in a software system.
In particular, SDP deploys ML methods on software features that are defined by software
metrics to contain defects in software modules or components [7–9]. Several studies have
proposed and implemented both supervised and unsupervised forms of ML methods for
SDP [10–15]. Nevertheless, the predictive performance of SDP models is flatly dependent
on the quality and inherent nature of the software datasets used for developing such SDP
models. Software metrics used to characterize the quality and efficiency of software are
directly related to its magnitude and complexities. In other words, broad and scalable
software systems will require a variety of software metric mechanisms to produce features
that better represent the quality of such software systems [16,17]. Generally, software
systems with a significant number of features, due to the accumulation of software metrics,
are composed mainly of redundant and irrelevant features which can be defined as a
problem of high dimensionality.

Several research findings have shown that the high dimensionality of software metrics
adversely impacts the predictive efficiency of SDP models [18,19]. The feature selection
(FS) method is recognized by many researchers as an effective way of resolving high
dimensionality problems. Principally, these FS methods simply extract useful and critical
software features from the original software defect dataset for every SDP operation [20–23].
The implementation of FS methods will then lead to the formation of a subset of features
that contains germane and crucial features from a set of irrelevant and excessive features,
thus overcoming the high dimensionality of the dataset. In other words, FS methods select
prominent features while ensuring the quality of the dataset. In the end, this solves the
high dimensionality problem of software defect datasets [24,25].

FS methods can be categorized into two groups: filter feature selection (FFS) and
wrapper feature selection (WFS). FFS methods evaluate features of a dataset using inherent
numerical or statistical properties from the dataset. Subsequently, top-ranked features are
chosen based on the predefined threshold value. Contrary to FSS, WFS methods evaluate
features of a dataset based on its effectiveness in enhancing the performance of underlining
classifiers. That is, WFS selects features based on classifier performance. This characteristic
renders WFS computationally costly and difficult to implement as it often leads to biased
and over-fitting models [26–28]. Based on this attribute of WFS, researchers usually prefer
FSS methods in SDP [18,29]. Nonetheless, selecting a fitting FFS method for SDP is a
problem. This is based on findings from existing studies on the impact of FSS in SDP, which
concluded that there is no one best FSS method and that their respective performances
depend on selected datasets and classifiers [15,19,21,22]. This observation can be due to
incomplete and disjointed feature ranking of FFS methods in SDP. Also, the complex and
different implicit operational behaviours of FFS methods are another factor that affects the
selection of FSS methods in SDP [18,30]. This problem can be described as the filter rank
selection problem in SDP, and a viable solution is to hybridize FFS methods by combining
and aggregating the rank lists from each FFS method into a single robust and non-disjoint
rank list [31,32].

Therefore, this study proposes a novel adaptive rank aggregation-based ensemble
multi-filter FS method with a backtracking function (AREMFFS) for SDP. Specifically, the
AREMFFS method is based on evaluating and combining the strengths of individual FFS
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methods by aggregating multiple rank lists in the generation and subsequent selection of
top-ranked features to be used in the SDP process.

The main contributions of this study are as follows:

1. To develop a novel adaptive rank aggregation-based ensemble multi-filter FS method
with a backtracking function (AREMFFS).

2. To empirically evaluate and validate the performance of AREMFFS against baseline
FFS methods and existing rank aggregation-based FS methods.

3. To validate the application of AREMFFS as a solution for the filter rank selection
problem and high dimensionality in SDP.

The remainder of this paper is structured as follows: reviews on existing related works
are presented in Section 2; details on proposed AREMFFS and experimental methods are
described in Section 3. Experimental results are analysed and discussed in Section 4; and
the research is concluded with highlights of future works in Section 5.

2. Related Works

Software testing is a vital stage in SDLC as it involves the detection of defects or bugs
in the codebase of software systems. The challenge in this stage is to accurately detect
the defective source code. Developing an SDP solution is a difficult issue, and numerous
approaches have been suggested in the literature.

Early SDP solutions are primarily based on assessing the software requirement speci-
fication (SRS) documents for possible flaws. For instance, Smidts, Stutzke [33] developed a
software reliability model based on SRS and failure modes. Data from the failure mode(s)
are passed into the suggested model as input data. Also, Cortellessa, Singh [34] com-
bined the unified modelling language (UML) of software architecture and a Bayesian
framework for SDP. These approaches, unfortunately, do not provide or allow code re-use,
which indirectly implies that component failures are independent of one another. Simi-
larly, Gaffney and Davis [35,36] suggested a phase-based model for software reliability.
The model is mostly based on defect data discovered after a study of different software
development stages. However, this approach is restrictive as it is usually tailored to a
particular organization. In another study, Al-Jamimi [37] investigated the use of fuzzy logic
in SDP. Specifically, Takagi–Sugeno fuzzy inference engine was used for SDP. Also, Yadav
and Yadav [38] successfully implemented a fuzzy logic method for phase-wise SDP. They
aimed to provide a generic set of features for SDP. Nonetheless, the decidability issue is a
prominent short-fall of fuzzy logic [39].

In recent times, as a result of huge code bases, many ML techniques have been devel-
oped for SDP. For instance, Khan, Naseem [40] investigated the performance of several
supervised ML techniques for SDP. In a similar study, Naseem, Khan [41] explored the
performance tree-based classifiers for SDP. Also, Akimova, Bersenev [42] experimented
with the performance of deep learning methods in SDP. Findings from these studies indi-
cated that ML approaches can be utilized for detecting defects in SDP processes. Similarly,
evolutionary computation (EC) techniques have been deployed for SDP tasks. In particular,
Haouari, Souici-Meslati [43] investigated the performance of artificial immune systems,
which are bio-inspired ML techniques based on the mammalian immune paradigms for
SDP. Also, Khurma, Alsawalqah [44] proposed an efficient binary variant of moth flame
optimization (BMFO) for SDP. Concerning unsupervised ML techniques, Xu, Li [45] inves-
tigated the applicability and performance of 40 clustering techniques for SDP. In addition,
Marjuni, Adji [46] developed an unsupervised ML technique named signed Laplacian-
based spectral classifier for SDP. The unsupervised ML technique is applied when working
on unlabelled datasets, unlike supervised ML [14]. However, the performance of an ML
technique depends largely on the quality of the datasets used for training such an ML
technique [47–49].

It is important to highlight that SDP is not the only method that can be used to find
defects in software systems. For instance, model checking [50] and static code analysis
(e.g., Coverity [51]) can be deployed to find defects in software systems. The duo of
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model checking and static analysis are conventional methods of finding defects in software
systems and are based on fault localization. That is, they use the discrepancies between the
inputs of failed and successful software tests to identify problems in the source code. These
conventional methods often detect flaws in the present code base only (i.e., the codebase
being examined), while SDP warns about future defect-prone regions of a software system.

High dimensionality is a data quality problem that affects the predictive performances
of SDP models. In other words, the occurrence of redundant and noisy software features
due to the amount and increase in the software metrics deployed for determining the
quality of a software system has a negative effect on prediction models in SDP. Findings
from existing studies have indicated that FS methods can be used to resolve the high
dimensionality problem. As such, several studies have proposed diverse FS methods and
investigated the effects of these on the predictive performance of SDP models.

Cynthia, Rasul [52] investigated the impact of FS methods on prediction models in
SDP. Specifically, the impact of five FS methods was investigated on selected classifiers.
Based on their experimental results, they concluded that FS methods have a significant
effect (positive) on the prediction performance of the selected classifiers. However, their
study was limited in terms of the scope (number of selected FS methods and datasets
evaluated) of the study. Also, Akintola, Balogun [1] conducted a comparative study on
filter-based FS methods on heterogeneous prediction models. Principal component analysis
(PCA), correlation-based feature selection (CFS), and filtered subset evaluation (FSE) were
applied on selected classifiers. They also observed that applying FS methods in SDP is
beneficial as it improves the prediction performances of selected classifiers. In another
study by Balogun, Basri [20], the authors studied the effect of FS methods on SDP models
in terms of applied search methods. They argued that the search method used by an
FS method could affect its performance. Eighteen FS methods with four classifiers were
considered for experimentation. Observations from their results support the use of FS in
SDP. They also posited that the performance of FS methods depends on the datasets and
classifiers used in the experiments. That is, there is no one best FS method, and by extension,
selecting a suitable FS method to be used in SD becomes a problem. This observation can
be denoted as the filter rank selection problem in SDP. Balogun, Basri [21] extended their
initial study [20] by conducting a large-scale empirical FS study on SDP. The empirical
study was anchored on findings accentuated by Ghotra, McIntosh [53] and Xu, Liu [54] in
their respective studies. Findings from their study suggested that the performance of FS
methods relies on the choice of datasets and classifiers. Hence, there are no best FS methods.
This observation further alludes to the filter rank selection problem of FS methods in SDP.

As a viable solution to the filter rank selection problem, Jia [55], in their study, rec-
ommended a hybrid FS method that combines three filter FS methods (chi-squared, infor-
mation gain, and correlation filter). The proposed hybrid FS method selects features from
each rank list based on a pre-determined (TopK) value. It was observed that SDP models
based on the proposed hybrid FS method were superior to models with the experimental
baseline FS methods. However, it should be noted that the overall ranking of features
can be influenced by the distorted ranks of each feature [56]. Moreover, the choice of
predetermined TopK features is not always the right approach, as important and relevant
features may be overlooked during the feature selection [52]. To address the filter rank
selection problem, Wang, Khoshgoftaar [57] studied the ensemble of FS techniques in SDP.
Using 18 distinct filter FS techniques, 17 ensemble methods were developed. The ensem-
ble techniques were based on averaging feature rankings from separate rank lists. They
reported the advantages of the ensemble methods based on their experimental findings.
However, as Jia [55] pointed out, average rank lists of characteristics may be influenced by
the skewed rankings of each feature.

Xia, Yan [58] used ReliefF and correlation analysis for feature selection in metric-
based SDP. The suggested technique (ReliefF-Lc) simultaneously evaluates correlation and
redundancy between modules. According to their research findings, ReliefF-Lc surpasses
other studied techniques (IG and REF). Malik, Yining [59] have carried out an empirical
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comparison study on the usage of an attribute rank approach. The usefulness of principal
component analysis (PCA) with the ranker search technique as a filter FS method was
specifically explored. They concluded that using PCA with a ranker search technique in
the SDP process may enhance the efficacy of classifiers in SDP. Despite the fact that their
results cannot be generalised owing to the restricted scope of their research, they do agree
with previous SDP studies on the use of FS techniques in SDP.

Iqbal and Aftab [29] created an SDP framework that makes use of multi-filter FS and
multi-layer perceptron (MLP). In addition, to solve the intrinsic class imbalance issue, a
random over-sampling (ROS) method was included. The suggested multi-filter was created
by combining four distinct search methods with correlation feature selection (CFS). Based
on their findings, they determined that the multi-filter approach with ROS outperformed
the other methods tested.

Similarly, Balogun, Basri [31] addressed the filter rank selection problem in SDP by
proposing a rank aggregation-based multi-filter FS method, and in another study, Balogun,
Basri [32] conducted an empirical comparative analysis of rank aggregation-based FS
methods in SDP. Findings from both studies showed that using rank aggregation methods
to aggregate multiple rank lists produced by individual FS methods can address the filter
rank selection problem in SDP.

Based on the preceding reviews and findings, this study, therefore, presents an adap-
tive rank aggregation-based ensemble multi-filter FS method for the SDP process.

3. Methodology

Details on the choice of classifiers, FS methods, proposed AREMFFS, experimental
procedure, datasets, and evaluation measures are provided in this section.

3.1. Classification Algorithms

In this study, decision tree (DT) and naïve Bayes (NB) algorithms are selected and
deployed as prediction models. The choice of the duo is due to their respective high
prediction performance and ability to work on imbalanced datasets [20,60]. Also, DT and
NB are typically not affected by parameter tuning. In addition, DT and NB have been used
repeatedly in existing SDP studies. As shown in Table 1, the subTreeRaising parameter of
DT is set to True to allow the pruning of trees by pushing nodes upwards towards the tree’s
root, replacing other nodes along the way. Also, the ConfidenceFactor is at a 0.25 threshold
value and the minimum number of objects on a leaf (MinObj) is set to 2. The essence of
these parameters for the DT classifier is to ensure a simpler model with a higher number of
nodes (samples) [61]. Concerning the NB classifier, a kernel estimator is used for numeric
attributes and the number of decimal places to be used for the output of numbers in the
model is set to 2 [62].

Table 1. Classification algorithms.

Classification Algorithms Parameter Settings

Decision Tree (DT) ConfidenceFactor = 0.25; MinObj = 2;
subTreeRaising = True

Naïve Bayes (NB) NumDecimalPlaces = 2; UseEstimator = True

3.2. Feature Selection Method

Concerning the baseline FS methods, three filter FS methods with diverse computa-
tional characteristics were chosen in this study. Specifically, chi-square (CS), Relief (REF),
and information gain (IG) were deployed as baseline FS methods. CS is a statistics-based FS
method that assesses the degree of independence of an attribute from the class label. REF,
an instance-based FS method, samples features of a given dataset and then compares each
sampled feature in its respective neighbourhood and thereafter assigns a relevance score to
each feature. Finally, the IG method selects features using an entropy mechanism that is
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based on selecting relevant features by minimizing uncertainties associated with identi-
fying the class label when the value of the feature is unknown. The specific selection of
these FS methods (CS, REF, IG) is based on findings from existing studies as they have been
regarded to have a high positive effect on prediction performances of SDP models [20,21].
Moreover, these FS methods (CS, REF, IG) are selected to introduce heterogeneity as each
of the FS methods have different and unique computational mechanisms. More details on
the selected FS methods can be found in [31,32,63–66]

3.3. Adaptive Rank Aggregation-Based Ensemble Multi-Filter Feature Selection
(AREMFFS) Method

The proposed AREMFFS method aims to take the computational capabilities of mul-
tiple independent filter FS methods into account and incorporate their strengths. The
objective of this proposed method is to address filter method selection problems by se-
lecting features and generating a robust rank list from multiple filter FS methods in SDP
tasks. AREMMFS can be divided into three stepwise phases: the multi-filter FS phase, the
ensemble rank aggregation phase, and the backtracking function phase.

3.3.1. Multi-Filter FS Phase

Individual rank lists from the CS, REF, and IG filter FS methods are constructed
from the given datasets as shown in Algorithm 1. The multiple rank lists generated by
the independent filter FS methods are mutually exclusive as each filter FS method under
consideration has distinct computational features. This is undertaken to guarantee that
varied representations of features are chosen. Following that, the generated multiple
rank lists are aggregated using rank aggregation functions shown in Table 2. Each rank
aggregation function blends the multiple rank lists into a single aggregated rank list by
using the significance score assigned to each feature on the individual rank lists.

Table 2. Rank aggregation methods.

Aggregators Formula Description

Min () min{R1(a1...n), R2(a1...n), . . . Rm(a1...n)}
Selects the minimum of the

relevance scores produced by
the aggregated rank list

Max () max{ R1(a1...n), R2(a1...n), . . . Rm(a1...n)}
Selects the maximum of the

relevance scores produced by
the aggregated rank list

Mean () mean{(∑m
i=1 Ri(a1...n))× 1

m

Selects the mean of the
relevance scores produced by

the aggregated rank list

Specifically, the Minimum (Min) and Maximum (Max) rank aggregation functions
choose features based on the minimum and maximum significance score provided by the
aggregated rank list, respectively. The Arithmetic Mean (Mean) rank aggregation function
aggregates the multiple rank lists into a single aggregated rank list by calculating the
arithmetic mean of the significance scores assigned to each element on the individual
rank lists. This is done to ensure that each feature from each rank list receives equal
representation and consideration. Features with poor significance ratings on the aggregated
rank list indicate that they should be ranked low on each rank list and, as such, may be
dropped. To select appropriate features, a novel dynamic and automated threshold value
dependent on the geometric mean function is added to the aggregated rank list.
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Algorithm 1. Pseudocode of Proposed AREMFFS.

Input:
n: Total number of features in the dataset
N: Total Number of Filter Rank Method = |CS, REF, IG|
T1: Threshold value for optimal features selections = (∏n

i=1 Xi)
1
n = n
√

X1X2X3 . . . Xn
T2 : log2 n
A[]: Aggregators A = { min {R1(a1...n), R2(a1...n), . . . Rm(a1...n) },
max{R1(a1...n), R2(a1...n), . . . Rm(a1...n)},mean{(∑m

i=1 Ri(a1...n))× 1
m }, }

P[]: Aggregated Features
P′t []: Optimal Features Selected from Aggregated Rank List based on T

Output:
M∗t [] – Single rank list based on AREMFFS

// Multi-Filter Feature Selection Phase
1. for i = 1 to N { do
2. Generate Rank list Rn for each filter rank method i
3. }
4. Generate Aggregated Rank list using Aggregator functions:
for i=1 to len(A[ ]) { do
5. P∗t [i] // Initialise variable to hold optimal features
6. Pi = Ai
7. for i =1 to Pi[Ni] { do
8. if (Pi[i] ≤ T1)
9. P∗t [i]← Pi[i] based on T
10. }
11. }
//Ensemble Rank Aggregation Phase
12. for each feature f in P∗t [i] s.t. i = 1, . . . , An { do // compute the frequency of each feature in the

aggregated lists
13. if f eature f j ∈ P∗t [i]
14. j = count ( f j )

15. if (j ≥ An−1)
16. M[ ] ← f eature f j //append feature
}//select most occurring feature f in the aggregated list
17. for i = 1 to N{ do
18. Generate Rank list Rn for each filter rank method i
19. for i = 1 to Rn { do
20. Ri

′[i] ← TopK f eatures o f Rn based on T2
21. }
22. }
//Backtracking function Phase
23. for i = 1 to len(M[ ]){ do
24. for j = 1 to Ri

′[N] { do
25. if ( f eature fi ∈ Ri

′[j])
26. g = count ( fi)
27. }
28. if (g ≥ Rn−1)
29. M∗t [ ]← f eature fi
30. }
31. return M∗t [ ]

The geometric mean of the aggregated significance score is calculated and features
with aggregated significance scores less than or equal to the calculated threshold values
are chosen. In its calculation, the geometric mean functions take into account feature
dependence and the compounding effect. At the end of this phase, aggregated rank
lists are generated, based on the Min, Max, and Mean rank aggregation functions. The
preference for using Min, Max, and Mean rank aggregation functions is primarily based on
the experimental findings reported in [32]. Balogun, Basri [32] deduced that the selected
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rank aggregation functions (Min, Max, and Mean) can generate a more stable and complete
subset of features that best represent studied datasets.

In the next phase of the AREMFFS method, the resulting aggregated rank lists pro-
duced by the respective rank aggregation function are ensembled based on the majority
voting mechanism to create a single rank list.

3.3.2. Ensemble Rank Aggregation Phase

In this phase, the resulting rank lists generated by the respective rank aggregation
functions (Min, Max, and Mean) are ensembled based on a majority voting mechanism
to produce a single rank list. As observed, the generated rank lists from each of the
rank aggregators are mutually exclusive subsets of features that are considered relevant
and important based on each rank aggregator method. Specifically, the ensemble rank
aggregation phase of the proposed AREMFFS method selects features that have a frequency
value greater than or equal to n− 1, where n is the number of aggregated rank lists. In
this study, the number of ensembled rank aggregators is 3 (n = 3); hence, for a feature
to be selected in the ensemble rank aggregation phase, the feature must be a subset of
the n− 1 rank list generated by the Min, Max, and Mean rank aggregator methods. This
approach aims to combine rank lists generated by the respective rank aggregators into a
single robust list that best represents each of the combined rank lists. Each rank aggregator
has its advantages and disadvantages, and any rank aggregator method deployed should
guarantee diversity while increasing the regularity of the FS process, to take advantage of
the rank aggregators to boost the prediction performance of SDP models. In addition, the
resulting rank list from the ensemble rank aggregation phase is expected to both produce
more stable results and minimize the risk of selecting an unstable subset of features.
However, there is a need to reduce to some extent the size of the resulting feature set,
if large, while maintaining or improving the prediction performance of SDP models. A
backtracking function, which is the third phase of the proposed AREMFFS method, is
presented in the following sub-section.

3.3.3. Backtracking Function Phase

The last phase of the proposed AREMFFS method is a backtracking function that
is applied to the resulting rank list from the ensemble rank aggregation phase. The
backtracking function is based on checking the relevance of each feature in the resulting
rank list against the initial rank list produced by the individual FFS method. That is, the
rank or score of each feature in the resulting rank list is compared with the rank or score
features in each of the individual rank lists produced by CS, IG, and REF FS methods.
In particular, the backtracking function phase of the proposed AREMFFS method selects
features that have a frequency value greater than or equal to n− 1, where n is the number of
FFS methods used in the experiment. Iteratively, the number of FFS methods experimented
on is 3 (n = 3); hence, for a feature to be selected in the backtracking phase into the optimal
subset of features, the feature must be a log2 N top-ranked feature of at least one n− 1 rank
list generated by the CS, IG, and REF FS methods. That is, only features from the resulting
rank list that are ranked important by at least two of the experimented FFS methods will be
selected. This approach aims to confirm the relevancy of features in the optimal resulting
rank list and appropriately reduce the size of the resulting feature set while maintaining or
improving the prediction performance of SDP models.

3.4. Software Defect Datasets

Defect datasets from four publicly available repositories were used for the exper-
iments in this study. Specifically, 25 datasets with varying granularities were selected
from PROMISE, NASA, AEEEM, and ReLink repositories. For the NASA repository, the
Shepperd, Song [67] version of defect datasets was used. The datasets consist of software
features produced by static code metrics. Static code metrics are derived from the source
code size and complexity [19,22]. The PROMISE repository contains defect datasets de-
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rived from object-oriented metrics and additional information from software modules. This
additional information is derived from Apache software [18,22,68]. Concerning the ReLink
repository, datasets from this repository are derived from source code information from
version control. These datasets were created by Wu, Zhang [69] as linkage data, and have
been widely used in existing studies in SDP [62,70,71]. Lastly, the AEEEM datasets contain
software features from source code metrics based on change metrics, entropy, and churn of
source code metrics [19,22,68,72]. The description of these datasets is presented in Table 3.

Table 3. Description of software defect datasets.

Datasets Number of Features Number of Modules

EQ 62 324

JDT 62 997

ML 62 1862

PDE 62 1497

CM1 38 327

KC1 22 1162

KC2 22 522

KC3 40 194

MW1 38 250

PC1 38 679

PC3 38 1077

PC4 38 1287

PC5 39 1711

ANT 22 292

CAMEL 21 339

JEDIT 22 312

REDKITOR 21 176

TOMCAT 22 852

VELOCITY 21 196

XALAN 22 797

SAFE 27 56

ZXING 27 399

APACHE 27 194

ECLIPSE 19 1065

SWT 18 1485

3.5. Experimental Procedure

This section presents and analyses the experimental procedure followed in this study
as shown in Figure 1.

To evaluate the impact and effectiveness of the proposed AREMFFS on the predictive
performance of SDP models, software defect datasets were used to construct SDP models
based on the NB and DT classification algorithm. Various scenarios were investigated with
non-biased and consistent performance comparative analyses of the resulting SDP models:

• Scenario A: In this case, the performance of the proposed AREMFFS method was
tested and compared with the baseline FS methods used in this study. The essence of
this scenario was to evaluate and validate the performance of the AREMFFS against
NoFS, CS, IG, and REF FS methods.
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• Scenario B: In this case as well, the performance of the proposed AREMFFS method
was tested and compared with existing rank aggregation-based multi-filter FS meth-
ods as proposed in [31,32]. Findings from this scenario were used to validate the
effectiveness of the proposed AREMFFS against Min, Max, Mean, Range, GMean, and
HMean rank aggregation-based FS methods.

• Scenario C: For this case, the performance of AREMFFS was tested and compared
with its variant (REMFFS) as proposed in this study. This allowed a fair comparison
and empirically validated the effectiveness of the proposed AREMFF method.

Experimental results and findings based on the aforementioned scenarios were used
to answer the following research questions:

• RQ1: How effective is the proposed AREMFFS method compared to baseline FFS methods?
• RQ2: How effective is the proposed AREMFFS method compared to existing rank

aggregation-based multi-filter FS methods?

SDP models generated based on the above-listed scenarios were trained and tested
using the 10-fold cross-validation (CV) technique. The CV technique mitigates data vari-
ability issues that may occur in defect datasets. In addition, the CV technique has been
known to produce models with low bias and variance [73–77]. The prediction perfor-
mances of generated SDP models were assessed using performance evaluation metrics
such as accuracy, AUC, and f-measure. The Scott–Knott ESD statistical rank test was used
to ascertain the significant differences in the prediction performances of the models used
in the experiment. The Weka machine learning library, R lang, and Origin Plot were used
for the experimentation [78].
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In terms of performance evaluation, SDP models based on the proposed and other
methods were analysed using accuracy, the area under the curve (AUC), and f-measure
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values, metrics most often used in existing SDP studies to assess the performance of SDP
models [6,79].

Accuracy is the amount or proportion of data accurately estimated out of the actual
number of data and can be represented as shown in Equation (1):

Accuracy =
TP + TN

TP + FP + FN + TN
× 100% (1)

F-Measure is computed based on the harmonic mean of precision and recall values of
observed data. Equation (2) presents the formula for calculating the f-measure value:

F −Measure = 2× Precision × Recall
Precision + Recal

(2)

The area under curve (AUC) signifies the trade-off between true positives and false pos-
itives. It demonstrates an aggregate output assessment across all possible classification
thresholds:

Recall =
(

TP
TP + FN

)
(3)

Precision =

(
TP

TP + FP

)
, (4)

where TP is true positive (representing accurate prediction), FP is false positive (represent-
ing inaccurate prediction), TN is true negative (representing accurate mis-prediction), and
FN is false negative (representing inaccurate mis-prediction).

4. Results and Discussion

This section presents and discusses experimental results based on the experimental
process and procedure described in Section 3.5. Box plots are used to represent the predic-
tion performances (accuracy, AUC, and f-measure values) of NB and DT models based on
the various FS methods used. Also, Scott–KnottESD statistical rank tests are used to show
significant differences in the prediction performance of developed models.

4.1. Experimental Results on Scenario A

In this section, experimental results based on Scenario A as defined in Section 3.5 are
presented and discussed. Scenario A is based on assessing and comparing the prediction
performances of NB and DT models based on proposed AREMFFS and baseline FS (CS, IG,
REF, and NoFS) methods.

Figures 2–4 display box-plot representations of the accuracy, AUC, and f-measure
values of NB and DT classifiers with the NoFS method, the baseline FFS (IG, REF, CS)
method, and the proposed AREMFFS method. Specifically, the accuracy values of NB and
DT classifiers compared with the FS (IG, CS, REF, and AREMFFS) and NoFS methods are
presented in Figure 2. The results indicate that NB and DT had good accuracy values on the
software defect dataset. Nonetheless, the increased deployment of baseline FFS methods
(IG, CS, and REF) further enhanced the accuracy values of NB and DT classifiers. This can
be seen in their respective average accuracy values as depicted in Figure 2. Particularly, NB
and DT classifiers with the NoFS method had average accuracy values of 76% and 80.89%,
respectively. Concerning baseline FFS methods, CS with NB and DT classifiers recorded
average accuracy values of 78.93% and 81.97%, which indicated increments of +3.85% and
+1.34%, respectively. Identical occurrences were realized in models with IG (NB: 78.51%, DT:
81.9%) and REF (NB: 78.99%, DT: 81.17%) FS methods, with increments of average accuracy
values (IG: (+3.32%, +1.25%) and DT: (+3.93%, +0.3%)), respectively. However, models
based on AREMFFS with NB and DT classifiers had superior average accuracy values over
the NB and DT models with baseline FFS (NoFS, CS, IG, REF) methods. As presented
in Table 4, concerning models based on the NB classifier, AREMFFS had increments of
+7.46%, +3.47%, +4.02%, and +3.39% in the average accuracy values over models based
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on the NoFS, CS, IG, and REF methods, respectively. Also, concerning models based on
the DT classifier as shown in Table 5, AREMFFS had increments of +3%, +1.63%, +1.72%,
and +2.64% in average accuracy values over models based on the NoFS, CS, IG, and REF
methods, respectively. These results showed that, concerning accuracy values, models
based on AREMFFS outperformed models based on baseline FSS (CS, IG, REF) methods.
That is, AREMFFS had a superior positive impact on the prediction accuracy values of NB
and DT models over the CS, IG, and REF FS methods.
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Table 4. Models based on the NB classifier with proposed AREMFFS and baseline FFS methods.

Models Average Accuracy (%) Average AUC Average F-Measure

NoFS 76.00 0.730 0.756

CS 78.93 0.762 0.779

IG 78.51 0.761 0.778

REF 78.99 0.753 0.776

AREMFFS 81.67 0.784 0.797

Table 5. Models based on the DT classifier with proposed AREMFFS and baseline FFS methods.

Models Average Accuracy (%) Average AUC Average F-Measure

NoFS 80.89 0.665 0.797

CS 81.97 0.682 0.808

IG 81.90 0.676 0.806

REF 81.17 0.669 0.793

AREMFFS 83.31 0.723 0.825

In terms of AUC values, Figure 3 displays box-plot representations of models based
on NB and DT classifiers with baseline FFS and proposed AREMFFS methods. Similar
to observations on accuracy values, NB and DT models based on baseline FFS (CS, IG,
and REF) had superior AUC values when compared with NB and DT models with the
NoFS method. Specifically, CS had increments of +4.4% and +2.55% in AUC values for
models based on NB (0.762) and DT (0.682) over the NoFS (NB: 0.73, DT: 0.665) method.
Correspondingly, NB and DT models based on IG had increments of +4.25% and +1.65%
in average AUC values. Also, models based on REF recorded increments of +3.15% and
+0.6% in average AUC values for NB and DT classifiers, respectively, when compared with
models with the NoFS method. Nonetheless, similar to the observations on accuracy values,
models based on AREMFFS had superior average AUC values over models with baseline
FFS (NoFS, CS, IG, REF) methods. As shown in Table 4, concerning models based on the NB
classifier, AREMFFS had increments of +7.4%, +2.88%, +3.02%, and +4.12% in average AUC
values over models based on the NoFS, CS, IG, and REF methods, respectively. A similar
case is observed with models based on the DT classifier as shown in Table 5. AREMFFS had
increments of +8.72%, +6.01%, +6.95%, and +8.07% in average AUC values over models
based on the NoFS, CS, IG, and REF methods, respectively.

Also, Figure 4 presents the f-measure values for NB and DT models based on the
baseline FFS and proposed AREMFFS methods. Models based on the NB classifier with the
CS (0.779), IG (0.778), and REF (0.776) methods recorded average f-measure value increases
of +3.04%, +2.91%, and +2.64%, respectively, over the NB model with the NoFS method.
As for the DT models, IG and CS recorded increments of +1.38% and +1.13% in average
f-measure values, but DT models with the REF method performed poorly with a −0.5%
decrease of the f-measure value. Summarily, it can be observed that models based on FS
methods had better prediction performance than models with the NoFS method. However,
models based on AREMFFS with NB and DT classifiers recorded better average f-measure
values over NB and DT models with baseline FFS (CS, IG, REF) methods. From Table 4,
the NB model based on AREMFFS had increments of +5.42%, +2.31%, +2.44%, and +2.71%
in average f-measure values over models based on the NoFS, CS, IG, and REF methods,
respectively. Also, the DT model with AREMFFS had increments of +3.51%, +2.1%, +2.36%,
and +4.04% in average f-measure values over models based on the NoFS, CS, IG, and REF
methods, respectively. These results further indicate the superiority of models (NB and
DT) based on AREMFFS over models based on baseline FSS (NoFS, CS, IG, REF) methods.
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Summarily, experimental results, as displayed in Figures 2–4, showed that the deploy-
ment of FS methods in SDP further enhances the prediction performances of SDP models.
This finding is supported by observations in existing studies where FS methods are applied
in SDP [19–22]. Nonetheless, it was also observed that the effect of FS methods varies and
depends on the classifiers selected in this study. Also, there are no clear-cut differences in
the performances of each of the FFS (CS, IG, and REF) methods, even though the selected
FFS methods have different underlying computational characteristics. Thus, the selection
of an appropriate FFS method to be used in SDP processes becomes a problem that can
be termed a filter rank selection problem. This observation from the experimental results
strengthens the aim of our study, which proposes a rank aggregation-based multi-filter
FS method for SDP. As shown in Figures 2–4, the proposed AREMFFS method not only
had a superior positive impact on NB and DT models, but also had a more positive impact
than the individual CS, IG, and REF FS methods. Particularly, Tables 4 and 5 present the
prediction performances (average accuracy, average AUC, and average f-measure) of NB
and DT models with the proposed AREMFFS methods and the experimented baseline FFS
(NoFS, CS, IG, REF) methods, respectively.

Figures 5–7 present statistical rank tests of the models (NB and DT) tested based on
accuracy, AUC, and f-measure values, respectively. Specifically, the Scott–KnottESD statis-
tical rank test, a mean comparison approach that uses hierarchical clustering to separate
mean values into statistically distinct clusters with non-negligible mean differences, was
conducted [62,80] to show significant statistical differences in the mean values of methods
and results used. As depicted in Figures 5–7, models with different colours show that
there are statistically significant differences amongst their values; hence, they are grouped
into a different category. Similarly, models with the same colour indicate that there are no
statistically significant differences in their values.
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As presented in Figure 5, there are statistically significant differences in the average
accuracy values of NB and DT models with the proposed AREMFFS method when com-
pared with other FS methods. In particular, for NB models, AREMFFS ranks highest (first),
followed by REF, CS, and IG, which are in the same category, while the NoFS method
ranks last. In the case of DT models, AREMFFS still ranks highest followed by other FS
methods (CS, IG, REF, and NoFS). It should be noted that the arrangements of models
from the statistical rank test are vital as models that appear first (from left to right) are
superior to the other models, irrespective of their category. This observation indicates that
models based on AREMFFS have superior accuracy values over models based on CS, IG,
REF, and NoFS methods. Also, similar observations were recorded from statistical rank
tests based on AUC values. Figure 6 presents the Scott–KnottESD statistical rank tests
based on AUC values, and there too models based on AREMFFS rank highest. In terms
of NB models, AREMFFS ranks highest followed by CS, IG, and REF, which are in the
same category, while the NoFS method ranks last. As for DT models, AREMFFS still ranks
highest, followed by CS, IG, REF, and NoFS FS methods. Lastly, statistical rank tests based
on f-measure values, as shown in Figure 7, followed the same pattern as that of accuracy
and AUC values, with models based on AREMFFS being statistically superior to the other
experimented baseline FS methods. A summary of the Scott–KnottESD statistical rank
tests of the proposed AREMFFS and baseline FS methods with NB and DT classifiers is
presented in Table 6.

In summary, from the experimental and statistical test results, the proposed AREMFFS
method recorded a superior positive impact on the prediction performances of SDP models
(NB and DT) in comparison with individual FSS (CS, IG, REF, and NoFS) methods on the
defect datasets that were studied.

Table 6. Summary of the Scott–Knott rank test of proposed AREMFFS and baseline FS methods.

Statistical
Rank

Average Accuracy Average AUC Average F-Measure

NB DT NB DT NB DT

1 AREMFFS AREMFFS AREMFFS AREMFFS AREMFFS AREMFFS

2 REF, CS,
IG

CS, IG,
REF, NoFS

CS, IG,
REF

CS, IG,
REF, NoFS

CS, IG,
REF

CS, IG,
REF, NoFS

3 NoFS - NoFS - NoFS -

4.2. Experimental Results on Scenario B

This section presents and discusses experimental results based on Scenario B (see
Section 3.5). Scenario B is defined by evaluating and comparing the prediction perfor-
mances of NB and DT models based on the proposed AREMFFS method and the existing
(Min, Max, Mean, Range, GMean, HMean) rank aggregation-based multi-filter FS methods.

Figures 8–10 show box-plot representations of the accuracy, AUC, and f-measure
values of NB and DT classifiers with proposed AREMFFS and existing rank aggregation-
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based multi-filter FS methods. In particular, Figure 8 presents the accuracy values of
NB and DT models with AREMFFS and existing rank aggregation-based multi-filter FS
methods. It can be observed that models based on AREMFFS (NB: 81.67,% DT: 83.31%) had
superior average accuracy values compared to existing Min (NB: 79.72%, DT: 82.60%), Max
(NB: 79.88%, DT: 82.34%), Mean (NB: 79.36%, DT: 82.53%), Range (NB: 77.99%, DT: 81.87%),
GMean (NB: 79.48%, DT: 82.70%), and HMean (NB: 79.66%, DT: 82.61%) rank aggregation-
based multi-filter FS methods. Specifically, based on NB models, AREMFFS had increments
of +2.91%, +2.45%, +2.24%, +4.72%, +2.76%, and +2.52% in average accuracy value over the
existing Mean, Min, Max, Range, GMean, and HMean rank aggregation-based multi-filter
FS methods. Likewise for DT models, AREMFFS had increments of +0.95%, +0.86%, +1.18%,
+1.76%, +0.74%, and +0.85% in average accuracy value over the existing Min, Max, Mean,
Range, GMean, and HMean rank aggregation-based multi-filter FS methods. As observed,
the experimental results indicate that models based on AREMFFS outperformed models
based on existing rank aggregation-based multi-filter FS methods on accuracy values.
In other words, AREMFFS had a superior positive impact on the prediction accuracy
values of NB and DT models over the Min, Max, Mean, Range, GMean, and HMean rank
aggregation-based multi-filter FS methods.
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Concerning AUC values, Figure 9 presents box-plot representations of models based
on NB and DT classifiers with the proposed AREMFFS and existing rank aggregation
based multi-filter FS methods. Similar to observations on accuracy values, models based
on AREMFFS (NB: 0.784, DT: 0.723) had superior average AUC values over models with
existing Min (NB: 0.769 DT: 0.697), Max (NB: 0.770, DT: 0.688), Mean (NB: 0.767, DT:
0.687), Range (NB: 0.748, DT: 0.677), GMean (NB: 0.768, DT: 0.694), and HMean (NB:
0.769, DT: 0.696) rank aggregation-based multi-filter FS methods. As presented in Table 7,
concerning models based on NB classifier, AREMFFS had increments of +2.22%, +1.95%,
+1.82%, +4.81, +2.08%, and +1.95% in average AUC values over models based on Mean,
Min, Max, Range, GMean, and HMean rank aggregation-based multi-filter FS methods,
respectively. A similar case is observed with models based on the DT classifier as depicted
in Table 8. AREMFFS had increments of +5.24%, +3.73%, +5.09%, +6.79%, +4.18%, and
+3.88% in average AUC values over models based on Mean, Min, Max, Range, GMean,
and HMean rank aggregation-based multi-filter FS methods, respectively. As observed,
the experimental results indicated that models based on AREMFFS outperformed models
based on existing rank aggregation-based multi-filter FS methods on accuracy values.
In other words, AREMFFS had a superior positive impact on the prediction accuracy
values of NB and DT models over Min, Max, Mean, Range, GMean, and HMean rank
aggregation-based multi-filter FS methods.

Table 7. Models based on the NB classifier with proposed AREMFFS and existing rank aggregation-
based multi-filter FS methods.

Models Average Accuracy (%) Average AUC Average F-Measure

Mean 79.36 0.767 0.775

Min 79.72 0.769 0.777

Max 79.88 0.770 0.781

Range 77.99 0.748 0.759

GMean 79.48 0.768 0.775

HMean 79.66 0.769 0.776

AREMFFS 81.67 0.784 0.797



Entropy 2021, 23, 1274 18 of 28

Table 8. Models based on the DT classifier with proposed AREMFFS and existing rank aggregation-
based multi-filter FS methods.

Models Average Accuracy (%) Average AUC Average F-Measure

Mean 82.53 0.687 0.813

Min 82.60 0.697 0.815

Max 82.34 0.688 0.814

Range 81.87 0.677 0.802

GMean 82.70 0.694 0.814

HMean 82.61 0.696 0.815

AREMFFS 83.31 0.723 0.825

Furthermore, concerning f-measure values, Figure 10 presents box-plot representa-
tions of models with NB and DT classifiers with proposed AREMFFS and existing rank
aggregation based multi-filter FS methods. Models based on AREMFFS (NB: 0.797, DT:
0.825) had superior average f-measure values over models with existing Min (NB: 0.777, DT:
0.815), Max (NB: 0.781, DT: 0.814), Mean (NB: 0.775, DT: 0.813), Range (NB: 0.789, DT: 0.802),
GMean (NB: 0.775, DT: 0.814), and HMean (NB: 0.776, DT: 0.815) rank aggregation-based
multi-filter FS methods. Specifically, based on the NB classifier, AREMFFS had increments
of +2.84%, +2.57%, +2.05%, +5.00, +2.84%, and +2.71% in average AUC values over models
based on Mean, Min, Max, Range, GMean, and HMean rank aggregation-based multi-filter
FS methods, respectively. Also, based on the DT classifier, AREMFFS had increments of
+1.48%, +1.23%, +1.35%, +2.87%, +1.35%, and +1.23% in average AUC values over models
based on Mean, Min, Max, Range, GMean, and HMean rank aggregation-based multi-filter
FS methods, respectively. As observed, the experimental results indicated that models
based on AREMFFS outperformed models based on existing rank aggregation-based multi-
filter FS methods on f-measure values. In other words, AREMFFS had a superior positive
impact on the f-measure values of NB and DT models over Min, Max, Mean, Range, GMean,
and HMean rank aggregation-based multi-filter FS methods.

In summary, the findings from the experimental results, as shown in Figures 8–10,
indicate the superiority of the proposed AREMFFS over existing rank aggregation-based
multi-filter FS methods. That is, NB and DT models based on AREMFFS outperformed
NB and DT models based on existing Mean, Min, Max, Range, GMean, and HMean rank
aggregation-based multi-filter FS methods. The superior performance of the proposed
AREMFFS can be attributed to a combination of the robust strategy it deploys for aggregat-
ing multiple rank lists based on majority voting, and its backtracking ability which further
removes irrelevant features from the generated optimal feature list.

For further analyses, the performance of the proposed AREMFFS and the existing
experimented rank aggregation-based multi-filter FS methods were subjected to Scott–
KnottESD statistical rank tests to determine the statistically significant differences in their
respective performances. Figures 11–13 present statistical rank tests of the proposed
AREMFFS and existing rank aggregation-based multi-filter FS methods on NB and DT
classifiers based on accuracy, AUC, and f-measure values, respectively. As depicted in
Figure 11A, it can be observed that there are statistically significant differences in the
average accuracy values of NB models using the proposed AREMFFS when compared
with NB models based on existing rank aggregation-based multi-filter FS methods.
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Specifically, AREMFFS ranks highest (first), followed by Max, Min, HMean, GMean,
and Mean, which are in the same category, while the Range aggregation method ranks
last. In the case of DT models as presented in Figure 11B, although there is no significant
statistical difference in the prediction accuracy values, AREMFFS still ranks highest, fol-
lowed by the GMean, HMean, Min, Mean, Max, and Range aggregation methods. In this
case, the order of superiority/arrangements (left to right) of the models from the statistical
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test was considered and AREMFFS appeared first. These findings indicate that models
based on AREMFFS have superior accuracy values over models based on Min, Max, Mean,
Range, GMean, and HMean rank aggregation-based multi-filter FS methods. Also, similar
observations were recorded from statistical rank tests based on AUC values. Figure 12
presents the Scott–KnottESD statistical rank tests based on AUC values, and models based
on AREMFFS rank highest. In terms of NB models, AREMFFS ranks highest followed by
Max, Min, HMean, GMean, and Mean, which are in the same category, while the Range
rank aggregation method ranks last. A similar situation can be observed in the case of DT
models as AREMFFS ranks highest followed by the Min, HMean, GMean, Max, Mean, and
Range rank aggregation methods. In addition, statistical rank tests based on f-measure
values, as presented in Figure 13, indicated similar findings to those of the accuracy and
AUC values with Min, Max, Mean, Range, GMean, and HMean rank aggregation-based
multi-filter FS methods. Table 9 summarizes and presents the Scott–KnottESD statisti-
cal rank tests of proposed AREMFFS and existing rank aggregation-based multi-filter FS
methods with NB and DT classifiers.

In summary, based on the experimental and statistical test results, the proposed
AREMFFS method recorded a superior positive impact on the prediction performances of
SDP models (NB and DT) over existing rank aggregation-based multi-filter FS (Min, Max,
Mean, Range, GMean, HMean) methods on the defect datasets studied.

Table 9. Summary of Scott–KnottESD statistical rank tests of proposed AREMFFS and existing rank aggregation-based
multi-filter FS methods.

Statistical
Rank

Average Accuracy Average AUC Average F-Measure

NB DT NB DT NB DT

1 AREMFFS

AREMFFS,
GMean, HMean,
Min, Mean, Max,

Range

AREMFFS AREMFFS AREMFFS

AREMFFS,
HMean, Min,
GMean, Max,

Mean,

2
Max, Min,
HMean,

GMean, Mean
-

Max, Min,
HMean,

GMean, Mean

Min, HMean,
GMean, Max,
Mean, Range

Max, Min,
HMean, Mean,

GMean
Range

3 Range - Range - Range -

4.3. Experimental Results on Scenario C

In this section, experimental results based on Scenario C (See Section 3.5) are pre-
sented and discussed. Scenario C is based on assessing and comparing the prediction
performances of NB and DT models based on the proposed AREMFFS and its variant
(REMFFS: rank aggregation-based ensemble multi-filter feature selection) as proposed in
this study. The REMFFS method is based on the same working principle as AREMFFS but
without the backtracking function included. The results of this analysis will allow for a fair
comparison between the two and empirically validate the effectiveness of the proposed
AREMFF method.

Figures 14–16 present box-plot representations of the accuracy, AUC, and f-measure
values of NB and DT classifiers with the proposed AREMFFS and REMFFS methods.
Correspondingly, Figure 14 presents the accuracy values of NB and DT models with the
AREMFFS and REMFFS methods. It can be observed that models based on AREMFFS
(NB: 81.67%, DT: 83.31%) had superior average accuracy values when compared with the
REMFFS (NB: 80.62%, DT: 82.75%) methods. In particular, based on NB and DT models,
AREMFFS had increments of +1.3% and +0.67% in average accuracy values, respectively,
over the REMFFS method. As observed, the experimental results indicated that models
based on AREMFFS outperformed models based on REMFFS on accuracy values. That is,
AREMFFS had a superior positive impact on the prediction accuracy values of NB and DT
models over the REMFFS method.
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Regarding AUC values, Figure 15 shows box-plot representations of models based on
NB and DT classifiers with the proposed AREMFFS and REMFFS methods. As presented
in Tables 10 and 11, models based on AREMFFS (NB: 0.784, DT: 0.723) had superior average
AUC values over models with REMFFS (NB: 0.771, DT: 0.699). Specifically, NB and DT
models with AREMFFS had increments of +1.69% and +3.43% in average AUC values,
respectively, over models based on the REMFFS method. As observed, the experimental
results indicated that models based on AREMFFS outperformed models based on REMFFS.
In other words, AREMFFS had a superior positive impact on the AUC values of NB and DT
models over the REMFFS method. Also, in terms of f-measure values, Figure 16 presents
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box-plot representations of models with NB and DT classifiers with proposed AREMFFS
and REMFFS methods. Models based on AREMFFS (NB: 0.797, DT: 0.825) had superior
average f-measure values over models with the REMFFS (NB: 0.778, DT: 0.813) method.
In particular, NB and DT models with AREMFFS had increments of +2.44% and +1.48%
in average f-measure values, respectively, over models based on the REMFFS method.
Similarly, the experimental results showed the superiority of models based on the proposed
AREMFFS as it outperformed models based on REMFFS on f-measure values. That is,
AREMFFS had a superior positive impact on the f-measure values of NB and DT models
over the REMFFS method.

Table 10. Models based on the NB classifier with the proposed AREMFFS and REMFFS methods.

Models Average Accuracy (%) Average AUC Average F-Measure

REMFFS 80.62 0.771 0.778

AREMFFS 81.67 0.784 0.797

Table 11. Models based on the DT classifier with the proposed AREMFFS and REMFFS methods.

Models Average Accuracy (%) Average AUC Average F-Measure

REMFFS 82.75 0.699 0.813

AREMFFS 83.31 0.723 0.825

Based on the preceding experimental results as presented in Figures 14–16, the supe-
riority of the proposed AREMFFS over REMFFS can be observed. Correspondingly, the
observed superior performance of the proposed AREMFFS over REMFFS can be attributed
to its backtracking ability to further remove irrelevant features from the generated opti-
mal feature list. As established, the removal of irrelevant features will further improve
the performance of the proposed AREMFFS method. However, it should be noted that
REMFFS, which is a variant of AREMFFS, generated a good and competitive prediction
performance. Figures 17–19 further analysed the performance of AREMFFS and REMFFS
methods statistically. In other words, the Scott–KnottESD statistical rank test was used to
determine the statistically significant differences in their respective performances based on
accuracy, AUC, and f-measure values, respectively.

As presented in Figure 17, it can be observed that there are no statistically significant
differences in the average accuracy values of NB and DT models with the proposed
AREMFFS and REMFFS methods. Nonetheless, AREMFFS still ranks higher than the
REMFFS method when the order of superiority/arrangements (left to right) of the models
from the statistical test were considered; that is, AREMFFS appeared first.
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From Figure 19, similar observations were recorded from statistical rank tests based on
f-measure values, as there is no statistically significant difference in the average f-measure
values of models based on the two methods (AREMFFS and REMFFS), although AREMFFS
is better. The case is slightly different for Scott–KnottESD statistical rank tests based on
AUC values as shown in Figure 18. In terms of NB models (Figure 18A), AREMFFS and
REMFFS fall into the same grouping. That is, the difference between their respective AUC
values is statistically insignificant. However, for DT models (Figure 18B), AREMFFS is
statistically superior to REMFFS, as there is a significant difference in their AUC values. In
addition, a summary of the statistical test analyses on the performance of AREMFFS and
REMFFS methods is presented in Table 12. These findings indicate that models based on
AREMFFS have superior performance over models based on the REMFFS method.

Based on the experimental and statistical test results, the proposed AREMFFS method
recorded a superior positive impact on the prediction performances of SDP models (NB
and DT) over its variant (REMFFS method) for the defect datasets that were studied.

Table 12. Summary of the Scott–Knott rank test of the experimented FS methods on NB and DT models.

Statistical
Rank

Average Accuracy Average AUC Average F-Measure

NB DT NB DT NB DT

1 AREMFFS,
REMFFS

AREMFFS,
REMFFS

AREMFFS,
REMFFS AREMFFS AREMFFS,

REMFFS
AREMFFS,
REMFFS

2 - - - REMFFS - -

In summary, from the experimental results and statistical test analyses, the proposed
AREMFFS method had a superior positive effect on the prediction performances of SDP
models (NB and DT) compared to the individual filter FS methods (CS, IG, REF, and NoFS),
existing rank aggregation based multi-filter FS methods (Min, Max, Mean, Range, GMean,
and HMean), and its variant (REMFFS) on the defect datasets studied. These findings,
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therefore, answer RQ1 and RQ2 (see Section 3.6) as presented in Table 13. Furthermore,
the efficacy of AREMFFS solves the filter rank selection problem in SDP by integrating the
power of individual filter FS methods. As a result, combining filter (multi-filter) methods
is suggested as a viable choice for harnessing the power of the respective FFS and the
strengths of filter–filter relationships in selecting germane features for FS methods as
conducted in this report

Table 13. Answers to research questions.

Research Questions Answers

RQ1. How effective is the proposed AREMFFS
method compared to baseline FFS methods?

The proposed AREMFFS outperformed
individual FFS methods with statistically

significant differences.

RQ2. How effective is the proposed AREMFFS
method compared to existing rank

aggregation-based multi-filter FS methods?

The proposed AREMFFS outperformed
existing rank aggregation-based multi-filter FS

methods with statistically significant
differences.

5. Conclusions

This study focuses on resolving high dimensionality and filter rank selection problems
in software defect prediction by proposing a novel AREMFFS method. Selecting an appli-
cable and pertinent filter FS method to be used in SDP is often a problem as the efficacy of
these filter FS methods varies. As such, AREMFFS is proposed and designed to combine
multiple rank lists generated by different filter FS methods into a single robust rank list.
Moreover, a geometric mean function and a backtracking function are used to automati-
cally select top-ranked features and reduce the number of features on the aggregated list.
For performance evaluation and validation, NB and DT models were developed using
features generated by AREMFFS, selected baseline filter FS methods (IG, CS, REF, and
NoFS methods), existing rank aggregation based multi-filter FS methods (Min, Max, Mean,
Range, GMean, and HMean), and variants of AREMFFS (REMFFS) for defect datasets
with different granularity. Findings from the experimental results indicated the efficacy
and superiority of the proposed AREMFFS method as it recorded a better positive impact
on the prediction performances of NB and DT classifiers than the other experimented FS
methods in most cases.

In particular, the proposed ARMFFS was able to generate a more stable and complete
subset of features that best represented the datasets studied. These findings, therefore,
support the combination and aggregation of rank lists from multiple filter FS methods as
a feasible solution to primarily high dimensionality and filter rank selection problems in
SDP. In a wider sense, the results and findings from this research can be used by experts
and researchers in SDP and other applicable research domains that require FS methods to
address high dimensionality and filter rank selection problems.

Furthermore, in this study, there is a trade-off of the computational time for prediction
performance. That is, the computational time is not used as an assessment metric. This
is because in most cases, ensemble methods have been reported to record more compu-
tational time than single methods [81]. Moreover, the overhead cost of a software defect
misprediction could have dire consequences.

As it is a limitation of this study, we plan to investigate and broaden the scope of this
study in the future by analysing other ensemble configurations of the FS method with more
prediction models. Application of EC techniques for selection of features and reduction
in computational time of ensemble methods will be explored. Furthermore, the effect of
threshold values on FFS efficacies is worth examining, as the appropriate threshold value
is dependent on the dataset used.



Entropy 2021, 23, 1274 25 of 28

Author Contributions: Conceptualization, A.O.B. and S.B.; methodology, A.O.B. and L.F.C.; software,
A.O.B., G.K. and V.E.A.; validation, A.O.B., S.B., M.A.A. and A.A.I.; formal analysis, A.O.B., S.M.,
M.A.A., V.E.A. and A.A.I.; investigation, A.O.B., S.B. and L.F.C.; resources, S.B., S.M., M.A.A. and
A.O.B.; data curation, A.A.I. and A.O.B.; writing—original draft preparation, A.O.B.; writing—review
and editing, S.B., L.F.C., V.E.A., A.A.I. and A.O.B.; visualization, S.M., G.K., V.E.A. and A.O.B.;
supervision, S.B. and L.F.C.; project administration, S.B., S.M. and L.F.C.; funding acquisition, S.B.
and S.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research paper was fully supported by Universiti Teknologi PETRONAS, under the
Yayasan Universiti Teknologi PETRONAS (YUTP) Fundamental Research Grant Scheme (YUTP-
FRG/015LC0240) and (YUTP-FRG/015LC0297).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Akintola, A.G.; Balogun, A.O.; Lafenwa-Balogun, F.; Mojeed, H.A. Comparative analysis of selected heterogeneous classifiers for

software defects prediction using filter-based feature selection methods. FUOYE J. Eng. Technol. 2018, 3, 134–137. [CrossRef]
2. Balogun, A.O.; Lafenwa-Balogun, F.B.; Mojeed, H.A.; Adeyemo, V.E.; Akande, O.N.; Akintola, A.G.; Bajeh, A.O.; Usman-Hamza,

F.E. SMOTE-Based Homogeneous Ensemble Methods for Software Defect Prediction. In Proceedings of the International
Conference on Computational Science and Its Applications, online, 1–4 July 2020; Springer: Heidelberg, Germany, 2020;
pp. 615–630.

3. Bajeh, A.O.; Oluwatosin, O.J.; Basri, S.; Akintola, A.G.; Balogun, A.O. Object-oriented measures as testability indicators: An
empirical study. J. Eng. Sci. Technol. 2020, 15, 1092–1108.

4. Balogun, A.; Bajeh, A.; Mojeed, H.; Akintola, A. Software defect prediction: A multi-criteria decision-making approach. Niger. J.
Technol. Res. 2020, 15, 35–42. [CrossRef]

5. Chauhan, A.; Kumar, R. Bug severity classification using semantic feature with convolution neural network. In Computing in
Engineering and Technology; Springer: Heidelberg, Germany, 2020; pp. 327–335.

6. Jimoh, R.; Balogun, A.; Bajeh, A.; Ajayi, S. A PROMETHEE based evaluation of software defect predictors. J. Comput. Sci. Its Appl.
2018, 25, 106–119.

7. Catal, C.; Diri, B. Investigating the effect of dataset size, metrics sets, and feature selection techniques on software fault prediction
problem. Inf. Sci. 2009, 179, 1040–1058. [CrossRef]

8. Li, L.; Leung, H. Mining static code metrics for a robust prediction of software defect-proneness. In Proceedings of the 2011
International Symposium on Empirical Software Engineering and Measurement, Banff, AB, Canada, 22–23 September 2011; IEEE:
Piscataway, NJ, USA, 2011; pp. 207–214.

9. Mabayoje, M.A.; Balogun, A.O.; Bajeh, A.O.; Musa, B.A. Software defect prediction: Effect of feature selection and ensemble
methods. FUW Trends Sci. Technol. J. 2018, 3, 518–522.

10. Lessmann, S.; Baesens, B.; Mues, C.; Pietsch, S. Benchmarking classification models for software defect prediction: A proposed
framework and novel findings. IEEE Trans. Softw. Eng. 2008, 34, 485–496. [CrossRef]

11. Li, N.; Shepperd, M.; Guo, Y. A systematic review of unsupervised learning techniques for software defect prediction. Inf. Softw.
Technol. 2020, 122, 106287. [CrossRef]

12. Okutan, A.; Yıldız, O.T. Software defect prediction using Bayesian networks. Empir. Softw. Eng. 2014, 19, 154–181. [CrossRef]
13. Rodriguez, D.; Herraiz, I.; Harrison, R.; Dolado, J.; Riquelme, J.C. Preliminary comparison of techniques for dealing with

imbalance in software defect prediction. In Proceedings of the 18th International Conference on Evaluation and Assessment in
Software Engineering, London, UK, 13–14 May 2014; ACM: New York, NY, USA, 2014.

14. Usman-Hamza, F.; Atte, A.; Balogun, A.; Mojeed, H.; Bajeh, A.; Adeyemo, V. Impact of feature selection on classification via
clustering techniques in software defect prediction. J. Comput. Sci. Its Appl. 2019, 26, 73–88.

15. Balogun, A.; Oladele, R.; Mojeed, H.; Amin-Balogun, B.; Adeyemo, V.E.; Aro, T.O. Performance analysis of selected clustering
techniques for software defects prediction. Afr. J. Comput. ICT 2019, 12, 30–42.

16. Rodriguez, D.; Ruiz, R.; Cuadrado-Gallego, J.; Aguilar-Ruiz, J.; Garre, M. Attribute selection in software engineering datasets
for detecting fault modules. In Proceedings of the 33rd EUROMICRO Conference on Software Engineering and Advanced
Applications (EUROMICRO 2007), Lubeck, Germany, 28–31 August 2007; IEEE: Piscataway, NJ, USA, 2007.

17. Wang, H.; Khoshgoftaar, T.M.; Van Hulse, J.; Gao, K. Metric selection for software defect prediction. Int. J. Softw. Eng. Knowl. Eng.
2011, 21, 237–257. [CrossRef]

http://doi.org/10.46792/fuoyejet.v3i1.178
http://doi.org/10.4314/njtr.v15i1.7
http://doi.org/10.1016/j.ins.2008.12.001
http://doi.org/10.1109/TSE.2008.35
http://doi.org/10.1016/j.infsof.2020.106287
http://doi.org/10.1007/s10664-012-9218-8
http://doi.org/10.1142/S0218194011005256


Entropy 2021, 23, 1274 26 of 28

18. Rathore, S.S.; Gupta, A. A comparative study of feature-ranking and feature-subset selection techniques for improved fault
prediction. In Proceedings of the 7th India Software Engineering Conference, Chennai, India, 19–21 February 2014; ACM:
New York, USA, 2014.

19. Balogun, A.O.; Basri, S.; Abdulkadir, S.J.; Hashim, A.S. A hybrid multi-filter wrapper feature selection method for software defect
predictors. Int. J. Supply Chain Manag. 2019, 8, 916–922.

20. Balogun, A.O.; Basri, S.; Abdulkadir, S.J.; Hashim, A.S. Performance analysis of feature selection methods in software defect
prediction: A search method approach. Appl. Sci. 2019, 9, 2764. [CrossRef]

21. Balogun, A.O.; Basri, S.; Mahamad, S.; Abdulkadir, S.J.; Almomani, M.A.; Adeyemo, V.E.; Al-Tashi, Q.; Mojeed, H.A.; Imam,
A.A.; Bajeh, A.O. Impact of feature selection methods on the predictive performance of software defect prediction models: An
extensive empirical study. Symmetry 2020, 12, 1147. [CrossRef]

22. Balogun, A.O.; Lafenwa-Balogun, F.B.; Mojeed, H.A.; Usman-Hamza, F.E.; Bajeh, A.O.; Adeyemo, V.E.; Adewole, K.S.; Jimoh,
R.G. Data Sampling-Based Feature Selection Framework for Software Defect Prediction. In Proceedings of the International
Conference on Emerging Applications and Technologies for Industry 4.0, Uyo, Akwa Ibom, Nigeria, 21–23 July 2020; Springer:
Heidelberg, Germany, 2020; pp. 39–52.

23. Aleem, S.; Capretz, L.F.; Ahmed, F. Comparative performance analysis of machine learning techniques for software bug detection.
In Proceedings of the 4th International Conference on Software Engineering and Applications, Zurich, Switzerland, 2–3 January
2015; AIRCC Press: Chennai, Tamil Nadu, India, 2015; pp. 71–79.

24. Anbu, M.; Mala, G.A. Feature selection using firefly algorithm in software defect prediction. Clust. Comput. 2019, 22, 10925–10934.
[CrossRef]

25. Kakkar, M.; Jain, S. Feature selection in software defect prediction: A comparative study. In Proceedings of the 6th International
Conference on Cloud System and Big Data Engineering, Noida, India, 14–15 January 2016; IEEE: Piscataway, NJ, USA, 2016.

26. Cai, J.; Luo, J.; Wang, S.; Yang, S. Feature selection in machine learning: A new perspective. Neurocomputing 2018, 300, 70–79.
[CrossRef]

27. Li, Y.; Li, T.; Liu, H. Recent advances in feature selection and its applications. Knowl. Inf. Syst. 2017, 53, 551–577. [CrossRef]
28. Chandrashekar, G.; Sahin, F. A survey on feature selection methods. Comput. Electr. Eng. 2014, 40, 16–28. [CrossRef]
29. Iqbal, A.; Aftab, S. A Classification Framework for Software Defect Prediction Using Multi-filter Feature Selection Technique and

MLP. Int. J. Mod. Educ. Comput. Sci. 2020, 12. [CrossRef]
30. Osanaiye, O.; Cai, H.; Choo, K.-K.R.; Dehghantanha, A.; Xu, Z.; Dlodlo, M. Ensemble-based multi-filter feature selection method

for DDoS detection in cloud computing. EURASIP J. Wirel. Commun. Netw. 2016, 2016, 130. [CrossRef]
31. Balogun, A.O.; Basri, S.; Abdulkadir, S.J.; Mahamad, S.; Al-momamni, M.A.; Imam, A.A.; Kumar, G.M. Rank aggregation based

multi-filter feature selection method for software defect prediction. In Proceedings of the International Conference on Advances
in Cyber Security, Penang, Malaysia, 8–9 December 2020; Springer: Heidelberg, Germany, 2020; pp. 371–383.

32. Balogun, A.O.; Basri, S.; Mahamad, S.; Abdulkadir, S.J.; Capretz, L.F.; Imam, A.A.; Almomani, M.A.; Adeyemo, V.E.; Kumar, G.
Empirical analysis of rank aggregation-based multi-filter feature selection methods in software defect prediction. Electronics 2021,
10, 179. [CrossRef]

33. Smidts, C.; Stutzke, M.; Stoddard, R.W. Software reliability modeling: An approach to early reliability prediction. IEEE Trans.
Reliab. 1998, 47, 268–278. [CrossRef]

34. Cortellessa, V.; Singh, H.; Cukic, B. Early reliability assessment of UML based software models. In Proceedings of the 3rd
International Workshop on Software and Performance, Rome, Italy, 24–26 July 2002.

35. Gaffney, J.; Pietrolewiez, J. An automated model for software early error prediction (SWEEP). In Proceedings of the 13th Minnow
Brook Workshop on Software Reliability, Blue Mountain Lake, NY, USA, 24–27 July 1990.

36. Gaffney, J.; Davis, C.F. An approach to estimating software errors and availability. In Proceedings of the 11th Minnow brook
workshop on Software Reliability, Blue Mountain Lake, NY, USA, 26–29 July 1988.

37. Al-Jamimi, H.A. Toward comprehensible software defect prediction models using fuzzy logic. In Proceedings of the 2016 7th
IEEE International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 26–28 August 2016; IEEE:
Piscataway, NJ, USA, 2016; pp. 127–130.

38. Yadav, H.B.; Yadav, D.K. A fuzzy logic based approach for phase-wise software defects prediction using software metrics. Inf.
Softw. Technol. 2015, 63, 44–57. [CrossRef]

39. Borgwardt, S.; Distel, F.; Peñaloza, R. The limits of decidability in fuzzy description logics with general concept inclusions. Artif.
Intell. 2015, 218, 23–55. [CrossRef]

40. Khan, B.; Naseem, R.; Shah, M.A.; Wakil, K.; Khan, A.; Uddin, M.I.; Mahmoud, M. Software Defect Prediction for Healthcare Big
Data: An Empirical Evaluation of Machine Learning Techniques. J. Healthc. Eng. 2021, 2021. [CrossRef] [PubMed]

41. Naseem, R.; Khan, B.; Ahmad, A.; Almogren, A.; Jabeen, S.; Hayat, B.; Shah, M.A. Investigating tree family machine learning
techniques for a predictive system to unveil software defects. Complexity 2020, 2020, 6688075. [CrossRef]

42. Akimova, E.N.; Bersenev, A.Y.; Deikov, A.A.; Kobylkin, K.S.; Konygin, A.V.; Mezentsev, I.P.; Misilov, V.E. A Survey on Software
Defect Prediction Using Deep Learning. Mathematics 2021, 9, 1180. [CrossRef]

43. Haouari, A.T.; Souici-Meslati, L.; Atil, F.; Meslati, D. Empirical comparison and evaluation of Artificial Immune Systems in
inter-release software fault prediction. Appl. Soft. Comput. 2020, 96, 106686. [CrossRef]

http://doi.org/10.3390/app9132764
http://doi.org/10.3390/sym12071147
http://doi.org/10.1007/s10586-017-1235-3
http://doi.org/10.1016/j.neucom.2017.11.077
http://doi.org/10.1007/s10115-017-1059-8
http://doi.org/10.1016/j.compeleceng.2013.11.024
http://doi.org/10.5815/ijmecs.2020.01.03
http://doi.org/10.1186/s13638-016-0623-3
http://doi.org/10.3390/electronics10020179
http://doi.org/10.1109/24.740500
http://doi.org/10.1016/j.infsof.2015.03.001
http://doi.org/10.1016/j.artint.2014.09.001
http://doi.org/10.1155/2021/8899263
http://www.ncbi.nlm.nih.gov/pubmed/33815733
http://doi.org/10.1155/2020/6688075
http://doi.org/10.3390/math9111180
http://doi.org/10.1016/j.asoc.2020.106686


Entropy 2021, 23, 1274 27 of 28

44. Khurma, R.A.; Alsawalqah, H.; Aljarah, I.; Elaziz, M.A.; Damaševičius, R. An Enhanced Evolutionary Software Defect Prediction
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